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Transport of Mars-Crossing Asteroids from the Quasi-Hilda Region
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We employ set oriented methods in combination with graph partitioning algorithms to identify key
dynamical regions in the Sun-Jupiter-particle three-body system. Transport rates from a region near the
3:2 Hilda resonance into the realm of orbits crossing Mars’ orbit are computed. In contrast to common
numerical approaches, our technique does not depend on single long term simulations of the underlying
model. Thus, our statistical results are particularly reliable since they are not affected by a dynamical
behavior which is almost nonergodic (i.e., dominated by strongly almost invariant sets).
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Introduction.—There is much interest in the transport of
material throughout the solar system [1–3]. In particular,
the numerical simulation of delivery of asteroids to the
terrestrial planets is among the most difficult yet interest-
ing problems in celestial mechanics. The recent close
approaches of some asteroids to Earth highlight the im-
portance of this problem.

The purpose of this Letter is to make use of new methods
in computational dynamical systems to compute the aver-
age rates of delivery of quasi-Hilda objects to Mars-
crossing orbits. The results may be viewed as a first step
in the application of these computational methods to inter-
esting astrodynamical problems. Similar numerical tech-
niques have previously been successfully applied to
molecular problems [4–8].

In principle, the computation of rates of mass transport
can be accomplished by large numerical simulations in
which the orbits of test particles are propagated in time
including as many interactions as possible [3,9]. However,
such calculations are computationally demanding and, due
to the chaotic nature of the trajectories, it may be difficult
to reliably extract from them information about the statis-
tical quantities of interest. In fact, one of the hallmarks of
chaotic dynamical systems is the property that a given
initial condition may reach distant regions of phase space,
but that may take an arbitrary long time. This very phe-
nomenon may lead to inaccuracies in transport computa-
tions that are based on (comparatively few) long term
simulations since they may not be a representative sample
of the global dynamics. For example, it may be that a
dynamical system is nearly uncoupled in the sense that it
is possible to decompose the phase space into a finite
number of subsets such that there is a very small probabil-
ity that typical trajectories beginning in each subset will
leave this subset in a short time. These almost-invariant
sets define macroscopic structures preserved by the dy-
namics. It may be difficult to compute the probability of
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going from one of these sets to the other by computing a
number of long term simulations; yet this sort of probabil-
ity is often what is of interest.

This ‘‘trapping problem’’ is obviously relevant in
Hamiltonian models that exhibit (perturbed) periodic or
quasiperiodic behavior. We avoid this problem in our
approach since it is based on an appropriate agglomeration
of short time simulations for a large number of globally
distributed initial conditions. Rather than characterizing
dynamical behavior at the level of trajectories, one can
view our approach as tracking the evolution of densities
under the influence of the underlying dynamics. A global
set oriented method has been developed to perform the
associated computations [6,10,11]. This basic setup allows
us to compute transport rates between arbitrary sets of
interest in phase space. Moreover, a priori error estimates
on the computed quantities are available [12].

Another classical approach for the treatment of ques-
tions about transport is a geometrical framework employ-
ing phase space structures related to stable and unstable
manifolds of certain periodic points, as in [13]. However,
as noted in [12], these methods do not yet scale very well
for very long time scales and a generalization to higher
dimensional systems is difficult (in contrast to our set
oriented approach).

The Letter is organized as follows: first we give a short
description of the model used, namely, a first return map
in the planar circular restricted three-body problem
(PCRTBP) with the Sun and Jupiter as the primaries.
Second, we identify a key quasiresonance region by de-
composing the phase space into almost-invariant sets, and
third, we compute the transport rate from this region into a
region that contains all the Mars crossings. We conclude
with a discussion of future research directions in this area.

The planar circular restricted three-body problem.—
The PCRTBP Hamiltonian for the motion of a particle
(asteroid) in the field of the Sun and Jupiter is
2-1  2005 The American Physical Society
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where E is the energy, rS and rJ are the distances from
the particle to the Sun and Jupiter, respectively, and mS �
1�� and mJ � � are the normalized masses of the Sun
and Jupiter, respectively. The coordinate system rotates
about the common center of mass, the Sun and Jupiter
are on the x axis at ���; 0� and �1��; 0�, respectively,
and �x; y� is the position of the particle relative to the
positions of the Sun and Jupiter in this frame, with px �
_x� y, py � _y� x as the conjugate momenta. The motion
of the test particle takes place on a three-dimensional
energy manifold (defined by a particular value of E) em-
bedded in the four-dimensional phase space with coordi-
nates (x; y; _x; _y).

We consider the Poincaré surface of section (SOS) de-
fined by y � 0, _y < 0, and the coordinates on the section
are (x; _x). The geometrical interpretation is straightfor-
ward: we plot the x coordinate and velocity of the test
particle at every conjunction with the planet. As a further
restriction, we consider only the motion of test particles in
the interior realm (strictly speaking, with mean motion
greater than Jupiter’s). For orbits interior to the planet’s,
the SOS is crossed every time the test particle is aligned
with Sun and Jupiter and is on the opposite side of the Sun
from Jupiter, along x < 0. So our SOS becomes the two-
dimensional manifold M defined by y � 0, _y < 0, x < 0,
reducing the system to an area and orientation preserving
map f:M ! M on a subset M of R2. Figure 1 shows a
mixed phase space structure on this SOS.

Mars crossings, Hilda asteroids, and quasi-Hildas.—
Also shown in Fig. 1 is a line of constant periapse. Each
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FIG. 1 (color online). The mixed phase space structure of the
PCRTBP is shown on this SOS. KAM (Kolmogorov-Arnold-
Moser) tori and the chaotic sea are visible. The bright line
corresponds to a line of constant periapse. In this case the
periapse is equal to the semimajor axis of Mars’ orbit around
the Sun.
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�x; _x� 2 M corresponds to an osculating conic orbit about
the Sun with an instantaneous semimajor axis a and eccen-
tricity e. The line is the locus of points satisfying rp �

a�1� e� for a periapse rp equal to the semimajor axis of
Mars’ orbit around the Sun. Any point in M on this line is
an orbit which grazes the orbit of Mars. Keplerian orbits
represented by points to the right of this line cross the orbit
of Mars.

The energy we consider in this Letter, E � �1:52, is just
below that of the equilibrium point L1 (E � �1:5199), and
is a good starting point for understanding dynamics related
to the Hilda resonance, the 3:2 resonance with Jupiter. In
Fig. 1, the sideways ‘‘U’’-shaped (or horseshoe-shaped)
region on the left indicates this resonance island, which
contains the Hilda group of asteroids. The Hilda asteroids
owe their longevity to the invariance of this resonance
island. However, this island is surrounded by chaotic orbits
which give rise to interesting dynamical phenomena that
have been noted in previous work. For example, comets
known as quasi-Hildas, such as Oterma and Gehrels 3,
appear for a time to have Hilda-type orbits until perturbed
by Jupiter into a new orbit [14].

In this Letter, we consider quantitatively the phenome-
non of transport of quasi-Hildas to the inner solar system.
These objects, and their related resonance, exist over a
range of energies, but we investigate only one representa-
tive energy to elucidate the essential geometry and statis-
tics of this transport. Therefore, we have picked an energy
value such that there are no dynamical connections be-
tween the interior region and the Jupiter region; i.e., the
neck around L1 between these two regions is closed. How-
ever, the perturbation due to Jupiter can still be significant.

Transport computations.—We consider a situation in
which an asteroid (or other body) starts out near the 3:2
mean motion resonance with Jupiter, in a region we call the
quasi-Hilda region. This region may contain, e.g., Hilda
asteroids which have recently escaped from a stable orbit
in the 3:2 resonance island via forces which are not cap-
tured by our model. We construct this quasi-Hilda region
by computing a global decomposition of the phase space of
f into almost-invariant sets. The quasi-Hilda region is then
defined as the set from this decomposition which contains
the Hilda resonance, as seen in Fig. 2. We are not con-
cerned with how such bodies arrived in this region, but
only in their transport to other regions. In particular, we
will compute the probability by which these quasi-Hilda
objects transit beyond the Mars-crossing line.

Decomposition into almost-invariant sets.—In the fol-
lowing we briefly outline our computational approach. For
details we refer to [12].

First, we approximate the recurrent set within M by
covering it with a collection of boxes (see Fig. 2). For
each box we choose a number of points in the box, perform
a forward iteration for each point, and monitor the box
reached by the iteration. The transition probability from a
2-2
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FIG. 3 (color online). Decomposition of the SOS including the
quasi-Hilda region R and the region beyond the Mars-crossing
line Q as used for the transport computation.
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FIG. 2 (color online). A decomposition of a Poincaré SOS into
three almost-invariant sets is shown for the mixed regular and
chaotic phase space of the restricted three-body problem. The
quasi-Hilda region and Mars-crossing line are labeled.
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source box to a destination box is measured by the ratio of
the number of points from the source box reaching the
destination box in one iteration step. We can view this as a
graph with the boxes being the vertices and the transition
probabilities between the boxes being the weighted, di-
rected edges. We choose the size of the boxes and the
number of points such that we achieve an appropriate
granularity and accuracy of this transition graph [10].

Second, we partition the vertices of the graph into
almost-invariant sets, i.e., into a small number of parts
such that each part is highly coupled within itself and
only loosely coupled with other parts (see, e.g., [4,6]).
Graph partitioning problems like this one are known to
be NP (nondeterministic polynomial time) complete; i.e.,
no efficient optimal algorithms running in polynomial time
are known. For our computations we used an efficient
heuristic based on the so-called multilevel paradigm: a
large graph is coarsened through several levels to a small
graph, the small graph is efficiently partitioned, and the
partition is projected back throughout the same levels
while being improved on every level. The success of this
approach is based on the use of an approximation algo-
rithm for maximum weighted edge matching in the coars-
ening step and the use of the helpful-set heuristic (pro-
viding upper bounds) for the local improvement step. Both
algorithms provide provable quality guarantees. The whole
concept is described in [15] and implemented in the graph
partitioning software library PARTY.

We developed a new tool called GADS (graph algorithms
for dynamical systems) [16] which efficiently uses the
functionality of the dynamical systems software library
GAIO [10], the heuristics from the graph partitioning soft-
ware library PARTY, and some further implementations of
graph algorithms in order to efficiently interlock graph
based techniques with set oriented methods.
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As one result, we constructed a partition consisting of
three almost-invariant sets for the problem considered here
(see Fig. 2).

Transport of quasi-Hildas.—The transition graph con-
structed above may alternatively be viewed as a (sparse)
stochastic matrix: each edge in the graph corresponds to a
nonzero entry in the matrix and the magnitude of the entry
is given by the weight associated to this edge. This tran-
sition matrix contains all information for the computation
of the transport quantities of interest (see [12]). In our case,
we compute the probability that a typical object that starts
in the quasi-Hilda region eventually crosses the orbit of
Mars, i.e., that a point that starts in the set R in Fig. 3
eventually maps into the set Q under iteration of f. Note
that in this case the set Q is defined via the Mars-crossing
line. The probability for such a transition after n iterations
of the map f is given by

pR;Q�n� �
m�f�n�Q� \ R�

m�R�
;

where m denotes the volume measure. Let P � �pij�, pij �

m�f�1�Bi� \ Bj�=m�Bj�, denote the transition matrix
(where B1; . . . ; Bb are the boxes in the covering). Then
the transition probability pR;Q�n� is approximately given
by [12]

pR;Q�n� 	
1

m�R�
eTQP

nuR;

where the ith entry of eQ 2 Rb is 1, if Bi 
 Q and 0
otherwise and the ith entry of uR 2 Rb is equal to m�Bi�
if Bi 
 R and 0 otherwise. Figure 4 shows the dependence
of the approximated transition probability pR;Q�n� on the
number of iterates n.
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FIG. 4. Transition probability for a particle from the quasi-
Hilda region to the Mars-crossing region as a function of the
number of iterates of the return map.

PRL 94, 231102 (2005) P H Y S I C A L R E V I E W L E T T E R S week ending
17 JUNE 2005
According to this figure, the probability for a typical
particle to leave the quasi-Hilda region is around 6% after
200 iterates of the map, which corresponds to a transit time
between 2000 and 6000 Earth years, depending on the
location of the particle within the quasi-Hilda region.

The computation of the covering and the associated
transition matrix took about 3.5 h on an Intel Xeon
3.2 GHz processor. We note that the computation of these
two objects largely dominates the overall computational
cost of our approach.

Future directions.—In the problem studied here, the
dynamics was planar for simplicity. Some obvious tasks
need to still be carried out, even in this basic context, such
as exploring other energy levels as well as model and
computational robustness. However, because of the ag-
glomeration of short time simulations for a large number
of globally distributed initial conditions in combination
with the evolution of densities we believe that this method
will be most powerful for systems of higher dimension for
which simulations become more difficult and insight into
dynamical mechanisms is harder to extract [12]. It may
also be useful to combine the methods with time-frequency
analysis [17].
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