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Abstract

This paper proves a discrete analogue of the Poincaré lemma in the context of a discrete exterior calculus basec
on simplicial cochains. The proof requires the construction of a generalized cone oper&tgik) — Cr11(K),
as the geometric cone of a simplex cannot, in general, be interpreted as a chain in the simplicial complex. The
corresponding cocone operathr: C¥(K) — C*¥~1(K) can be shown to be a homotopy operator, and this yields
the discrete Poincaré lemma.

The generalized cone operator is a combinatorial operator that can be constructed for any simplicial complex
that can be grown by a process of local augmentation. In particular, regular triangulations and tetrahedralizations
of R2 andR? are presented, for which the discrete Poincaré lemma is globally valid.

0 2004 IMACS. Published by Elsevier B.V. All rights reserved.
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1. Introduction

The exactness properties of differential complexes such as the de Rham complex have recently beer
shown to play an important role in the design and stability of numerical methods for partial differen-
tial equations [3]. In computational electromagnetism, numerical schemes that discretize the de Rham
complex, using interpolation by Whitney forms, have become increasingly prevalent [4,9], and vyield
generalizations of the Yee staggered-mesh algorithm [13].
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The geometrical structure underlying these numerical schemes is that of exterior calculus, and in
Desbrun et al. [5], we introduced a discrete exterior calculus based on simplicial cochains. The cochain
representation is attractive as it is particularly simple, and avoids the need for interpolation of forms.

The cochain representation of discrete differential forms uses the formalism of simplicial conomology
(see Munkres [11]) and identifies a cochain with a discrete differential form, and the coboundary with
the exterior derivative. Consequently, a discrete differential form can only be evaluated on a chain.

The standard proof of the Poincaré lemma involves the construction of a homotopy operator though
the cocone construction. This construction is unsatisfactory for developing a combinatorial proof of the
discrete Poincaré lemma, since there is no canonical way to express the combinatorial dosergdlax
as a chain consisting of existing + 1)-simplices.

Only by choosing a geometric realization of the abstract simplicial complex does it make sense to ask
whether the cone of a simplex is expressible as a chain in the original simplicial complex. Even if we
chose a geometric realization of the abstract simplicial complex, we find that this does not, in general,
yield a representation of the cone operator as a map from chains to chains.

As an example, consider the figure below. Given the simplicial complex on the left, consisting of
triangles, edges and nodes, we wish, in the center figure, to consider the cone of the bold edge with
respect to the top most node. Clearly, the resulting cone in the right figure, which is shaded grey, cannot
be expressed as a combination of the triangles in the original complex. As such, we cannot express the
geometric cone as a combinatorial map in an obvious way.

AN

VAVAVANVAVAVAN

In this paper, a generalized cone operator that is valid for chains is developed with the essential ho-
motopy properties to yield the discrete Poincaré lemma. In the rest of this section, we will review some
basic results from simplicial algebraic topology, and relate them to discrete exterior calculus.

In the second section, we will first consider simplicial complexes on Euclidean space and introduce
trivially star-shaped complexes, where the geometric cone operator is expressible as a niapHeaoms
to (k + 1)-chains. Next, we will consider logically star-shaped complexes, which are simplicially isomor-
phic to trivially star-shaped complex. Here, the logical cone operator can be constructed by conjugating
the standard cone operator with the isomorphism that relates the vertex scheme of the logically-star
shaped simplicial complex to the vertex scheme of the trivially star-shaped simplicial complex.

Finally, drawing upon intuition developed in studying trivially star-shaped complexes, we will con-
struct a generalized cone operator that is valid for any simplicial complex that can be grown by a process
of local augmentation. The discrete Poincaré lemma is valid for these generalized star-shaped complexes
which include regular triangulations and tetrahedralizatioriR’cindR3.

For discrete analogues of the Poincaré lemma which are obtained through the use of interpolated
forms, the reader is referred to the work of Bossavit [4] and Hiptmair [8]. Discrete homotopy operators
in the context of logically rectangular meshes were addressed in Mansfield and Hydon [10].
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1.1. Primal simplicial complex

To discretize a continuous problem using discrete exterior calculus, we first discretize the manifold as
a simplicial complex. This is typically a simplicial complex in Euclidean space, but it could also be an
abstract simplicial complex. This is sufficient in this paper as differential forms are metric-independent,
but the full theory of discrete exterior calculus [5] requires a local metric.

We will now recall some basic definitions of simplices, simplicial complexes and abstract simplicial
complexes, which are standard from algebraic topology. A more extensive treatment can be found in
Munkres [11, Chapter 1, 81-83].

Definition 1. A k-simplexis the convex span df + 1 geometrically independent points,
k n
o* =vg, v1,..., 0] = Zaivi la >0, Zaizl .
i=0 i=0

The pointsuy, ..., v, are theverticesof the simplex, and is thedimensiorof the simplex. Any simplex
spanned by a (proper) subset{o§, . .., v} is a (proper) faceof o*. If o' is a proper face of* then we

write o/ < o,

Example 2. Consider 3 noncolinear points, vy and v, in R3. Then these three points individually

are examples of 0-simplices which are assumed to have no orientation. Examples of 1-simplices are
the oriented line segmenfsg, v1], [v1, v2] and[vg, vp]. By writing the vertices in that order we have
given orientations to these 1-simplices, i[@g, v1] is oriented fromug to v1. The trianglefvg, v1, v2] IS

a 2-simplex oriented in counter clockwise direction. Note that the orientati¢m of,] does not agree

with that of the triangle.

Definition 3. A simplicial complexk in R” is a collection of simplices iiR" such that:

(1) Every face of a simplex oK isin K.
(2) The intersection of any two simplices &fis a face of each of them.

Definition 4. Thepolytopeof K, denoted K |, is the geometric union of the simplices & A simplicial
triangulation of a polytope|K| is a simplicial complexkK such that the union of the simplices &f
recover the polytopex |.

Definition 5. If L is a subcollection oK that contains all faces of its elements, thems a simplicial
complex in its own right, and it is called subcomplexof K. The collection of all simplices oK of
dimension at most, is a subcomplex which is called tkeskeletorof K and is denoted ®.

We now introduce the notion of an abstract simplicial complex, which captures the topology of a
simplicial complex by encoding its connectivity.

Definition 6. An abstract simplicial compleis a collectionS of finite nonempty sets, such thatAfis
in S, so is every nonempty subset &f
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An elementA of S is asimplexof S, and itsdimensioris one less than the number of elements. Every
nonempty subset ol is afaceof A. Thedimensiorof S is the largest dimension of its simplices. The
vertex setV of S is the union of the one-point elements®fand the vertices € V are identified with
the O-simplicegv} € S. A subcollection ofS that is itself a complex is calledsubcomplexf S.

Two abstract simplicial complex&sand7 areisomorphidf there is a bijectionf mapping the vertex
set of S to the vertex set of such thafvg, ..., v} € Sifand only if { f (vg), ..., f(v)} €T.

Definition 7. If K is a simplicial complex, and’ is its vertex set, leiC be the collection of all subsets
{vo, ..., v} of V such thafvy, ..., v:] € K. Then,K is an abstract simplicial complex called thertex
schemef K .

Definition 8. K is ageometric realizatiorof S if the abstract simplicial compleX is isomorphic to the
vertex scheme of the simplicial complé&x

As with simplicial complexes, we will denote the orientation of a simplex in an abstract simplicial
complex using the ordered representafiag) . . ., vi].

1.2. Differential forms and exterior derivative

We will now define discrete differential forms. We will use some terms (which we will define) from
algebraic topology but it will become clear by looking at the examples that one can gain a clear and
working notion of what a discrete form is without any algebraic topology. We start with a few definitions
for which more details can be found in [11, pp. 26-27].

Definition 9. Let K be a simplicial complex. We denote the free Abelian group generated by a basis
consisting of oriented-simplices byC, (K ; Z). This is the space of finite formal sums of thaimplices,
with coefficients inZ. Elements ofCy (K ; Z) are calledk-chains

Example 10.

‘\ s | \O\zy
d Y 5 Cl 3
1-chain 2-chain

We view discreté-forms as maps from the spaceksthains toR. Recalling that the space éfchains

is a group, we require the maps that define the forms to be homomorphisms into the additivi group
Thus, discrete forms are cochains in algebraic topology. We will define cochains below in the definition
of forms, but for more context and more details, readers can refer to any algebraic topology text, for
example, Munkres [11, p. 251].

This point of view of forms as cochains is not new. The idea of defining forms as cochains appears, for
example, in the works of Adams [2], Dezin [6], Hiptmair [7], Sen et al. [12]. Our point of departure is that
the other authors go on to develop a theory of discrete exterior calculus of forms by using interpolation
which we will be able to avoid. The formal definition of discrete forms follows.
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Definition 11. A primal discretek-form « is a homomorphism from the chain gro@h(K; Z) to the

additive groupR. Thus, a discreté-form is an element of Hoit,(K), R), the space otochains

This space becomes an Abelian group if we add two homomorphisms by adding their valueEhia

standard notation for Hoa@';(K), R) in algebraic topology i<*(K; R). But we will often use the
notation 25 (K) for this space as a reminder that this is the space of discrete (hendestiescript)
k-forms on the simplicial complek'. Thus

2K(K) := CH(K; R) = Hom(Ci(K), R).

Note that by the above definition férchain_, a;c¥ (whereq; € Z) and a discreté-form o

o (Z a,~cf> = Zaia(cf),
and for two discreté-formsa, 8 € ij(K) andk-chainc € Cy(K; Z)

(@ + B)(c) =alc) + B(c).

In exterior calculus on smooth manifolds, integratiorkdbrms on ak-manifold is defined in terms
of integration inR*. This is done by doing the integration in local coordinates, which is independent of
the choice of charts by the change of variables theorem. For details, see the first few pages of Chapter 7
of Abraham et al. [1]. We will not try to introduce the notion of integration of discrete forms on a
simplicial complex. Instead, we will work with the natural bilinear pairing of cochains and chains defined
by evaluation. More formally we have the following definition.

Definition 12. Thenatural pairingof a k-form « and ak-chainc is defined as the bilinear pairing

(at, ¢y = a(c).

As mentioned above, in discrete exterior calculus this natural pairing plays the role that integration
of forms on chains plays in the usual exterior calculus. The two are related by a procedure done at the
time of discretization. Indeed consider a simplicial triangulatfoof a polyhedron irR”, i.e., consider
a “flat” discrete manifold. Consider a continuous problem with some smooth forms defined in the space
|K| C R". To define the discrete fora; corresponding te*, one integrates® on all the p-simplices
in K. Then the evaluation af on ak-simplexc? is defined by/(c*) := [ , o*. Thus, discretization
is the only place where integration plays a role in our discrete exterior calculus.

Now we can define the discrete exterior derivative, which we willdas in the usual exterior calcu-
lus. The discrete exterior derivative will be defined as the dual with respect to the natural pairing defined
above, of the boundary operator which is defined below.

Definition 13. Theboundaryoperatoi : Ci (K ; Z) — Cx_1(K; Z) is a homomorphism defined by defin-
ing it on a simplexs* = [vo, ..., vil,
k

3k0'p = 3k([vo, Vi, euns vk]) = Z(—l)i[vo, ceey ﬁi, ceey U],
i=0

where[vy, ..., U;, ..., v ] is the(k — 1)-simplex obtained by omitting the vertex Note thatd; o 9,1 =
0.
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Example 14. Given an oriented trianglpy, v1, v2], the boundary, by the above,[ig, v2] — [vo, v2] +
[vo, v1] which are the boundary edges of the triangle.

Definition 15. On a simplicial complex of dimension, achain complexs a collection of chain groups

and homomorphismg, such that

Ok+1

0= Co(K) 25 - 23 Cu(K) 25 ... 25 Co(K) — 0,
ando; o Op11= 0.
Definition 16. The coboundary operatos* : C*(K) — C***(K) defined by duality to the boundary

operator using the natural bilinear pairing between discrete forms and chains. Specifically, for a discrete
form o € 2%(K) and a chainy1 € C41(K; Z) we defines* by

(6%a", crra) = (0", Brachsa) 1)
that is

sk (ak) =afo O 41
This definition of the coboundary operator inducesabehain complex

8}171 tSk k Skfl 50 0
0« C"K)y<— - «—CK)<—---«—C"(K) <0,

where it is easy to see théftt! o §* = 0.

Definition 17. The discrete exterior derivativelenoted byd: Qg’,‘(K) — Qg’,‘*l(l() is defined to be the
coboundary operatd¥.

Remark 18. With the above definition of the exterior derivatidle;(K) — Qﬁ*l(K) and the relation-

ship between the natural pairing and integration one can regard equation (1) as a discrete generalizec
Stokes’ theorem. Thus, givernkachainc and a discreté-form «, the discrete Stokes’ theorem, which is

true by definition, states that

(do, ¢) = {a, dc).

Furthermore, it also follows immediately thdt = 0.

2. Discrete Poincarélemma

In this section, we will prove the discrete Poincaré lemma using the cocone construction. We will first
consider the case of simplicial complexes that are trivially star-shaped, followed by logically star-shaped
abstract complexes, before generalizing the result to generalized star-shaped abstract complexes.

As we have shown in the introduction, the cone is not a well-defined map from chains to chains for
arbitrary simplicial complexes, and we will first consider trivially star-shaped complexes for which the
cone is a well-defined map from chains to chains, before extending the construction to more general
complexes.
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Definition 19. Given ak-simplexc* = [vo, ..., v;] we construct theonewith vertexw and base* as
follows,

k
woo =[w,vg,..., V.

Lemma 20. The geometric cone operator satisfies the following property,

a(w o ok) +wo (80") =o*.
Proof. This is a standard result from simplicial algebraic topology
2.1. Trivially star-shaped complexes

We first introduce the notion of a trivially star-shaped complex, for which the standard cone construc-
tion yields a well-defined map from chains to chains, and for which the standard proof of the Poincaré
lemma extends to the discrete case. We will also construct an arbitrarily dense tetrahedralization of an
open neighborhood about a point using trivially star-shaped complexes.

It should be noted that the notion of a trivially star-shaped complex depends on the geometric realiza-
tion, and is therefore not an intrinsic property of an abstract simplicial complex. Intrinsic generalizations
will be considered in the next two subsections.

Definition 21. A complexX is calledtrivially star-shapedf there exists a vertew € K@ such that for
all o € K, the cone with vertexo and base* is (geometrically) expressible as a chainkin That is to
say,

Jwe KO |Vok e K, wook e Cria(K).
We denote the cone operation with respeaitasp : Cy(K) — Cii1(K).
Lemma 22. In trivially star-shaped complexes, the cone opergtorC,(K) — Cy.1(K) satisfies the
following identity,
pd+op=1,
at the level of chains.
Proof. Follows from the identity for cones, and the fact that the cone is well-defined at the level of chains
on trivially star-shaped complexesn
Definition 23. ThecoconeoperatorH : C*(K) — C*~1(K) is defined by,
(Hock, ak71> = <ock, p(akil)).
This operator is well-defined on trivially star-shaped simplicial complexes.
Lemma 24. The cocone operatal : C¥(K) — C*1(K) satisfies the following identity,

Hd+dH =1,

at the level of cochains.
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Proof. A simple duality argument applied to the cone identity,
pd+op=1,
yields the following,
(o, 0%)= (", (pd + dp)o*) =(a*, pdc*)+ (¥, dpot)
=(Hd", 30*) + (do*, po*) = (dHa*, o*) + (Hda", o)
= ((dH + Hd)a*, o*).
Therefore,
Hd+dH =1,

at the level of cochains. O

Corollary 25 (Discrete Poincaré lemma for trivially star-shaped complex@isjen a closed cochaiw,
that is to sayda* = 0, there exists a cochaif*~* such thadp*~! = o*.

Proof. Applying the identity for cochains,

Hd+dH =1,
we have,

(ak, ak> = ((Hd +dH)ok, ak>
butda* =0, so,

= (d(Hozk), ork>.

Therefore 84~1 = Ha* is such thatlg*—! = o* at the level of cochains. O
Example 26. We construct an arbitrarily dense tetrahedralization of the congmfal)-simplex over

the origin.
If we denote by¥, the projection of the; vertex to thecth concentric sphere, where the Oth concentric

sphere is simply the central point, then we fill up the cfne,, ..., v,] with simplices as follows:
0.1 1 2 .1 1 2 .2 .1 1 2 2 .1
[vl,vl,...,vn], [vl,vl,...,vn], [vl,vz,vz,...,vn],..., [vl,...,vn,vn].

Sinces" ! is orientable, we use a consistent triangulatiors’df' and then-cones to triangulat®” so
that the resulting triangulation is star-shaped.

This fills up the region to the 1st concentric sphere, and we repeat the process by leapfrogging at the
last vertex to adc[vf, v,f vf], and continuing the construction, to fill up the annulus between the
1st and 2nd concentric sphere. Thus, we can keep adding concentric shells to create an arbitrarily dense
triangulation of az-ball about the origin.

In three dimensions, these simplices are given by,
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1
[c, v7, v3, V3], [vl,vl,vz,v3 [vl,vz,vz,vs vl,vz,v3,v3

Putting them together, we obtain,

Triangulation of a 3-dimensional cone

This example is significant, since we can construct an arbitrarily dense trivially star-shaped triangulation
of an-ball, and recover the continuous Poincaré lemma from the discrete Poincaré lemma for trivially
star-shaped complexes.

2.2. Logically star-shaped complexes

We now consider logically star-shaped complexes which are simplicially isomorphic to trivially star-
shaped complexes, and as such inhert a cone operator with the desired homotopy properties from the
trivially star-shaped complex. This property is intrinsic as it only depends on the vertex scheme of a
complex.

Definition 27. A simplicial complex islogically star-shapedf its vertex scheme is isomorphic to the
vertex scheme of a trivially star-shaped complex.

Example 28. Two simplicial complexes whose vertex schemes are isomorphic.

12

Trivially star-shaped complex Logically star-shaped complex
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Definition 29. Thelogical coneoperatorp : CK(L) — C*1(L) satisfies,
Ck(K) __Px_ Ck+1(K)
Ck(L)¢>Ck+1(L)

Which is to say that given the isomorphigmK — L, we define,

pL=¢opgog L.

Example 30. An example of the construction of the logical cone operator.

PL

~

This definition of the logical cone operator results in the identities for the cone and cocone operator to

follow from the trivially star-shaped case, and we record the results as follows.

Lemma 31. In logically star-shaped complexes, the logical cone operator satisfies the following identity,
po+adp=1,

at the level of chains.

Proof. Follows immediately by pushing forward the result for trivially star-shaped complexes using the
isomorphism. O

Lemma 32. In logically star-shaped complexes, the logical cocone operator satisfies the following iden-
tity,
Hd+dH =1,

at the level of cochains.

Proof. Follows immediately by pushing forward the result for trivially star-shaped complexes using the
isomorphism. O

Thus, we have a discrete Poincaré lemma for logically star-shaped complexes.
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Corollary 33 (Discrete Poincaré lemma for logically star-shaped complexasen a closed cochain
o, that is to sayda* = 0, there exists a cochaif*~* such thatdg*—* = o*.

Proof. Follows from the above lemma using the proof for the trivially star-shaped case.
2.3. Generalized star-shaped complexes

We now introduce generalized star-shaped complexes, which are constructed using a process of loca
augmentation. We can recursively construct a generalized cone operator such that it satisfies the homo.
topy identity,

pd+adp=1,

which is the crucial property of the cone operator, from the point of view of proving the discrete Poincaré
lemma.

Definition 34. Given a complexX, and a vertex, theone-ringof v is the set of all simplices a&& which
containv as a vertex.

Definition 35. Given an-complexK, consider a vertex that is not already contained in the complex,
and a(n — 1)-chainc,_; that is contained on the boundary Kf and is included in the one-ring of some
vertex ond K. Then, aone-ring cone augmentatiasf K is the complex obtained by adding thecone

w ¢ ¢,_1, and all its faces to the complex.

Definition 36. A complex isgeneralized star-shapatlit can be constructed by repeated one-ring cone
augmentation of an initially logically star-shaped complex.

Note that the simplest example of a logically star-shaped complex is the complex consisting of an
n-simplex and all its faces. We will now introduce an example of a regular triangulation of the plane that
is generalized star-shaped.

Example 37. The regular 2-dimensional triangulation can be obtained by the successive application of
the one-ring cone augmentation procedure, as the following sequence illustrates,

Remark 38. Since each simplex in the one-ring wtontainsv, and each simplex is connected, a chain
consisting of simplices of a one-ring is connected. As such, a noncontractible complex cannot be con-
structed by inductive one-ring cone augmentation, as it will involve adding awene, 1, wherec,

is disjoint and therefore cannot be included in the one-ring of a vertex.
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We construct our generalized cone operatocC* (K) — C**1(K) recursively. Since we are restrict-
ing ourselves to generalized star-shaped complexes, which are obtained by repeated one-ring augmen
tation of an initially logically star-shaped comple, it suffices to show that we can define a generalized
cone operator on the newly added simplices that satisfies the homotopy property.

We proceed by induction. The base case is a generalized star-shaped complex that is logically star-
shaped, and has a logical cone operator which satisfies the homotopy property. The generalized cone
operator is defined to coincide with the logical cone operator, and satisfies the homotopy property as
well.

Given a generalized star-shaped com@exwe augment using one-ring cone augmentation by adding
then-conew ¢ ¢,_1, and all its faces to obtaik; ;. We need to defing for simplices inK; 1 \ K;.

To definep(o*) for o* € K; 1\ K;, we choose a**' € K;,1 \ K;, to include in the cong(c*), such
thato**! > 0%, ando**! ando* are consistently oriented. Let us require that the homotopy property of
p holds ong**1,

O.k+l — (pa + ap>(o_k+l) — p(ao_k+l) + ap(o_k+l)
= p(3c*tt — o +0%) + ap(c*™) = p(o*) + p(dc ™ — 0F) + ap(c*T).

The geometric cone operator suggests how to proceedklftal)-simplexo* is part of the geometric
cone of ak-simplexo* with respect to the point, theno**+! is contained in ak + 1)-hyperplane
containingx. Therefore, the geometric cone®f' is (k + 1)-dimensional. When the geometric cone is
viewed as a map fronk + 1)-chains to(k + 2)-chains, it follows thatp(o**1) = @. Thus, ifo**lis a
term in p(c*) for someo*, thenp(a¥+1) = 0.

Since we chose to include ™ as one of the terms ip(c*), let us follow the intuition suggested by
the geometric cone and defipgo**1) = @. Then,

o =p(c*) + p(8c*tt — o) + 3(@) = p(o*) + p(dc* Tt — o").
Rearranging, we obtain an expression for what*) needs to be,
p(c%) ="t = p(ac*+t — ot).

To recap, we definp(c¥) by choosingr**! > o*, such that** ands* are consistently oriented. Then,
we define,

p(ok) — gkt _ p(aok“ _ O_k)’ p(0k+1) —g.

It remains to show that in defining(c¥), we can order the definition gf on the simplices of the cone

so that the simplices in the chaio“*! — o* already havep defined on it. If we can construgtin the
above fashion so that it is well-defined, the homotopy property will automatically hold by construction.
We will now define the generalized cone operator for 2- and 3-dimensions.

Definition 39. In 2-dimensions, the 1-ring condition implies that the base of the cone consists of either
one or two 1-simplices. To aid in visualization, consider the following diagram,
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AU
wel-----) v

Ly
One-ring cone augmentation of a complex in 2-dimensions

In the case of one 1-simplekyo, v1], when we augment using the cone construction with the new vertex
w, we define,

p([w]) = [vo, w] + p([vol). p([vo, w]) =9,
p([v1, wl) = [vo, v1, w] — p([vo, v1]), p([vo, v1, w]) = 0.

In the case of two 1-simplicefy, v1], [vo, v2], We have,

p([wl) = [vo, w]+ p([vol), p([lvo, w]) =4,
p([v1, w]) = [vo, v1, w] — p([vo, v1]), p([vo, v1, w]) =4,
p(lvz, wl) = [vo, v2, w] — p([vo, v2l),  p([vo, v2, w]) =¥
Example 40. We will now compute the generalized cone operator for part of a regular 2-dimensional

triangulation that is not logically star-shaped. Consider a logically star-shaped complex, and augment
with a new vertex.

Logically star-shaped complex augmented by cone

We use the logical cone operator for the subcomplex that is logically star-shaped, and the definition above
for the newly introduced simplices. This yields,
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p =0,
p = +p
A
— + —
A A A A A
P = .

Definition 41. We now define the generalized cone operator in 3-dimensions. Denaigthg center
of the 1-ring on the 2-surface, to which we are augmenting the new vert@ke other vertices of the
1-ring are enumerated in ordey, ..., v,,. To aid in visualization, consider the following diagram,

One-ring cone augmentation of a complex in 3-dimensions

If the 1-ring does not surroungh, we denote the missing term g, v1, vy, 1.
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k=0: p([wl) = [vo, wl+ p([vol), p([vo, w]) =
k=1: p([v1, w]) = [vo, v1, w] — p([vo, v1l), p([vo. v1, w])
P([vm> w]) = [vo, U, w] — p([vo, V). p([vo. V., w]) @,
k=2: p([v1, v2, w]) = [vo, v1, v2, w] + p([vo, v1, v2]), p([vo, v1, v, w]) =9,
p([vm 1y Upy W ) [vo, Unm—1, U, W] + p([vo, Upm—1, vm]), p( V05 Um—1, U u)]) =0

If it does go around completely,

P([Vm, v1, w]) = [vo, U, v1, w1+ p([vo, V> V1), p([vo, v, v1, w]) =

Example 42. We provide a tetrahedralization of the unit cube that can be tiled to yield a regular tetrahe-
dralization ofR3. The 3-simplices are as follows,

[vooo, Voo1, V010, V10l, [voo1, V010, V100, V101, [voo1, V010, V011, V101,

[vo10, V100, V101, V110l [vo10, V011, V101, V110l, [vo11, V101, V110, V111].

The tetrahedralization of the unit cube can be visualized as follows,
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Tileable tetrahedralization of the unit cube Partial tiling

Since this regular tetrahedralization can be constructed by the successive application of the one-ring cone
augmentation procedure, the discrete Poincaré lemma can be extended to the entire regular tetrahedra
ization of R3.

In higher dimensions, we extend the construction of the generalized cone operator by choosing an appro-
priate enumeration of the base chain. The base chain is topologically the c8te @ivith possibly an
openn — 2 ball removed) with respect to the central point.
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Spiral enumeration a§" 2, n =4

By spiraling arounds”—2, starting from the boundary of the— 2 ball, and covering the rest ¢f"—2,
we obtain higher dimensional generalizations of Definitions 39, 41. Sifice= S° is disjoint,n = 2 is
distinguished, and we were unable to use spiral enumeration of the simplices in 2-dimensions.

The generalized cone operator is constructed so that the homotopy property holds automatically.

Lemma 43. In generalized star-shaped complexes, the generalized cone operator satisfies the following
identity,

pd+op=1,

at the level of chains.
Proof. By construction of the generalized cone operatan.

Lemma 44. In generalized star-shaped complexes, the generalized cocone operator satisfies the follow-
ing identity,

Hd+dH =1,

at the level of cochains.

Proof. Follows immediately from applying the proof in the trivially star-shaped case, and using the
identity in the previous lemma. O

We have a discrete Poincaré lemma for generalized star-shaped complexes.

Coroallary 45 (Discrete Poincaré lemma for generalized star-shaped compl&igsh a closed cochain
o, that is to sayda* = 0, there exists a cochaif*~* such thatdg*—* = o*.

Proof. Follows from the above lemma using the proof for the trivially star-shaped case.

Example 46. We will show how the Poincaré lemma fails when the complex is not contractible. We
consider a trivially star-shaped complex, and augment by one vertex so as to make it non-contractible.
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A/k
% ‘.

Trivially star-shaped complex Non-contractible complex
When we attempt to verify the identity,

po+adp=1,

we see that it is only true up to a chain that is homotopic to the inner boundary.

(pd + Op) =p + 0

Since the second term is not the boundary of a 2-chain, it contributes a non-trivial term, even on closed
discrete forms, and the Poincaré lemma breaks.

3. Conclusions

In summary, we have presented a constructive method of obtaining a local neighborhood in an un-
structured mesh for which the discrete Poincaré lemma holds in the context of discrete exterior calculus.
Furthermore, we introduced examples of regular space-filling triangulations and tetrahedralizations for
which the exactness properties hold globally.

In the future, higher order analogues of the discrete theory of exterior calculus are desirable, but the
cochain representation which assigns numerical quantities to a discrete set of geometric objects remains
attractive due to its conceptual simplicity and the elegance of representing discrete operators as combi-
natorial operations on the mesh.

It is desirable to reconcile the two, by ensuring that higher-order interpolation and the combinatorial
operations are consistent. This would yield more direct proofs of the exactness properties using the
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standard cocone construction on the interpolated differential form, while giving a discrete homotopy
operator that could be efficiently realized as a combinatorial operation on the mesh.
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