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ABSTRACT with the LANS-a simulations using a fixed. The current results

A dynamicprocedure for the Lagrangian Averaged Navier- suggest some promising applications of this dynamic LANS-
Stokeser (LANS-a) equations is developed where the variation model, such as to a spatially varying turbulent flow, which we
in the parametea in the direction of anisotropy is determined  hope to undertake in future research.
in a self-consistent way from data contained in the simulation
itself. In order to derive this model, the incompressible Navier-

Stokes equations are Helmholtz-filtered at the grid and a test filter NOMENCLATURE

levels. A Germano type identity is derived by comparing the Lij Germano stress tensor

filtered subgrid scale stress terms with those given inthe LANS- p  Presure

o equations. Assuming constamtin homogenous directions of Sj Strain tensor

the flow and averaging in these directions, results in a nonlinear ¢ Time

equation for the parameter, which determines the variation of Tij Subgrid scale stress tensor with grid filter
a in the non-homogeneous directions or in time. Consequently, Tij Subgrid scale stress tensor with test filter
the parametea is calculated during the simulation instead ofa ;" elocity vector

pre-defined value. a  Modeling scale for LANSa equation

As an initial test, the dynamic LANS-model is used to
compute isotropic homogenous forced and decaying turbulence,
wherea is constant over the computational domain, but is al- INTRODUCTION
lowed to vary in time. The resulting simulations are compared
with direct numerical simulations and with the LANSsimula-
tions using fixed value ofi. As expecteda is found to change
rapidly during the first eddy turn-over time during the simula-

Turbulent flows play an important role in many areas of en-
gineering fluid mechanics as well as atmospheric and oceanic
flows. Accurate simulation of a turbulent flow requires that the
energetics of the large scale energy containing eddies, dissipa-

tlons.dlt is also observed the_lt b3|/ q5|ngfthr:a ‘?‘y”am'_c I;]ANS' tive small scales, and inter-scale interactions to be accounted for.
procedure a more accurate simulation of the isotropic NOmMoge- \, yjrect numerical simulations (DNS) all the involved scales are

neous turbulence is achieved. The energy spectra and the tOtaIdirectly calculated. DNS is believed to provide the most compre-

kinetic energy decay are captured more accurately as Comparedhensive representation of the governing equations of fluid flows;

the so-called Navier-Stokes (NS) equations. Owing to the very
high Reynolds numbers encountered in most problems of inter-
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represents the computational size of the problem, rapidly grows There are at least two approaches to anisotropy in the LANS-
with the Reynolds number. Consequently, DNS can resolve only equations:

a small fraction of the turbulent activity for high Reynolds num-
ber flows.

While the direct numerical simulation of most engineering
flows seems unlikely in near future, turbulence modeling could
provide qualitative and in some cases quantitative measures for
many applications. Large Eddy Simulations (LES) and the At this point much more work must be done on the anisotropic
Reynolds Averaged Navier-Stokes Equations (RANS) are among LANS-a equations before they can be applied to practical prob-
the numerical techniques to reduce the computational intensity of lems. The second approach listed above is what will be explored
turbulent calculations. In LES, the dynamics of the large turbu- in this study.
lence length scales are simulated accurately and the small scales  This paper is organized as follows: A dynamic LANSap-
are modeled. The vast majority of contemporary LES make use proach is proposed in next section where the variation in the pa-
of eddy-viscosity based Subgrid-Scale (SGS) models in conjunc- rametera in the direction of anisotropy is determined in a self-
tion with the spatially-averaged (filtered) Navier-Stokes Equa- consistent way from the data contained in the simulation itself.
tions. In this approach, the effect of the unresolved turbulence is Qur approach will be developed in the same spirit as the dy-
modeled as an effective increase in the molecular viscosity. namic modeling procedure for conventional LES [8] which has

More recently, Holm, Marsden and their co-workers [1,2] achieved widespread use as very effective means of estimating
introduced a Lagrangian Averaging technique for modeling the model parameters as a function of space and time as the simu-
mean flow of incompressible turbulent flows. Unlike the tradi- lation progresses. The incompressible Navier-Stokes equations
tional averaging or filtering approach used for both RANS and are Helmholtz-filtered at the grid and a test filter levels. A Ger-
LES, where the Navier-Stokes equation are averaged, the La-mano type identity is derived by comparing the filtered subgrid
grangian averaging approach is based on averaging at the levelscale stress terms with those given in the LANSquations.
of the variational principle from which the Navier-Stokes equa- Considering a constant value @fand averaging in the homoge-
tions are derived. That is, the Lagrangian Averaged Navier- nous directions of the flow results in a nonlinear equation for
Stokes equations for self-consistent mean fluid dynamics are de-the parameten, which determines the variation af in the
rived by applying an averaging procedures to Hamilton’s princi- non-homogeneous directions or time. This nonlinear equation
ple for an ideal incompressible fluid flow. The resulting mean is solved by an iterative technique. Consequently, the parameter
fluid motion equation are obtained by using the Euler-Poiacar « is calculated during the simulation instead of a fixed and pre-
variational framework([1,[2]. As a result, these equations pos- defined value. Numerical techniques for simulating the dynamic
sess conservation laws for energy and momentum, as well as al ANS-a model are described in the third section. The perfor-
Kelvin-type circulation theorem. Since the LANBequations mance of the dynamic LANS-model in simulating forced and
are averaged over small spatial scales which are smaller than andecaying isotropic homogeneous turbulent flows are considered
pre-defined scale, the LANSa simulations closely approxi- in the forth section. Concluding results are presented in the last
mate the Navier-Stokes (NS) equations for scales largerdhan  section.
while truncating the energy spectrum for scales smaller than
This averaging or filtering is done without adding physical vis-
cosity, but by a nonlinear dispersion from the large scales. The pERIVATION OF THE DYNAMIC LANS- a EQUATIONS

numerical simulations of the LAN8-equations performed by The LANS- equations are given as follows (s€€[[Z, 9, 10]
Chenet al [3] and Mohseniet al [4] for isotropic homogenous  for a derivation)

turbulence has demonstrated that the LA 8¢quations can ac-
curately reproduce the large scales in a turbulent flow.

(i) To derive a set o&nisotropicLANS-a equations. See alter-
native derivations ir [6,/7].

(i) Use the isotropic LANS* equations, but with a variabke
to compensate for the anisotropy.

However, most engineering and geophysical flows of inter- ou +(T-O)u— QZ(DU)T AU = —Op+ iAu (1)
est are often anisotropic. For example, due to rapid damping ot Re
of turbulent fluctuations in the vicinity of a wall, the applica-
tion of the isotropic LANSa equations with a constantis not wheret is defined as
appropriate for long term calculations. In order to capture the
correct behavior in such systems the parametenust be spa- U= (1— o2 A)*lu @)

tially or/and temporally varied in the direction of anisotropy [5],

i.e. wall normal direction. There has been some attempt (with

limited success) in order to remedy this problem. A success- These equations are obtained by variational averaging of the Eu-
ful dynamicLANS-a model is yet to be formulated and tested. ler equation in Lagrangian representation over rapid fluctuations
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whose amplitudes are of ordar These equations can equiva- where
lently be represented by

Tjj ZW—Uin (ll)
a—UJr(U O)u=-0p+ iAU—D 1(0) 3
ot o P Re and
and the continuity equation T. = T — GG (12)
ij = Hitj — Uit
O-u=0 ) In analogy with the Germano identity|[8], one can define
wherep is the modified pressure arngu) is the subgrid scale Lj =T -7 :U/iU\j — GG (13)

stress tensor defined as

Next, we model the subgrid scale stresses under these two

o2 2py-1 T
1(U) = o%(1—a“A)"*(0u-Ou filtering actions by the LANSx subgrid term in equatiorf 5).
—Ou" -Ou+D0u-Ou+0Ou’-0Ou’) (5) That is, we set
This subgrid scale stress is in fact the momentum flux of the Tij = a?(1—a?A) M (14)

large scales caused by the action of smaller, unresolved scales.

It is known that the subgrid scale stress can also be derived ;. 4
by Helmholtz filtering the Navier-Stokes equations at a filtering
length scaleg, as we shall now explain.

L a201 _ G2p\ 1N
We start with the incompressible NS equations, Tij = (1 -a"A) "Ny, (15)

' ' 200 where
J ' e dU; OU;  0Uy OU,  0U; 0l JU; Uk

=gt — e = (16)
) . ' ) ) N 0X% 0 0% OXj  OXi OXj  OXk 0X
Now define the following two filters associated wittanda: X O ) K X
and
U= (1-a?A)"tu 7)
U O Ox 0% 0Xj | Oxc0Xj  OXc OXi
U= (1-0%0)"Y1-0a%a)tu (8) Settingd = Ba and combining equationss (13), {14) apd](15)
results in the following equation
For convenience, the first filter will be called thed filter, while
the second filter will be called thest filter Applying these fil- Lij = B?a?(1— B%a®A)IN;;
ters to equation (6) separately results in the following filtered —orz(l—BZGZA)*l(l—azA)*lMi-. (18)
equations i
Writing above equation in a compact form results in
@4_6@“1 __aj+i ot 9 9)
ot an o 0% Reanan 6Xj PPPPS =
Lij = a*(B°Nij — Mjj) (19)
and . . .
Multiplying S;j on both sides of the above equation leads to
o, 0UT; _ _iﬁ 1 0%, _ 0T (10) .
ot ' ax; 0% Redx;0x; 0x;’ LijSj = o®(BNij — Mij) S (20)
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Next, take the spatial average of both sides of the above filter scaled on a schematic of the energy spectrum for a high
equation in the homogenous directions of the mean flow, which Reynolds number flow. In order to accurately model the subgrid
is denoted by the operatidp, to obtain the following nonlinear ~ scale stress, both the grid filter and the test filter scales must be

equation fora located in the inertial sub-range of the energy spectrum.
The dynamica model given in equatiorf (23) is designed
) (LijSj) to capturg the Igngth scale variations in space {ar!d time. A5|de
o~ = — = (21) from the isotropic homogenous turbulent flows, it is well suited
((B?Nij —Mij)S;j) for anisotropic flows such as wall bounded turbulence or mixing
flow turbulence, where the turbulence length scales could change
where in space or in time. In cases where there are directions of homo-
geneity, such as the streamwise and spanwise direction in a chan-
1/0u ou, nel flow, one can average the parametewver the homogeneous
Sj = > <axj ax.) (22) directions. In a more general situation, we expect to replace the

plane average, used in the channel flow, by an appropriate local

spatial or time averaging scheme. For isotropic homogenous tur-
The denominator in equatio (21) could potentially ap- bulenceg is regarded as a constant in space and changes only in

proach zero, where it creates a singularity. In the dynamic LES, time.

Lilly [11] used a least square approach to eliminate the singular-

ity in Germanao’s model. If we apply a similar approach to equa-

tion (19), the following nonlinear equation farcan be derived
E(9

<)

a’?=F(a) =

)

(L (BN —Miy)) 23) E v
(BN} — Mij) (B2Nij — Mij )

which does not have the singularity problem as in equafioh (21).
This is a nonlinear equation for. All the quantities in equation
(23) can be calculated during a LANSsimulation. Therefore,
equation @B) provides a nonlinear equation for dynamically cal- Figure1. The relative positions of grid and test filter scales on the energy
culating the value oft during the simulation. spectrum

At this point the potential values for the free paramdier
are required. In Fourier space, the grid and test filters can be
expressed as

i<
Il

u (24) NUMERICAL METHOD
1+a2k? The numerical method used for the isotropic homogenous
turbulence simulation in this study is based on a standard parallel
and pesudospectral scheme with periodic boundary conditions. The
spatial derivatives are calculated in the Fourier domain, while the
U nonlinear convective terms are computed in the physical space.
(1+ B2a2k?) (1+ a2k?) The flow fields are advanced in time in physical space using a
- fourth order Runge-Kutta scheme. To eliminate aliasing errors,
(25) the two-thirds rule is used so that the upper one third of each
wave mode is discarded at each stage of the fourth order Runge-
Kutta scheme.

)¢

] ]
T 1+ (B2+1)ake T 1+a2k?

¢

where(f) stands for variables in the Fourier spakés the We will focus on a isotropic homogenous turbulence simu-
wavenumber, and corresponds to filter scale for the test filter. lation in a periodic cubic box of sider2 The initial flow field
Sinced = /14 B2%a > a, one can realize that as long s> 0, is chosen to be solenoidal, and the initial pressure fluctuations

the test filter have a larger filter scale than the grid filter. Filire 1 were obtained from the solution of the incompressible Possion
shows the relative positions of the grid filter scaland the test equation. The initial velocity field for each case was divergence
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free and constructed from an energy spectrum of the form

E(K) ~ k*exd—2(k/kp)?] (26)
The value ok, corresponds to the peak in the energy spectrum.
For isotropic homogenous turbulenae,in equations|[(21)
and [23) is assumed to be only a function of time. The value of
a is obtained at the first stage of the Runge-Kutta integration at
each time step by solving the nonlinear equation (23). This equa-
tion is solved by an iterative method. The solution is regarded as
converged when the difference @fvalues at two consecutive it-
erations is less than 18. Then the converged value is used
for the SGS stress computation at the current time step and also
is used as the initial value for tleeiteration at the next time step.

RESULTS AND DISCUSSIONS

To test the capability of the dynamic LAN&model in pre-
dicting the SGS stress, both decaying and forced isotropic ho-
mogenous turbulence simulations are investigated. The results
using the dynamiox model are compared with those using the
fixed o model as well as those by the direct numerical simula-
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tion. The LANS«a and dynamic LANSa simulation are per-
formed on a 62 grid, which corresponds to 4&fter dealiasing,
while the direct numerical simulation was performed on a3128
grid, which corresponds to 8precision after dealiasing.
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Decaying case

In this simulation, we choose a decaying homogenous tur-
bulence with initial Taylor Reynolds numb&e, = 72, which
corresponds to a computational Reynolds numbdreft 300
and an initial energy spectrum peakedgt= 4. The eddy turn
over time is about = 0.9. Since the filter width aspect ratio,
a/a, which is the function of3, may influence the accuracy of
the SGS stress modeling, it is necessary to discuss these effectsigure 2. Effects of 8 on roots of equation a? = F(a) att = 0.0 for
and to find a proper range ffin equation|(2B). decaying case

In Figure@, shows changésqa) anda“ versusa for var-
ious 3 values. The intersection points of the two curves are the
roots of the equation? = F(a). F(a) is computed with the ini-
tial velocity field since the existence of the roots for these equa- point on Figurg P(a) corresponds to the singularity point on Fig-
tions at the initial time is essential for the nonlinear iteration at ure[2(b). Therefore, this intersection point can not be regarded
the subsequent time step. Figlife 2(a) shows the roots of equa-as a real root of equatiop (23). In solving the nonlinear equation
tion (23) and Figurg]2(b) shows the roots of equatjorj (21) with (23), the initial value ofa should be chosen close to the sec-
different 3 values at the initial time& = 0. It is seen that when ond intersection point so that the valueco€an converge to this
B < 1, only one intersection point exists for cure and curve point. From Figur¢2(a), it is also found that when the value of
F (a) on both figures, which means only one root exists for both  is too small, such a@ = 0.7, no root exists for equatio3).
equations[(21) and equatidn [23). But wier 1, two intersec- This is because, when tleevalues in two filters are too close,
tion points exist on Figurg] 2(a). One intersection point and one the calculated resolved turbulent stress can be contaminated by
singularity point are observed on Figliie 2(b). At the singularity numerical errors. On the other hand, if the valu@ & too large,
point, the denominator has approached zero for equ4tign (21) to which means that two filters are too far away, the test filter may
makeF (a) become infinity. It is found that the first intersection  reach the energy containing eddy region. This implies that the

-0.03

-0.04
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large energy-carrying scales are used to determine the contribu-

tion of subgrid scales. Thus, the equatipn|(23) may not have a 07
root or the converged value may not be accurate in modeling 0.65F
SGS stress. By trial and error for different flow parameters, it is 0sF
found that when @ < B < 1.3, the equatior{ (33) can coverage F
and thereby attain an appropriate uniquely determingdiue. 0asE
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Figure[3 and Figurg]4 show the time developmert gélue Toss

and the skewnes(s(%) >/<(%>2>% for = 0.8~ 1.2. From

the time development of skewness, it is observed that for this
decaying turbulence, the energy cascade is built up at approxi-
mately one eddy turn over time. The skewness become flat after
a quick transient period. Before the energy cascade is built up, T
o experiences a sharp decreasing from a relatively large value . 2 S 5 6 7

at the initial time at allp. After approximately one eddy turn

over time,a reaches a relatively steady state and then undergoes

a slow increase again after another 3 eddy turn over times. Figure 5. Time development of kinetic energy for decaying case: R, =

The fast increase af at later times is perhaps due to the lack of 72 1 —0.9

computational resolution. When the turbulence energy decays to

a low level, the integral scales could grow to be comparable to

the size of computational box.

Figure[$ shows the time evolution of the total kinetic energy strated that in order to accurately simulate a turbulent flow with
and Figur¢ b shows energy spectra at different times. The resultsthe LANS-a equations, the value of should be somewhere, per-
with the dynamia model are compared with the DNS results for haps one decade lower than the peak of the energy spectra toward
85° grid resolution and LANS¥ simulation results att = 0.15. the grid resolution. Careful considerations of Figlires 3/d@nd 6 re-
While a slight dependency on the valuefo observed, in gen- veal that the dynamic LAN$ model of this study satisfies this
eral, the energy spectrum at various times and the total kinetic criteria for all 3 values. In general, one expects that the value
energy decay are captured accurately. Mohseal [4] demon- of a to be in the inertial range of the energy spectra in order to
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Figure 6. Energy spectra att = 2T and t = 6T for decaying case

correctly capture the dynamics of the large scales. As illustrated
in Figureg® anfl]6, it is evident that the dynamic LANSrodel
provides a better estimate of the total kinetic energy decay and
the energy spectra over similar simulations with fixedalcula-
tions.

Forced case

Forced isotropic turbulence in a periodic box can be con-
sidered as one of the most basic numerically simulated turbu-
lent flows. Forced isotropic turbulence is achieved by applying
isotropic forcing to low wave number modes so that the turbulent

of forcing ensures that the energy spectrum assumes the inertial
range scaling starting from the lowest wave modes and thus an
extended inertial range is artificially created. In the current run,
we choosé&g = 2 andd = 0.1. The initial Taylor Reynolds num-

ber isRe, = 415 and the initial energy spectrum is peaked at
kp = 1. The eddy turn over time is about= 3.8.
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Figure 7. Effect of B on roots of equation a? = F (at) att = Ofor forced
case

Figure[j’ shows the influence @ values on the roots of
equation [(ZB) at the initial timé = 0. It is observed that for

cascade develops as the statistical equilibrium is reached. Statis3 < 1.0, only one root exists, while fds > 1.0, two roots exist

tical equilibrium is signified by the balance between the input
of kinetic energy through the forcing and its output through the
viscous dissipation. The numerical forcing of a turbulent flow
is usually referred to the artificial addition of energy to the large
scale velocity components in the numerical simulation. In this
study, we adopted a forcing method used in Cheal [3] and
Mosheniet al [4], where wave modes in a spherical shKll = kg

of a certain width are forced in such a way that the forcing spec-
trum follows Kolmogorov’s—5/3 scaling law

Y

C
X ¥

i k5/3

KU

~ 0
fi- (27)

wheref; andui are the Fourier transforms of the forcing vector
and velocityu;, N is the number of wave modes that are forced,
andd is the energy injection rate. This is done in order to obtain
as long a range of near inertial behavior as possible. This type

7

for equation[(2B). As in the decaying case, the first root corre-
sponds to the singularity point of equatign(21). Thevalue
converged to this root can not be used for SGS stress compu-
tation. By numerical trail and error, the approximate range of
applicabled values is found to be within.@ < 3 < 1.1 to obtain

a correctly converged value at all time.

Figure[8 and Figurg]9 show the time development @ind
skewness aff = 0.8 and3 = 1.0. Similar to decaying case,
energy cascade is built up and the skewness reaches relatively
steady after approximately 1 eddy turn over time for ifpth 0.8
andp = 1.0. A sharp decrease in the valuecofs observed over
the first eddy turn over time, where the valuesiadettles down
toward a constant value. This corresponds to an statistically equi-
librated state. As expected, the final valuena in the inertial
range of the energy spectrum.

Figure[10 shows the evolution of the kinetic energy and Fig-
ure[1] shows the energy spectrunt at 5.8t for = 0.8 and
B =1.0. An inertial subrange with- k-/3 energy spectrum is

Copyright © 2004 by ASME
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Re =4151=38

CONCLUSIONS
In this paper, a dynamic LANS&-model is proposed and ini-
evident in the dynamic LANS$ simulations. The results of the tial simulations are performed to test its capability. The model is
dynamic LANSa simulations are compared with the DNS and derived based on a method similar to that used in the dynamic
the LANS-a simulations witha = 0.2. The total kinetic energy LES by using a Germano type identity. A nonlinear equation is

decay and energy spectra of the dynamic LANSimulations obtained to dynamically compute an optintaby making use
for B = 0.8 and 1.0 show a better agreement with the DNS data of the subgrid scale stress expression obtained from the LANS-
than those for a LANS* simulation with a constard. o equations. The value is obtained by solving this nonlinear
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equation iteratively. Numerical simulations were performed us-
ing the dynamic LANSa model for both decaying and forced

isotropic homogenous turbulence. The simulation results of both [8]

cases show that the computedsalues undergo a fast transient
period during the first eddy turn-over time. After this transient

period,a reaches a relatively steady value. In the decaying case, [9]

after the turbulence total kinetic energy decays to a lower level,

a grows slowly as the integral length scale grow to a size com- [10]

parable to the size of the computational domain. In the forced
caseq remains rather steady in time after the turbulence reaches
an equilibrium status. The total kinetic energy decay rate and the
energy spectra are predicted accurately by the dynamic LANS-

equations for both decaying and forced turbulence simulations. [11]

The energy spectrum and the decay of the total kinetic energy in
a dynamic LANSe simulation show a better agreement with the
direct numerical simulation results than those obtained from the
LANS-a model at a fixed value af. The current numerical sim-
ulations demonstrate that the application of the dynamic LANS-
o model to anisotropic turbulence simulation is promising. Tests
of our dynamic LANSe model for wall bounded turbulent flows
are planned in future investigations.
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