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Abstract

This paper concerns the dynamics of measure-valued solutions of the EPDiff
equations, standing for the Euler-Poincaré equations associated with the diffeo-
morphism group (of Rn or of an n-dimensional manifold M). The paper focuses
on Lagrangians that are quadratic in the velocity fields and their first deriva-
tives; that is, on geodesic motion on the diffeomorphism group with respect to
a right invariant Sobolev H1 metric. The corresponding Euler-Poincaré (EP)
equations are the EPDiff equations, which coincide with the averaged tem-
plate matching equations (ATME) from computer vision and agree with the
Camassa-Holm (CH) equations for shallow water waves in one dimension. The
corresponding equations for the volume preserving diffeomorphism group are
the LAE (Lagrangian averaged Euler) equations for incompressible fluids.

The paper shows that the EPDiff equations are generated by a smooth vector
field on the diffeomorphism group for sufficiently smooth solutions. This is
analogous to known results for incompressible fluids—both the Euler equations
and the LAE equations—and it shows that for sufficiently smooth solutions, the
equations are well-posed for short time. Numerical evidence suggests that, as
time progresses, these smooth solutions break up into singular solutions which,
at least in one dimension, exhibit soliton behavior.

These non-smooth, or measure-valued, solutions are higher dimensional gen-
eralizations of the peakon solutions of the CH equation in one dimension. One
of the main purposes of the paper is to show that many of the properties of
these measure-valued solutions can be understood through the fact that their
solution Ansatz is a momentum map. Some additional geometry is also pointed
out, for example, that this momentum map is one part of a dual pair.
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1 Introduction

This paper is concerned with solutions of the EPDiff equations; that is, with the
Euler-Poincaré equations associated with the diffeomorphism group in n-dimensions.
In particular, we are concerned with singular solutions that generalize the peakon
solutions of the Camassa-Holm (CH) equation from one dimension to more spatial
dimensions. The CH equation (see Camassa and Holm [1993]) for the dynamics of
shallow water in a certain asymptotic regime1, is

ut + 3uux = α2 (uxxt + 2uxuxx + uuxxx) , (1.1)

where u(x, t) is the fluid velocity, subscripts denote partial derivatives in position x
and time t, and α2 is a positive constant, and the linear dispersion terms normally
in CH have been omitted. Equivalently, in Hamiltonian form, this dispersionless
CH equation reads

mt = −umx − 2uxm = {m,h(m)} , (1.2)

where m = u − α2uxx and α2 is a positive constant. As Camassa and Holm [1993]
show, the CH equation is expressed in Hamiltonian form by using the Lie-Poisson
bracket { · , · } defined on the dual Lie algebra of the one dimensional vector fields
and using the Hamiltonian

h(m) =
1
2

∫
u m dx. (1.3)

The CH equation may be equivalently expressed in Euler-Poincaré form by using the
Lagrangian associated with the H1 metric for the fluid velocity. This Lagrangian is
given as a function of the fluid velocity by the quadratic form

l(u) =
1
2

∫
(u2 + α2u2

x) dx. (1.4)

1See Dullin, Gottwald and Holm [2001, 2003, 2004] for recent discussions of the derivation and
asymptotic validity of the CH equation for shallow water waves, at one order beyond the Korteweg-
de Vries equation.
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It follows from Euler-Poincaré theory (see Marsden and Ratiu [1999] and Holm,
Marsden and Ratiu [1998a]) that the one parameter curve of diffeomorphisms η(x0, t)
depending on parameter t and defined implicitly by

∂

∂t
η(x0, t) = u(η(x0, t), t)

is a geodesic in the group of diffeomorphisms of R (or, with periodic boundary
conditions, of the circle S1) equipped with the right invariant metric equal to the
H1 metric at the identity.

A remarkable analytical property of the CH equation, conjectured by keeping
track of derivative losses in Holm, Marsden and Ratiu [1998a] and proved in Shkoller
[1998] is that the geodesic equations literally define a smooth vector field in the
Sobolev Hs topology for s > 3/2. That is, in the material representation, the
equations have no derivative loss. This property is analogous to the corresponding
results for the Euler equations for ideal incompressible fluid flow (discovered by
Ebin and Marsden [1970]) and the Lagrangian averaged Euler equations (again
conjectured by Holm, Marsden and Ratiu [1998a] and proved by Shkoller [1998]).

As we will explain in §3, a similar statement holds for the n-dimensional EPDiff
equation if we use the H1 metric. This is all the more remarkable because smooth-
ness of the geodesic flow is probably not true for the L2 metric. Smoothness of
volume-preserving geodesic flow with respect to the L2 metric does hold for the
incompressible flow of an ideal Euler fluid, a result proved in Ebin and Marsden
[1970].

Before proceeding with a discussion of the general case of the n-dimensional
EPDiff equations, we shall quickly review, mostly to establish notation, a few facts
about the Euler-Poincaré and Lie-Poisson equations, whose basic theory is explained,
for example, in Marsden and Ratiu [1999].

Review of Euler-Poincaré and Lie-Poisson Equations. Let G be a Lie group
and g its associated Lie algebra (identified with the tangent space to G at the identity
element), with Lie bracket denoted [ξ, η] for ξ, η ∈ g. Let ` : g → R be a given
Lagrangian and let L : TG → R be the right invariant Lagrangian on G obtained
by translating ` from the identity element to other points of G via the right action
of G on TG. A basic result of Euler-Poincaré theory is that the Euler–Lagrange
equations for L on G are equivalent to the (right) Euler-Poincaré equations for ` on
g, namely to

d

dt

δ`

δξ
= − ad∗ξ

δ`

δξ
. (1.5)

Here, adξ : g → g is the adjoint operator; that is, the linear map given by the Lie
bracket η 7→ [ξ, η] and ad∗ξ : g∗ → g∗ is its dual; that is,

〈
ad∗ξ(µ), η

〉
= 〈µ, [ξ, η]〉,

where 〈 , 〉 denotes the natural pairing between g∗ and g. Also, δ`/δξ denotes the
functional derivative of ` with respect to ξ ∈ g; it is defined to be the element of
g∗ such that Dl(ξ) · η = 〈δl/δξ, η〉 for all η ∈ g, where D denotes the (Frechet)
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derivative2. For left invariant systems, we change the sign of the right-hand side in
(1.5). The Euler-Poincaré equations can be written in the variational form

δ

∫
` dt = 0 , (1.6)

for all variations of the form δξ = η̇ − [ξ, η] for some curve η in g that vanishes at
the endpoints.

If the reduced Legendre transformation ξ 7→ µ = δ`/δξ is invertible, then the
Euler-Poincaré equations are equivalent to the (right) Lie-Poisson equations:

µ̇ = − ad∗δh/δµ µ , (1.7)

where the reduced Hamiltonian is given by

h(µ) = 〈µ, ξ〉 − `(ξ).

These equations are equivalent (via Lie-Poisson reduction and reconstruction) to
Hamilton’s equations on T ∗G relative to the Hamiltonian H : T ∗G → R, obtained
by right translating h from the identity element to other points via the right action
of G on T ∗G. The Lie-Poisson equations may be written in the Poisson bracket
form

Ḟ = {F, h} , (1.8)

where F : g∗ → R is an arbitrary smooth function and the bracket is the (right)
Lie-Poisson bracket given by

{F,G}(µ) =
〈

µ,

[
δF

δµ
,
δG

δµ

]〉
. (1.9)

In the important case when ` is quadratic, the Lagrangian L is the quadratic
form associated to a right invariant Riemannian metric on G. In this case, the Euler–
Lagrange equations for L on G describe geodesic motion relative to this metric and
these geodesics are then equivalently described by either the Euler-Poincaré, or the
Lie-Poisson equations.

Outline of the paper. The main contents of the present paper are as follows:

1. In §2 we review some basic facts about the EPDiff equations, and in particular
we recall a singular solution ansatz of Holm and Staley [2003, 2004] (see equa-
tion (2.8) below) that introduces a class of singular solutions that generalize
the peakon solutions of the CH equation to higher spatial dimensions.

2. In §3 we show that the EPDiff equations possess an interesting smoothness
property; namely, they define a smooth vector field (that is, they define ODE’s
with no derivative loss) in the Lagrangian representation. There are a number

2Of course in the finite dimensional case there is no real difference between Dl and δl/δξ, but
in the infinite dimensional case one normally does not choose g∗ to be the naive, that is, the literal
functional analysis dual, but rather a convenient space for PDE needs.
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of interesting consequences of this; in particular, it implies that the EPDiff
equations are locally well posed for sufficiently smooth initial data and that
the H1 diameter of Diff(M) is strictly positive. Because of the development
of singularities in finite time, which the numerics suggests, the smooth so-
lutions may not exist globally in time. This smoothness property is similar
to the corresponding smoothness property of the Euler equations for ideal
incompressible fluid mechanics shown in Ebin and Marsden [1970].

3. In §4, we show that the singular solution ansatz—again see (2.8) below—
defines an equivariant momentum map. We do this in a natural way by iden-
tifying the singular solutions with certain curves in the space of embeddings
Emb(S, Rn) of a generally lower dimensional manifold S into the ambient space
Rn (or an n-manifold M) and letting the diffeomorphism group act on this
space. The right action of Diff(S) corresponds to the right invariance of the
EPDiff equations, while the left action of Diff(Rn) has a momentum map that
gives the desired solution ansatz. This is the main result of the paper.

4. In §5 we briefly explore some of the geometry of the singular solution mo-
mentum map, in parallel with the corresponding work on singular solutions
(vortices, filaments, etc.) for the Euler equations of an ideal fluid that was
developed in Marsden and Weinstein [1983].

5. Finally, in §6, we discuss some of the remaining challenges and speculate on
some of the many possible future directions for this work.

Historical Note. This paper is dedicated to our friend and collaborator Alan
Weinstein and, for us, this work parallels some of our earlier collaborations with him.
Alan’s basic works on reduction, Poisson geometry, semidirect product theory, and
stability in mechanics—just to name a few areas—have been, and remain incredibly
influential and important to the field of geometric mechanics. See, for instance,
Marsden and Weinstein [1974]; Weinstein [1983b]; Marsden, Ratiu and Weinstein
[1984]; Weinstein [1984]; Holm, Marsden, Ratiu and Weinstein [1985].

Mechanics on Lie groups was pioneered by Arnold [1966], a reference that is a
key foundation for the subject and in particular for the present paper. However, this
theory was in a relatively primitive state, even by 1980, and it has benefited greatly
from Alan’s insights. In fact, the clear distinction between the Euler-Poincaré and
Lie-Poisson equations, the former equations on g and posessing a variational struc-
ture (with constraints on the variations) and the latter on g∗ with its Lie-Poisson
structure took until the 1980’s to crystallize, and for the place of Lie and Poincaré
in the history of the subject to be clarified. This development and clarification was
greatly aided by Alan’s work, historical researches, and deep insight.

Alan has made key contributions to many fundamental concepts in geometric me-
chanics, such as Lagrangian submanifolds and related structures (Weinstein [1971,
1977]), symplectic reduction (Marsden and Weinstein [1974]), normal modes and
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periodic orbits (Weinstein [1973, 1978]), Poisson manifolds (Weinstein [1983b]), ge-
ometric phases (Weinstein [1990]), Dirac structures (Courant and Weinstein [1988])
groupoids and Lagrangian reduction (Weinstein [1996]) and the plethora of related
“oid” structures he has been working on during the last decade (just look over the
151+ papers on MathSciNet he has written!) that will surely play as an important
role in the next generation of people working in the area of geometric mechanics as
it is with the current new generation.

Of Alan’s papers, the one that is most directly relevant to the topics discussed in
the present paper is Marsden and Weinstein [1983]. Alan himself is still developing
the mathematics associated with this area, as in Weinstein [2002].

2 The EPDiff Equation

This section reviews the EPDiff equation; that is, the Euler-Poincaré (EP) equation
associated with the diffeomorphism group of an n-manifold M (which, for simplicity,
will be taken primarily as Rn). This equation coincides with the dispersionless case
of the CH equation for shallow water waves in one and two dimensions, discussed in
Camassa and Holm [1993]; Kruse, Scheurle and Du [2001]. It also coincides with the
ATME equation (the averaged template matching equation) in two dimensions. The
latter equation arises in computer vision; see, for instance, Mumford [1998]; Hirani,
Marsden and Arvo [2001], or Miller, Trouve and Younes [2002] for a description
and further references. We have chosen to call this by a generic name, the EPDiff
equation, because it has these various interpretations in different applications. Of
course these different interpretations also provide opportunities: for example, this
point of view may enable one to see to what extent the singular solutions found
in the EPDiff equations are applicable, either for shallow water wave interactions,
or for computer vision applications. A recent combination of these ideas in which
image processing is informed by concepts of momentum originating in soliton theory
appears in Holm, Trouvé, Ratnanather and Younes [2004].

Statement of the EPDiff Equations. Treating analytical issues formally at this
point, let X denote the Lie algebra of vector fields on an n-dimensional manifold M
(such as Rn). The space X is the algebra of the diffeomorphism group of M , but
the usual Jacobi-Lie bracket is the negative of the (standard) Lie algebra bracket.
(See Marsden and Ratiu [1999] for a discussion.)

Let ` : X → R be a given Lagrangian and let M denote the space of one-form
densities on M , that is, the momentum densities. The corresponding momentum
density of the fluid is defined as

m =
δ`

δu
∈ M ,

which is the functional derivative of the Lagrangian ` with respect to the fluid
velocity u ∈ X. If u is the basic dynamical variable, the EPDiff equations are simply
the Euler-Poincaré equations associated with this Lagrangian. Equivalently, if m
is taken to be the basic dynamical variable, the Legendre transformation allows
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one to identify the EPDiff equations as the Lie-Poisson equations associated
with the resulting Hamiltonian. For the case of Rn, we will use vector notation for
the momentum density m(x, t) : Rn × R → Rn (a bold m instead of a lightface
m). The EPDiff equations are as follows (see Holm, Marsden and Ratiu [1998a,b,
2002] for additional background and for techniques for computing the Euler-Poincaré
equations for field theories),

∂

∂t
m + u · ∇m︸ ︷︷ ︸

convection
+ ∇uT ·m︸ ︷︷ ︸

stretching

+ m (div u)︸ ︷︷ ︸
expansion

= 0 . (2.1)

In coordinates xi, i = 1, 2, . . . , n, using the summation convention, and writing
m = midxi ⊗ dnx (regarding m as a one-form density) and u = ui∂/∂xi (regarding
u as a vector field), the EPDiff equations read

∂

∂t
mi + uj ∂mi

∂xj
+ mj

∂uj

∂xi
+ mi

∂uj

∂xj
= 0 . (2.2)

The EPDiff equations can also be written concisely as

∂m
∂t

+ £um = 0, (2.3)

where £um denotes the Lie derivative of the momentum one form density m with
respect to the velocity vector field u.

As mentioned earlier, if ` is a quadratic function of u, then the EPDiff equation
(2.1) or, equivalently, (2.3), is the Eulerian description of geodesic motion on the
diffeomorphism group of the underlying space (in this case Rn). The corresponding
metric is the right invariant metric on the group, whose value on the Lie algebra
(the group’s tangent space at the identity—the space of vector fields) is defined by
`. Since the Lagrangian ` is positive and quadratic in u, the momentum density is
linear in u and so defines a positive symmetric operator Qop by

m =
δ`

δu
= Qopu .

Likewise, for quadratic Lagrangians the velocity u is determined from the momen-
tum m by u = G ∗m, where G∗ represents convolution with the Green’s function
G for the linear operator Qop.

Variational Formulation. Following the variational formulation of EP theory,
the particular EP equation (2.1) may be derived from the following constrained
variational principle:

δ

∫
`(u) dt = 0 .

The variations are constrained to have the form

δu = ẇ + w · ∇u− u · ∇w.

This assertion may of course be verified directly. These constraints are analogous
to the so-called “Lin constraints” used for a similar variational principle for fluid
mechanics. (See Marsden and Ratiu [1999] for a discussion and references.)
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Hamiltonian Formulation. The Legendre transformation yields the Hamilto-
nian

H(m) = 〈m,u〉 − `(u) ,

where 〈 , 〉 is the natural pairing between one form densities and vector fields given
by integration (L2 pairing). This Hamiltonian is the corresponding quadratic form
for the momentum, namely,

H(m) = `(Q−1
op (m)) . (2.4)

Of course it often happens that Qop is a differential operator and in this case the
inverse is usually given in terms of the convolution with the Green’s function G,
corresponding to the appropriate solution domain and boundary conditions;

u =
δH(m)

δm
= G ∗m .

According to the general theory, the EP equation (2.1) may be expressed in
Hamiltonian form by using the Lie-Poisson bracket on M as

∂

∂t
m = {m , H}LP = − ad ∗

δH/δmm . (2.5)

One-dimensional CH Peakon Solutions. We return now to the CH equation
(1.2), which, as we have noted, is the same as the EPDiff equation (2.1) for the case
of one spatial dimension, when the momentum velocity relationship is defined by
the Helmholtz equation, m = u − α2uxx. In one dimension, the CH equation has
solutions whose momentum is supported at points on the real line via the following
sum over Dirac delta measures,

m(x, t) =
N∑

i=1

pi(t) δ
(
x− qi(t)

)
. (2.6)

The velocity corresponding to this measure-valued momentum is obtained by con-
volution u = G ∗m with the Green’s function,

G(|x− y|) = 1
2e−|x−y|/α ,

for the one-dimensional Helmholtz operator, Qop = (1 − α2∂2
x), appearing in the

CH momentum velocity relationship, m = Qopu. Consequently, the CH velocity
corresponding to this momentum is given by a superposition of peaked traveling
wave pulses,

u(x, t) =
1
2

N∑
i=1

pi(t) e−|x−qi(t)|/α . (2.7)

Thus, the superposition of “peakons” in velocity arises from the delta function
solution ansatz (2.6) for the momentum.
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Remarkably, the isospectral eigenvalue problem for the CH equation implies that
only these singular solutions emerge asymptotically in the solution of the initial value
problem in one dimension, as is shown in Camassa and Holm [1993]. Figure 2.1
shows the emergence of peakons from an initially Gaussian velocity distribution and
their subsequent elastic collisions in a periodic one-dimensional domain.3 This figure
demonstrates that singular solutions dominate the initial value problem. Thus, it
is imperative to go beyond smooth solutions for the CH equation; as we shall see,
there is numerical evidence that the situation is similar for the EPDiff equation.

Figure 2.1: This figure shows a smooth localized (Gaussian) initial condition for the CH equation
breaking up into an ordered train of peakons as time evolves (the time direction being vertical,
which then eventually wrap around the periodic domain and interacting with other slower emergent
peakons and causing a phase shift (c.f. Alber and Marsden [1992]).

Remarkably, the dynamical equations for pi(t) and qi(t), i = 1, . . . , N , that
arise from solution ansatz (2.6-2.7) comprise an integrable system for any N . This
system is studied in (Alber, Camassa, Fedorov, Holm and Marsden [2001]) and ref-
erences therein. See also Vaninsky [2002, 2003] for discussions of how the integrable
dynamical system for N peakons is related to the Toda chain with open ends.

Generalizing the CH peakon solutions to n dimensions Building on the
peakon solutions for the CH equation and the pulsons for its generalization to other
traveling-wave shapes (see Fringer and Holm [2001]), the papers Holm and Staley
[2003, 2004] introduced the following measure-valued (that is, density valued) ansatz
for the n−dimensional solutions of the EPDiff equation (2.1):

m(x, t) =
N∑

a=1

∫
Pa(s, t) δ

(
x−Qa(s, t)

)
ds. (2.8)

These solutions are vector-valued functions supported in Rn on a set of N surfaces
(or curves) of codimension (n− k) for s ∈ Rk with k < n. They may, for example,
be supported on sets of points (vector peakons, k = 0), one-dimensional filaments
(strings, k = 1), or two-dimensional surfaces (sheets, k = 2) in three dimensions.

3Figure 2.1 was kindly supplied by Martin Staley.
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One of the main results of this paper is the theorem stating that the singular
solution ansatz (2.8) is an equivariant momentum map. This result helps to organize
the theory and to suggest new avenues of exploration, as we shall explain.

Substitution of the solution ansatz (2.8) into the EPDiff equations (2.1) implies
the following integro-partial-differential equations (IPDEs) for the evolution of such
strings and sheets,

∂

∂t
Qa(s, t) =

N∑
b=1

∫
Pb(s′, t) G(Qa(s, t)−Qb(s′, t)

)
ds′ , (2.9)

∂

∂t
Pa(s, t) = −

N∑
b=1

∫ (
Pa(s, t)·Pb(s′, t)

) ∂

∂Qa(s, t)
G

(
Qa(s, t)−Qb(s′, t)

)
ds′ .

Importantly for the interpretation of these solutions, the coordinates s ∈ Rk turn out
to be Lagrangian coordinates. The velocity field corresponding to the momentum
solution ansatz (2.8) is given by

u(x, t) = G ∗m =
N∑

b=1

∫
Pb(s′, t) G

(
x−Qb(s′, t)

)
ds′ , u ∈ Rn . (2.10)

When evaluated along the curve x = Qa(s, t), the velocity satisfies,

u(x, t)
∣∣∣
x=Qa(s,t)

=
N∑

b=1

∫
Pb(s′, t) G

(
Qa(s, t)−Qb(s′, t)

)
ds′ =

∂Qa(s, t)
∂t

. (2.11)

Thus, the lower-dimensional support sets defined on x = Qa(s, t) and parameterized
by coordinates s ∈ Rk move with the fluid velocity. Moreover, equations (2.9) for
the evolution of these support sets are canonical Hamiltonian equations,

∂

∂t
Qa(s, t) =

δHN

δPa
,

∂

∂t
Pa(s, t) = − δHN

δQa
. (2.12)

The Hamiltonian function HN : (Rn × Rn)N → R is,

HN =
1
2

∫∫ N∑
a , b=1

(
Pa(s, t) ·Pb(s′, t)

)
G

(
Qa(s, t)−Qb(s′, t)

)
ds ds′ . (2.13)

This is the Hamiltonian for geodesic motion on the cotangent bundle of a set of
curves Qa(s, t) with respect to the metric given by G. This dynamics was investi-
gated numerically in Holm and Staley [2003, 2004] to which we refer for more details
of the solution properties.

As we have mentioned, one of our main goals is to show that the solution ansatz
(2.8) can be recast in terms of an equivariant momentum map that naturally arises
in this problem. This geometric feature underlies the remarkable reduction prop-
erties of the EPDiff equation and “explains” why the preceding equations must be



2 The EPDiff Equation 11

Hamiltonian—it is because it is a general fact that equivariant momentum maps are
Poisson maps.

As explained in general terms in Marsden and Weinstein [1983], the way one
implements a coadjoint orbit reduction is through a momentum map, and this holds
even for the case of singular orbits (again ignoring functional analytic details). Thus,
in summary, the Ansatz (2.12) is the EPDiff analog of the corresponding Anzatz for
incompressible fluid mechanics (that is, the EPDiffVol equations) that gives point (or
blob) vortex dynamics, vortex filaments, or sheets.

There are, however, some important differences between vortex dynamics for
incompressible flows and the dynamics of the measure valued EPDiff momentum
solutions. For example, the Lagrangian representations of the equations of motion
show that EPDiff solutions for momentum have inertia, while the corresponding so-
lutions for point (or blob) vortices of the EPDiffVol dynamics have no inertia. What
this means is the following: the equations of motion for the spatial vectors specify-
ing the measure valued vorticity solutions on EPDiffVol are first order in time, while
the dynamical equations for the corresponding spatial vectors Qa(s, t) for measure
valued momentum solutions on EPDiff are second order in time. This difference
has profound effects on the properties of the solutions, especially on their stabil-
ity properties. Numerical investigations of Holm and Staley [2003, 2004] show, for
example, that the codimension-one singular momentum solutions of EPDiff are sta-
ble, while its higher-codimension singular momentum solutions are very unstable to
codimension-one perturbations. In contrast, the codimension-two singular vorticity
solutions of EPDiffVol (point vortices in the plane, and vortex filaments in space)
are known to be stable to such perturbations.

Comments on the Physical Meaning of the Equations. The EPDiff equa-
tions with the Helmholtz relation between velocity and momentum are not quite the
CH equations for surface waves in 2D. Those would take precisely the same form,
but the shallow water wave relation in the 2D CH approximation would be

m = u− α2 Grad Div u; that is, mi = ui − α2uj,ji

rather than the Helmholtz operator form,

m = u− α2 Div Grad u that is, mi = ui − α2ui,jj

The corresponding Lagrangians are, respectively,

lCH(u) =
1
2

∫
(|u|2 + α2(Div u)2) dx dy. (2.14)

and
lEPDiff(u) =

1
2

∫
(|u|2 + α2|Grad u|2) dx dy. (2.15)

This difference was noted in Kruse, Scheurle and Du [2001], which identified
(2.14) as the generalization of (1.4) for water waves in two dimensions. One may
also verify this by considering the limit of the Green-Nagdhi equations for small
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potential energy. (The CH equation arises in this limit. The Lake and Great Lake
equations of Camassa, Holm and Levermore [1996, 1997] also arise in a variant of
this limit.)

Remarkably, the numerics in Holm and Staley [2003, 2004] show that the solu-
tions for a variety of initial conditions are indistinguishable in these two cases. The
initial conditions in Holm and Staley [2003, 2004] were all spatially confined velocity
distributions.

Notice that this difference affects the choice of Hamiltonian, but the equations
are still Euler-Poincaré equations for the diffeomorphism group and the description
of the Ansatz (2.8) as a momentum map is independent of this difference in the
equations.

Figure 2.2 shows the striking reconnection phenomenon seen in the nonlinear
interaction between wave-trains, as simulated by numerical solutions of the EPDiff
equation and observed for internal waves in the Ocean. Fig 2.2(a) shows a frame
taken from simulations of the initial value problem for the EPDiff equation in two di-
mensions, excerpted from Holm and Staley [2003, 2004]. (See also Holm, Putkaradze
and Stechmann [2003].)

(a) (b)

Figure 2.2: Comparison of evolutionary EPDiff solutions in two dimensions (a) and Synthetic
Aperture Radar observations by the Space Shuttle of internal waves in the South China Sea (b).
Both Figures show nonlinear reconnection occurring in the wave train interaction as their charac-
teristic feature.

Fig 2.2(b) shows the interaction of two internal wave trains propagating at the
interface of different density levels in the South China Sea, as observed from the
Space Shuttle using synthetic aperture radar, courtesy of A. Liu (2002). Impor-
tantly, both Fig 2.2(a) and Fig 2.2(b) show nonlinear reconnection occurring in the
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wave train interaction as their characteristic feature. Fig 2.3 shows a sequence of
snapshots illustrating the reconnection phenomenon for singular solutions of EPDiff
in two dimensions.4

Figure 2.3: A single collision is shown to produce reconnection as the faster wave front segment
initially moving Southwest along the diagonal expands, curves and obliquely overtakes the slower
one, which was initially moving rightward (East). This reconnection illustrates one of the collision
rules for singular solutions of the two-dimensional EPDiff flow. See Holm and Staley [2004] for a
complete treatment.

Interactions among internal waves are generally thought to be described by the
KP equation, and so any relations among the KP equation, the EPDiff equation and
the 2D CH equation would be of great interest to explore; cf. Liu et al. [1998]. The
derivations of the KP equation and the CH equation differ in the way the gradients
of their transverse motions are treated in the asymptotics—order O(ε) for KP and
order O(1) for CH; thus, some difference in their solution behavior is to be expected.

3 Smoothness of the Lagrangian Equations

The One-Dimensional Case. Based on a formal argument given in Holm, Mars-
den and Ratiu [1998a], it was shown in Shkoller [1998] that the CH equation (1.2)
in Lagrangian variables defines a smooth vector field. (That is, one obtains an
evolution equation with no derivative loss.) This means one can show using ODE
methods that the initial value problem is well-posed and one may also establish other
important properties of the equations, provided the data is sufficiently smooth.

4Fig 2.2(a) and Fig 2.3 were kindly supplied by Martin Staley.
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As above, we write the relation between m and u as m = Qopu, so that in the
one dimensional case, Qop is the operator Qop = Id−α2∂xx. We first recall how the
equations are transformed into Lagrangian variables. Introduce the one parameter
curve of diffeomorphisms η(x0, t) defined implicitly by

∂

∂t
η(x0, t) = u(η(x0, t), t), (3.1)

so that η is a geodesic in the group of diffeomorphisms of R (or, with periodic
boundary conditions, of the circle S1) equipped with the right invariant metric
equaling the H1 metric at the identity.

We compute the second time derivative of η in a straightforward way by differ-
entiating (3.1) using the chain rule:

∂2η

∂t2
= uux +

∂u

∂t
.

Acting on this equation with Qop and using the definition m = Qopu yields

Qop
∂2η

∂t2
= Qop(uux)− u∂x(Qopu) + umx +

∂m

∂t
= [Qop , u∂x]u− 2mux

= −3α2uxuxx − 2mux

= −α2uxuxx − 2uux ,

where the third step uses the commutator relation calculated from the product rule,

[Qop , u∂x]u = −3α2uxuxx .

Hence, the preceding equation becomes

∂2η

∂t2
= − 1

2
Q−1

op ∂x

(
α2u2

x + 2u2
)
. (3.2)

The important point about this equation is that the right hand side has no
derivative loss for α > 0. That is, if u is in the Sobolev space Hs for s > 5/2,
then the right hand is also in the same space. Regarding the right hand side as a
function of η and ∂η/∂t, we see that it is plausible that the second order evolution
equation (3.2) for η defines a smooth ODE on the group of Hs diffeomorphisms.
(This argument requires the use of, for example, weighted Sobolev spaces in the
case x ∈ R).

The above is the essence of the argument given in Shkoller [1998], Remark 3.5,
which in turn makes use of the type of arguments found in Ebin and Marsden [1970]
for the incompressible case and which shows, by a more careful argument, that the
spray is smooth if s > 3/2. However, one should note that the complete argument
is not quite so simple (just as in the case of incompressible fluids). A subtilty arises
because smoothness means as a function of η , η̇. Hence, one must express u in terms
of η, namely through the relation ut = η̇t ◦ η−1

t , where the subscript t here denotes
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that this argument is held fixed, and is not a partial derivative. Doing this, one
sees that, while there is clearly no derivative loss, the right hand side of (3.2) does
involve η−1

t and the map ηt 7→ η−1
t is known to not be smooth. Nevertheless, the

combination that appears in (3.2) is, quite remarkably, a smooth function of η, η̇ as
is shown by arguments in Ebin and Marsden [1970].

The n-Dimensional Case. The above argument readily generalizes to n-dimensions,
which we shall present in the case of Rn or the flat n-torus Tn for simplicity. Namely,
we still have the relation

∂

∂t
η(x0, t) = u(η(x0, t), t),

between η and u. Consequently, we may compute the second partial time derivative
of η in the usual fashion using the chain rule:

∂2η

∂t2
= u · ∇u +

∂u
∂t

.

Therefore, as in the one dimensional case, we get

Qop
∂2η

∂t2
=

[
Qop , (u · ∇)

]
u + u · ∇m +

∂m
∂t

.

Calculating the commutator relation in n-dimensions gives[
Qop , (u · ∇)

]
u = −α2div

(
∇u · ∇u +∇u · ∇uT

)
+ α2(∇u) · ∇div u

or, in components,([
Qop , (u · ∇)

]
u
)

i = −α2∂k

(
ui,j uj,k + ui,j uk,j

)
+ α2(ui,j) ∂jdiv u , (3.3)

with a sum on repeated indices.
Upon substituting the preceding commutator relation, the EPDiff equation (2.1)

and the vector calculus identity

−∇uT ·m = α2 div
(
∇uT · ∇u

)
−∇

(1
2
|u|2 +

α2

2
|∇u|2

)
, (3.4)

then imply the n−dimensional result

Qop
∂2η

∂t2
= −α2div

(
∇u · ∇u +∇u · ∇uT −∇uT · ∇u−∇uT (div u) +

1
2

Id|∇u|2
)

− u(div u)− 1
2
∇|u|2 .

A similar computation holds on a Riemannian manifold (or in curvilinear coordi-
nates) in terms of covariant derivatives.

This form of the EPDiff equation is useful for interpreting some of its solution
behavior. As in the one dimensional case, the crucial point is that the right hand
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side involves at most second derivatives of u; so there is no derivative loss in the
expression for ∂2η/∂t2. This is the main idea behind the proof of smoothness. The
technical details for the n-dimensional case can be provided following the arguments
for the one dimensional or incompressible cases, as indicated above. This leads to
the following result.

Proposition 3.1. For s > (n/2) + 1, and M a compact Riemannian manifold,
the EPDiff equations as second order equations on the Hs-Diff(M) group, define a
smooth spray. In particular, this implies that

1. The EPDiff equations are locally well posed (for short time) for initial data in
Hs

2. Two nearby diffeomorphisms can be joined by a unique curve (lying in the
neighborhood of these diffeomorphisms) which is the flow of a solution of the
EPDiff equations for time ranging from 0 to 1.

3. With initial data in Hs, the solutions of the EPDiff equation are C∞ in time.

For example, if M is the three torus, this corresponds to solutions in R3 with
spatially periodic boundary conditions. By using methods such as those of Cantor
[1975], we one may reasonably expect to establish a similar result for Rn in weighted
(Nirenberg-Walker) Sobolev spaces.

While local well-posedness of the EPDiff equations is a fairly routine matter
from the PDE point of view, the other properties are not so simple to obtain by
classical PDE methods.

In the sections that follow, we will be interested in nonsmooth data. This is in
stark contrast to the preceding discussion, which requires initial data that is at least
C1.

Remarkably, the same smoothness results hold for the case of the LAE-α (La-
grangian averaged Euler) equations, a set of incompressible equations in which small
scale fluctuations whose size is of order α are averaged. One can view the LAE-α
equations as the incompressible version of the EPDiff equations. This smoothness
property for the LAE-α equations was shown by Shkoller [1998] for regions with
no boundary and for regions with boundary (for various boundary conditions), it
was shown in Marsden, Ratiu and Shkoller [2000]. However, unlike the incom-
pressible case, the results apparently do not hold if α is zero (as was also noted in
Shkoller [1998]). This sort of smoothness result also appears not to hold for many
other equations, such as the KdV equation, even though it too can be realized as
Euler-Poincaré equations on a Lie algebra, or as geodesics on a group, in this case
the Bott-Virasoro group, as explained in Marsden and Ratiu [1999] and references
therein.

The Development of Singularities. The smoothness property just discussed
does not preclude the development in finite time of singular solutions from smooth
localized initial data as was indicated in Figure 2.1. To capture the local singularities
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in the EPDiff solution (either verticality in slope, or discontinuities in its spatial
derivative) that develop in finite time from arbitrarily smooth initial conditions,
one must enlarge the solution class of interest, by considering weak solutions.

There are a number of papers on weak solutions of the CH equation (such as,
for instance, Xin and Zhang [2000]) which we will not survey here. We just mention
that the theory is not yet complete, as it is still unknown in what sense one may
define global unique weak solutions to the CH equations in H1—only results that
have an energy conservation theorem and allow for the head-on collision of two
peakons would be considered interesting. As discussed in Alber, Camassa, Fedorov,
Holm and Marsden [2001] for the CH equation, one most likely must consider weak
solutions in the spacetime sense.

The steepening lemma of Camassa and Holm [1993] proves that in one dimen-
sion any initial velocity distribution whose spatial profile has an inflection point
with negative slope (for example, any antisymmetric smooth initial distribution of
velocity on the real line) will develop a vertical slope in finite time. Note that the
peakon solution (2.7) has no inflection points, so it is not subject to the steepening
lemma. However, the steepening lemma underlies the mechanism for forming these
singular solutions, which are continuous but have discontinuous spatial derivatives;
they also lie in H1 and have finite energy. We conclude that solutions with initial
conditions in Hs with s > (n/2) + 1 go to infinity in the Hs norm in finite time,
but remain in H1 and presumably continue to exist in a weak spacetime sense for
all time in H1.

Numerical evidence in higher dimensions and the inverse scattering solution for
the CH equation in one dimension (the latter has only discrete eigenvalues, corre-
sponding to peakons) both suggest that the singular solutions completely dominate
the time-asymptotic dynamics of the initial value problem (IVP). This singular IVP
behavior is one of the main discoveries of Camassa and Holm [1993]. This singular
behavior has drawn a great deal of mathematical interest to the CH equation and its
relatives, such as EPDiff. The other properties of CH—its complete integrability,
inverse scattering transform, connections to algebraic geometry and elliptical bil-
liards, bi-Hamiltonian structure, etc.—are of course all interesting, too. However,
the requirement of dealing with singularity as its main solution phenomenon is the
primary aspect of CH (and EPDiff). We aim to show that many of the properties
of these singular solutions of CH and EPDiff are captured by recognizing that the
singular solution ansatz itself is a momentum map. This momentum map property
explains, for example, why the singular solutions (2.8) form an invariant manifold
for any value of N and why their dynamics form a Hamiltonian system.

In one dimension, the complete integrability of the CH equation as a Hamilto-
nian system and its soliton paradigm explain the emergence of peakons in the CH
dynamics. Namely, their emergence reveals the initial condition’s soliton (peakon)
content. However, beyond one dimension, we do not have an explicit mechanism for
explaining why only singular solution behavior emerges in numerical simulations.
One hopes that eventually a theory will be developed for explaining this observed
singular solution phenomenon in higher dimensions. Such a theory might, for exam-
ple, parallel the well-known explanation of the formation of shocks for hyperbolic
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partial differential equations. (Note, however, that EPDiff is not hyperbolic, because
the relation u = G ∗m between its velocity and momentum is nonlocal.)

In the remainder of this work, we shall focus our attention on the momentum
map properties of the invariant manifold of singular solutions (2.8) of the EPDiff
equation.

4 The Singular Solution Momentum Map

The Momentum Ansatz (2.8) is a Momentum Map. The purpose of this
section is to show that the solution ansatz (2.8) for the momentum vector in the
EPDiff equation (2.1) defines a momentum map for the action of the group of
diffeomorphisms on the support sets of the Dirac delta functions. These support
sets are the analogs of points on the real line for the CH equation in one dimension.
They are points, curves, or surfaces in Rn for the EPDiff equation in n−dimensions.

This result, as we shall discuss in greater detail later, shows that the solution
ansatz (2.8) fits naturally into the scheme of Clebsch, or canonical variables in the
sense advocated by Marsden and Weinstein [1983] as well as showing that these
singular solutions evolve on special coadjoint orbits for the diffeomorphism group.

One can summarize by saying that the map that implements the canonical (Q,P)
variables in terms of singular solutions is a (cotangent bundle) momentum map.
Such momentum maps are Poisson maps; so the canonical Hamiltonian nature of
the dynamical equations for (Q,P) fits into a general theory which also provides a
framework for suggesting other avenues of investigation.

Theorem 4.1. The momentum ansatz (2.8) for measure-valued solutions of the
EPDiff equation (2.1), defines an equivariant momentum map

JSing : T ∗ Emb(S, Rn) → X(Rn)∗

that we will call the singular solution momentum map.

We shall explain the notation used in this statement in the course of the proof.
Right away, however, we note that the sense of “defines” is quite simple, namely
expressing m in terms of Q,P (which are, in turn, functions of s) can be regarded
as a map from the space of (Q(s),P(s)) to the space of m’s.

We shall give two proofs of this result from two rather different points of view.
The first proof below uses the formula for a momentum map for a cotangent lifted
action, while the second proof focuses on a Poisson bracket computation. Each proof
also explains the context in which one has a momentum map. (See Marsden and
Ratiu [1999] for general background on momentum maps.)

First Proof. For simplicity and without loss of generality, let us take N = 1 and so
suppress the index a. That is, we shall take the case of an isolated singular solution.
As the proof will show, this is not a real restriction.

To set the notation, fix a k-dimensional manifold S with a given volume element
and whose points are denoted s ∈ S. Let Emb(S, Rn) denote the set of smooth
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embeddings Q : S → Rn. (If the EPDiff equations are taken on a manifold M ,
replace Rn with M .) Under appropriate technical conditions, which we shall just
treat formally here, Emb(S, Rn) is a smooth manifold. (See, for example, Ebin and
Marsden [1970] and Marsden and Hughes [1983] for a discussion and references.)

The tangent space TQ Emb(S, Rn) to Emb(S, Rn) at the point Q ∈ Emb(S, Rn)
is given by the space of material velocity fields, namely the linear space of maps
V : S → Rn that are vector fields over the map Q. The dual space to this space will
be identified with the space of one-form densities over Q, which we shall regard as
maps P : S → (Rn)∗. In summary, the cotangent bundle T ∗ Emb(S, Rn) is identified
with the space of pairs of maps (Q,P).

These give us the domain space for the singular solution momentum map. Now
we consider the action of the symmetry group. Consider the group G = Diff of
diffeomorphisms of the space M in which the EPDiff equations are operating, con-
cretely in our case Rn. Let it act on M by composition on the left. Namely for
η ∈ Diff(Rn), we let

η ·Q = η ◦Q. (4.1)

Now lift this action to the cotangent bundle T ∗ Emb(S, Rn) in the standard way (see,
for instance, Marsden and Ratiu [1999] for this construction). This lifted action is
a symplectic (and hence Poisson) action and has an equivariant momentum map.
We claim that this momentum map is precisely given by the ansatz (2.8).

To see this, we will recall and then apply the general formula for the momentum
map associated with an action of a general Lie group G on a configuration manifold
Q and cotangent lifted to T ∗Q.

First let us recall the general formula. Namely, the momentum map is the map
J : T ∗Q → g∗ (g∗ denotes the dual of the Lie algebra g of G) defined by

J(αq) · ξ = 〈αq, ξQ(q)〉 , (4.2)

where αq ∈ T ∗
q Q and ξ ∈ g, where ξQ is the infinitesimal generator of the action of

G on Q associated to the Lie algebra element ξ, and where 〈αq, ξQ(q)〉 is the natural
pairing of an element of T ∗

q Q with an element of TqQ.
Now we apply formula (4.2) to the special case in which the group G is the

diffeomorphism group Diff(Rn), the manifold Q is Emb(S, Rn) and where the action
of the group on Emb(S, Rn) is given by (4.1). The sense in which the Lie algebra
of G = Diff is the space g = X of vector fields is well-understood. Hence, its dual is
naturally regarded as the space of one-form densities. The momentum map is thus
a map J : T ∗ Emb(S, Rn) → X∗.

To calculate J given by (4.2), we first work out the infinitesimal generators. Let
X ∈ X be a Lie algebra element. By differentiating the action (4.1) with respect to η
in the direction of X at the identity element we find that the infinitesimal generator
is given by

XEmb(S,Rn)(Q) = X ◦Q.
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Thus, taking αq to be the cotangent vector (Q,P), equation (4.2) gives

〈J(Q,P), X〉 = 〈(Q,P), X ◦Q〉

=
∫

S
Pi(s)Xi(Q(s))dks.

On the other hand, note that the right hand side of (2.8) (again with the index a
suppressed, and with t suppressed as well), when paired with the Lie algebra element
X is〈∫

S
P(s) δ (x−Q(s)) dks,X

〉
=

∫
Rn

∫
S

(
Pi(s) δ (x−Q(s)) dks

)
Xi(x)dnx

=
∫

S
Pi(s)Xi(Q(s)dks.

This shows that the expression given by (2.8) is equal to J and so the result is
proved. �

Second Proof. As is standard (see, for example, Marsden and Ratiu [1999]), one
can characterize momentum maps by means of the following relation, required to
hold for all functions F on T ∗ Emb(S, Rn); that is, functions of Q and P:

{F, 〈J, ξ〉} = ξP [F ] . (4.3)

In our case, we shall take J to be given by the solution ansatz and verify that it
satisfies this relation. To do so, let ξ ∈ X so that the left side of (4.3) becomes{

F,

∫
S

Pi(s)ξ i(Q(s))d ks

}
=

∫
S

[
δF

δQi
ξ i(Q(s))− Pi(s)

δF

δPj

δ

δQj
ξ i(Q(s))

]
d ks .

On the other hand, one can directly compute from the definitions that the infinitesi-
mal generator of the action on the space T ∗ Emb(S, Rn) corresponding to the vector
field ξi(x) ∂

∂Qi (a Lie algebra element), is given by (see Marsden and Ratiu [1999],
formula (12.1.14)):

δQ = ξ ◦Q , δP = −Pi(s)
∂

∂Q
ξ i(Q(s)),

which verifies that (4.3) holds.

An important element left out in this proof so far is that it does not make clear
that the momentum map is equivariant, a condition needed for the momentum map
to be Poisson. The first proof took care of this automatically since momentum maps
for cotangent lifted actions are always equivariant and hence Poisson.

Thus, to complete the second proof, we need to check directly that the mo-
mentum map is equivariant. Actually, we shall only check that it is infinitesimally
invariant by showing that it is a Poisson map from T ∗ Emb(S, Rn) to the space of
m’s (the dual of the Lie algebra of X) with its Lie-Poisson bracket. This sort of
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approach to characterize equivariant momentum maps is discussed in an interesting
way in Weinstein [2002].

The following computation accomplishes this methodology by showing directly
that the singular solution momentum map is Poisson. To do this, we use the
canonical Poisson brackets for {P}, {Q} and apply the chain rule to compute{
mi(x),mj(y)

}
. Using the notation δ ′

k(y) ≡ ∂δ(y)/∂yk, we get{
mi(x),mj(y)

}
=

{ N∑
a=1

∫
dsP a

i (s, t) δ(x−Qa(s, t)) ,
N∑

b=1

∫
ds′P b

j (s′, t) δ(y −Qb(s′, t))
}

=
N∑

a,b=1

∫∫
dsds′

[
{P a

i (s), P b
j (s′)} δ(x−Qa(s)) δ(y −Qb(s′))

− {P a
i (s), Qb

k(s
′)}P b

j (s′) δ(x−Qa(s)) δ ′
k(y −Qb(s′))

− {Qa
k(s), P

b
j (s′)}P a

i (s) δ ′
k(x−Qa(s)) δ(y −Qb(s′))

+ {Qa
k(s), Q

b
`(s

′)}P a
i (s)P b

j (s′) δ ′
k(x−Qa(s)) δ ′

`(y −Qb(s′))
]

.

Substituting the canonical Poisson bracket relations

{P a
i (s), P b

j (s′)} = 0

{Qa
k(s), Q

b
`(s

′)} = 0, and

{Qa
k(s), P

b
j (s′)} = δabδkjδ(s− s′)

into the preceding computation yields,{
mi(x),mj(y)

}
=

{ N∑
a=1

∫
dsP a

i (s, t) δ(x−Qa(s, t)) ,
N∑

b=1

∫
ds′P b

j (s′, t) δ(y −Qb(s′, t))
}

=
N∑

a=1

∫
dsP a

j (s) δ(x−Qa(s)) δ ′
i(y −Qa(s))

−
N∑

a=1

∫
dsP a

i (s) δ ′
j(x−Qa(s)) δ(y −Qa(s))

= −
(
mj(x)

∂

∂xi
+

∂

∂x j
mi(x)

)
δ(x− y) .

Thus, {
mi(x) , mj(y)

}
= −

(
mj(x)

∂

∂xi
+

∂

∂x j
mi(x)

)
δ(x− y) , (4.4)

which is readily checked to be the Lie-Poisson bracket on the space of m’s. This
completes the second proof of theorem. �

Each of these proofs has shown the following basic fact.
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Corollary 4.2. The singular solution momentum map defined by the singular so-
lution ansatz, namely,

JSing : T ∗ Emb(S, Rn) → X(Rn)∗

is a Poisson map from the canonical Poisson structure on T ∗ Emb(S, Rn) to the
Lie-Poisson structure on X(Rn)∗.

This is perhaps the most basic property of the singular solution momentum map.
Some of its more sophisticated properties are outlined in the following section.

Pulling Back the Equations. Since the solution ansatz (2.8) has been shown in
the preceding Corollary to be a Poisson map, the pull back of the Hamiltonian from
X∗ to T ∗ Emb(S, Rn) gives equations of motion on the latter space that project to
the equations on X∗.

Thus, the basic fact that the momentum map JSing is Poisson explains
why the functions Qa(s, t) and Pa(s, t) satisfy canonical Hamiltonian
equations.

Note that the coordinate s ∈ Rk that labels these functions is a “Lagrangian coor-
dinate” in the sense that it does not evolve in time but rather labels the solution.

In terms of the pairing
〈· , ·〉 : g∗ × g → R , (4.5)

between the Lie algebra g (vector fields in Rn) and its dual g∗ (one-form densities in
Rn), the following relation holds for measure-valued solutions under the momentum
map (2.8),

〈m , u〉 =
∫

m · u d nx , L2 pairing for m&u ∈ Rn,

=
∫∫ N∑

a , b=1

(
Pa(s, t) ·Pb(s′, t)

)
G

(
Qa(s, t)−Q b(s′, t)

)
ds ds′

=
∫ N∑

a=1

Pa(s, t) · ∂Qa(s, t)
∂t

ds

≡ 〈〈P , Q̇〉〉, (4.6)

which is the natural pairing between the points (Q,P) ∈ T ∗ Emb(S, Rn) and (Q, Q̇) ∈
T Emb(S, Rn).

The pull-back of the Hamiltonian H[m] defined on the dual of the Lie algebra
g∗, to T ∗ Emb(S, Rn) is easily seen to be consistent with what we had before:

H[m] ≡ 1
2
〈m , G ∗m〉 =

1
2
〈〈P , G ∗P〉〉 ≡ HN [P,Q] . (4.7)

In summary, in concert with the Poisson nature of the singular solution momen-
tum map, we see that the singular solutions in terms of Q and P satisfy Hamiltonian
equations and also define an invariant solution set for the EPDiff equations. In fact,
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This invariant solution set is a special coadjoint orbit for the diffeomor-
phism group, as we shall discuss in the next section.

Remark. It would be extremely interesting if the smoothness properties explored
in §3 were also valid on the space T ∗ Emb(S, Rn). This is obviously valid for the CH
equation.

5 The Geometry of the Momentum Map

In this section we explore the geometry of the singular solution momentum map
discussed in §4 in a little more detail. The approach may be stated as follows:
simply apply all of the ideas given in Marsden and Weinstein [1983] in a systematic
way to the current setting. As in that paper, the treatment is formal, in the sense
that there are a number of technical issues in the infinite dimensional case that are
left open. We will mention a few of these as we proceed.

Coadjoint Orbits. We claim that the image of the singular solution momentum
map is a coadjoint orbit in X∗. This means that (modulo some issues of connected-
ness and smoothness, which we do not consider here) the solution ansatz given by
(2.8) defines a coadjoint orbit in the space of all one-form densities, regarded as the
dual of the Lie algebra of the diffeomorphism group. These coadjoint orbits should
be thought of as singular orbits—that is, due to their special nature, they are not
generic.

Recognizing them as coadjoint orbits is one way of gaining further insight into
why the singular solutions form dynamically invariant sets—it is a general fact
that coadjoint orbits in g∗ are symplectic submanifolds of the Lie-Poisson manifold
g∗ (in our case X(Rn)∗) and, correspondingly, are dynamically invariant for any
Hamiltonian system on g∗.

The idea of the proof of our claim is simply this: whenever one has an equivariant
momentum map J : P → g∗ for the action of a group G on a symplectic or Poisson
manifold P , and that action is transitive, then the image of J is an orbit (or at least
a piece of an orbit). This general result, due to Kostant, is stated more precisely
in Marsden and Ratiu [1999], Theorem 14.4.5. Roughly speaking, the reason that
transitivity holds in our case is because one can “move the images of the manifolds
S around at will with arbitrary velocity fields” using diffeomorphisms of Rn.

Symplectic Structure on Orbits. Recall (from, for example, Marsden and
Ratiu [1999]), the general formula for the symplectic structure on coadjoint orbits:

Ωµ (ξg∗(µ), ηg∗(µ)) = 〈µ, [ξ, η]〉 , (5.1)

where µ ∈ g∗ is a chosen point on an orbit and where ξ, η are elements of g. We use
a plus sign in this formula since we are dealing with orbits for the right action.
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Just as in Marsden and Weinstein [1983], this line of investigation leads to an
explicit formula for the coadjoint orbit symplectic structure in the case of Diff. In
the present case, it is a particularly simple and transparent formula.

Recall that in the case of incompressible fluid mechanics, this procedure leads
naturally to the symplectic (and Poisson) structure for many interesting singular
coadjoint orbits, such as point vortices in the plane, vortex patches, vortex blobs
(closely related to the planar LAE-α equations) and vortex filaments. An important
point is that this structure is independent of how these solutions are parametrized.

For the case of the diffeomorphism group, let Om denote the coadjoint orbit
through the point m ∈ X∗(Rn).

Theorem 5.1. The symplectic structure Ωm on TmOm is given by

Ωm(£u1m,£u2m) = −
∫
〈m, [u1, u2]〉 dnx.

Proof. We substitute into the general Kirillov-Kostant-Souriau formula (5.1) for the
symplectic structure on coadjoint orbits. (As noted above, there is a + sign, since
we are dealing with a right invariant system). The only thing needing explanation is
that our Lie algebra convention always uses the left Lie bracket. For Diff, this is the
negative of the usual Lie bracket, as is explained in Marsden and Ratiu [1999]. �

The Momentum map JS and the Kelvin circulation theorem. The mo-
mentum map JSing involves Diff(Rn), the left action of the diffeomorphism group
on the space of embeddings Emb(S, Rn) by smooth maps of the target space Rn,
namely,

Diff(Rn) : Q · η = η ◦Q, (5.2)

where, recall, Q : S → Rn. As above, the cotangent bundle T ∗ Emb(S, Rn) is
identified with the space of pairs of maps (Q,P), with Q : S → Rn and P : S →
T ∗Rn.

However, there is another momentum map JS associated with the right action
of the diffeomorphism group of S on the embeddings Emb(S, Rn) by smooth maps
of the “Lagrangian labels” S (fluid particle relabeling by η : S → S). This action is
given by

Diff(S) : Q · η = Q ◦ η . (5.3)

The infinitesimal generator of this right action is

XEmb(S,Rn)(Q) =
d

dt

∣∣∣
t=0

Q ◦ ηt = TQ ◦X. (5.4)

where X ∈ X is tangent to the curve ηt at t = 0. Thus, again taking N = 1 (so we
suppress the index a) and also letting αq in the momentum map formula (4.2) be
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the cotangent vector (Q,P), one computes JS :

〈JS(Q,P), X〉 = 〈(Q,P), TQ ·X〉

=
∫

S
Pi(s)

∂Qi(s)
∂sm

Xm(s) d ks

=
∫

S
X

(
P(s) · dQ(s)

)
d ks

=
(∫

S
P(s) · dQ(s)⊗ d ks , X(s)

)
= 〈P · dQ , X 〉 .

Consequently, the momentum map formula (4.2) yields

JS(Q,P) = P · dQ , (5.5)

with the indicated pairing of the one-form density P · dQ with the vector field X.

We have set things up so that the following is true.

Proposition 5.2. The momentum map JS is preserved by the evolution equations
(2.12) for Q and P.

Proof. It is enough to notice that the Hamiltonian HN in equation (2.13) is in-
variant under the cotangent lift of the action of Diff(S); it merely amounts to the
invariance of the integral over S under reparametrization; that is, the change of
variables formula; keep in mind that P includes a density factor. �

This result is similar to the Kelvin-Noether theorem for circulation Γ of an ideal
fluid, which may be written as Γ =

∮
c(s) D(s)−1P(s) · dQ(s) for each Lagrangian

circuit c(s), where D is the mass density and P is again the canonical momentum
density. This similarity should come as no surprise, because the Kelvin-Noether
theorem for ideal fluids arises from invariance of Hamilton’s principle under fluid
parcel relabeling by the same right action of the diffeomorphism group, as in (5.3).

Note that, being an equivariant momentum map, the map JS , as with JSing,
is also a Poisson map. That is, substituting the canonical Poisson bracket into
relation (5.5); that is, the relation M(x) =

∑
i Pi(x)∇Qi(x) yields the Lie-Poisson

bracket on the space of M’s. We use the different notations m and M because
these quantitites are analogous to the body and spatial angular momentum for rigid
body mechanics. In fact, the quantity m given by the solution Ansatz; specifically,
m = JSing(Q,P) gives the singular solutions of the EPDiff equations, while M(x) =
JS(Q,P) =

∑
i Pi(x)∇Qi(x) is a conserved quantity.

In the language of fluid mechanics, the expression of m in terms of (Q,P) is an
example of a “Clebsch representation,” which expresses the solution of the EPDiff
equations in terms of canonical variables that evolve by standard canonical Hamilton
equations. This has been known in the case of fluid mechanics for more than 100
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years. For modern discussions of the Clebsch representation for ideal fluids, see, for
example, Holm and Kupershmidt [1983]; Marsden and Weinstein [1983].

One more remark is in order; namely the special case in which S = M is of
course allowed. In this case, Q corresponds to the map η itself and P just cor-
responds to its conjugate momentum. The quantity m corresponds to the spatial
(dynamic) momentum density (that is, right translation of P to the identity), while
M corresponds to the conserved “body” momentum density (that is, left translation
of P to the identity).

Dual Pairs. For reasons that are similar to those for incompressible fluids pre-
sented in Marsden and Weinstein [1983], the singular solution momentum map
JSing : T ∗ Emb(S, Rn) → X(Rn)∗ forms one leg of a formal dual pair. We use
the words formal dual pair since, in the infinite dimensional case, the proper math-
ematical underpinnings for the theory of dual pairs has not yet been developed.

Even in the finite dimensional case, there are nontrivial issues to be aware of
since dual pairs were studied in the basic paper of Weinstein [1983b]; we refer to
Ortega and Ratiu [2004], Chapter 11 as well as Blaom [2001] and Ortega [2003] for
background, references and a summary of the current state of the art in this topic.
These works show the subtelty of the dual pairs notion, even in finite dimensions,
let alone for the infinite dimensional problem we are dealing with here.

The point is that, as we have seen, there is another group that acts on Emb(S, Rn),
namely the group Diff(S) of diffeomorphisms of S, which acts on the right, while
Diff(Rn) acted by composition on the left (and this gave rise to our singular solution
momentum map, JSing). As explained above, the action of Diff(S) from the right
gives us the momentum map JS : T ∗ Emb(S, Rn) → X(S)∗. We now assemble both
momentum maps into one figure as follows:

T ∗ Emb(S, M)

JSing JS

X(M)∗ X(S)∗

�
�

�
�	

@
@

@
@R

These maps have the formal dual pair property, namely that the kernel of the
derivatives of each map at a given point are symplectic orthogonals of one another
(see Weinstein [1983a]). Sometimes, as in Ortega and Ratiu [2004], this is called the
Lie-Weinstein property .

Formal Proof of the Dual Pair Property. The reduction lemma of Marsden
and Weinstein [1974] states that the kernel of the derivative of a momentum map
is the symplectic orthogonal of the group orbit. As a consequence, if the group
associated to each leg of a potential dual pair of momentum maps acts transitively
on the level set of its partner momentum map, then one has a dual pair. In our
case, fixing JS at a value, say M, means, according to equation (5.5), that we fix
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the value of P · dQ. However, as we already noted above, the group Diff(M) acts
transitively on the space of Q’s because one can “move the singular surfaces around
at will” by means of diffeomorphisms of M . The constraint of fixing P·dQ is exactly
what one needs to transform the P’s properly by means of the cotangent lift (recall
that cotangent lift actions are characterized by preserving the canonical one form).
Thus, at least formally, Diff(M) acts transitively on level sets of JS . Similarly, one
sees that Diff(S) acts transitively on level sets of JSing since fixing JSing corresponds
to fixing the image surface, leaving one only with the parametrization freedom, so
that Diff(S) acts transitively on that set. �

This is a marvelous framework; it clarifies, amongst other things, the fact that
the parameterization of the singular solutions m in terms of Q and P are Clebsch
variables in the sense given in Marsden and Weinstein [1983] and that the diffeo-
morphism group of S corresponds to the gauge group of that Clebsch representation.
Also notice that when we write the singular solutions in Q-P space, we are finding
solutions that are collective and so all the properties of collectivization are valid.
See Marsden and Ratiu [1999] for a general discussion and references to the original
work of Guillemin and Sternberg on this topic.

As explained in Marsden and Weinstein [1983], reduction by the group associated
with one leg in a dual pair corresponds to coadjoint orbits on the other leg. Thus,
the momentum map JS captures the analog of the Kelvin circulation theorem of
fluid mechanics, as well as its singular version. It would be interesting to explore in
more detail this singular analog of the Kelvin circulation theorem for fluids.

The Ideal Fluid Dual Pair. In Marsden and Weinstein [1983] a dual pair was
investigated that captures certain singular situations in fluid mechanics, such as the
motion of point vortices in the plane. The general dual pair that generalizes that
planar case the following:

Emb(S, P )

JP JS

X(P )∗sym X(S)∗div

�
�

�
�	

@
@

@
@R

Here, S is a volume manifold, that is a manifold with a volume element, while P
is a symplectic manifold. The map JP is the momentum map for the left action of
the group of symplectic diffeomorphisms on P , while JS is the momentum map for
the right action of the group of volume preserving diffeomorphisms. This is a very
beautiful dual pair, but is not the same as the dual pair we found above of course.
In our case, P = T ∗M was a cotangent bundle and we identified Emb(S, P ) with
T ∗ Emb(S, M). Also, we always dealt with symplectic diffeomorphisms that were
cotangent lifts, while in the above dual pair of Marsden and Weinstein [1983], they
are general symplectic diffeomorphisms.
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Relation with ideas of Donaldson. Whereas Marsden and Weinstein [1983]
focused on ideas related to the dual pair picture, the leg in the above diagram given
by the map JS is discussed from various interesting viewpoints in Donaldson [1999].
In particular, that work (apparently being unaware of the above dual pair of Marsden
and Weinstein [1983]) makes a number of intriguing comments, including noting that
nontrivial topology can cause the momentum map JS to be nonequivariant (so there
are links with the Calabi theory). Donaldson also studies reduction and makes links
with Kähler geometry, hyperKähler geometry, double bracket gradient flows, mean
curvature flows, and other intriguing topics. As pointed out by Tony Bloch, there
are also interesting links of Donaldson’s paper with the Toda flow and factorization
problems. We believe that the pursuit of further connections within the circle of
ideas for momentum maps should be a source of inspiration for new research in the
context of the present paper. For example, this pursuit may lead to new insight into
the integrability of the dynamical systems governing these singular solutions.

It seems that we are looking at the tip of a rather large and beautiful iceberg.

6 Challenges, Future Directions and Speculations

Numerical Issues: Geometric Integrators. The computations of Martin Sta-
ley that illustrated several points in this paper are discussed in detail by Holm and
Staley [2003, 2004]. These computations make use of both mimetic differencing and
reversibility in a critical way; and this is important for accurate numerical simula-
tions. In other words, integrators that respect the basic geometry underlying the
problem obtained accurate singular solutions in numerical simulations. It would
be interesting to pursue this aspect further and also incorporate discrete exterior
calculus and variational multisymplectic integration methods (see Desbrun, Hirani,
Leok and Marsden [2003] as well as Marsden, Patrick and Shkoller [1998] and Lew,
Marsden, Ortiz and West [2003]).

Analytical Issues: Geodesic Incompleteness of H1 EPDiff. The emergence
in finite time of singular solutions from smooth initial data observed numerically in
Holm and Staley [2003, 2004] indicates that the diffeomorphism group with respect
to the right invariant H1 metric is geodesically incomplete when the diffeomorphism
group has the Hs topology, s > (n/2) + 1. The degree of its geodesic incomplete-
ness is not known, but we suspect that almost all EPDiff geodesics in H1 cannot
be extended indefinitely. This certainly holds in one spatial dimension, where the
discreteness of the CH isospectrum implies that asymptotically in time the CH solu-
tion arising from any confined smooth initial velocity data consists only of peakons.
It is an important challenge to find a context in which one can put the H1 topology
on the diffeomorphism group and reestablish geodesic completeness. The numerics
suggests that this might be possible, while known existence theorems, even for the
CH equation are not yet capable of showing this—to the best of our knowledge.
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Reversible Reconnections of the Singular EPDiff Solutions. EPDiff is a
reversible equation, and the collisions of its peakon solutions on the line R1 (or the
circle S1) are known to be reversible. The reconnections of the singular EPDiff
solutions observed numerically in Holm and Staley [2003, 2004] in periodic domains
T2 and T3 are also reversible, and this was used as a test of the numerical method.
Reversibility of its reconnections distinguishes the singular solutions of EPDiff from
vortex fluid solutions and shocks in fluids, whose reconnections apparently require
dissipation and so, are not reversible. The mimetic finite differencing scheme used for
the numerical computation of EPDiff solutions in Holm and Staley [2003, 2004] was
indeed found to be reversible for overtaking collisions, but it was found to be only
approximately reversible for head-on collisions, which are much more challenging
for numerical integration schemes.

Applications of EPDiff Singular Solutions in Image Processing. The sin-
gular EPDiff solutions correspond to outlines (or cartoons) of images in applications
of geodesic flow for the template, or pattern matching approach. The dynamics of
the singular EPDiff solutions described by the momentum map (2.8) introduces the
paradigm of momentum exchange in soliton collisions into the mechanics and anal-
ysis of image processing by template matching. (See Holm, Trouvé, Ratnanather
and Younes [2004] for more discussions of this new paradigm for image processing.)
First, the momentum representation of the image outlines is non-redundant. That
is, the momentum has exactly the same dimension as the matched structures; so
there is no redundancy of the representation. Second, the reversibility of the col-
lisions among singular solutions and their reconnections under EPDiff flow assures
the preservation of the information contained in the image outlines. In addition,
the invariance of the manifold of N singular solutions under EPDiff assures that the
fidelity of the image is preserved in the sense of approximation theory. That is, an N
soliton approximation of the image outlines remains so, throughout the EPDiff flow.
A natural approach for numerically simulating EPDiff flows in image processing is to
use multisymplectic algorithms. The preservation of the space-time multisymplectic
form by these algorithms introduces an initial-value, final-value formulation of the
numerical solution procedure that is natural for template matching.

Rigorous Poisson Structures. In Vasylkevych and Marsden [2003], the question
of the (rigorous) Poisson nature of the time t map of the flow of the Euler equations
for an ideal fluid in appropriate Sobolev spaces is explored. Given the smoothness
properties in §3, it seems reasonable that similar properties should also hold for the
EPDiff equations. However, as mentioned earlier, these smoothness properties do
not preclude the emergence of singular solutions from smooth initial data in finite
time, because of the possibility for geodesic incompleteness.

Other Groups. The general setting of this paper suggests that perhaps one should
look for similar measure valued or singular solutions associated with other problems,
including geodesic flows on the group of symplectic diffeomorphisms (relevant for
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plasma physics, as in Marsden and Weinstein [1982]), Bott-Virasoro central exten-
sions and super-symmetry groups.

Scattering. It might be interesting to explore the relation of the singular solution
momentum map (2.8) to integrability and scattering data. For example, see Vanin-
sky [2003] for an interesting discussion of the Poisson bracket for the scattering data
of CH in 1D. This turns out to be the Atiyah-Hitchin bracket, which is also related
to the Toda lattice, and this fascinating observation leads to an infinite-dimensional
version of Jacobi elliptic coordinates.

Other Issues. Of course there are many other issues remaining to explore that
are suggested by the above setting, such as convexity of the momentum map, its
extension to Riemannian manifolds, etc. We shall, however, leave these issues for
other publications and other researchers.
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with nonlinear dispersion, Phys. Rev. Lett. 349, 4173–4177.

Holm, D. D., J. E. Marsden and T. S. Ratiu [2002], The Euler–Poincaré equations in geo-
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Du Signal et de L’Image, Chapter 3, pp. 7–13. Paris: Institut Henri Poincaré (1998).
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