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Abstract

This paper proves a discrete analogue of the Poincaré lemma in the context of a discrete exterior calcu
on simplicial cochains. The proof requires the construction of a generalized cone operator,p :Ck(K) → Ck+1(K),
as the geometric cone of a simplex cannot, in general, be interpreted as a chain in the simplicial comp
corresponding cocone operatorH :Ck(K) → Ck−1(K) can be shown to be a homotopy operator, and this yi
the discrete Poincaré lemma.

The generalized cone operator is a combinatorial operator that can be constructed for any simplicial
that can be grown by a process of local augmentation. In particular, regular triangulations and tetrahedra
of R

2 andR
3 are presented, for which the discrete Poincaré lemma is globally valid.

 2004 IMACS. Published by Elsevier B.V. All rights reserved.

Keywords:Discrete geometry; Discrete exterior calculus; Compatible discretizations

1. Introduction

The exactness properties of differential complexes such as the de Rham complex have recen
shown to play an important role in the design and stability of numerical methods for partial dif
tial equations [3]. In computational electromagnetism, numerical schemes that discretize the d
complex, using interpolation by Whitney forms, have become increasingly prevalent [4,9], and
generalizations of the Yee staggered-mesh algorithm [13].
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The geometrical structure underlying these numerical schemes is that of exterior calculus,
Desbrun et al. [5], we introduced a discrete exterior calculus based on simplicial cochains. The
representation is attractive as it is particularly simple, and avoids the need for interpolation of form

The cochain representation of discrete differential forms uses the formalism of simplicial cohom
(see Munkres [11]) and identifies a cochain with a discrete differential form, and the cobounda
the exterior derivative. Consequently, a discrete differential form can only be evaluated on a chai

The standard proof of the Poincaré lemma involves the construction of a homotopy operator
the cocone construction. This construction is unsatisfactory for developing a combinatorial proo
discrete Poincaré lemma, since there is no canonical way to express the combinatorial cone of ak-simplex
as a chain consisting of existing(k + 1)-simplices.

Only by choosing a geometric realization of the abstract simplicial complex does it make sense
whether the cone of a simplex is expressible as a chain in the original simplicial complex. Even
chose a geometric realization of the abstract simplicial complex, we find that this does not, in g
yield a representation of the cone operator as a map from chains to chains.

As an example, consider the figure below. Given the simplicial complex on the left, consist
triangles, edges and nodes, we wish, in the center figure, to consider the cone of the bold ed
respect to the top most node. Clearly, the resulting cone in the right figure, which is shaded grey
be expressed as a combination of the triangles in the original complex. As such, we cannot exp
geometric cone as a combinatorial map in an obvious way.

In this paper, a generalized cone operator that is valid for chains is developed with the essen
motopy properties to yield the discrete Poincaré lemma. In the rest of this section, we will review
basic results from simplicial algebraic topology, and relate them to discrete exterior calculus.

In the second section, we will first consider simplicial complexes on Euclidean space and int
trivially star-shaped complexes, where the geometric cone operator is expressible as a map fromk-chains
to (k +1)-chains. Next, we will consider logically star-shaped complexes, which are simplicially iso
phic to trivially star-shaped complex. Here, the logical cone operator can be constructed by conj
the standard cone operator with the isomorphism that relates the vertex scheme of the logic
shaped simplicial complex to the vertex scheme of the trivially star-shaped simplicial complex.

Finally, drawing upon intuition developed in studying trivially star-shaped complexes, we will
struct a generalized cone operator that is valid for any simplicial complex that can be grown by a
of local augmentation. The discrete Poincaré lemma is valid for these generalized star-shaped co
which include regular triangulations and tetrahedralizations ofR

2 andR
3.

For discrete analogues of the Poincaré lemma which are obtained through the use of inte
forms, the reader is referred to the work of Bossavit [4] and Hiptmair [8]. Discrete homotopy ope
in the context of logically rectangular meshes were addressed in Mansfield and Hydon [10].
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1.1. Primal simplicial complex

To discretize a continuous problem using discrete exterior calculus, we first discretize the man
a simplicial complex. This is typically a simplicial complex in Euclidean space, but it could also
abstract simplicial complex. This is sufficient in this paper as differential forms are metric-indepe
but the full theory of discrete exterior calculus [5] requires a local metric.

We will now recall some basic definitions of simplices, simplicial complexes and abstract sim
complexes, which are standard from algebraic topology. A more extensive treatment can be f
Munkres [11, Chapter 1, §1–§3].

Definition 1. A k-simplexis the convex span ofk + 1 geometrically independent points,

σ k = [v0, v1, . . . , vk] =
{

k∑
i=0

αivi | αi � 0,

n∑
i=0

αi = 1

}
.

The pointsv0, . . . , vk are theverticesof the simplex, andk is thedimensionof the simplex. Any simplex
spanned by a (proper) subset of{v0, . . . , vk} is a (proper) faceof σ k. If σ l is a proper face ofσ k then we
write σ l ≺ σ k.

Example 2. Consider 3 noncolinear pointsv0, v1 and v2 in R
3. Then these three points individual

are examples of 0-simplices which are assumed to have no orientation. Examples of 1-simpl
the oriented line segments[v0, v1], [v1, v2] and [v0, v2]. By writing the vertices in that order we hav
given orientations to these 1-simplices, i.e.,[v0, v1] is oriented fromv0 to v1. The triangle[v0, v1, v2] is
a 2-simplex oriented in counter clockwise direction. Note that the orientation of[v0, v2] does not agree
with that of the triangle.

Definition 3. A simplicial complexK in R
N is a collection of simplices inRN such that:

(1) Every face of a simplex ofK is in K .
(2) The intersection of any two simplices ofK is a face of each of them.

Definition 4. Thepolytopeof K , denoted|K|, is the geometric union of the simplices ofK . A simplicial
triangulation of a polytope|K| is a simplicial complexK such that the union of the simplices ofK

recover the polytope|K|.

Definition 5. If L is a subcollection ofK that contains all faces of its elements, thenL is a simplicial
complex in its own right, and it is called asubcomplexof K . The collection of all simplices ofK of
dimension at mostk, is a subcomplex which is called thek-skeletonof K and is denotedK(k).

We now introduce the notion of an abstract simplicial complex, which captures the topolog
simplicial complex by encoding its connectivity.

Definition 6. An abstract simplicial complexis a collectionS of finite nonempty sets, such that ifA is
in S , so is every nonempty subset ofA.
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An elementA of S is asimplexof S , and itsdimensionis one less than the number of elements. Ev
nonempty subset ofA is a faceof A. Thedimensionof S is the largest dimension of its simplices. T
vertex setV of S is the union of the one-point elements ofS , and the verticesv ∈ V are identified with
the 0-simplices{v} ∈ S . A subcollection ofS that is itself a complex is called asubcomplexof S .

Two abstract simplicial complexesS andT areisomorphicif there is a bijectionf mapping the vertex
set ofS to the vertex set ofT such that{v0, . . . , vk} ∈ S if and only if {f (v0), . . . , f (vk)} ∈ T .

Definition 7. If K is a simplicial complex, andV is its vertex set, letK be the collection of all subse
{v0, . . . , vk} of V such that[v0, . . . , vk] ∈ K . Then,K is an abstract simplicial complex called thevertex
schemeof K .

Definition 8. K is ageometric realizationof S if the abstract simplicial complexS is isomorphic to the
vertex scheme of the simplicial complexK .

As with simplicial complexes, we will denote the orientation of a simplex in an abstract simp
complex using the ordered representation[v0, . . . , vk].

1.2. Differential forms and exterior derivative

We will now define discrete differential forms. We will use some terms (which we will define)
algebraic topology but it will become clear by looking at the examples that one can gain a cle
working notion of what a discrete form is without any algebraic topology. We start with a few defin
for which more details can be found in [11, pp. 26–27].

Definition 9. Let K be a simplicial complex. We denote the free Abelian group generated by a
consisting of orientedk-simplices by,Ck(K;Z). This is the space of finite formal sums of thek-simplices,
with coefficients inZ. Elements ofCk(K;Z) are calledk-chains.

Example 10.

1-chain 2-chain

We view discretek-forms as maps from the space ofk-chains toR. Recalling that the space ofk-chains
is a group, we require the maps that define the forms to be homomorphisms into the additive gR.
Thus, discrete forms are cochains in algebraic topology. We will define cochains below in the de
of forms, but for more context and more details, readers can refer to any algebraic topology t
example, Munkres [11, p. 251].

This point of view of forms as cochains is not new. The idea of defining forms as cochains appe
example, in the works of Adams [2], Dezin [6], Hiptmair [7], Sen et al. [12]. Our point of departure i
the other authors go on to develop a theory of discrete exterior calculus of forms by using interp
which we will be able to avoid. The formal definition of discrete forms follows.
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Definition 11. A primal discretek-form α is a homomorphism from the chain groupCk(K;Z) to the
additive groupR. Thus, a discretek-form is an element of Hom(Ck(K),R), the space ofcochains.
This space becomes an Abelian group if we add two homomorphisms by adding their values inR. The
standard notation for Hom(Ck(K),R) in algebraic topology isCk(K;R). But we will often use the
notationΩk

d (K) for this space as a reminder that this is the space of discrete (hence thed subscript)
k-forms on the simplicial complexK . Thus

Ωk
d (K) := Ck(K;R) = Hom

(
Ck(K),R

)
.

Note that by the above definition fork-chain
∑

i aic
k
i (whereai ∈ Z) and a discretek-form α

α

(∑
i

aic
k
i

)
=

∑
i

aiα
(
ck
i

)
,

and for two discretek-formsα,β ∈ Ωk
d (K) andk-chainc ∈ Ck(K;Z)

(α + β)(c) = α(c) + β(c).

In exterior calculus on smooth manifolds, integration ofk-forms on ak-manifold is defined in term
of integration inR

k. This is done by doing the integration in local coordinates, which is independe
the choice of charts by the change of variables theorem. For details, see the first few pages of C
of Abraham et al. [1]. We will not try to introduce the notion of integration of discrete forms
simplicial complex. Instead, we will work with the natural bilinear pairing of cochains and chains de
by evaluation. More formally we have the following definition.

Definition 12. Thenatural pairingof a k-form α and ak-chainc is defined as the bilinear pairing

〈α, c〉 = α(c).

As mentioned above, in discrete exterior calculus this natural pairing plays the role that inte
of forms on chains plays in the usual exterior calculus. The two are related by a procedure don
time of discretization. Indeed consider a simplicial triangulationK of a polyhedron inRn, i.e., consider
a “flat” discrete manifold. Consider a continuous problem with some smooth forms defined in the
|K| ⊂ R

n. To define the discrete formαk
d corresponding toαk, one integratesαk on all thep-simplices

in K . Then the evaluation ofαp

d on ak-simplexσp is defined byαk
d(σ

k) := ∫
σk αk . Thus, discretization

is the only place where integration plays a role in our discrete exterior calculus.
Now we can define the discrete exterior derivative, which we will calld as in the usual exterior calcu

lus. The discrete exterior derivative will be defined as the dual with respect to the natural pairing d
above, of the boundary operator which is defined below.

Definition 13. Theboundaryoperator∂k :Ck(K;Z) → Ck−1(K;Z) is a homomorphism defined by defi
ing it on a simplexσ k = [v0, . . . , vk],

∂kσ
p = ∂k

([v0, v1, . . . , vk]
) =

k∑
i=0

(−1)i[v0, . . . , v̂i , . . . , vk],

where[v0, . . . , v̂i , . . . , vk] is the(k −1)-simplex obtained by omitting the vertexvi . Note that∂k ◦ ∂k+1 =
0.



236 M. Desbrun et al. / Applied Numerical Mathematics 53 (2005) 231–248

s

y
discrete

eralized
is

ill first
haped
s.
ins for
h the
general
Example 14. Given an oriented triangle[v0, v1, v2], the boundary, by the above, is[v1, v2] − [v0, v2] +
[v0, v1] which are the boundary edges of the triangle.

Definition 15. On a simplicial complex of dimensionn, achain complexis a collection of chain group
and homomorphisms∂k such that

0 → Cn(K)
∂n−→· · · ∂k+1−→Ck(K)

∂k−→· · · ∂1−→C0(K) → 0,

and∂k ◦ ∂k+1 = 0.

Definition 16. The coboundary operatorδk :Ck(K) → Ck+1(K) defined by duality to the boundar
operator using the natural bilinear pairing between discrete forms and chains. Specifically, for a
form αk ∈ Ωk

d (K) and a chainck+1 ∈ Ck+1(K;Z) we defineδk by〈
δkαk, ck+1

〉 = 〈
αk, ∂k+1ck+1

〉
(1)

that is

δk
(
αk

) = αk ◦ ∂k+1.

This definition of the coboundary operator induces thecochain complex,

0 ← Cn(K)
δn−1←−· · · δk←−Ck(K)

δk−1←−· · · δ0←−C0(K) ← 0,

where it is easy to see thatδk+1 ◦ δk = 0.

Definition 17. The discrete exterior derivativedenoted byd :Ωk
d (K) → Ωk+1

d (K) is defined to be the
coboundary operatorδk.

Remark 18. With the above definition of the exterior derivatived :Ωk
d (K) → Ωk+1

d (K) and the relation-
ship between the natural pairing and integration one can regard equation (1) as a discrete gen
Stokes’ theorem. Thus, given ak-chainc and a discretek-form α, the discrete Stokes’ theorem, which
true by definition, states that

〈dα, c〉 = 〈α, ∂c〉.
Furthermore, it also follows immediately thatd2 = 0.

2. Discrete Poincaré lemma

In this section, we will prove the discrete Poincaré lemma using the cocone construction. We w
consider the case of simplicial complexes that are trivially star-shaped, followed by logically star-s
abstract complexes, before generalizing the result to generalized star-shaped abstract complexe

As we have shown in the introduction, the cone is not a well-defined map from chains to cha
arbitrary simplicial complexes, and we will first consider trivially star-shaped complexes for whic
cone is a well-defined map from chains to chains, before extending the construction to more
complexes.
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Definition 19. Given ak-simplexσ k = [v0, . . . , vk] we construct theconewith vertexw and baseσ k as
follows,

w 
 σ k = [w,v0, . . . , vk].
Lemma 20. The geometric cone operator satisfies the following property,

∂
(
w 
 σ k

) + w 
 (
∂σ k

) = σ k.

Proof. This is a standard result from simplicial algebraic topology.�
2.1. Trivially star-shaped complexes

We first introduce the notion of a trivially star-shaped complex, for which the standard cone con
tion yields a well-defined map from chains to chains, and for which the standard proof of the Po
lemma extends to the discrete case. We will also construct an arbitrarily dense tetrahedralizatio
open neighborhood about a point using trivially star-shaped complexes.

It should be noted that the notion of a trivially star-shaped complex depends on the geometric
tion, and is therefore not an intrinsic property of an abstract simplicial complex. Intrinsic generaliz
will be considered in the next two subsections.

Definition 21. A complexK is calledtrivially star-shapedif there exists a vertexw ∈ K(0) such that for
all σ k ∈ K , the cone with vertexw and baseσ k is (geometrically) expressible as a chain inK . That is to
say,

∃w ∈ K(0) | ∀σ k ∈ K, w 
 σ k ∈ Ck+1(K).

We denote the cone operation with respect tow asp :Ck(K) → Ck+1(K).

Lemma 22. In trivially star-shaped complexes, the cone operatorp :Ck(K) → Ck+1(K) satisfies the
following identity,

p∂ + ∂p = I,

at the level of chains.

Proof. Follows from the identity for cones, and the fact that the cone is well-defined at the level of c
on trivially star-shaped complexes.�
Definition 23. ThecoconeoperatorH :Ck(K) → Ck−1(K) is defined by,〈

Hαk,σ k−1
〉 = 〈

αk,p
(
σ k−1

)〉
.

This operator is well-defined on trivially star-shaped simplicial complexes.

Lemma 24. The cocone operatorH :Ck(K) → Ck−1(K) satisfies the following identity,

Hd + dH = I,

at the level of cochains.
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Proof. A simple duality argument applied to the cone identity,

p∂ + ∂p = I,

yields the following,〈
αk, σ k

〉 = 〈
αk, (p∂ + ∂p)σ k

〉 = 〈
αk,p∂σ k

〉 + 〈
αk, ∂pσ k

〉
= 〈

Hαk, ∂σ k
〉 + 〈

dαk,pσ k
〉 = 〈

dHαk,σ k
〉 + 〈

Hdαk, σ k
〉

= 〈
(dH + Hd)αk, σ k

〉
.

Therefore,

Hd + dH = I,

at the level of cochains.�
Corollary 25 (Discrete Poincaré lemma for trivially star-shaped complexes). Given a closed cochainαk,
that is to say,dαk = 0, there exists a cochainβk−1 such thatdβk−1 = αk .

Proof. Applying the identity for cochains,

Hd + dH = I,

we have,〈
αk, σ k

〉 = 〈
(Hd + dH)αk, σ k

〉
but dαk = 0, so,

= 〈
d
(
Hαk

)
, σ k

〉
.

Therefore,βk−1 = Hαk is such thatdβk−1 = αk at the level of cochains.�
Example 26. We construct an arbitrarily dense tetrahedralization of the cone of a(n − 1)-simplex over
the origin.

If we denote byvk
i , the projection of thevi vertex to thekth concentric sphere, where the 0th concen

sphere is simply the central point, then we fill up the cone[c, v1, . . . , vn] with simplices as follows:[
v0

1, v
1
1, . . . , v

1
n

]
,

[
v2

1, v
1
1, . . . , v

1
n

]
,

[
v2

1, v
2
2, v

1
2, . . . , v

1
n

]
, . . . ,

[
v2

1, . . . , v
2
n, v

1
n

]
.

SinceSn−1 is orientable, we use a consistent triangulation ofSn−1 and then-cones to triangulateBn so
that the resulting triangulation is star-shaped.

This fills up the region to the 1st concentric sphere, and we repeat the process by leapfroggin
last vertex to add[v2

1, . . . , v
2
n, v

3
n], and continuing the construction, to fill up the annulus between

1st and 2nd concentric sphere. Thus, we can keep adding concentric shells to create an arbitrar
triangulation of an-ball about the origin.

In three dimensions, these simplices are given by,
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[c, v1
1, v

1
2, v

1
3], [v2

1, v
1
1, v

1
2, v

1
3], [v2

1, v
2
2, v

1
2, v

1
3], [v2

1, v
2
2, v

2
3, v

1
3].

Putting them together, we obtain,

Triangulation of a 3-dimensional cone

This example is significant, since we can construct an arbitrarily dense trivially star-shaped triang
of a n-ball, and recover the continuous Poincaré lemma from the discrete Poincaré lemma for t
star-shaped complexes.

2.2. Logically star-shaped complexes

We now consider logically star-shaped complexes which are simplicially isomorphic to trivially
shaped complexes, and as such inhert a cone operator with the desired homotopy properties
trivially star-shaped complex. This property is intrinsic as it only depends on the vertex schem
complex.

Definition 27. A simplicial complex islogically star-shapedif its vertex scheme is isomorphic to th
vertex scheme of a trivially star-shaped complex.

Example 28. Two simplicial complexes whose vertex schemes are isomorphic.

∼=

Trivially star-shaped complex Logically star-shaped complex
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Definition 29. The logical coneoperatorp :Ck(L) → Ck+1(L) satisfies,

Ck(K)
pK

Ck+1(K)

Ck(L)
pL

Ck+1(L)

Which is to say that given the isomorphismϕ :K → L, we define,

pL = ϕ ◦ pK ◦ ϕ−1.

Example 30. An example of the construction of the logical cone operator.

This definition of the logical cone operator results in the identities for the cone and cocone ope
follow from the trivially star-shaped case, and we record the results as follows.

Lemma 31. In logically star-shaped complexes, the logical cone operator satisfies the following id

p∂ + ∂p = I,

at the level of chains.

Proof. Follows immediately by pushing forward the result for trivially star-shaped complexes usin
isomorphism. �
Lemma 32. In logically star-shaped complexes, the logical cocone operator satisfies the following
tity,

Hd + dH = I,

at the level of cochains.

Proof. Follows immediately by pushing forward the result for trivially star-shaped complexes usin
isomorphism. �
Thus, we have a discrete Poincaré lemma for logically star-shaped complexes.
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Corollary 33 (Discrete Poincaré lemma for logically star-shaped complexes). Given a closed cochai
αk , that is to say,dαk = 0, there exists a cochainβk−1 such thatdβk−1 = αk .

Proof. Follows from the above lemma using the proof for the trivially star-shaped case.�
2.3. Generalized star-shaped complexes

We now introduce generalized star-shaped complexes, which are constructed using a proces
augmentation. We can recursively construct a generalized cone operator such that it satisfies th
topy identity,

p∂ + ∂p = I,

which is the crucial property of the cone operator, from the point of view of proving the discrete Po
lemma.

Definition 34. Given a complexK , and a vertexv, theone-ringof v is the set of all simplices ofK which
containv as a vertex.

Definition 35. Given an-complexK , consider a vertexw that is not already contained in the comple
and a(n − 1)-chaincn−1 that is contained on the boundary ofK , and is included in the one-ring of som
vertex on∂K . Then, aone-ring cone augmentationof K is the complex obtained by adding then-cone
w 
 cn−1, and all its faces to the complex.

Definition 36. A complex isgeneralized star-shapedif it can be constructed by repeated one-ring c
augmentation of an initially logically star-shaped complex.

Note that the simplest example of a logically star-shaped complex is the complex consisting
n-simplex and all its faces. We will now introduce an example of a regular triangulation of the plan
is generalized star-shaped.

Example 37. The regular 2-dimensional triangulation can be obtained by the successive applica
the one-ring cone augmentation procedure, as the following sequence illustrates,

Remark 38. Since each simplex in the one-ring ofv containsv, and each simplex is connected, a ch
consisting of simplices of a one-ring is connected. As such, a noncontractible complex cannot
structed by inductive one-ring cone augmentation, as it will involve adding a conew 
 cn−1, wherecn−1

is disjoint and therefore cannot be included in the one-ring of a vertex.
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We construct our generalized cone operatorp :Ck(K) → Ck+1(K) recursively. Since we are restric
ing ourselves to generalized star-shaped complexes, which are obtained by repeated one-ring
tation of an initially logically star-shaped complex, it suffices to show that we can define a gene
cone operator on the newly added simplices that satisfies the homotopy property.

We proceed by induction. The base case is a generalized star-shaped complex that is logica
shaped, and has a logical cone operator which satisfies the homotopy property. The generaliz
operator is defined to coincide with the logical cone operator, and satisfies the homotopy prop
well.

Given a generalized star-shaped complexKi , we augment using one-ring cone augmentation by ad
then-conew 
 cn−1, and all its faces to obtainKi+1. We need to definep for simplices inKi+1 \ Ki .

To definep(σ k) for σ k ∈ Ki+1 \Ki , we choose aσ k+1 ∈ Ki+1 \Ki , to include in the conep(σ k), such
thatσ k+1 � σ k, andσ k+1 andσ k are consistently oriented. Let us require that the homotopy proper
p holds onσ k+1,

σ k+1 = (p∂ + ∂p)
(
σ k+1

) = p
(
∂σ k+1

) + ∂p
(
σ k+1

)
= p

(
∂σ k+1 − σ k + σ k

) + ∂p
(
σ k+1

) = p
(
σ k

) + p
(
∂σ k+1 − σ k

) + ∂p
(
σ k+1

)
.

The geometric cone operator suggests how to proceed. If a(k + 1)-simplexσ k is part of the geometric
cone of ak-simplex σ k with respect to the pointx, thenσ k+1 is contained in a(k + 1)-hyperplane
containingx. Therefore, the geometric cone ofσ k+1 is (k + 1)-dimensional. When the geometric cone
viewed as a map from(k + 1)-chains to(k + 2)-chains, it follows thatp(σ k+1) = ∅. Thus, ifσ k+1 is a
term inp(σ k) for someσ k, thenp(σ k+1) = ∅.

Since we chose to includeσ k+1 as one of the terms inp(σ k), let us follow the intuition suggested b
the geometric cone and definep(σ k+1) = ∅. Then,

σ k+1 = p
(
σ k

) + p
(
∂σ k+1 − σ k

) + ∂(∅) = p
(
σ k

) + p
(
∂σ k+1 − σ k

)
.

Rearranging, we obtain an expression for whatp(σ k) needs to be,

p
(
σ k

) = σ k+1 − p
(
∂σ k+1 − σ k

)
.

To recap, we definep(σ k) by choosingσ k+1 � σ k, such thatσ k+1 andσ k are consistently oriented. The
we define,

p
(
σ k

) = σ k+1 − p
(
∂σ k+1 − σ k

)
, p

(
σ k+1

) = ∅.

It remains to show that in definingp(σ k), we can order the definition ofp on the simplices of the con
so that the simplices in the chain∂σ k+1 − σ k already havep defined on it. If we can constructp in the
above fashion so that it is well-defined, the homotopy property will automatically hold by constru
We will now define the generalized cone operator for 2- and 3-dimensions.

Definition 39. In 2-dimensions, the 1-ring condition implies that the base of the cone consists of
one or two 1-simplices. To aid in visualization, consider the following diagram,
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One-ring cone augmentation of a complex in 2-dimensions

In the case of one 1-simplex,[v0, v1], when we augment using the cone construction with the new ve
w, we define,

p
([w]) = [v0,w] + p

([v0]
)
, p

([v0,w]) = ∅,

p
([v1,w]) = [v0, v1,w] − p

([v0, v1]
)
, p

([v0, v1,w]) = ∅.

In the case of two 1-simplices,[v0, v1], [v0, v2], we have,

p
([w]) = [v0,w] + p

([v0]
)
, p

([v0,w]) = ∅,

p
([v1,w]) = [v0, v1,w] − p

([v0, v1]
)
, p

([v0, v1,w]) = ∅,

p
([v2,w]) = [v0, v2,w] − p

([v0, v2]
)
, p

([v0, v2,w]) = ∅.

Example 40. We will now compute the generalized cone operator for part of a regular 2-dimen
triangulation that is not logically star-shaped. Consider a logically star-shaped complex, and a
with a new vertex.

Logically star-shaped complex augmented by cone

We use the logical cone operator for the subcomplex that is logically star-shaped, and the definitio
for the newly introduced simplices. This yields,
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Definition 41. We now define the generalized cone operator in 3-dimensions. Denote byv0 the center
of the 1-ring on the 2-surface, to which we are augmenting the new vertexw. The other vertices of th
1-ring are enumerated in orderv1, . . . , vm. To aid in visualization, consider the following diagram,

One-ring cone augmentation of a complex in 3-dimensions

If the 1-ring does not surroundv , we denote the missing term by[v , v , v ].
0 0 1 m
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k = 0: p
([w]) = [v0,w] + p

([v0]
)
, p

([v0,w]) = ∅,

k = 1: p
([v1,w]) = [v0, v1,w] − p

([v0, v1]
)
, p

([v0, v1,w]) = ∅,

p
([vm,w]) = [v0, vm,w] − p

([v0, vm]), p
([v0, vm,w]) = ∅,

k = 2: p
([v1, v2,w]) = [v0, v1, v2,w] + p

([v0, v1, v2]
)
, p

([v0, v1, v2,w]) = ∅,

p
([vm−1, vm,w]) = [v0, vm−1, vm,w] + p

([v0, vm−1, vm]), p
([v0, vm−1, vm,w]) = ∅.

If it does go around completely,

p
([vm, v1,w]) = [v0, vm, v1,w] + p

([v0, vm, v1]
)
, p

([v0, vm, v1,w]) = ∅.

Example 42. We provide a tetrahedralization of the unit cube that can be tiled to yield a regular te
dralization ofR3. The 3-simplices are as follows,

[v000, v001, v010, v10], [v001, v010, v100, v101], [v001, v010, v011, v101],
[v010, v100, v101, v110], [v010, v011, v101, v110], [v011, v101, v110, v111].

The tetrahedralization of the unit cube can be visualized as follows,

Tileable tetrahedralization of the unit cube Partial tiling

Since this regular tetrahedralization can be constructed by the successive application of the one-r
augmentation procedure, the discrete Poincaré lemma can be extended to the entire regular tet
ization ofR3.

In higher dimensions, we extend the construction of the generalized cone operator by choosing a
priate enumeration of the base chain. The base chain is topologically the cone ofSn−2 (with possibly an
openn − 2 ball removed) with respect to the central point.
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Spiral enumeration ofSn−2, n = 4

By spiraling aroundSn−2, starting from the boundary of then − 2 ball, and covering the rest ofSn−2,
we obtain higher dimensional generalizations of Definitions 39, 41. SinceS2−2 = S0 is disjoint,n = 2 is
distinguished, and we were unable to use spiral enumeration of the simplices in 2-dimensions.

The generalized cone operator is constructed so that the homotopy property holds automatica

Lemma 43. In generalized star-shaped complexes, the generalized cone operator satisfies the fo
identity,

p∂ + ∂p = I,

at the level of chains.

Proof. By construction of the generalized cone operator.�
Lemma 44. In generalized star-shaped complexes, the generalized cocone operator satisfies the
ing identity,

Hd + dH = I,

at the level of cochains.

Proof. Follows immediately from applying the proof in the trivially star-shaped case, and usin
identity in the previous lemma.�
We have a discrete Poincaré lemma for generalized star-shaped complexes.

Corollary 45 (Discrete Poincaré lemma for generalized star-shaped complexes). Given a closed cochai
αk , that is to say,dαk = 0, there exists a cochainβk−1 such thatdβk−1 = αk .

Proof. Follows from the above lemma using the proof for the trivially star-shaped case.�
Example 46. We will show how the Poincaré lemma fails when the complex is not contractible
consider a trivially star-shaped complex, and augment by one vertex so as to make it non-contra
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Trivially star-shaped complex Non-contractible complex

When we attempt to verify the identity,

p∂ + ∂p = I,

we see that it is only true up to a chain that is homotopic to the inner boundary.

Since the second term is not the boundary of a 2-chain, it contributes a non-trivial term, even on
discrete forms, and the Poincaré lemma breaks.

3. Conclusions

In summary, we have presented a constructive method of obtaining a local neighborhood in
structured mesh for which the discrete Poincaré lemma holds in the context of discrete exterior c
Furthermore, we introduced examples of regular space-filling triangulations and tetrahedralizat
which the exactness properties hold globally.

In the future, higher order analogues of the discrete theory of exterior calculus are desirable,
cochain representation which assigns numerical quantities to a discrete set of geometric objects
attractive due to its conceptual simplicity and the elegance of representing discrete operators a
natorial operations on the mesh.

It is desirable to reconcile the two, by ensuring that higher-order interpolation and the combin
operations are consistent. This would yield more direct proofs of the exactness properties us
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standard cocone construction on the interpolated differential form, while giving a discrete hom
operator that could be efficiently realized as a combinatorial operation on the mesh.
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