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Abstract

The computation, starting from basic principles, of chemical reaction rates in realistic systems (with three or more degrees of
freedom) has been a longstanding goal of the chemistry community. Our current work, which merges tube dynamics with Monte
Carlo methods provides some key theoretical and computational tools for achieving this goal. We use basic tools of dynamical
systems theory, merging the ideas of Koon et al. [W.S. Koon, M.W. Lo, J.E. Marsden, S.D. Ross, Heteroclinic connections
between periodic orbits and resonance transitions in celestial mechanics, Chaos 10 (2000) 427—-469.] and De Leon et al. [N. De
Leon, M.A. Mehta, R.Q. Topper, Cylindrical manifolds in phase space as mediators of chemical reaction dynamics and kinetics.
I. Theory, J. Chem. Phys. 94 (1991) 8310-8328.], particularly the use of invariant manifold tubes that mediate the reaction, into
a tool for the computation of lifetime distributions and rates of chemical reactions and scattering phenomena, even in systems
that exhibit non-statistical behavior. Previously, the main problem with the application of tube dynamics has been with the
computation of volumes in phase spaces of high dimension. The present work provides a starting point for overcoming this
hurdle with some new ideas and implements them numerically. Specifically, an algorithm that uses tube dynamics to provide the
initial bounding box for a Monte Carlo volume determination is used. The combination of a fine scale method for determining
the phase space structure (invariant manifold theory) with statistical methods for volume computations (Monte Carlo) is the
main contribution of this paper. The methodology is applied here to a three degree of freedom model problem and may be useful
for higher degree of freedom systems as well.
© 2005 Elsevier B.V. All rights reserved.
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1. Introduction the starting point for the computation of lifetime distri-
butions and rates of chemical reactions and scattering
Chemical reaction rates are usually computed using phenomena. The standard RRKM assumption of an un-
standard statistical methods, such as Rice-Ramspergerstructured phase space fails to account for the dynamics
Kassel-Marcus (RRKM]12] theory, also known as  of systems exhibiting significant non-statistical behav-
transition state theory (TST)[43]. TST is based onthe  ior. We overcome this difficulty by taking into con-
identification of a transition state (TS) between large sideration the homoclinic and heteroclinic intersection
regions of phase space that correspond to either “reac- structure of tubes in the phase space. Furthermore, by
tants” or “products.” TST yields rates based on a local working in the phase space as opposed to configura-
study of the TS as well as the assumption that the phasetion space, we overcome the recrossing problem, i.e.,
space in each region is structurelg&k]. These values  the recrossing of the transition state as projected onto
can be several orders of magnitude off of experimen- configuration space, which if uncorrected leads to in-
tal values[4]. Despite its shortcomings, RRKM/TST  accurate rate computations.
has been a workhorse of the chemistry community for ~ Previously, the main problem with the application
decades. However, it is now well known that while the of tube dynamics has been with the computation of
structureless assumption is useful in many situations, in volumes in phase spaces of high dimeng&a4]. The
general these regions (often defined by potential wells) present work provides a starting point for overcoming
are not structurelegg0]. this hurdle by using an algorithm that uses tube dy-
De Leon et al[5,6] attempted to extend the local namics to provide the initial bounding box for a Monte
picture near the TS in two degree of freedom (d.f.) sys- Carlo volume determination. The main contribution of
temsto amore global one and developed reaction islandthe paper is the combination of an accurate method
theory using cylindrical manifold86] (now known as for computing and understanding invariant manifolds
tubes [39]). Berry and collaborators (see for instance in the problem and hence the phase space structure to-
[17]) studied the local regular behavior near the saddle gether with statistical Monte Carlo methods for volume
regions by means of Kolmogorov entropies. Marcus computations.
[29] suggested that these regularities were due to the  We show the practical applicability of the methodol-
existence of some invariants near the TS. Komatsuzaki ogy in a model three d.f. problem in which the hypothe-
and Berry[23—25]made further progress by using dy- ses of TST do not hold: namely, the full-scattering of
namical perturbative methods to study the transition electrons in Rydberg atoms in the presence of external
near the saddle region. Uzer et[d4], by usingagen-  crossed electric and magnetic fields. We use a variety
eral dynamical systems framework, studied the local of methods and software that have been developed in
geometric structures of rank-one saddles that regulatethe last several years faibe dynamics [21,26,15,39]
reactions in systems with three or more d.f. Recently, to better understand the transport between different re-
in Waalkens et a[45], homoclinic and heteroclinicor-  gions (orrealms) of phase space. The numerical re-
bits in a tri-atomic molecule have been computed. But sults obtained are a demonstration of accurate lifetime
a comprehensive theory of chemical reactions and effi- distribution and rate calculations which overcome the
cient computational tools for reaction rate calculations difficulties that have plagued the standard statistical
in three or more d.f. systems which takes into consider- methods.
ation phase space structures still needs to be developed, The paper is organized as follows: in Sectiynve
even for elementary reactions. describe the global geometric structure of the phase
The currentwork, which merges tube dynamics with space for reactions between two regions connected via
Monte Carlo methods, provides some enabling the- arank-one saddle point. We also introduce the method-
oretical and computational tools needed for accurate ology for the computation of scattering rates and life-
rate calculations. In this paper, we present a methodol- time distributions. The computational tool employed
ogy that uses basic tools of dynamical systems theory, to produce these detailed structures is based on normal
merging the ideas d6,15]and De Leon et al. (see, form techniqueg14,13,21,22,9,10,15]In Section3,
e.g.,[5,6]). In particular, we use invariant manifold we apply the methodology of Secti@to the scatter-
tubes mediating the dynamical process of reaction asing problem of Rydberg-type atoms in crossed electric
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and magnetic fields. Finally, in Sectiah we make 2.1. Phase space structure near the saddle
several additional remarks and point out some possible

directions for future work, in particular, the applica- Studying the linearization of the dynamics near the
bility of the computation methods to four or more d.f. saddle equilibrium point is of course an essential in-
systems. gredient for understanding the more complete nonlin-

ear dynamicq26]. In fact, it can be shown that for
a value of energy constant just above that of the sad-
2. General methodology dle, the nonlinear dynamics in the equilibrium region
is qualitatively the same as the linearized picture that
Many chemical reactions and some scattering phe- we will describe below. For details, sg22,49] How-
nomena proceed through energetic barriers. In gen-ever, since this geometric insight will be used later to
eral, such situations are well described in phase spaceguide our numerical algorithms for effectively comput-
where the energy-fixed hyper-surface determines dif- ing non-statistical lifetime distributions for scattering
ferent regions that are connected by the energy barri- problems, a brief review of the linearized picture will
ers, specifically by structures related to rank-one sad- be provided below for the benefit of the readers.
dles associated with the barriers. To make the dis-
cussion that follows as simple as possible, we con- 2.1.1. The linear dynamics near the saddle
sider a two state system where one state is bound and Assume we are dealing with a Hamiltonian system
the other is unbound. We will refer to this problem for which preliminary linear transformations have been
as ascattering problem for purposes of the present performed (essentially, a translation to put the saddle
discussion. at the origin and a linear change that uses the eigen-
The simplest case is shownfiig. 1where abound  vectors of the linear system as the new basis) so that
region (zone on the left of the bottleneck) is next to the Hamiltonian function for the linear system near the
an unbound region (unbound zone on the right of the saddle has the following quadratic (normal) form:
bottleneck), and the bottleneck takes place precisely "
at the rank—qne saddle equilibrium point. More CON™  Lo(g1, P - - -+ Gns Pr) = AqLPL + Z ﬂ(qg + 2.
cretely, this figure shows a planar projection of the Hill 2
region for the model problem used in this paper, namely
. : h (1)
a Rydberg atom in crossed electric and magnetic fields.
Recall that the Hill region is the projection of the en- wheren is the number of degrees of freedomis the
ergy surface onto the position space. In the figure, the real eigenvalue corresponding to the hyperbolic direc-
white zone corresponds to the portion of the position tion spanned by, p1), wx are the bath mode frequen-
space where the motion is possible for the given level cies; that is, the frequencies associated to the variables
of energy. (92. 2,43, P3. - Gn, Pn).

k=2

(a) (b) (c)

Fig. 1. Planar projections of the actual Hill region for the Rydberg atom in crossed electric and magnetic fields. The three possible cases are
shown: connected (a) and unconnected (c) bound and unbound states separated by a bottleneck related to a rank-one saddle. The connectivit
depends on the energy level. Case (b) corresponds to the critical case.
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By fixing a positiveh € R andc € R, we definea  corresponds to the transition state in the chemical liter-

regionR C R?" in phase space by the condition ature and plays an important role in chemical reaction
dynamics, as we will see later.
Hy(q1, p1.---.qn, pn) =h, and |p1—qi| <c. To analyze the flow iR, one considers the pro-

_ . jections on the {1, p1)-plane and 42, p2) x --- x
It can be seen thak is homeomorphic to the prod- (g, p,)-space, respectively. In the first case we see the

uct of a (2 — 2)-sphere and an intervalthat is,R = standard picture of an unstable critical point, and in the
§2=2 x I; namely, for each fixed value op{ — g1) second, of a center consisting af{ 1) uncoupled har-
in the interval I = [—c, c], we see that the equa- monic oscillatorsFig. 2 schematically illustrates the
tion Hz(q1, p1. - - -, qn, pn) = h determines a (@2— flow. Notice thatR itself projects to a set bounded on
2)-sphere two sides by the hyperbolg p1 = 1/ (corresponding
. . . to g5+ p3 =---=q¢> + p> = 0, seg(1)) and on two
A 2 ko2 2N Ao N2 other sides by the line segments — g1 = %c, which
4(q1 )"+ kz_; 2 i+ pi) =h+ 4(1)1 91)" correspond to the bounding{2- 2)-spheres.

a Since ¢1p1 is an integral of the (linearized)
The bounding (2 — 2)-sphere ofR for which p1 — equations inR, the projections of orbits in the
g1 = —c will be called n1, and that wherep; — (41, p1)-plane move on the branches of the corre-

q1 = ¢, n2 (seeFig. 2. We call the set of points on ~ Sponding hyperbolag; p1 = constant, except in the
each bounding (2— 2)-sphere wherg;, + p; = Othe caseqip1 =0, in which caseg; =0 or p1 = 0. If

equator, and the sets wheeg + p1 > 00rg1 + p1 < g1p1 > 0, the branches connect the bounding line
0 will be called thenorth andsouth hemispheres, re- segmentyn — g1 = *c. If g1p1 < O, they have both
spectively. Notice the 2— 2)-sphere at the middle ~end points on the same segment.
of the equilibrium region wherg — g1 = 0. This To interpretFig. 2as a flow inR, notice that each
sphere, which is defined as follows pointin the g1, p1)-plane projection corresponds to a
. (2n — 3)-spheres?’—3in R given by
_ i
Ninzz{(q,p) Ap%+22(q£+p,%)=h}, "
k=2 > 7(%3 +p) =h —rq1p1.
(2) k=2
P2 Py
42 x . x dp

Center Projections

Saddle Projection

Fig. 2. The flow in the equilibrium region has the form saddleenterx - - - x center. On the left is shown the projection onto thg g1)-plane
(note, axes tilted 45. Shown are the NHIM (black dot at the center), the asymptotic orbits (labeled A), two transit orbits (T) and two non-transit
orbits (NT).
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Of course, for points on the bounding hyperbolic seg-
ments §1p1 = h/1), the (21 — 3)-sphere collapses to
a point. Thus, the segments of the lines— ¢1 =

+c¢ in the projection correspond to the n(2 2)-
spheres boundingR. This is because each corre-
sponds to a (2 — 3)-sphere crossed with an interval
where the two end @— 3)-spheres are pinched to a
point.

The following objects are relevant for understanding

transport through the saddle:

1. The pointg; = p1 = 0 corresponds to an invari-

ant (2 — 3)-spheres?" 2 of periodic and quasi-
periodic orbits inR. This (22 — 3)-sphere is given
by

W
27(41%+P1%)=h, g1=p1=0. 3)
k=2

This is known in the literaturg!8] as anormally hy-
perbolic invariant manifold (NHIM). Roughly, this
means that the stretching and contraction rates under
the linearized dynamics transverse to the {23)-
sphere dominate those tangent to the {23)-
sphere. This is clear since the dynamics normal
to the (2 — 3)-sphere are described by the ex-
ponential contraction and expansion of the sad-
dle point dynamics. The (2— 3)-sphere acts as a
“big saddle point”. See the black dot at the cen-
ter of the ¢1, p1)-plane on the left side dfig. 2
Note that the NHIM is the equator of the transi-
tion state\2"~? and divides it into north and south
hemispheres.

. The four half open segments on the axgg; = 0,
correspond to four high-dimensional cylinders of
orbits asymptotic to this invariant 2— 3)-sphere
§21=3 either as time increasep{ = 0) or as time
decreasesyf = 0). These are callegkymptotic or-

bits and they form the stable and the unstable man-
ifolds of $2~3. The stable manifolds¥$ (52" ~3),

are given by

n

Wk
> S @+ =h a=0 (4)
k=2

Wi(Sf”_S) (with p1 > 0) is the branch going from
right to left (from the unbound state to the sad-
dle region) andw? ($'~3) (with p1 < 0) is the

395

branch going from left to right (from the bound
state to the saddle region). The unstable manifolds,
Wi(S,f"*), are given by

n

Wy
Y. @+ =h p1=0. (5)
k=2

Wjd(S,f”_3) (with g1 > 0) is the branch going from
right to left (from the saddle region to the bound
state) andw" (s2'~3) (with g1 < 0) is the branch
going from left to right (from the saddle region to
the unbound state). See the four orbits labeled A
in Fig. 2 There are four cylinders of orbits asymp-
totic to the invariant (2 — 3)-3phere§f"‘3. They
form the stable and unstable manifolds to the in-
variant (2: — 3)-spheres2"~3. Topologically, both
invariant manifolds look like (2 — 2)-dimensional
“tubes” (§2'—3 x R) inside a (2 — 1)-dimensional
energy manifold. Seleig. 3(a) for examples of these
structures.

. The hyperbolic segments determined qyp1 =

constant> 0 correspond to two cylinders of orbits
that crossk from one bounding (2 — 2)-sphere to

the other, meeting both in the same hemisphere; the
northern hemisphere if they go from — g1 = +c

to p1 — g1 = —c, and the southern hemisphere in
the other case. Since these orbits transit from one re-
gion to another passing through the (2 2)-sphere
N2"=2\hich is the transition state in the linearized
system, we call thentransit orbits. See the two
orbits labeled T irFig. 2

. Finally the hyperbolic segments determined by

g1p1 = constant< O correspond to two cylinders
of orbits in R each of which runs from one
hemisphere to the other hemisphere on the same
bounding 4-sphere. Thusdf > 0, the 4-sphere is
n1(p1 — g1 = —c¢) and orbits run from the south-
ern hemisphereyf + p1 < 0) to the northern hemi-
sphere 41 + p1 > 0) while the converse holds if
q1 < 0, where the 4-sphere is. Since these or-
bits return to the same region and they do not pass
through the transition stat&2" 2, we call them
non-transit orbits. See the two orbits labeled NT
of Fig. 2

. The key observation here is that the asymptotic or-

bits form (21 — 2)-dimensional stable and unsta-
ble manifold tubes §2*—2 x R) to the invariant
(21 — 3)-spheres?" 3 in a (2n — 1)-dimensional
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Fig. 3. (a) StableW’3) and unstablelf’}l) tubes of the NHIM in the regioRg corresponding to bounded orbits and in the regtgreorresponding

to unbound orbits. Only planar projections of the tubes are showrsTiranches correspond to incoming reactions from the unbound states to
the bound states. The branches correspond to outgoing reactions from the bound states to the unboundstaemtes the planar projection

of the Poinca section on this energy surface with eneliggh) Onx,, the first intersection of the exit! with an image of the entrana:é}r is
shown. In this case, the smallé$or which C’+ N CL £ pis 6. (c) A schematic of the exit, showing the first intersection, now labélgdlong

with subsequent intersection$; andAs. The intersections of successive images of the entrance with thetgxitill asymptotically cover the

entire exit ag — oo.

energy surface and thus, they separate two distinct2.1.2. Remark on history and cross-fertilization

types of motion: transit orbits and non-transit or-
bits. The transit orbits, passing from one region to
another, are those inside the:(2 2)-dimensional
manifold tube. The non-transit orbits, which bounce
back to their region of origin, are those outside the
tube.

It is interesting to note that some of the same phase
space structures and techniques described above that
are useful in the chemistry context, were first used in a
celestial mechanics setting by Conley and McGehee in
the 196042,3,32] Conversely, techniques from chem-
istry have been used in celestial problems, as was done
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in [20]. Due do theN-body nature and Hamiltonian  2.2. Global transport and Poincaré cuts

underpinnings of both fields, we expect this type of _
fruitful cross-fertilization to continu¢0,37] We have just seen that the stable and unstable man-

ifolds of the NHIM act as separatrices in phase space.
They are the geometric structures that completely con-
2.1.3. Nonlinear dynamics and separatrices trol the transport between the bound and unbound re-

For a value of the energy just above that of the sad- 9ions and, consequently, the chemical reaction rates
dle, the nonlinear dynamics in the equilibrium region @nd scattering lifetime distributions. _
R is qualitatively the same as the linearized picture that N this section, we study in detail the reaction mecha-

we have shown abo\jg4,49] nism and develop a technique for the cpm_putation ofthe

For example, the NHIM for the nonlinear system corresponding rates. As is usual in this k_lnd of_compu-
which corresponds to the §2- 3)-sphere in Eq(3) tatl_on, we use carefglly chosenn(2- 2_)-d|m_en5|0nal
for the linearized system is given by Poincae sections, in the (22 — 1)-dimensional en-

ergy surface to simplify the problem.
n
M3 = {(q, P | Y (a4 pR) + flaz bz p) =ho qr=p1= 0} (6)
k=2

where f is at least of third order. Here, We proceed as follows. The unbound and bound re-
(92, p2, .-, qn, ps) are normal form coordinates gions are labeled iffig. 3a) asRy and Rg, respec-
and are related to the linearized coordinates via a tively. Any reaction trajectory going from an unbound
near-identity transformation. state to a bound state must initially be in the interior of

In a small neighborhood of the equilibrium point, the stable tub$, and continues in the interior of the
since the higher order termsjiiare much smaller than unstablew tube. These twa- branchesW$ U WY,
the second order terms, they(2 3)-sphere forthelin-  constitute theapture reaction path from the unbound
ear problem becomes a deformed sphere for the non-to bound state. This reaction path will first pierce the
linear problem. Moreover, since NHIMs persist under Poincaé section in thentrance or first Poincaré cut
perturbation, this deformed spheté?" 3 still has sta- Ct (the first forward intersection of the interior of the
ble and unstable manifolds that are given by unstable tubeW! with the Poincaé section). Simi-

larly, the two — branchesW® U WY, constitute the

WS (M) = {(q, p)

n
j :wk

7(91§+P1%)+f(427p2’761m pn)zh, 611=0}
k=2

WY MZ3) = {(q, p)

n
Wi
Z 7(6113 + D)+ @2 P2s o Guspa) =h, p1= 0}
k=2

Notice the similarity between the formulas above and escape reaction path, and any reaction trajectory from
those for the linearized problem given by E¢%). and the bound state to the unbound state has to pass through
(5). The same observation also holds for the transition theexir or first Poincag cutC? (the first backward in-
state: inthe nonlinear system, itis a deformed{22)- tersection of the interior of the stable tub€& with the
sphere. Poincaé section) of this reaction path, just before re-

See [40,41,16,22,49]for details on the semi- action takes place. Trajectories in the escape reaction
analytical approximation of these objects. This geo- path which reach the unbound state do not return to the
metric insight will be used below to guide our numer- bound state within the time window of interest for our
ical algorithms for computing reaction and scattering computations in forward time (similarly for the capture
rates. reaction path in backward time).
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Fig. 3a and b show the actual computations of these labeled A, along with subsequent intersections;
structures for our model problem, the Rydberg atom andAg is shown inFig. 3(c), where schematically we

in crossed electric and magnetic fields.Hig. 3a),
we plot the projections onto they plane of the stable
and unstable manifolds of the NHIM andkig. 3(b),
examples ofcp, Poincaé cuts are shown.

After defining the Poincé&return magon X, we
can denote the images of the entraﬁ}jeas
Cl = f"7HCY).
which is them-th forward intersection of the capture
reaction path with the Poindasection.
_ Similarly, we can denote the pre-images of the exit
Cl as

ct = f==Ich),

which is thek-th backward intersection of the escape
reaction path with the Poindasection.

illustrate what occurs for thel; as/ — oco. Due to

the compactness of the bound region chaotic zone in
which the tubes meander, the volume enclosed within
intersections of successive images of the entrance with
the exit will cover the entire exitds— oo. This means
that all incoming scattering reactions for which there
is a transition from unbound state to bound state will
eventually re-react from the bound state to the unbound
state as time — oo.

2.3. Numerical computation of the lifetime
distribution spectrum

Implementation of the above ideas for full-
scattering depends on evaluations of the intersection
volumes of the entrance and its images with the exit
[5,6,46]

As we assumed that the dynamics of the system is

The intersection of the images of the entrance and Hamiltonian, the Poincérmap is volume preserving.

the pre-images of the exit under the Poirgcagturn
map

i (Srd T Iy o (O

are what give rise to full-scattering reactions. More-

over, the corresponding intersection volume provide

the scattering lifetime distribution and reaction rates.
The problem can be simplified by looking only at the

intersections of the images of the entrance with the exit

itself; that is,
cnct = Y ctynct

wherel = m + k — 1. Fig. 3(b) shows the case when

[ = 6forthe Rydberg atom in crossed electric and mag-

netic fields. Any pointinside the intersecti(iﬁr nct

is a trajectory that comes from the unbound stte
loops around the bound state regiBg, and intersects
the Poincag section six times before escaping to the
unbound state regioRy. Below, we will use the vol-
ume of this kind of intersection to compute the lifetime
distribution and reaction rates.

Moreover, the volume enclosed within intersections
of successive images of the entrance with the exit will
cover the entire exit ds— co. An example of the first
intersection is shown iRig. 3(b). The firstintersection,

Let us denote by (A) the volume ofA C Xj. As we
have choserk;, to be spanned by (2— 2) conjugate
coordinatesdo, p2, ..., qn, pn), WE Mmay write

v(Cy) = /, dgadpy . .. dgudpy.
Cm

+

Assuming an initially uniform probability distribution
of incomingreactants on C}L, then the fraction gbrod-
ucts escaping after executimgloops around the bound
region is

v(CT nCh)
V(C})

We will see in Sectior8, where we apply this theory

to a particular example, that the resulting scattering
“spectrum” is structured (that is, it is not a simple ex-
ponential decay), anditis closely related to its temporal
analogue, i.e., scattering as a function of time. The non-
monotonicity of the scattering spectrum has been seen
in similar problems in chemistrif].

2.3.1. Computation of intersection volumes via
Monte Carlo methods

To compute the intersection volumes of the Poigcar
cuts of the stable and unstable manifolds of the



F. Gabern et al. / Physica D 211 (2005) 391-406 399

NHIM, we need efficient tools to computen(2- 2)-
dimensional volumes, where is the number of de-

grees of freedom of the system. For two degree of free-
dom cases, the computation is quite straightforward
[33]. However, for higher degrees of freedom, direct
computation of volumes with a numerical quadrature

is more difficult. The problem of choosing a “good” (i)
mesh on the boundary of the«2- 2)-sphere is already

very tricky. Hence, a different approach to the compu-
tation of these high dimensional volumes is used. We
use Monte Carlo methods to compute numerically an
approximate value of the §2— 2)-volume. This fam-

ily of methods are based on a statistical approach to the
problem. Thus, they seem to be especially suitable for (iii)
these kind of situations.

The basicidea s as follows. We first choose a hyper-
rectangle “bounding box” in the 2— 2) space con-
taining the Poincdr cuts of the stable and unstable
manifolds of the NHIM. Seé&ig. 4a) and (b). For the
method to be efficient, it is important that this (high-
dimensional) box contains as tightly as possible the
Poincaé cuts. Otherwise, most of the sample points
would be “lost” outside the object whose volume we
want to compute.

the corresponding trajectory has just undergone
reaction. This can be checked by numerically in-
tegrating the initial condition backward in time,
and confirming that the orbit hits some appro-
priate Poinca# section in the unbound region
Ry.

Exit: Apointin X, belongs to the first Poincacut

of the escape reaction patl , if the correspond-
ing trajectory will undergo reaction immediately.
This can be checked by numerically integrating
the initial condition forward in time, and confirm-
ing that the orbit hits some appropriate Poiricar
section in the unbound regidky.

mth overlap: A pointinx, belongs taC’} N clif

it belongs to the exiC! and its (= — 1)th back-
ward iterate by the Poincamap belongs to the en-
trance (i.e., it belongs tﬁ}r). This can be checked
by showing that the point belongs to the exit, as
in (ii), on one hand; and, on the other hand, in-
tegrating the initial condition backward in time
and confirming that the trajectory hits the Poir&car
section an additional{ — 2) times before hitting
the entrance (checked as in (i)).

whether randomlychosen points inside this box belong carlo method to compute the desired volume. In the
to the targeted object: computations of SectioB, we useimportance and

stratified sampling in order to reduce the standard de-
() Entrance: A point in T, belongs to the first ~ Viation and accelerate the convergence of the method

Poincaé cut of the capture reaction path , if [27,28,38,11]

0.6 ; ; ; ; : . 15

0.4+ 1L

0.2+ 0.5
Py O Pz 0

-0.2 -0.5

0.4 At

-0.6 - - - * -1.5

-0.2 -0.18 -0.16 -0.14 -0.12 -0.1 -0.08 -0.06 -0.06 -0.04 -0.02 0 0.02 0.04 0.06

(a) X (b) X

Fig. 4. (a)xx and (b)zz projections of the intersection of the high-dimensional tubes with the Pé&rsmtionx;, , for » = —1.52 and
& = 0.5835. The dark sections correspond to the projections of the unstabl@kms;d the light ones to the stable c@$. Thexi projection
shows partial overlap whereas theprojection shows the cuts nearly completely overlapping.
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2.3.2. Scattering profile is structured and
non-RRKM
In Fig. 6a and c of SectioB, the percentage of re-
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tion prior to the reaction is given by the initial excita-
tion of a single electron to a high energy level in such
a way that its dynamics can be described by classical

actants escaping from the bound state as a function of physics. The reaction takes place when the electron is
loops in the bound region is shown. The resulting scat- ionized and detached. Experimentally, an atom is ini-

tering profile, which is derived from the 4D intersec-

tially prepared in a highly excited Rydberg state and

tion volumes computed via the Monte Carlo integration one is interested in its behavior in the future. This is an
method, is structured; that s, it is not a simple exponen- example of aalf-scattering problem.

tial decay. Moreover, its temporal analogudiittime
distribution, i.e., scattering as a function of time can
also be computed (sé&ég. 6b and d). We note the sim-
ilarity between the time profile and the “loops” profile.

For the present study, we are instead interested in
thefull-scattering problem, in which the system is pre-
pared in an unbound initial state and we want to study
the dynamics of formation of an excited Rydberg atom

Both results stress that the phase space is not structureand its subsequent ionization. We will use this model
less, and that there is a need to take into considerationproblem to illustrate our methodology. The dynamics

thetube dynamics and non-RRKM effects when com-
puting reaction rates.

2.3.3. Remarks on homoclinic and heteroclinic
intersection structures

If an intersection on a Poinaaisection is between
stable and unstable Poinéagcuts related to the same
NHIM, it is called homoclinic intersection and if they
are related to different NHIMSseteroclinic intersec-
tion. For simplicity, only homoclinic intersection struc-

of the outermost electron in a Rydberg atom in crossed
electric and magnetic fields can be described by the
following classical Hamiltonian:

H = S(px+py+p2) =~ + 500y = ypx)
1
+ é(x2 + %) —ex,

where r = \/x2 + y2 + z2 is the distance from the
electron to the center of the nuclear core arnid the

ture has been studied in this paper. But for multi- scaled electric field strength. All the coordinates, as
channel chemical reactions such as isomerization of well as the Hamiltonian function, have been scaled by
polyatomic molecules, the study of heteroclinic inter- the cyclotron frequencji9].

section structures is also needed. Tube dynamics tech-

nigues developed if26] can be very useful for this
effort. In our ongoing study of isomerization of tri-

atomic molecules, there are three collinear rank one x = p, — Y

saddle connecting two triangular isomers.

Using the Legendre transform, one finds that the
velocities are given by

. X .
, = ,+7, = .
2 Y = Py 2 Pz

To study the structure of these intersections, the 11,4 energy in terms of positions and velocities is

choice of a suitable set of Poinéasections will be

important. The computation of the volumes of all these
differentintersections via Monte Carlo methods will be
the key step in computing the reaction rates between

the two isomers following different reaction channels.
3. Application to Rydberg atom formation and
ionization

3.1. The Hamiltonian model

The ionization of a Rydberg atom interacting with

external crossed electric and magnetic fields has been

studied by other authors (such[a9,44]). The activa-

S 1. . .
Ee(x, y,2,%,9,2) = é(x2 + 324 22 + Ve(x, 3, 2),
where the effective potential function is given by
1
Ve(x, v, 2) = - £x.

The energy integral is the only integral of motion for
the system. Notice also that the manifele: z = 0 is
invariant under the dynamics of the full system.

3.1.1. Stark saddle point
The vector field of the Rydberg atom has a unique
fixed point, which is commonly known as ttfark
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saddle point.

1
xzﬁ, y=0, z=0, x=0,
y=0, z=0.

The value of the energy for the Stark poirig =
—2./¢, is the threshold value for the reaction to take
place. This is easily seen by plotting the Hill region in
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Table 1
Eigenvalues for the linearized system at the Stark fixed point
¢ =0.58 =06
A 0.636449792043354 0.664862088041162

0.981505729811050
0.664616310468007

0.988576549676131
0.681731619880499

w2
w3

paper, there are no small divisors. Actually, the denom-
inators appearing in the generating functions (2&¢

configuration space where the motions of electron is 5a phounded from below by.l.

allowed:
He, h) = {(x, v,2) €R3 | Ve(x, v, 2) < h}

In Fig. 1, the xy planar projection of the Hill region

3.2. NHIM and the stable and unstable tubes

Using the methodology described j21,15] we
construct a high-order normal form of the Hamilto-

for the three possible cases of the Rydberg atom arenian near the Stark saddle point (up to ordes 16).
shown. Reaction is possible if the energy value of the This normal form allows us (i) to obtain a very good

electrom is higher than that of the saddle. ike.> Es;

approximation of the NHIM around the saddle, (ii) to

the critical case is given by the energy value equal to compute the stable and unstable manifold tubes of the

that of the saddle; = Es; and there is no reaction if
h < Es.
Let u = Lu be the linearization of the vector field

evaluated at the Stark fixed point. Then, the eigenvalues
of L describe the linear dynamics around the equilib-

rium point. For any value of > 0, we obtain a pair of
real eigenvaluesi and two pairs of purely imaginary
eigenvaluesitiwo and+tiws (because of the Hamilto-
nian character of the vector field,ifis an eigenvalue,
so are—u, p and—pu):

I «/062—}—883—0{’
2
/2 83
Fiwy = +i W Yiwg = +ig¥/4,

wherea = 1 — ¢%2, Thus, the Stark fixed point is al-
ways of the type saddle centerx center, and we can
callit, indeed, a Starkaddle point. InTable 1 we show
the values of., wy andws for ¢ = 0.58 ands = 0.6.
Note that values of > 0 such that

283/2 Q
E————e
Vol + 83+«

give rise to resonances of the tybev, — kzwz = 0in
the bath modes. However, it is important to point out
that, in the normal form computations performed in this

Q)

NHIM far from the equilibrium point, and (iii) to study
their intersections with a well chosen Poinegaection
given by

Eh,a - {()C, yv Z7)-C9 j’v Z) € R6|E8(X7 yv Z7)-Cv j}v Z)
=handy=0,x < 0}.

Fig. 4shows thexx andzz projections of the intersec-
tion of the stable and unstable tubes with the Poi@car
sectionX, . for a particular fixed value of the energy
h = —1.52 and electric field strength= 0.5835. In
the following numerical experiments, we will fix the
energy value t& = —1.52 and vary the electric field
strengthe. For this level of energy, the Stark saddle
point corresponds to an electric field of = 0.5776.
Fore < ¢s, the bound and unbound regions are discon-
nected (seéig. 1). Fore > ¢s, the bottleneck at the
Stark point is open and becomes wider with larger

The detailed procedure of constructing the high-
dimensional tubes and their Poineauts is as follows:
based on the knowledge of the linear system, we can
pick initial conditions which produce a close “shadow”
of the stable and unstable manifolds §3 x R) asso-
ciated to the NHIM. As we restrict to an energy surface
with energyh, there is only one NHIM per energy sur-
face, denoted\,(~ $9).

The initial conditions in the normal form coordi-
nates §1, p1, g2, p2, g3, p3) are picked with the qual-
itative picture of the linear system in mind. The co-
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ordinates 41, p1) correspond to the saddle projection,
(g2, p2) correspond roughly to oscillations within the
(x, y) plane, and {3, p3) correspond roughly to os-
cillations within thez direction. Also recall thagjz =

p3 =0 (z = z = 0) corresponds to an invariant man-
ifold of the system, i.e., the planar Rydberg system is
an invariant manifold of the three degree of freedom
system.

The initial conditions to approximate the stable and
unstable manifoldsWs (M), W{(M,,)) are picked
via the following procedure. Note that we can be as-
sured that we are obtaining a roughly complete ap-
proximation of points along a slice d¥3 (M) and
WY (M,;) since such a slice is compact, having the
structures®. Also, we know roughly the picture from
the linear case.

1. We fix g1 = p1 = 438, whered is small. This en-
sures that almost all of the initial conditions will be
for orbits which are transit orbits from one side of
the equilibrium region to the other. Specifically
corresponds to right-to-left transit orbits (unbound
to bound state reactions) ardcorresponds to left-
to-right transit orbits (bound to unbound state re-
actions). We choos&small so that the initial con-
ditions are near the NHIMM,;, (at g1 = p1 =0)
and will therefore integrate forward and backward
to be near the unstable and stable manifold¢f,
respectively. We choos&to not be too small, or
the integrated orbits will take too long to leave the
vicinity of M,,.

2. Beginning withr, = 0, and increasing incremen-
tally to some maximumv = rmaX we look for ini-
tial conditions W|thq2 + p3 = r , i.e. along circles
in the z oscillation canonical pIane. It is reason-
able to look along circles centered on the origin
(¢3, p3) = (0, 0) on this canonical plane since the
motion is simple harmonic in the linear case and the
origin corresponds to an invariant manifold.

3. Foreach pointalong the circle, we look for the point
on the energy surface in thgy( p2) plane, i.e., the
(x, ) oscillation canonical plane. Note, our proce-
dure can tell us if such a point exists and clearly
if no point exists, it will not be used as an initial
condition.

After picking the initial conditions in (s, p1,
g2, p2, g3, p3) coordinates, we transform to the initial
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Rydberg coordinatesx(y, z, x, y,z) and integrate
under the full equations of motion. The integration
proceeds until the Poindarsectionx; . stopping
condition is reached, in this case= 0. We can then
use further analysis on the Poineaection, described
below.

3.2.1. Chaotic sea in the bounded region

In the z = z = 0 invariant manifold (which corre-
sponds to the case of planar Rydberg atom), it is pos-
sible to visualize the chaotic dynamics of the bounded
region Rg by plotting the cuts of long-time integra-
tion of particular orbits with the Poincasections, ..
For instance, irFig. 5a), we plot the Poincarsec-

0.4
0.2f

Px ot

E k“'“-"fc nr..u..._ar.:’-"
-0.14  -0.12

-0.1 -0.08

Fig. 5. Poincag sectiory . in the invariant submanifolgd = z = 0.

(a) The chaotic sea is shown together with the first five intersections
of the tube boundaries and the PoireaectionC’, m =1, ..., 5.

A close-up of the intersection of the tubéér with C is shown in
Figure 3b). (b) The first eleven intersections of the stable manifold
tube boundaries are show@®;', m =1, ..., 11.
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tion y = 0 of the chaotic bounded region for a fixed 3.3. Intersection volumes, lifetime distributions,

energyh = —1.52 and a scaled electric field strength and rates

¢ = 0.57765, which correspond to values just above

the threshold energy of the Stark saddle point. We also  As we explained in SectioR.3, to compute the
show the first five intersections of the stable and unsta- 4D intersection volumes of the stable and unstable
ble tubes of the NHIM with this Poincarsection. In tubes with the Poincéarsection we use a Monte Carlo
this case, it takes a while until the tubes intersect due method. First, we choose a hyper-rectangle that con-
to the small aperture of the bottleneck Hig. 5(b), we tains (as tightly as possible) the intersection volume.
show the first 11 intersections of the stable tube with This is easily achieved by looking at the 2 projections
the Poincak section. Notice the extremely complicated of the 4D object on thex andzz planes, for instance
and curling pattern of the manifolds as we iterate for- the ones inFig. 4a) and (b), respectively. Then, we

ward. apply the VEGAS algorithm (sd@7,28]and[38,11)
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Fig. 6. The electron scattering lifetime distribution for the Rydberg atom in crossed electric and magnetic fields for an enérgy {eté2.

(a) The percentage of electrons escaping from the interior region (i.e., scattering away from the bounded region) as a function of loops around
the central core is shown in the case- 0.58. The resulting scattering profile is structured (i.e., not a simple exponential decay), and it is
closely related to its temporal analogue, i.e., scattering as a function of time: (b). The non-monotonicity of the scattering spectrum has been
seen in similar problems in chemistry and is a hallmark of non-RRKM beh§djofc) and (d): the same for a strengthsof= 0.6. For these
computations, 1®random initial conditions within the intersection of the capture and escape reaction paths were used.
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to compute the volume of the desired object. Notice,
that in order to apply this algorithm we only need a
function (or oracle) that tells us whether a given point
inside the high-dimensional box is contained in the tar-
geted object or not. In this case, this is easily achieved,
as explained in Sectidh 3 first, we complete the four-
dimensional point to a six-dimensional phase space ini-
tial condition (by imposing the Poindarsection and
energy restrictions); and, then, we integrate this point
backward in time (to see if it belongs to the entrance,
i.e., the green projection ig. 4), and forward in time

(to see if it belongs to the exit, i.e., the dark projection
in Fig. 4).

Here, we show the results for two examples. First,
we consider the case of a fixed enefgy —1.52 and
scaled electric field strength= 0.58. The intersection
volumes w.r.t. the number of loops of the tube around
the nuclear core in the bounded region is showRign
6(a). The scattering spectrum for the= 0.6 case is
shown inFig. 6(c).

In Fig. 6b) and (d), we show the lifetime distri-
bution of the scattering process. That is, givER.
incoming electrons coming from the unbound region
to form a Rydberg atom, we count how many leave the
bound region (ionization of the atom) per unit of time.
The practical implementation is as follows: We first
generate a quasi-randof35] swarm of points in the
box containing the Poincarcuts by using the Sobol
algorithm[42,1,38,11] Then we choose initial con-
ditions such that the corresponding points belong to
the entranceCi, integrate them forward in time and
count how many of them ionize from the atom per
unit time. It is clear from the numerical experiments
that the resulting lifetime distribution is by no means
statistical.

3.3.1. Computation times

We note that some of the computations done here
are parallelizable and future work could take advan-
tage of this to speed up the calculations. All experi-
ments for this work were performed on a PC work-
station with an Intel Pentium Il 1 Ghz processor. The
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to numerically integrate them until the first crossing of
h.e (Using Runge-Kutta-Fehlberg 7-8) takes about 7
h. The Monte Carlo computation using®fbints takes
about two days. Furthermore, we found that using only
half as many points for the Monte Carlo portion gave
very similar answers.

4. Discussion

This paper has introduced a new method for com-
puting scattering and reaction rates rindegree of
freedom systems using tube dynamics in a synergis-
tic way with Monte Carlo volume determination meth-
ods. The method was applied to the three degree of
freedom model problem of a Rydberg atom. The tech-
nigue may be useful for systems of four or more de-
grees of freedom such as various isomerization prob-
lems. This overcomes a major hurdle encountered by
De Leon et al[5,6]. The method can be used in any
system with rank-one saddles which separate phase
space regions corresponding to different states of the
chemical system, such as the isomerization of poly-
atomic clusterg18,50,51]and bimolecular reactions
[47].

Our primary concern in this paper is to present and
computationally implement a method that is extend-
able to multidimensional systems. As such, we com-
pute a large number of sample points on the manifolds
of the NHIM. However, this is computationally time-
consuming, and we expect further refinements will
make this part of the process more efficient. This is an
area we are currently pursuing. For instance, we might
not need to compute a sampling of the entire NHIM
manifolds. Since all we need is a bounding box for the
Monte Carlo volume computation, we could pick only
those points on the NHIM which lead to the largest
projections on the Poincasection. For example, con-
siderFig. 4. Thex andx directions of the bounding box
could be obtained by looking only at the set on the tube
for whichz =z = 0.

One could also perhaps obtain the bounding box

normal form computations, including the reduction to from the linear dynamics, which will be a good ap-
the center manifold and the construction of the trans- proximation for energies just above the saddle point.
formation from normal form coordinates to the original Once a bounding box is obtained for small excess en-
coordinates (up to order 16), takes only a number of sec- ergies, numerical continuation could be used to provide
onds. The next step, using the normal form to compute a tight bounding box for larger excess energies. This is
650,000 points on the manifold tube of the NHIM and  still work in progress.
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