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Abstract

High-resolution ocean velocity data has become readily available since the introduction of very high frequency (VHF) radar
technology. The vast amount of data generated so far, however, remains largely unused in environmental prediction. In this paper,
we use VHF data of the Florida coastline to locate Lagrangian coherent structures (LCS) hidden in ocean surface currents. Such
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tructures govern the spread of organic contaminants and passive drifters that stay confined to the ocean surface.
agrangian structures in a real-time pollution release scheme that reduces the effect of industrial contamination on
nvironment.
2005 Elsevier B.V. All rights reserved.

eywords:Finite-time Lyapunov exponents; Lagrangian coherent structures; Pollution control

. Introduction

The release of pollution in coastal areas[1–3] may
ave a dramatic impact on local ecosystems, especially

f the pollution recirculates near the coast rather than
eaving for the open ocean. Due to the sensitive
ependence of Lagrangian particle motion on initial
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conditions, identical parcels of fluid released at
same time but from two slightly different locations m
produce vastly different contaminant distributions
is commonly believed that this concept of sensiti
to initial conditions only applies to trajectories start
at the same time but at slightly different locatio
However, time-dependent vector fields generate fl
on the extended phase space (space-time) and p
starting at the same location but at slightly differ
time are also subject to sensitive dependence on
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initial conditions (cf. Section7). Except for degenerate
cases, trajectories with high sensitivity to the initial
releasepositionare also highly sensitive to the initial
releasetime. As a result, one needs a detailed under-
standing of the nonlinear dynamics of surface currents
to devise pollution schemes that result in favorable
outcomes.

Such a detailed understanding may be gained from
very high frequency (VHF) radar technology (see
Section2), which produces well resolved real-time
surface velocities at select coastal locations. In this
paper, we show how such velocity data can be used to
uncover hidden invariant manifolds in the Lagrangian
particle dynamics of the ocean surface. We then use
the location of numerically computed Lagrangian
coherent structures (as defined in[4]) to devise an
automated pollution release scheme that minimizes
the harmful recirculation of contaminants near the
coastline.

In our analysis, we use a combination of accurate
surface current measurement[5,6] and recent develop-
ments in nonlinear dynamical systems theory[7]. In
contrast to earlier approaches to pollution control in
simple flow models[8–12], we rely on real-time ve-
locity data collected by coastal Doppler radar systems.
Discounting measurement errors (typically of the order
of 5 cm s−1), we consider the VHF velocity data shown
in Fig. 1 to be a faithful discretized representation of
the actual surface velocity field.

We locate time-dependent coherent structures in the
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very small with respect to the corresponding Eulerian
error.

Other methods for extracting invariant manifolds
from geophysical data include the advection of ju-
diciously chosen material lines[14–16], relative and
absolute dispersion[17], finite-size Lyapunov expo-
nents[18], and the use of a Lagrangian version of the
Okubo-Weiss criterion[19]. Reviews of the different
techniques can be found in[7,20]. In this work, we fa-
vor Lagrangian structures computed using Direct Lya-
punov exponent field for their robustness to Eulerian
errors.

Analyzing the location of the extracted coherent
structure relative to a hypothetic pollution release spot,
we identify the main frequency components of the
manifold’s own motion. We then use these components
to predict the short-term motion of the structure, with an
emphasis on predicting its environmentally friendly po-
sitions. Our automated pollution scheme uses the envi-
ronmentally friendly time windows to release contami-
nants. As we show by simulations, this scheme achieve
a significant reduction in recirculating pollutants.

The organization of this paper is as follows. The ex-
perimental setting used to measure the velocity along
the coast of Florida is described in Section2. This
data is used in Sections3 and 4to integrate numer-
ically parcels of pollution. Based on the definition of
Lagrangian Coherent Structure given in Section5, a La-
grangian barrier is computed for the domain of interest
in Section6. Section7 uses the barrier to minimize
t nal
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HF velocity data by employing the Direct Lyapun
xponent (DLE) algorithm proposed by Haller[7].
ocal maximizing curves or ridges[4] of the DLE field
re time-dependent manifolds governing mixing

ransport in the fluid flow. These structures are kn
o be quite robust with respect to measurement and
essing errors[13]. In other words, the measurem
rror on the velocity field (VHF radar data) doesnot
ffect much the geometry and position of the struct
resented here. A formal proof is given in[13] but
simpler, more intuitive justification can easily

erived from the definition given in Section5. The
LE field is the derivative of the flow map with resp

o the initial conditions. As a result, measurem
rrors in the velocity field areaveraged along trajec
ories before it affects the DLE field. For unbias
bservation stations and long trajectories spanni

arge domain, the averaged Lagrangian error beco
he effect of the pollution in coastal Florida and a fi
lgorithm is given in Section8.

. VHF radar data along the coast of Florida

The use of radio frequencies to measure ocean
ace currents has received attention in recent co
ceanographic experiments, using high frequency
adar techniques[21,22]. Recent surface current o
ervations from ocean surface current radar (OS
sing the very high frequency (VHF) mode rev
omplex surface current patterns near the coa
lorida[5,6].

The OSCR VHF system was deployed for the So
rn Florida Ocean Measurement Center (SFO

our-dimensional current experiment from June 2
ugust 25, 1999. Radio waves are backscattered
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Fig. 1. Surface velocity maps obtained by VHF radar along the southeast coast of Florida, near Fort Lauderdale, during the SFOMC 4D Current
Experiment on June 26, 1999: (a) 01:20 GMT; (b) 02:20 GMT; (c) 04:00 GMT; (d) 05:20 GMT. The sequence shows a northward propagating
submesoscale vortex. The translation speed of the vortex is about 30 cm s−1 and its horizontal scale is 2–3 km[5].

the moving ocean surface by surface waves of one-half
of the incident radar wavelength.

This Bragg scattering effect[23] results in two
discrete peaks in the Doppler spectrum. In the absence
of surface current, spectral peaks are symmetric and
their frequencies are offset from the origin by an
amount proportional to the surface wave phase speed
and the radar wavelength. If there is an underlying
surface current, Bragg peaks in the Doppler spectrum
are displaced by the radial component of current along
the radar’s look direction. Using two radar stations
sequentially transmitting radio waves resolves the
two-dimensional velocity vector[5,6]. The resultant

data set represents coastal ocean surface currents
mapped over a 7 km× 8.5 km domain at 20 min
intervals with a horizontal resolution of 250 m at 700
grid points. The radars, transmitting at 50 MHz, were
located in John Lloyd State Park, Dania Beach, Florida
(Master) and an oceanfront site in Hollywood Beach,
Florida (Slave), which are separated by 7 km.

Given the narrow shelf off Ft. Lauderdale and the
strong Florida Current that intrudes onto the shelf on
one-to-three day time scales[6,24], the VHF radar
domain is ideally located for purposes of examining a
wide spectrum of coastal and oceanographic processes.
At times, the speed of the Florida Current exceeds
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2 m s−1 just 5 km offshore[6]. The average ambient
relative vorticity is 4f, where f is the local Coriolis
parameter, and maximum relative vorticity exceeds
10f [24]. The dominant period in the velocity data
increases from ten hours near-shore to 5 days offshore.
There is also significant energy at 27 h, the inertial
period.

During this experiment, surface current observa-
tions (Fig. 2) revealed Florida Current intrusions over
the shelf break, wavelike structures along the inshore
edge of the current and numerous submesoscale vor-
tices. One example started at 01:20 GMT on July 20,
1999 (Fig. 1) when a submesoscale vortex was located
along the southern part of the VHF-radar domain just
inshore of the Florida Current. Surface currents within
the vortex ranged from 20–30 cm s−1 at a diameter of
about 1–1.25 km from the vortex’s center. The vortex’s
northward displacement of about 6 km occurred over a
5-h period. See[5] for a more detailed analysis of this
vortex.

3. Interpolation and velocity field

The discrete data set containing the radar measure-
ment does not constitute a velocity field, a vector func-
tion giving the velocity at each point and at each time.
Experimental data must be interpolated between grid
points and the resulting interpolating function is used
a flow
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in [25]). In addition, the functions∂2u/∂x2, ∂2u/∂t2,
∂2u/∂t2 ∂3u/∂x∂y∂t and the corresponding derivatives
for v are also continuous. As a result, the local tricu-
bic interpolator described here is trulyC1 in space and
time. Uniqueness, existence andC1 smoothness of so-
lutions for the system is therefore guaranteed (see[26],
for example).

Notice that the methods described in this paper are
independent on the model (HF radar data and tricubic
interpolation). For instance, modal analysis[27,28]or
empirical modes[29] can be used to interpolate the
experimental data. A smooth model velocity field can
alternatively be obtained from high resolution ocean
modeling[30–32]. Recently, data assimilation was ex-
tended to use Lagrangian data (floats and drifters),
broadening the range of geophysical flow available for
Lagrangian studies[33,34]. The Lagrangian coherent
structures presented in this paper are robust to errors
and variations in the velocity field[13].

4. Numerical experiments

The complexity of the flow resulting from the
integration of the interpolated HF radar data becomes
evident from tracking different realizations of a
fluid parcel–a model for a spreading contaminant–
released at the same time, but at a slightly different
location. The results for two such numerical exper-
i e
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s a velocity field. Since the smoothness of the
epends directly on the smoothness of the velo
eld and the methods used in this paper involve
rst derivative of the flow, we require that the v
ocity field used is differentiable in space and ti
nd that its derivatives are continuous in space

ime, which is usually denoted byv ∈ C1, or more
xplicitly:

=
(
u(x, y, t)

v(x, y, t)

)
∈ C1(�× R → R

2), (1)

hereΩ ⊆ R
2 is the spatial domain of interest. Da

s provided at the vortices of a regular mesh (xi, yj), at
iscrete timestk. We use the tricubic local interpolati
cheme described in[25] that represents each comp
ent of the velocity as a piecewise third order poly
ial function. The polynomials areC∞ inside each ce
nd the interpolated function is globallyC1 (see proo
ments are shown inFigs. 3 and 4. The complet
nimation, along with others, are available fr
ttp://www.lekien.com/∼francois/papers/rsmas. The
nalysis uses two parcels of particles launche
9:45 GMT on July 10, 1999. Using the availa
igh-resolution VHF velocity data, the fluid partic
re advected using a 4th order Runge-Kutta-Feh
lgorithm (RKF45) combined with 3rd order tricub

nterpolation in both space and time. The motivation
sing such a complex interpolator is that the resu
elocity field isC1 in extended phase space[25].

Note that large concentrations of the black cont
nant remain for relatively long times near the co
hereas the white parcel exits the domain quickl

he north and are advected into the open ocean. Th
er scenario is highly desirable, because it minim
he impact of the contaminant on coastal waters
ausing it to be safely dispersed into the open oc

http://www.lekien.com/~francois/papers/rsmas
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Fig. 2. (Top panel) The velocity pattern obtained by HF radar along the coast of Florida, near Fort Lauderdale, for two different time periods,
July 20 and August 3, 1999. A submesoscale vortex is evident in each velocity map. (Middle panel) The corresponding normalized (by the local
Coriolis parameter) relative vorticity anomaly fields. The mean vorticity, of order 4f , was removed from each estimate to reveal the anomalies.
Large positive relative vorticity values are associated with the vortices that are elongated due to the velocity shear of the Florida Current. Large
negative values are found in the vicinity of a near-shore topographic step. (Bottom Panel). The corresponding horizontal divergence fields are
calculated from spline fits to the velocity data.
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Fig. 3. Two parcels of contaminant released at exactly the same time,
but at slightly different initial locations on July 10, 1999 at 09:45
GMT. The white parcels leave the domain quickly as they are ad-
vected by the northward flowing Florida Current. The black parcels
re-circulate near the coast for more than 36 h.Animation available
at http://www.lekien.com/∼francois/papers/rsmas.

This observation provides an opportunity to understand
and predict differing evolution patterns of a fluid par-
cel, depending on its initial location and time of release.
Such patterns are known to be delineated by repelling
material lines or finite-time stable manifolds[35–38],
which we compute in the next section.

Notice that the domain studied inFig. 4is not com-
pletely closed by a coastline. Particles can leave the
domain through the open-boundary (southern, west-
ern and northern edges). Once particles leave the do-
main, no information is available to follow their track
and they are disregarded. One might wonder if our
conclusion holds in the real world where the white
parcel can possibly be pushed back into the domain
of Fig. 4 by unknown currents. This would invali-
date the reasoning above and the proposed contaminant
control scheme. Such a problem is inherent to open-
boundaries and must be studied from two different
approaches:

• Open-boundary flow. An estimate on how likely
parcels can leave the domain and re-enter itin a
reasonable amount of timecan be derived from a
study of the flow on a section of the open-boundary.

In the case of the white parcel ofFig. 4 (or more
generally, particles leaving the domain through the
northern open-boundary), one can notice that the ve-
locity vectors are almost always pointingtoward the
outsideof the domain. During the numerical exper-
iment (July 10, 1999→ July 12, 1999), less than
0.1% of the velocity vectors on the northern edge
were indicating inflow. Moreover, such vectors were
of relatively small magnitude and localized near the
shoreline at the beginning of the experiment. It is
therefore very unlikely that particles forming the
white parcel will re-enter the domain through the
northern edge. Re-entrant particles must travel a
long distance outside the domain and re-enter
through the western or southern open-boundary.
After such a long travel time, diffusion and dis-
persion have destroyed the parcel of contaminant
significantly and the resulting very low concentra-
tions of white contaminant can be ignored. To gen-
eralize this notion, we computed the inflow and the
outflow through the northern segment of the open-
boundary. For a given segment of open-boundary
∂Ω the outflow is defined as

Jout =
∫

dt
∫
∂Ω

U(n̂ · v)dl, (2)

where the unit normal vector̂n is pointing outside
the domain and{

0 if z ≤ 0

ave
at
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ure
U(z) =
z if z > 0

. (3)

Similarly, we define the inflow as

Jin =
∫

dt
∫
∂Ω

U(−n̂ · v) dl. (4)

For the months of July and August 1999, we h
Jin/(Jin + Jout) < 0.01%. This justifies the fact th
particles leaving the northern edge of the dom
do not typically re-enter the domain through t
edge. If enough diffusion of the contaminant a
dispersion due to sub-scale processes occur
white parcel can safely be disregarded whe
leaves the domain.

Diffusion and dispersion. The argument abov
only holds if there is a reasonable differen
between the motion of the tracers and the p

http://www.lekien.com/~francois/papers/rsmas
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Fig. 4. A time sequence of the motion of two parcels released almost at the same position on July 10, 1999 at 09:45 GMT. The interpolated
velocity from the radar and the position of the parcels is shown for (a) July 10 09:45 GMT, (b) July 10 13:45 GMT, (c) July 10 16:45 GMT, (d)
July 10 23:45 GMT, (e) July 11 11:45 GMT and (d) July 11 20:45.Animation available athttp://www.lekien.com/∼francois/papers/rsmas.

http://www.lekien.com/~francois/papers/rsmas
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Lagrangian model. In reality, contaminant are not
advected exactly as fluid particles and their motion
is best described by an advection-diffusion equation
[39,40], for example. The parcels inFig. 4 only
represent the motion of contaminant for short inte-
gration time. For longer integration times, such as
particles leaving through the northern edge and re-
entering the domain through the western or southern
edge, the advective terms destroy this localized
representation and smooth the distribution of con-
taminants. In addition to diffusion, a correct model
of the motion of such contaminant must include sta-
tistical processes to model sub-grid processes that
are not resolved in the VHF radar data[41,42]. For
small trajectories, the idealized Lagrangian parcel
is a reasonable approximation of the concentration
of contaminant[43]. For long trajectories, diffusion
and dispersion tend to average the concentrations
[44]. The objective of the contaminant control
scheme in this paper is toavoid peaks of large
concentration. As a result, we are only concerned
with the small time effect of the release (e.g., before
parcels could re-enter the domain). In the long
term, diffusion and dispersion play in favor of our
objective.

A recently developed nonlinear technique, called the
direct Lyapunov exponent (DLE) analysis[7], identi-
fies repelling or attracting material lines associated to
Lagrangian coherent structures (LCS) in velocity data
b rial
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5.1. Direct Lyapunov exponents

The DLE algorithm starts with the computation of
the flow map, the map that takes an initial fluid particle
positionx0 at timet0 to its later positionx(t, x0) at time
t. To perform this analysis, a uniform grid of 200× 200
particles are launched at timet0. Each particle is
advected using a 4th order Runge-Kutta-Fehlberg al-
gorithm and a 3rd order interpolation fort − t0 = 25 h.
An analysis of the influence of the integration time
t − t0 in the computation of DLE maps can be found
in [48].

These particle trajectories are used to approximate
the flow map, which associates current positions to po-
sitions at timet0. The coastline is modeled as a free-slip
boundary. Particles that cross the open boundaries of
the domain on the northern, eastern and southern edges
are disregarded. These numerical algorithms have been
compiled into a software package, MANGEN, that is
available from the authors upon request[49].

The spatial gradient of the flow map (∂x/∂x0) is
a 2× 2 matrix and can be computed by using using
finite differences in the grid of trajectories[37]. The
direct Lyapunov exponentσt(x0, t0) is defined as the
normalization of the largest singular value of the spatial
gradient of the flow map[37]. More specifically,

σt(x0, t0) =
ln λmax

([
∂x(t,x0)
∂x0

]� [
∂x(t,x0)
∂x0

])
2|t − t0| , (5)
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y means of curves experiencing maximum mate
tretching. Measured HF radar data allow the com
ation of such structures and the identification of e
onmentally friendly release spots.

. Lagrangian coherent structures

The study of transport and mixing in fluid flow
an be highly simplified by the use of finite-tim
nvariant manifolds or Lagrangian coherent structu
14,16,45–47]. This work does not involve discussi
he existence or uniqueness of hyperbolic trajecto

preliminary discussion on this topic can be found
4]. In this paper we use the Direct Lyapunov Ex
ent algorithm[7] to compute Lagrangian structur
nd divide the domain into regions of qualitativ
ifferent dynamics.
ith the superscript� referring to the transpose of a m
rix. Notice that the denominator of Eq.(5) normalizes
he Lyapunov exponent. The logarithm of the larg
ingular value of the gradient of the flow map ha
inear dependence in the integration time (t − t0). Di-
iding the result by (t − t0) allows for a more consta
alue ofσt when (t − t0) changes. This is particular
mportant for domains with an open-boundary wh
he computation of certain trajectories must be stop
hen they leave the domain. Such trajectories are

egarded when they exit the domain and the Lyapu
xponent must be computed with a smaller integra
ime. As noted above, such smaller integration t
o not influence the results presented here. Con
ants only follow pure Lagrangian advection as a
pproximation. In the long term, diffusion and disp
ion will naturally distribute the contaminant at a v
ow concentration. Our goal is to study the short-t
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peaks of concentration, hence Direct Lyapunov expo-
nents with short integration times.

5.2. Lagrangian ridges

Repelling material lines are maximizing ridges of
the scalar fieldσt(x0, t0) [7,13]. By ridge of a scalar
field, we mean a gradient line of this field that has max-
imum curvature in the orthogonal direction[4]. More
specifically, a ridge is aC1 curvec(s), s ∈]a, b[, satis-
fying the following conditions:

(1) c(s) is parallel to∇σt(c(s), t0),

(2)
dc(s)

ds
�= 0,

(3) �(n,n) = min‖u‖=1�(u,u), wheren is a unit vec-
tor normal to the curvec(s) and� = ∂2σt/∂x2 is
the second derivative ofσ thought of as a bilinear
form evaluated at the pointc(s).

Notice that the ridges defined here are not necessarily
contour level sets ofσt . They correspond to “water-
dividing lines” of the field. The ridges of the Lyapunov
exponent field as defined in this section are not neces-
sarily Lagrangian and do not strictly behave as material
lines. They are instantaneous screenshots of the future
Lagrangian dynamics. However, recent studies[4] have
shown that the Lyapunov exponentσt is Lagrangian
for large integration times (t − t0) (in the sense that the
change of its value along trajectories varies as the in-
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and Lagrangian coherent structures[4,37]provide such
a framework. A fundamental difference is that there is
no need for estimating relevant length scales. The algo-
rithm described above will extract both small and large-
scale structures. Some small-scale structures might
have high exponents. However, they do not shadow the
large-scale structures of interest. Lagrangian structures
are identified as ridges[4] and the intensity of the
Lyapunov exponents is much less relevant than the
curvature along the ridge, for example. Once extracted,
the ridges differ by theirlengthand can be classified
or eliminated based on their length, rather than
intensity.

The same procedure performed backward in time
(i.e., for t < t0) renders attracting material lines att0
as ridges ofσt(x0, t0). These curves are not apparent
to naked-eye observations and are not easily deduced
from velocity field plots, yet they govern global mixing
patterns in the fluid[55]. Such Lagrangian structures in
measured ocean data have previously been inaccessible
due to lack of an efficient extraction methods and coarse
resolution of the observations.

6. Data analysis

Direct Lyapunov Exponents are used to analyze the
Lagrangian trajectories in the VHF radar domain. In
particular, we want to be able to define pollution barri-
ers and pathways near the southeast coast of Florida.

the
m
D able
L near
F This
s ween
t CS)
a CS).
R s
c As
a rrier.
S in
F ian
b rom
S t the
b

ast
o ain
erse of (t − t0)). In the definition above, a Lagrangi
tructure is a gradient line ofσ that has maximum cu
ature in the transverse direction. For typical coa
ows such as the one studied here, such a ridge
elatively constant value ofσt and is, in good approx
ation, a Lagrangian line of the flow (see[4] for proofs
nd numerical results).

Relative dispersion and finite-size Lyapunov ex
ents have been successfully used to identify ch
atterns in fluid flows[50,51]. In small domains suc
s the one depicted in this paper, the velocity fie

ypically too small for the diffusion coefficients to gi
ny relevant information about transport in mixi
ecent extensions[52,53] allow for the extraction o

nformation for a particular length scale or time sc
uch methods were verified experimentally in[54]. In

his work, we seek precise Lagrangian lines rather
haotic regions or patterns. Direct Lyapunov expon
Selected frames of the contour level sets of
aximum Lyapunov exponents are shown inFig. 5.
uring the experiment, the plot reveals a strong st
agrangian structure attached to the coast
ort Lauderdale, propagating to the southeast.
tructure acts as a quasi Lagrangian barrier bet
he coastal recirculating zone (southwest of the L
nd the Florida Current (northeast of the same L
ecent work [4] shows that the flux of particle
rossing the Lagrangian structure is negligible.

result, the LCS also acts as a material ba
uperimposed onFig. 5 are the two parcels used
igs. 3 and 4. The average lifetime of the Lagrang
arrier is about 48 h and parcels typically travels f
outh to North in less than 12 h, so we expect tha
arrier has a significant effect on the flow.

Analysis ofFig. 3reveals that any particle northe
f the barrier (white parcel) is flushed out of the dom
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Fig. 5. Level Sets of the maximal Direct Lyapunov Exponentsσ along the coast of Florida on (a) July 10, 1999 09:45 GMT, (b) July 10
13:45 GMT, (c) July 10 16:45 GMT, (d) July 10 23:45 GMT, (e) July 11 11:45 GMT and (d) July 11 20:45. The simulation shows repelling
material lines attached to the coast near Fort Lauderdale. Superimposed on each figure panel are the respective positions of the two parcels
from Fig. 4. Every particle North of the coherent structure flows through the northern open-boundary. It is non-optimal to release contami-
nants below the branch of the manifold because it will remain between the coast and the manifold for a long time.Animation available at:
http://www.lekien.com/∼francois/papers/rsmas.

http://www.lekien.com/~francois/papers/rsmas
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Fig. 6. Level Sets of the maximal Direct Lyapunov Exponentsσ

along the coast of Florida on July 15, 1999 at 9:45 GMT. The dashed
line represents future positions of the repelling coherent structure.
The parcel North of the manifold flows through the northern open-
boundary (white parcel). It is dangerous to release contaminants be-
low the branch of the coherent structure because they will persist
between the coast and the structure for a long time (black parcel).

in only a few hours. In contrast, parcels starting south-
west of the barrier (black parcel) typically re-circulate
several times near the Florida coast before they finally
rejoin the current. Interestingly, such behavior is not
obvious from a simple observation of the velocity foot-
prints, which is typical of fast varying time-dependent
flows. In this mathematical framework, the surface cur-
rents are not necessarily influencing particle paths di-
rectly, but the currents influence the Lagrangian struc-
tures, such as causing transport barriers and pathways
and the Lagrangian structures act directly on particle
paths (Fig. 6).

7. Minimizing the effect of pollution

The location of the base of the Lagrangian coherent
structure (along the coastline) can be used as a cri-
terion to minimize the effect of coastal pollution. We

will refer to the intersection of the coastline and the La-
grangian structure as the barrier point. For the region
and time period analyzed here, factories and sewage
discharge pipelines along the coast should not release
anything if the barrier point is locatedNorth of them.
Optimizing the release site by moving the source of
pollution is unrealistic. Optimizing the release times
is a much more implementable operation. The Direct
Lyapunov exponents typically give the influence of the
initial positionx0 on the final positionx(t; t0, x0) of the
trajectory that started atx0. However, a change in ini-
tial time t0 → t0 + δt0 can be interpreted as a change
of initial position x0 → x0 − v(x0, t0)δt0 and we
have

∂x(t; t0, x0)

∂t0
= −∂x(t; t0, x0)

∂x0
v(t0, x0), (6)

so sensitivity with respect to the initial position can al-
ways be interpreted as sensitivity with respect to the
initial condition in the direction of the initial velocity
vectorv(x0, t0) (seeFig. 7). Moreover, in this case, we
used a slip boundary condition and the velocity field
is always tangent to the coastline. In other words, for
anyx0 on the coastline,v(x0, t0) is tangent to the coast-
line, so optimizing therelease site along the coastline
is equivalent to optimizing therelease time. More pre-
cisely, we have,

∂x(t; t0, x0(s))

∂t0
= ∓∂x(t; t0, x0(s))

∂s
‖v(t0, x0(s))‖, (7)

he
on

of
,

wheres is the arc-length along the coastline and t
sign is determined by the projection of the velocity
the tangent vector∂x/∂s. Eq.(7) shows that sensitivity

Fig. 7. Sensitivity to initial conditions must be studied in terms
spatial perturbationsδx0 and temporal perturbationsδt0 of the ini-
tial condition (x0, t0). However, the law of motioṅx = v(x, t) gives
directlyx(t; t0 + δt0, x0) = x(t; t0, x0 − v(x0, t0) δt0) and sensitivity
to initial time can be derived from the dependence inx0.
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Fig. 8. Imaginary source of pollution along the Florida coast.
The black spots are the resulting contaminants from a fac-
tory releasing at a constant rate. Superimposed on this fig-
ure are the white spots of a factory releasing only during
environmental friendly time windows.Animations available at
http://www.lekien.com/∼francois/papers/rsmas.

in terms of the release time is equivalent to sensitivity in
terms of release position along the coastline and we can
decide to keep the pollution source fixed and modify the
release schedule, which is much easier to implement in
practice.

To illustrate how an efficient pollution release algo-
rithm can be set up, a fixed imaginary source of pol-
lution is placed along the coastline. Using the DLE
plots ofFig. 5, we identify zones of (green) favorable
release1 and (red) dangerous release.2

To minimize the effect of coastal pollution, we
propose using a holding tank that stores contaminants
during dangerous release times. The tank stores
pollution during the half-period of the barrier point
oscillation, during which contaminants should not be
released. The contents of the tank are released once the
barrier point moves South of the source of pollution
as shown inFig. 8.

The black spots onFig. 8 are the trace of the pol-
lution of a factory releasing at a constant rate. Super-
imposed on this figure is the white trace of contami-
nants released only during time windows determined

1 When the structure is below the position of the factory.
2 When the structure is above the factory.

Fig. 9. Three different release strategies for pollutants at a factory on
the coast. The black line shows the mass of pollutant in the coastal
area for a uniform release in time. The dashed line is for releasing
pollutants at times determined by the DLE analysis. The purple line
is a strategy that is based on the DLE analysis and the criterion of
minimizing peak values.

using our DLE algorithm. The total mass of contam-
inant in the coastal area for the two modes is shown
onFig. 9.

The two sources of pollution release the exact
same mass of pollutant in the ocean. However, by
obtaining information from the DLE results, the white
factory (dashed curve) is able to reduce the effect of
the pollution in the shallow coastal area by a factor of
three.

Also shown onFig. 9 are the results of a third nu-
merical experiment. In many cases, the damage to the
environment is a function of the maximum concentra-
tion of contaminant. From this viewpoint, the algorithm
(releasing nothing during “red” zones and as much as
possible during “green” zones) does not seem to be
efficient. The peak of maximum concentration for the
white factory has only decreased by a small amount.
The results reveal that a long “red” zone can lead to the
accumulation of large amount of pollution in the tank.
If such a zone is followed by a short “green” zone, the
large content of the tank is released quickly and creates
a peak in the concentration. To set up a more elaborate
algorithm, we release a minimum flux of pollution into
the ocean independently of the type of zone (red or
green). We define a new degree of freedomα, the per-

http://www.lekien.com/~francois/papers/rsmas
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centage of contaminant produced that will be released
during “red” zones. Here, the solid curve ofFig. 9corre-
sponds toα = 100%, the dashed curve toα = 0%. The
purple curve ofFig. 9corresponds toα = 33% (i.e., 1/3
of the pollution is released at all time).Fig. 9shows that
a significant reduction of the peak of maximum con-
centration can be obtained using an appropriate partial
release during zones that are marked dangerous by the
DLE algorithm.

8. An automated pollution control algorithm

The purpose of this section is to show that it is pos-
sible to implement a pollution release scheme based on
the motion of a LCS in real time. If, at anytime, the DLE
field was available, a simple decision system based on
the position of the LCS at the present time should be
able to select the beginning and the end of favorable
release zones (see previous section). Unfortunately, if
the velocity is known up to the present time, the DLE
field can only be computed up to a certain time in the
past. As we approach the present time, DLE can only
be computed over a short amount of time and does not
converge towards the expected Lagrangian structure.
Instead, the plot reveals the maximum eigenvalues of
the linearized flow. We determined empirically that 8 h
at least were necessary to obtain a correct picture of
the LCS. Our algorithm needs to be able to predict the
position of the Lagrangian structure at least 8 h in the
f the
E the
p ent
t

8

One
m to
p eld
b s of
t pre-

dicted directly. We elected a simple prediction scheme.
Since we are only interested in the latitude of the mov-
ing barrier, for each time, the latitude of the barrier is
computed up to the latest time in the past where DLE
can be computed (i.e. 8 h before the present time). This
forms a time sequence that we would like to predict for
at least 8 h. We refer to this operation as ashort time
Lagrangian predictionbecause the velocity (Eulerian
field) isnever interpolated in time during this process.

The spectrum of each sequence has been com-
puted using the last 50 h and a few examples are
shown in Fig. 10. A complete animation of the
spectrums computed at each time can be found
athttp://www.lekien.com/∼francois/papers/rsmas. We
identified the different components of the oscillations
of the Lagrangian barrier as the frequency at the max-
imum of each peak in the spectrum.Fig. 11shows the
significant frequencies that were identified at each time
step. Notice that there is very little tidal influence on
the spectrum ofFig. 11. These spectrums are based
on the motion of Lagrangian particles along the coast-
line. Tidal oscillations influence the flow mostly in the
direction orthogonal to the coastline for such a linear
coast. Notice that, even for more complicated costlines,
non-tidal dominant frequencies usually appear in the
motion of Lagrangian structures (see[49] for exam-
ple). The weak amplitude of the tidal frequencies in
this example is a direct consequence of the fact that the
Lagrangian motion studied is parallel to the coastline.
Simulations using longer time sequences (e.g.Fig. 12)
r sitive
t ap-
p s not
n

y
s om-
p r is
r s

y

a izes
t

N

i=1

Ai
uture. Notice that we do not attempt to predict
ulerian velocity field. We propose to extrapolate
osition of the Lagrangian barrier up to the pres

ime.

.1. Prediction algorithm

Several predictive methods could be used.
ight think of using a model of the area, use it
redict the velocity field and compute the DLE fi
ased on predicted velocities. However, the value

he DLE field are sequences in time and can also be

ε =

√√√√√∑
k

(
yk − A0 −

∑

eveal that the computed frequencies are not sen
o the length of the time sequence used. Within an
ropriate range (50–200 h), using more data doe
ecessarily provide more accurate predictions.

Based on the relevant frequenciesTi, we use a ver
imple predictive algorithm based on a Fourier dec
osition where the motion of the Lagrangian barrie
epresented as a finite sequence of Fourier mode

= A0 +
N∑
i=1

Ai cos

(
2π

Ti
t

)
+ Bi sin

(
2π

Ti
t

)
, (8)

nd, the optimal model is obtained when one minim
he error

cos

(
2π

Ti
tk

)
− Bi sin

(
2π

Ti
tk

))2

, (9)

http://www.lekien.com/~francois/papers/rsmas
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Fig. 10. Entropy spectrum of the time sequence of the latitude of the Lagrangian barrier computed using 50 h of data at selected time steps.
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Fig. 11. Spectral peaks in the time sequence of the latitude of the
Lagrangian barrier computed using 50 h of data.

whereyk are theK positions of the Lagrangian barrier
measured in the last 50 h (at timestk). The error is
minimum when

∂ε

∂Ai
= 0, (10)

Fig. 12. Spectral peaks of the time sequence of the latitude of the
Lagrangian barrier computed using 75 h of data.

and

∂ε

∂Bi
= 0, (11)

for all i, which leads to the linear system in (2K + 1)
unknowns3

(Qij)




...

Aj

...

Bj

...




=




...∑
k yk cos2πtk

Tj

...∑
k yk sin 2πtk

Tj

...



, (12)

where

Qij =
∑
k

fi(tk)fj(tk), (13)

and

fi(t) =




1 if i = 1

cos 2πt
Ti−1

if i = 2,3, . . . , K + 1

sin 2πt
Ti−K−1

if i = K + 2,

K + +3, . . . ,2K + 1

(14)

In this paper, the linear system given by Eq.(12)
was solved using theGNU Scientific Library (GSL)
for maximum 13 modes and each mode is a domi-
nant frequency automatically extracted from the spec-
t s ill-
c each
o ar
s ents
A id
t ative
d into
a the
a for
e the
j t
r

e -
p he

B

rums computed at each time slice. The system i
onditioned when some frequencies are close to
ther (e.g., ifTi ≈ Ti′ , the determinant of the line
ystem is close to zero, in which case the coeffici
i,Bi,Ai′ andBi′ can grow arbitrarily large). To avo

his problem, groups of close peaks, defined as rel
istances less than 1%, are ignored and combined
single resonant frequency. Moreover, we allow

lgorithm to select the optimal number of modes
ach time step. The linear system is solved with

th most significant modes (3≤ j ≤ 13) and the bes
esult is kept.

At each time step, once the numberK of modes is
stablished and the coefficientsAk andBk are com
uted, the sequence in Eq.(8) is used to extrapolate t

3 The (2K + 1) unknowns are A0, A1, A2, · · ·AK and

1, B2, . . . BK.
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position of the barrier during the past 8 h where DLE
was unavailable as well as in the future.Fig. 13shows
some of these results for selected time slices.

Sometimes the prediction can be very accurate for
many hours in the future, such as on July 12 10:00 GMT
or July 14 03:45 GMT. However, large errors can occur
even at the present time such as July 12 17:45 GMT.
On July 12 21:00 GMT and July 13 11:45 GMT, the
system automatically switched to a low-mode analysis
because a better fit of the past data could not be ob-
tained with more modes. Results can be significantly
improved such as on July 13 11:45 or have a strong di-
vergence such as July 12 21:00 GMT. This phenomena
has been observed several times and is a consequence
of the presence of close frequencies in the spectrum.
Removing lower modes usually provides a sufficient
solution.

While no attempts were made to improve the pre-
diction method, the objective was to study the possible
advantages of a pollution algorithm. Thus, it sometimes
used erroneous data as input, even though it may have
been obvious not to be able to predict the position of
the barrier accurately.

Our goal is to show that even in the presence of
errors in the prediction of the position of the Lagrangian
barrier, a significant reduction of the concentration of
pollution can be achieved by the algorithm.

To determine favorable release time intervals, only
the relative position of the predicted barrier with
respect to the latitude of the release site is important.
T e on
F hen
t ase
s hm,
t cide
w one.
T each
t time
s e
a s. In
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r was
u ll of
t

ent,
t

8.2. Decision algorithm

To account for the high error rate on the raw deci-
sion algorithm (favorable release zones), the factory or
another release center is expected to simulate a more
complex decision algorithm to decide which portion of
the pollutant is to be released and which is to be stored
in the tank. The data from the 4 last predictions (last
hour) is used to increase the accuracy. A persistent low
impact release time interval occurs when at least 75%
of the last 4 points indicate that it is a good release
interval. A persistent high impact zone corresponds to
at least 75% of the points detecting an unfavorable in-
terval. In other cases, the system is in an undetermined
state.

Based on the type of zone that the factory thinks it
is in, the release flux or position of the valve to the tank
was computed as follows:

• If the system is in alow impactzone, the production
of the factory is released in the ocean. If not empty,
the tank is emptied at maximum speed;

• If the system is in anhigh impactstate, the produc-
tion of the factory is moved to the tank. If the tank is
full, the production is released in the ocean but the
tank is not emptied; and,

• If the system is in anundecidablestate, the action
depends on the amount of liquid stored in the tank.
If the tank is less than half full, the production is
stored in the tank. If the tank is more than half full,

but
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a max-
i ull,
i is at
l le. In
a rned
i f the
he release site is indicated by a the horizontal lin
ig. 13 and a favorable release interval occurs w

he latitude of the barrier point is below the rele
ite. To assess the quality of the prediction algorit
he predicted curve was used at each time to de
hether or not the system was in a favorable z
he answer to this question was compared at

ime with the correct answer based on the actual
equence of the DLE ridge.4 The predicted curv
grees with the actual curve in 78% of the case

his experiment, the actual curve only stays below
elease site about 40% of the time. The algorithm
sed to simulate with different release sites, and a

hem had a success rate ranging from 70 to 80%.

4 The “actual” DLE ridge is computed at the end of the experim
hus with all data available.
the pollution produced is emptied in the ocean
the tank is not to be emptied.

he action taken in the undecidable case results
he following observation: if we are uncertain that
elease will have a low impact on the environmen
s better not to take any risk and keep the pollut
roduced in the tank.

However, if the tank is more than half full, it is
uch higher risk to store more pollutant because a
igh impact zone could follow. In this case, the sys
ay be forced to release pollution during the unfa
ble zone, simply because the tank has reached its

mum capacity. When the tank is more than half f
t is less risky to release the pollution when there
east a 50% chance that the release will be favorab
ddition to the framework presented above, we lea

n the previous section that a small percentage o
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Fig. 13. Predictive motion of the intersection of the coherent structure with the coastline. The prediction is shown for selected times and uses
the last 50 h of data. The black curve represents the actual time sequence that can be computed at the end of the time of the experiment. The
blue vertical line in each figure represents the actual time and the green vertical line represents the time up to which DLE can be computed. In
other words, the position of the Lagrangian structure is known up to the green vertical line. The red curve shows the Fourier sequence that was
used to predict the position of the LCS in the future. It has been fitted to the measured data up to the green line and may or may not make a good
prediction during the 8 h preceding the current time and in the future.
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Fig. 14. Concentration of pollutant. The solid curve shows the con-
centration of pollutants in the coastal area of a source releasing at
a constant rate. The dashed curve shows the effect of a source of
pollution releasing the same amount of pollutant, but using the DLE
algorithm to reduce its effect on the coastal environment.

pollution has to be released in the ocean at all times
to achieve effective reduction of the peak of maximum
concentration.

The result of such an experiment is presented on
Fig. 14. The factory was producing 1.2 tonnes of pol-
lutant per hour and at least 0.4 tonnes h−1 were to be
dumped in the ocean (α = 33%). The tank had a max-
imum capacity of 30 tonnes and the maximum release
rate from the tank was set to 3.6 tonnes h−1.

9. Conclusions

We have shown the existence of a set of repelling
material lines in the VHF-radar derived surface cur-
rent fields acquired along the Hollywood, Florida coast
in July 2003. We have also shown how these material
lines can be used to minimize the effect of coastal pol-
lution by determining and predicting optimal release
times. This approach can be used for simulating tra-
jectories of buoyant contaminants or the trajectories
of nearly Lagrangian tracers.5 The data source can be

5 By nearly Lagrangian tracers, we refer to particles following
almost exactly the currents. In this case, the Lagrangian structures

VHF radar data or any other current data source, such
as data-assimilated ocean models that approximate the
near-surface velocity field to some reasonable level of
accuracy. The advantage of using ocean models is that
the velocity provided is 3D+1, and thus we can ex-
plore the Lagrangian structures that develop at various
depths. We have shown that a real-time experimental
realization of our pollution release is possible and can
efficiently reduce the impact of a polluting source in
a coastal area without reducing productivity. Applica-
tions of the algorithm are limited to regions where an
experimental setting (such as VHF radars) or an accu-
rate model of the flow is available. The cost of such an
installation is usually high but can be shared by several
sources of pollution in a nearby area.

The algorithm is only efficient when an effective bar-
rier exists in the domain,6 attaches to the coastline and
oscillates about the pollution sources. In any other case,
the algorithm presented here does not reduce the effect
of the pollutant better than a constant release scheme.
Future improvements include the combination of this
algorithm with other methods that are not based on La-
grangian structures to combine the beneficial effects of
each method. A major effort is currently furnished to
adapt these methods to three-dimensional spaces and
capture three-dimensional effects, such as upwelling
and downwelling in coastal areas.
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