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ABSTRACT
A dynamicprocedure for the Lagrangian Averaged Navier

Stokes-α (LANS-α) equations is developed where the variatio
in the parameterα in the direction of anisotropy is determined
in a self-consistent way from data contained in the simulatio
itself. In order to derive this model, the incompressible Navie
Stokes equations are Helmholtz-filtered at the grid and a test fil
levels. A Germano type identity is derived by comparing th
filtered subgrid scale stress terms with those given in the LAN
α equations. Assuming constantα in homogenous directions of
the flow and averaging in these directions, results in a nonline
equation for the parameterα, which determines the variation of
α in the non-homogeneous directions or in time. Consequent
the parameterα is calculated during the simulation instead of a
pre-defined value.

As an initial test, the dynamic LANS-α model is used to
compute isotropic homogenous forced and decaying turbulen
whereα is constant over the computational domain, but is a
lowed to vary in time. The resulting simulations are compare
with direct numerical simulations and with the LANS-α simula-
tions using fixed value ofα. As expected,α is found to change
rapidly during the first eddy turn-over time during the simula
tions. It is also observed that by using the dynamic LANS-α
procedure a more accurate simulation of the isotropic homog
neous turbulence is achieved. The energy spectra and the t
kinetic energy decay are captured more accurately as compa
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with the LANS-α simulations using a fixedα. The current results
suggest some promising applications of this dynamic LANS-α
model, such as to a spatially varying turbulent flow, which we
hope to undertake in future research.

NOMENCLATURE
Li j Germano stress tensor
p Presure
Si j Strain tensor
t Time
τi j Subgrid scale stress tensor with grid filter
Ti j Subgrid scale stress tensor with test filter
u Velocity vector
α Modeling scale for LANS-α equation

INTRODUCTION
Turbulent flows play an important role in many areas of en-

gineering fluid mechanics as well as atmospheric and ocean
flows. Accurate simulation of a turbulent flow requires that the
energetics of the large scale energy containing eddies, dissip
tive small scales, and inter-scale interactions to be accounted fo
In direct numerical simulations (DNS) all the involved scales are
directly calculated. DNS is believed to provide the most compre
hensive representation of the governing equations of fluid flows
the so-called Navier-Stokes (NS) equations. Owing to the very
high Reynolds numbers encountered in most problems of inter
est, the disparity between the large scales and small scales, whi
Copyright c© 2004 by ASME
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represents the computational size of the problem, rapidly grow
with the Reynolds number. Consequently, DNS can resolve on
a small fraction of the turbulent activity for high Reynolds num
ber flows.

While the direct numerical simulation of most engineering
flows seems unlikely in near future, turbulence modeling coul
provide qualitative and in some cases quantitative measures
many applications. Large Eddy Simulations (LES) and th
Reynolds Averaged Navier-Stokes Equations (RANS) are amo
the numerical techniques to reduce the computational intensity
turbulent calculations. In LES, the dynamics of the large turbu
lence length scales are simulated accurately and the small sca
are modeled. The vast majority of contemporary LES make u
of eddy-viscosity based Subgrid-Scale (SGS) models in conjun
tion with the spatially-averaged (filtered) Navier-Stokes Equa
tions. In this approach, the effect of the unresolved turbulence
modeled as an effective increase in the molecular viscosity.

More recently, Holm, Marsden and their co-workers [1, 2
introduced a Lagrangian Averaging technique for modeling th
mean flow of incompressible turbulent flows. Unlike the tradi
tional averaging or filtering approach used for both RANS an
LES, where the Navier-Stokes equation are averaged, the L
grangian averaging approach is based on averaging at the le
of the variational principle from which the Navier-Stokes equa
tions are derived. That is, the Lagrangian Averaged Navie
Stokes equations for self-consistent mean fluid dynamics are d
rived by applying an averaging procedures to Hamilton’s princ
ple for an ideal incompressible fluid flow. The resulting mea
fluid motion equation are obtained by using the Euler-Poincaé
variational framework [1, 2]. As a result, these equations po
sess conservation laws for energy and momentum, as well a
Kelvin-type circulation theorem. Since the LANS-α equations
are averaged over small spatial scales which are smaller than
pre-defined scaleα, the LANS-α simulations closely approxi-
mate the Navier-Stokes (NS) equations for scales larger thanα,
while truncating the energy spectrum for scales smaller thanα.
This averaging or filtering is done without adding physical vis
cosity, but by a nonlinear dispersion from the large scales. Th
numerical simulations of the LANS-α equations performed by
Chenet al [3] and Mohseniet al [4] for isotropic homogenous
turbulence has demonstrated that the LANS-α equations can ac-
curately reproduce the large scales in a turbulent flow.

However, most engineering and geophysical flows of inte
est are often anisotropic. For example, due to rapid dampin
of turbulent fluctuations in the vicinity of a wall, the applica-
tion of the isotropic LANS-α equations with a constantα is not
appropriate for long term calculations. In order to capture th
correct behavior in such systems the parameterα must be spa-
tially or/and temporally varied in the direction of anisotropy [5],
i.e. wall normal direction. There has been some attempt (wit
limited success) in order to remedy this problem. A succes
ful dynamicLANS-α model is yet to be formulated and tested
2
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There are at least two approaches to anisotropy in the LANS-α
equations:

(i) To derive a set ofanisotropicLANS-α equations. See alter-
native derivations in [6,7].

(ii) Use the isotropic LANS-α equations, but with a variableα
to compensate for the anisotropy.

At this point much more work must be done on the anisotropic
LANS-α equations before they can be applied to practical prob-
lems. The second approach listed above is what will be explored
in this study.

This paper is organized as follows: A dynamic LANS-α ap-
proach is proposed in next section where the variation in the pa
rameterα in the direction of anisotropy is determined in a self-
consistent way from the data contained in the simulation itself.
Our approach will be developed in the same spirit as the dy-
namic modeling procedure for conventional LES [8] which has
achieved widespread use as very effective means of estimatin
model parameters as a function of space and time as the simu
lation progresses. The incompressible Navier-Stokes equation
are Helmholtz-filtered at the grid and a test filter levels. A Ger-
mano type identity is derived by comparing the filtered subgrid
scale stress terms with those given in the LANS-α equations.
Considering a constant value ofα and averaging in the homoge-
nous directions of the flow results in a nonlinear equation for
the parameterα, which determines the variation ofα in the
non-homogeneous directions or time. This nonlinear equation
is solved by an iterative technique. Consequently, the paramete
α is calculated during the simulation instead of a fixed and pre-
defined value. Numerical techniques for simulating the dynamic
LANS-α model are described in the third section. The perfor-
mance of the dynamic LANS-α model in simulating forced and
decaying isotropic homogeneous turbulent flows are considere
in the forth section. Concluding results are presented in the las
section.

DERIVATION OF THE DYNAMIC LANS- α EQUATIONS
The LANS-α equations are given as follows (see [2, 9, 10]

for a derivation)

∂u
∂t

+(u ·∇)u−α2(∇u)T ·∆u =−∇p+
1
Re

∆u (1)

whereu is defined as

u = (1−α2∆)−1u (2)

These equations are obtained by variational averaging of the Eu
ler equation in Lagrangian representation over rapid fluctuations
Copyright c© 2004 by ASME
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whose amplitudes are of orderα. These equations can equiva-
lently be represented by

∂u
∂t

+(u ·∇)u =−∇p+
1
Re

∆u−∇ · τ(u) (3)

and the continuity equation

∇ ·u = 0 (4)

where p is the modified pressure andτ(u) is the subgrid scale
stress tensor defined as

τ(u) = α2(1−α2∆)−1(∇u ·∇uT

−∇uT ·∇u+∇u ·∇u+∇uT ·∇uT) (5)

This subgrid scale stress is in fact the momentum flux of th
large scales caused by the action of smaller, unresolved sca
It is known that the subgrid scale stress can also be deriv
by Helmholtz filtering the Navier-Stokes equations at a filterin
length scale,α, as we shall now explain.

We start with the incompressible NS equations,

∂ui

∂t
+u j

∂ui

∂x j
=− ∂p

∂xi
+

1
Re

∂2ui

∂x j∂x j
. (6)

Now define the following two filters associated withα andα̂:

u = (1−α2∆)−1u (7)

û = (1− α̂2∆)−1(1−α2∆)−1u (8)

For convenience, the first filter will be called thegrid filter, while
the second filter will be called thetest filter. Applying these fil-
ters to equation (6) separately results in the following filtere
equations

∂ui

∂t
+

∂uiu j

∂x j
=− ∂p

∂xi
+

1
Re

∂2ui

∂x j∂x j
−

∂τi j

∂x j
(9)

and

∂ûi

∂t
+

∂ûi û j

∂x j
=− ∂p̂

∂xi
+

1
Re

∂2ûi

∂x j∂x j
−

∂Ti j

∂x j
, (10)
3
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where

τi j = uiu j −uiu j (11)

and

Ti j = ûiu j − ûi û j (12)

In analogy with the Germano identity [8], one can define

Li j = Ti j − τ̂i j = ûiu j − ûi û j (13)

Next, we model the subgrid scale stresses under these tw
filtering actions by the LANS-α subgrid term in equation (5).
That is, we set

τi j = α2(1−α2∆)−1Mi j (14)

and

Ti j = α̂2(1− α̂2∆)−1Ni j , (15)

where

Mi j =
∂ui

∂xk

∂u j

∂xk
− ∂uk

∂xi

∂uk

∂x j
+

∂ui

∂xk

∂uk

∂x j
+

∂u j

∂xk

∂uk

∂xi
(16)

and

Ni j =
∂ûi

∂xk

∂û j

∂xk
− ∂ûk

∂xi

∂ûk

∂x j
+

∂ûi

∂xk

∂ûk

∂x j
+

∂û j

∂xk

∂ûk

∂xi
. (17)

Settingα̂ = βα and combining equations (13), (14) and (15)
results in the following equation

Li j = β2α2(1−β2α2∆)−1Ni j

−α2(1−β2α2∆)−1(1−α2∆)−1Mi j . (18)

Writing above equation in a compact form results in

Li j = α2(β2N̂i j − M̂i j ) (19)

Multiplying Si j on both sides of the above equation leads to

Li j Si j = α2(β2N̂i j − M̂i j )Si j (20)
Copyright c© 2004 by ASME
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Next, take the spatial average of both sides of the abov
equation in the homogenous directions of the mean flow, whic
is denoted by the operation〈〉, to obtain the following nonlinear
equation forα

α2 =
〈Li j Si j 〉

〈(β2N̂i j − M̂i j )Si j 〉
(21)

where

Si j =
1
2

(
∂ui

∂x j
+

∂u j

∂xi

)
(22)

The denominator in equation (21) could potentially ap-
proach zero, where it creates a singularity. In the dynamic LES
Lilly [11] used a least square approach to eliminate the singula
ity in Germano’s model. If we apply a similar approach to equa
tion (19), the following nonlinear equation forα can be derived

α2 = F(α) =
〈Li j (β2N̂i j − M̂i j )〉

〈(β2N̂i j − M̂i j )(β2N̂i j − M̂i j )〉
(23)

which does not have the singularity problem as in equation (21
This is a nonlinear equation forα. All the quantities in equation
(23) can be calculated during a LANS-α simulation. Therefore,
equation (23) provides a nonlinear equation for dynamically ca
culating the value ofα during the simulation.

At this point the potential values for the free parameterβ
are required. In Fourier space, the grid and test filters can b
expressed as

ǔ =
ǔ

1+α2k2 (24)

and

ˇ̂u =
ǔ

(1+β2α2k2)(1+α2k2)

≈ ǔ
1+(β2 +1)α2k2 =

ǔ
1+ α̃2k2 (25)

where ˇ(·) stands for variables in the Fourier space,k is the
wavenumber, and̃α corresponds to filter scale for the test filter.
Sinceα̃ =

√
1+β2α ≥ α, one can realize that as long asβ > 0,

the test filter have a larger filter scale than the grid filter. Figure
shows the relative positions of the grid filter scaleα and the test
4

e

,
-

.

-

e

filter scaleα̃ on a schematic of the energy spectrum for a high
Reynolds number flow. In order to accurately model the subgri
scale stress, both the grid filter and the test filter scales must b
located in the inertial sub-range of the energy spectrum.

The dynamicα model given in equation (23) is designed
to capture the length scale variations in space and time. Asid
from the isotropic homogenous turbulent flows, it is well suited
for anisotropic flows such as wall bounded turbulence or mixing
flow turbulence, where the turbulence length scales could chang
in space or in time. In cases where there are directions of hom
geneity, such as the streamwise and spanwise direction in a cha
nel flow, one can average the parameterα over the homogeneous
directions. In a more general situation, we expect to replace th
plane average, used in the channel flow, by an appropriate loc
spatial or time averaging scheme. For isotropic homogenous tu
bulence,α is regarded as a constant in space and changes only
time.

k~ 1/α1/α

3

5

E
~

E

E(k)

Figure 1. The relative positions of grid and test filter scales on the energy

spectrum

NUMERICAL METHOD
The numerical method used for the isotropic homogenou

turbulence simulation in this study is based on a standard parall
pesudospectral scheme with periodic boundary conditions. Th
spatial derivatives are calculated in the Fourier domain, while th
nonlinear convective terms are computed in the physical spac
The flow fields are advanced in time in physical space using
fourth order Runge-Kutta scheme. To eliminate aliasing errors
the two-thirds rule is used so that the upper one third of eac
wave mode is discarded at each stage of the fourth order Rung
Kutta scheme.

We will focus on a isotropic homogenous turbulence simu-
lation in a periodic cubic box of side 2π. The initial flow field
is chosen to be solenoidal, and the initial pressure fluctuation
were obtained from the solution of the incompressible Possio
equation. The initial velocity field for each case was divergenc
Copyright c© 2004 by ASME
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free and constructed from an energy spectrum of the form

E(k)∼ k4exp[−2(k/kp)2] (26)

The value ofkp corresponds to the peak in the energy spectrum
For isotropic homogenous turbulence,α in equations (21)

and (23) is assumed to be only a function of time. The value
α is obtained at the first stage of the Runge-Kutta integration
each time step by solving the nonlinear equation (23). This equ
tion is solved by an iterative method. The solution is regarded
converged when the difference ofα values at two consecutive it-
erations is less than 10−5. Then the convergedα value is used
for the SGS stress computation at the current time step and a
is used as the initial value for theα iteration at the next time step.

RESULTS AND DISCUSSIONS
To test the capability of the dynamic LANS-α model in pre-

dicting the SGS stress, both decaying and forced isotropic h
mogenous turbulence simulations are investigated. The resu
using the dynamicα model are compared with those using the
fixed α model as well as those by the direct numerical simula
tion. The LANS-α and dynamic LANS-α simulation are per-
formed on a 643 grid, which corresponds to 483 after dealiasing,
while the direct numerical simulation was performed on a 1283

grid, which corresponds to 853 precision after dealiasing.

Decaying case
In this simulation, we choose a decaying homogenous tu

bulence with initial Taylor Reynolds numberReλ = 72, which
corresponds to a computational Reynolds number ofRe= 300
and an initial energy spectrum peaked atkp = 4. The eddy turn
over time is aboutτ = 0.9. Since the filter width aspect ratio,
α̃/α, which is the function ofβ, may influence the accuracy of
the SGS stress modeling, it is necessary to discuss these eff
and to find a proper range ofβ in equation (23).

In Figure 2, shows changesF(α) andα2 versusα for var-
ious β values. The intersection points of the two curves are th
roots of the equationα2 = F(α). F(α) is computed with the ini-
tial velocity field since the existence of the roots for these equ
tions at the initial time is essential for the nonlinear iteration a
the subsequent time step. Figure 2(a) shows the roots of eq
tion (23) and Figure 2(b) shows the roots of equation (21) wit
different β values at the initial timet = 0. It is seen that when
β ≤ 1, only one intersection point exists for curveα2 and curve
F(α) on both figures, which means only one root exists for bo
equations (21) and equation (23). But whenβ > 1, two intersec-
tion points exist on Figure 2(a). One intersection point and on
singularity point are observed on Figure 2(b). At the singularit
point, the denominator has approached zero for equation (21)
makeF(α) become infinity. It is found that the first intersection
5
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Figure 2. Effects of β on roots of equation α2 = F(α) at t = 0.0 for

decaying case

point on Figure 2(a) corresponds to the singularity point on Fig-
ure 2(b). Therefore, this intersection point can not be regarde
as a real root of equation (23). In solving the nonlinear equation
(23), the initial value ofα should be chosen close to the sec-
ond intersection point so that the value ofα can converge to this
point. From Figure 2(a), it is also found that when the value of
β is too small, such asβ = 0.7, no root exists for equation (23).
This is because, when theα values in two filters are too close,
the calculated resolved turbulent stress can be contaminated
numerical errors. On the other hand, if the value ofβ is too large,
which means that two filters are too far away, the test filter may
reach the energy containing eddy region. This implies that the
Copyright c© 2004 by ASME
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large energy-carrying scales are used to determine the contrib
tion of subgrid scales. Thus, the equation (23) may not have
root or the convergedα value may not be accurate in modeling
SGS stress. By trial and error for different flow parameters, it
found that when 0.7 < β < 1.3, the equation (23) can coverage
and thereby attain an appropriate uniquely determinedα value.

t/τ

α

0 1 2 3 4 5 6 7
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

β=0.8
β=0.9
β=1.0
β=1.2

Figure 3. Time development of α values at different β for decaying case:

Reλ = 72, τ = 0.9

Figure 3 and Figure 4 show the time development ofα value

and the skewness〈
(

∂u
∂x

)3
〉/〈

(
∂u
∂x

)2
〉 3

2 for β = 0.8∼ 1.2. From

the time development of skewness, it is observed that for th
decaying turbulence, the energy cascade is built up at appro
mately one eddy turn over time. The skewness become flat af
a quick transient period. Before the energy cascade is built u
α experiences a sharp decreasing from a relatively large val
at the initial time at allβ. After approximately one eddy turn
over time,α reaches a relatively steady state and then undergo
a slow increase again after another 2− 3 eddy turn over times.
The fast increase ofα at later times is perhaps due to the lack o
computational resolution. When the turbulence energy decays
a low level, the integral scales could grow to be comparable
the size of computational box.

Figure 5 shows the time evolution of the total kinetic energ
and Figure 6 shows energy spectra at different times. The resu
with the dynamicα model are compared with the DNS results for
853 grid resolution and LANS-α simulation results atα = 0.15.
While a slight dependency on the value ofβ is observed, in gen-
eral, the energy spectrum at various times and the total kine
energy decay are captured accurately. Mohseniet al [4] demon-
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Figure 4. Time development of skewness at different β for decaying

case: Reλ = 72, τ = 0.9

t/τ
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Figure 5. Time development of kinetic energy for decaying case: Reλ =
72, τ = 0.9

strated that in order to accurately simulate a turbulent flow with
the LANS-α equations, the value ofα should be somewhere, per-
haps one decade lower than the peak of the energy spectra towar
the grid resolution. Careful considerations of Figures 3 and 6 re-
veal that the dynamic LANS-α model of this study satisfies this
criteria for all β values. In general, one expects that the value
of α to be in the inertial range of the energy spectra in order to
Copyright c© 2004 by ASME
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Figure 6. Energy spectra at t = 2τ and t = 6τ for decaying case

correctly capture the dynamics of the large scales. As illustra
in Figures 5 and 6, it is evident that the dynamic LANS-α model
provides a better estimate of the total kinetic energy decay a
the energy spectra over similar simulations with fixedα calcula-
tions.

Forced case
Forced isotropic turbulence in a periodic box can be co

sidered as one of the most basic numerically simulated tur
lent flows. Forced isotropic turbulence is achieved by applyi
isotropic forcing to low wave number modes so that the turbule
cascade develops as the statistical equilibrium is reached. St
tical equilibrium is signified by the balance between the inp
of kinetic energy through the forcing and its output through th
viscous dissipation. The numerical forcing of a turbulent flo
is usually referred to the artificial addition of energy to the larg
scale velocity components in the numerical simulation. In th
study, we adopted a forcing method used in Chenet al [3] and
Mosheniet al [4], where wave modes in a spherical shell|K|= k0

of a certain width are forced in such a way that the forcing spe
trum follows Kolmogorov’s−5/3 scaling law

f̃i =
δ
N

ũi√
ũkũ∗k

k−5/3, (27)

where f̃i andũi are the Fourier transforms of the forcing vectorfi
and velocityui , N is the number of wave modes that are force
andδ is the energy injection rate. This is done in order to obta
as long a range of near inertial behavior as possible. This ty
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of forcing ensures that the energy spectrum assumes the inertia
range scaling starting from the lowest wave modes and thus an
extended inertial range is artificially created. In the current run,
we choosek0 = 2 andδ = 0.1. The initial Taylor Reynolds num-
ber is Reλ = 415 and the initial energy spectrum is peaked at
kp = 1. The eddy turn over time is aboutτ = 3.8.
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Figure 7. Effect of β on roots of equation α2 = F(α) at t = 0 for forced

case

Figure 7 shows the influence ofβ values on the roots of
equation (23) at the initial timet = 0. It is observed that for
β ≤ 1.0, only one root exists, while forβ > 1.0, two roots exist
for equation (23). As in the decaying case, the first root corre-
sponds to the singularity point of equation (21). Theα value
converged to this root can not be used for SGS stress compu
tation. By numerical trail and error, the approximate range of
applicableβ values is found to be within 0.7 < β < 1.1 to obtain
a correctly convergedα value at all time.

Figure 8 and Figure 9 show the time development ofα and
skewness atβ = 0.8 and β = 1.0. Similar to decaying case,
energy cascade is built up and the skewness reaches relative
steady after approximately 1 eddy turn over time for bothβ = 0.8
andβ = 1.0. A sharp decrease in the value ofα is observed over
the first eddy turn over time, where the values ofα settles down
toward a constant value. This corresponds to an statistically equi
librated state. As expected, the final value ofα is in the inertial
range of the energy spectrum.

Figure 10 shows the evolution of the kinetic energy and Fig-
ure 11 shows the energy spectrum att = 5.8τ for β = 0.8 and
β = 1.0. An inertial subrange with∼ k−5/3 energy spectrum is
Copyright c© 2004 by ASME
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Figure 8. Time development of α value at different β for forced case:

Reλ = 415, τ = 3.8
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Figure 9. Time development of skewness at different β for forced case:

Reλ = 415, τ = 3.8

evident in the dynamic LANS-α simulations. The results of the
dynamic LANS-α simulations are compared with the DNS an
the LANS-α simulations withα = 0.2. The total kinetic energy
decay and energy spectra of the dynamic LANS-α simulations
for β = 0.8 and 1.0 show a better agreement with the DNS da
than those for a LANS-α simulation with a constantα.
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Figure 10. Time development of kinetic energy for forced case: Reλ =
415, τ = 3.8
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Figure 11. Energy spectrum at equilibrium status for forced case

CONCLUSIONS
In this paper, a dynamic LANS-α model is proposed and ini-

tial simulations are performed to test its capability. The model is
derived based on a method similar to that used in the dynamic
LES by using a Germano type identity. A nonlinear equation is
obtained to dynamically compute an optimalα by making use
of the subgrid scale stress expression obtained from the LANS
α equations. Theα value is obtained by solving this nonlinear
Copyright c© 2004 by ASME
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equation iteratively. Numerical simulations were performed u
ing the dynamic LANS-α model for both decaying and forced
isotropic homogenous turbulence. The simulation results of bo
cases show that the computedα values undergo a fast transient
period during the first eddy turn-over time. After this transien
period,α reaches a relatively steady value. In the decaying cas
after the turbulence total kinetic energy decays to a lower lev
α grows slowly as the integral length scale grow to a size com
parable to the size of the computational domain. In the force
case,α remains rather steady in time after the turbulence reach
an equilibrium status. The total kinetic energy decay rate and t
energy spectra are predicted accurately by the dynamic LANSα
equations for both decaying and forced turbulence simulation
The energy spectrum and the decay of the total kinetic energy
a dynamic LANS-α simulation show a better agreement with the
direct numerical simulation results than those obtained from t
LANS-α model at a fixed value ofα. The current numerical sim-
ulations demonstrate that the application of the dynamic LANS
α model to anisotropic turbulence simulation is promising. Tes
of our dynamic LANS-α model for wall bounded turbulent flows
are planned in future investigations.
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