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Abstract

Motivated by Poisson structures for complex fluids containing cocycles, such
as the Poisson structure for spin glasses given by Holm and Kupershmidt in
1988, we investigate a general construction of Poisson brackets with cocycles.
Connections with the construction of compatible brackets found in the theory
of integrable systems are also briefly discussed.

1 Introduction

Purpose of this Paper. The goal of this paper is to explore a general construc-
tion of Poisson brackets with cocycles and to link it to questions of compatibility
similar to those encountered in the theory of integrable systems. The study is mo-
tivated by the specific brackets for spin glasses studied in Holm and Kupershmidt
[1988].

In the body of the paper, we first describe several examples of Poisson brackets
as reduced versions of, in principle, simpler brackets. Then we will show how this
technique can be applied to study the compatibility of Poisson brackets. In the last
section, we give the example of spin glasses and show that the Jacobi identity for
the bracket given in Holm and Kupershmidt [1988] is a result of a cocycle identity.

Background. It is a remarkable fact that many important examples of Poisson
brackets are reduced versions of canonical Poisson brackets. Perhaps the most basic
case of this may be described as follows. Start with a configuration manifold Q with
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a Lie group G acting on Q in such a way that Q → Q/G is a principal bundle (for
instance, assume that the action is free and proper) . Consider the cotangent space
T ∗Q with its canonical symplectic and hence Poisson structure. As with general
quotients of Poisson manifolds (see for instance Marsden and Ratiu [1999] for the
relevant basic background material), the quotient space (T ∗Q)/G inherits a Poisson
structure from T ∗Q in a natural way.

This construction of (T ∗Q)/G along with its quotient Poisson structure is a very
important and rather general method for finding Poisson structures in mathemat-
ical physics, including fluid and plasma systems, and for obtaining brackets that
satisfy the Jacobi identity by the nature of their construction (whereas verifying the
Jacobi identity “by hand” could be quite arduous); see, for instance, Marsden and
Weinstein [1982], Marsden and Weinstein [1983], Marsden, Ratiu, and Weinstein
[1984a,b], Holm, Marsden, Ratiu, and Weinstein [1985], and Cendra, Holm, Hoyle,
and Marsden [1998].

The detailed mathematical structure of the reduced Poisson brackets on quo-
tients (T ∗Q)/G has itself a long and interesting history going back to the work of
Sternberg [1977], Weinstein [1978], and Montgomery [1984], Montgomery [1986] on
particles in Yang-Mills fields and the bundle picture in mechanics. Recent works in
this area, such as Cendra, Marsden, and Ratiu [2001a] and Marsden and Perlmutter
[2000] take the view that one should choose a connection on the shape space bundle
Q → Q/G and then realize (T ∗Q)/G as the Whitney sum bundle T ∗(Q/G) ⊕ g̃∗,
where g is the Lie algebra of G, g∗ is its dual space, and where g̃∗ is the coadjoint
bundle associated to the given G-action on Q and the coadjoint action of G on g∗.
The reduced Hamilton equations on this space are called the Hamilton-Poincaré
equations and are introduced and studied in Cendra, Marsden, Pekarsky and Ratiu
[2003].

However, the construction of brackets on quotients of cotangent bundles is not
the only case in which the idea of reduction is important to unify the study of oth-
erwise mysterious Poisson brackets, some of which are well known from an algebraic
point of view, namely that for spin glasses in Holm and Kupershmidt [1988]. A key
feature of such brackets is the presence of cocycle terms.

Goals of this Paper. In this paper we shall present a fairly general construction
of Poisson brackets with cocycles and show a simple reduction context for their
study. We then show that the brackets of Holm and Kupershmidt [1988] may be
viewed as examples of this construction. We will also make some suggestive links
with compatible Poisson structures in the same sense as are found in the theory of
integrable systems.

Future Directions. One of the key ideas that will be further developed in the
future, especially in the context of complex fluids and similar examples, is to realize
these cocycle terms as curvature (magnetic) terms associated with the reduction
process itself. This point of view was explored in some detail in Marsden, Misiolek,
Perlmutter, and Ratiu [1998] and Marsden, Misiolek, Ortega, Perlmutter, and Ratiu
[2002] in the context of reduction by stages. The corresponding theory of Lagrangian
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reduction by stages was developed in Cendra, Marsden, and Ratiu [2001a] and it
was used in Holm [2002] to study the variational approach to complex fluids. A
similar reduction by stages method was used in Patrick [1999], who studied the
Landau-Lifschitz equations, which occurs in magnetic materials.

It is our hope that our results will help provide a better understanding of not
only spin glasses, but other important examples of complex fluids. The reader
should realize that even the example of spin glasses has some obviously interesting
additional and fundamental properties that require a deeper understanding, such
as: when the spin glass bracket is “reduced” from a connection description to a
“curvature” description, the cocycle disappears, as Holm and Kupershmidt [1988]
point out. This seemingly miraculous property suggests that the overall reduction
procedure is simply a Lie-Poisson reduction from the cotangent bundle of a group
to the dual of its Lie algebra and that this one-step reduction may be realized as a
two-stage reduction (the first by a normal subgroup), the cocycle is introduced at
the first step of the reduction and then disappears in the second step, as it must
since the final bracket is Lie-Poisson.

Another idea that requires further development is the connection of the global
Poisson point of view presented here with the local, variational multisymplectic
field theoretic point of view (see, for instance Gotay, Isenberg, and Marsden [1997],
Marsden, Patrick, and Shkoller [1998] and Castrillón López, Ratiu, and Shkoller
[2000]). In particular, it would be very interesting to explore the issue of cocycles
and reduction by stages in the multisymplectic context and to link this theory to
that of complex fluids. This is a relatively ambitious project that we do not address
directly in this paper.

Parts of this paper are pedagogical in that we sometimes give two proofs of
a result, sometimes by a direct coordinate computation; we feel that this may be
beneficial for readers who want to see the same result from another viewpoint or
who prefer an emphasis on coordinate calculations.

Preliminaries and Notation. Let (M, {, }) be a Poisson manifold (see, for ex-
ample, Marsden and Ratiu [1999] for an exposition and further references). It is
well known that the Poisson structure { , }, regarded as a skew symmetric bilin-
ear mapping on F(M) × F(M), where F(M) denotes the space of smooth real
valued functions on M , may alternatively be given in terms of a contravariant skew-
symmetric two-tensor field C ∈ T 2

0 (M) (the space of all two-tensors with indices
up) on M . The relation between {, } and C is given by the identity

{f, g} = C(df, dg) (1.1)

for any f, g ∈ F(M). Let us choose local coordinates xi on M , where i = 1, ..., m,
and m is the dimension of M . Then the Poisson bracket may be written as follows

{f, g} = Cij ∂f

∂xi

∂g

∂xj

where Cij are the components of C in the chosen coordinate system and where the
summation convention is in force. The Jacobi identity for the Poisson structure is,
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as is well-known, equivalent to the coordinate condition

Cir ∂Cjk

∂xr
+ Cjr ∂Cki

∂xr
+ Ckr ∂Cij

∂xr
= 0 (1.2)

for all i, j, k = 1, . . . , m.

2 A Bracket Associated to a 2-Form on a Symplectic
Manifold

Definition 2.1. Let (P, ω) be a symplectic manifold, and let Σ be a given 2-form on
P . For any given f, g ∈ F(P ), the phase space Σ-bracket of f and g is defined
by

{f, g}Σ = Σ(Xf , Xg) (2.1)

where Xf and Xg are the Hamiltonian vector fields associated to f and g respectively.

At this point we do not claim anything about the phase space Σ-bracket being
a Poisson structure. We shall address this issue in due course.

Recall that the Lagrange bracket of two vector fields X and Y on a symplectic
manifold (P, ω) is defined by the expression [[X, Y ]] := ω(X, Y ) (see Abraham and
Marsden [1978], page 196). Thus the phase space Σ-bracket of f and g may be viewed
as a generalization of the Lagrange bracket of Xf and Xg to an arbitrary two-form
on P . Note also that {f, g}ω = {f, g} is the usual Poisson bracket associated to a
symplectic manifold.

Let P = T ∗Q and denote by ω the canonical symplectic form on P . Let Σ0 be a
2-form on Q. If πQ : T ∗Q → Q is the canonical projection, Σ = π∗

QΣ0 is a 2-form on
T ∗Q and one can then form the corresponding phase space Σ-bracket using (2.1).
In this cotangent bundle context, we will sometimes write Σ0 for Σ by a slight abuse
of notation.

It is clear that the phase space Σ-bracket is skew-symmetric and is a derivation
on each factor. The natural question is therefore to find the conditions on Σ for { , }Σ

to satisfy the Jacobi identity. We shall give below intrinsic as well as coordinate
proofs of our assertions and shall study this problem in an increasing degree of
generality.

The phase space Σ-bracket on the Cotangent Bundle of a Banach Space.
We study the simplest case of a general construction by first considering the case
of vector spaces. Let V be a Banach space and Σ0 : V × V → R be a bilinear
skew-symmetric map. The lift of this bilinear form to a bilinear form on V × V ∗ by
means of the projection map πV : V × V ∗ → V is given by

Σ ((v1, µ1), (v2, µ2)) = Σ0 (v1, v2)

Consider the cotangent bundle T ∗V ≡ V × V ∗. Note that the canonical projec-
tion πV : V × V ∗ → V is the projection on the first factor. To compute the phase
space Σ-bracket, let f ∈ F(V × V ∗), the space of real valued functions on V × V ∗.
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Recall that the functional derivative of f ∈ F(V ∗) at a point µ ∈ V ∗ is the
element δf/δµ ∈ V defined by the identity

Df(µ) · ν =
〈

ν,
δf

δµ

〉
, for all µ, ν ∈ V ∗, (2.2)

where Df(µ) denotes the Fréchet derivative of f : V ∗ → R.
Since the Hamiltonian structure is canonical, Xf (v, µ) = (δf/δµ,−δf/δv), and

so we get

{f, g}Σ (v, µ) = Σ (Xf , Xg) (v, µ) = Σ0

(
δf

δµ
,
δg

δµ

)

for all v ∈ V and µ ∈ V ∗. This phase space Σ-bracket is actually a Poisson bracket
as the next theorem shows.

Theorem 2.2. Let V be a Banach space, Σ0 : V × V → R be a bilinear skew-
symmetric map, and let Σ be the induced bilinear skew symmetric form on V × V ∗

defined above. For given f, g : V × V ∗ → R, the phase space Σ-bracket on V × V ∗

{f, g}Σ(v, µ) = Σ0

(
δf

δµ
,
δg

δµ

)
, µ ∈ V ∗ (2.3)

satisfies the Jacobi identity.

A more general theorem will be proved in Theorem 2.6 below.

The Momentum Σ-bracket on the Dual of a Banach Space. Because the
bracket (2.3) depends only on the variable µ, one can also get a Poisson structure
only on V ∗ by a similar construction. It is obtained by Considering the functions f
and g to be simply independent of the first factor.

Definition 2.3. Let V be a Banach space and Σ : V × V → R be a bilinear skew-
symmetric form. For given f, g : V ∗ → R, the momentum Σ-bracket on functions
on V ∗ is defined by

{f, g}Σ(µ) = Σ
(

δf

δµ
,
δg

δµ

)
, µ ∈ V ∗ (2.4)

We use the term “momentum Σ-bracket” since we think of elements of V ∗ as
momentum variables and the functions under consideration depend on µ ∈ V ∗ and
not on (v, µ) ∈ T ∗V as was the case in the preceding theorem. The momentum
Σ-bracket is also a Poisson bracket, a result that is essentially equivalent to that in
the preceding theorem.

Theorem 2.4. The momentum Σ-bracket given in Definition 2.3 satisfies the Jacobi
identity and therefore defines a Poisson bracket on V ∗.

We now give three proofs of Theorem 2.4, starting with a local one in finite
dimensions.
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Calculus-based Proof. Assume that V is finite dimensional. An immediate corol-
lary of (1.2) is that any skew-symmetric constant tensor field C ∈ T 2

0 (V ) on a vector
space defines a Poisson bracket. In particular, the bracket given by (2.4) is a Poisson
bracket. �

The following second proof also works for infinite dimensional Banach spaces.

Direct proof. As usual, the only thing we need to worry about is the Jacobi iden-
tity. Denote by Σ� : V → V ∗ the map given by 〈Σ�(ξ), η〉 = Σ(ξ, η), for any ξ, η ∈ V ,
where 〈 , 〉 : V ∗ × V → R denotes the pairing between the vector space V and its
dual V ∗. The following formula, obtained by differentiating (2.2) relative to µ, will
be used in the computation below:〈

ρ,D
(

µ �→ δf

δµ

)
(µ) · ν

〉
=

〈
ν,D

(
µ �→ δf

δµ

)
(µ) · ρ

〉
= D2f(µ)(ν, ρ), (2.5)

for all µ, ν, ρ ∈ V ∗. Thus, one has

δ

δµ
{f, g}Σ(µ) = −D2f(µ)

(
Σ�

(
δg

δµ

)
, ·

)
+ D2g(µ)

(
Σ�

(
δf

δµ

)
, ·

)
(2.6)

so that for any f, g, h : V ∗ → R, it follows that

{{f, g}Σ, h}Σ(µ) = D2f(µ)
(

Σ�

(
δg

δµ

)
, Σ�

(
δh

δµ

))
−D2g(µ)

(
Σ�

(
δf

δµ

)
, Σ�

(
δh

δµ

))
.

It readily follows that if one adds the other two terms obtained by circular permu-
tations and uses the symmetry of the second derivative, the sum will vanish. This
proves that { , }Σ is a Poisson bracket on V ∗. �

The third proof is by reduction. It may seem the most complicated at first, but
in fact, it is the one that gives the most insight into generalizations of the result.

Proof by Reduction. Start with the cotangent bundle T ∗V = V × V ∗. Let V
act on V × V ∗ as follows (cotangent lift of translations together with a momentum
shift):

η · (ξ, µ) =
(

ξ + η, µ +
1
2
Σ�(η)

)
.

One checks that this action is Poisson with respect to the canonical cotangent
bracket

{f, g}can (ξ, µ) =
〈

δf

δξ
,

δg

δµ

〉
−

〈
δg

δξ
,

δf

δµ

〉
.

Now we simply Poisson reduce. The quotient space (V × V ∗) /V is isomorphic to
V ∗ by the quotient map

π : (ξ, µ) �→ µ − 1
2
Σ�(ξ).

Since for f : V ∗ → R we have

δ(π∗f)
δξ

=
1
2
Σ�

(
δf

δ(µ − 1
2Σ�(ξ))

)
and

δ(π∗f)
δµ

=
δf

δ(µ − 1
2Σ�(ξ))

,
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it follows that

{π∗f, π∗g}can (ξ, µ) =
〈

δ(π∗f)
δξ

,
δ(π∗g)

δµ

〉
−

〈
δ(π∗g)

δξ
,

δ(π∗f)
δµ

〉

= Σ

(
δf

δ(µ − 1
2Σ�(ξ))

,
δg

δ(µ − 1
2Σ�(ξ))

)

= {f, g}Σ

(
µ − 1

2
Σ�(ξ)

)

= (π∗{f, g}Σ) (ξ, µ).

Therefore, {f, g}Σ is the reduced bracket and hence is a Poisson bracket on V ∗. �

The Σ-Bracket on T ∗Q. Let Q be any given manifold and let Σ0 be a 2-form on
Q. Let πQ : T ∗Q → Q be the natural projection. Then Σ = π∗

QΣ0 is a 2-form on
T ∗Q and thus it has a phase space Σ-bracket associated to it, as explained before.

For any given 2-form Σ0 on Q one has a well defined map

πΣ0 : T ∗TQ → T ∗Q

given in local coordinates by

πΣ0(qi, δqi, pi, δpi) :=
(

qi, δpi −
1
2
Σ0(q)jiδq

j

)
.

The map πΣ0 is defined at an element w ∈ T ∗
vq

TQ and paired with an element
uq ∈ TqQ, by

〈
πΣ0(w), uq

〉
=

〈(
τT ∗Q ◦ κ−1

Q

)
(w), uq

〉
− 1

2
Σ0(vq, uq), (2.7)

where vq ∈ TqQ. Here, τT ∗Q : TT ∗Q → T ∗Q denotes the tangent bundle projection
and κQ : TT ∗Q → T ∗TQ is the canonical isomorphism. These maps are related to
some constructions given by Tulczyjew [1977], but for expository clarity, we shall
recall the details here.1

Intrinsic Characterization of the Map κQ. First of all, choose a local trivi-
alization of Q, in which Q is represented as an open set U in a Banach space E.
With such a choice, TT ∗Q is represented by (U × E∗) × (E × E∗), while T ∗TQ is
represented by (U × E) × (E∗ × E∗). In this representation, the map κQ will turn
out to be given by

(q, p, δq, δp) �→ (q, δq, δp, p).

We will show that the map κQ is the unique map that intertwines two sets of
maps. These maps are given as follows:

1We thank Alan Weinstein for some helpful correspondence on the geometry of iterated
cotangent-tangent bundles.
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1. First Set of Maps. Consider the following two maps:

TπQ : TT ∗Q → TQ

πTQ : T ∗TQ → TQ

which are the obvious maps (recall that we write πR : T ∗R → R for the
cotangent projection). The first commutation condition that will be used to
define κQ is that

πTQ ◦ κQ = TπQ.

Thus, the diagram in Figure 2.1 should commute.

T(T�Q) T�(TQ)
κQ

TQ

TπQ
πTQ

Figure 2.1: Commutative diagram for the cotangent analog of the canonical involu-
tion.

2. Second Set of Maps. The second set of maps is the following:

τT ∗Q : TT ∗Q → T ∗Q

π0 : T ∗TQ → T ∗Q.

Recall that the tangent bundle projection of TR to R is denoted τR : TR → R.

We need to explain the map π0; let αvq ∈ T ∗
vq

TQ and let uq ∈ TqQ. Then
〈
π0(αvq), uq

〉
=

〈
αvq , ver(uq, vq)

〉
where

ver(uq, vq) =
d

dt

∣∣∣∣
t=0

(vq + tuq) ∈ TvqTQ

denotes the vertical lift of uq along vq.

The second commutation condition is that

π0 ◦ κQ = τT ∗Q.

In other words, the diagram shown below in Figure 2.2 commutes.

In a natural local trivialization, these four maps are readily checked to be given
by

TπQ(q, p, δq, δp) = (q, δq)
πTQ(q, δq, p, δp) = (q, δq)
τT ∗Q(q, p, δq, δp) = (q, p)

π0(q, δq, p, δp) = (q, δp),
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T(T�Q) T�(TQ)
κQ

T�Q

 τT�Q
π

Figure 2.2: The second commutative diagram for the cotangent analog of the canon-
ical involution.

from which it is easy to see that the commutation conditions are satisfied with the
coordinate formula for κQ. It is clear that this uniquely characterizes the map κQ.
We summarize what we have proved:

Proposition 2.5. For any manifold Q, there is a unique diffeomorphism

κQ : TT ∗Q → T ∗TQ

such that the above two diagrams commute.

In summary, πΣ0 is defined by equation (2.7), where κQ is the map defined in
the preceding proposition.

Cotangent Bundle Σ-bracket. Now we are ready to give the generalization of
Theorem 2.2.

Theorem 2.6. Let Q be a manifold and let Σ0 be a 2-form on Q. Endow T ∗TQ
with the canonical cotangent bundle symplectic structure. There is a unique Poisson
structure on T ∗Q obtained by declaring πΣ0 : T ∗TQ → T ∗Q to be a Poisson map;
in fact, this bracket on T ∗Q is given by the cotangent Σ0-bracket

{f, g}Σ0
(q, p) = Σ0(q)

(
δf

δp
,
δg

δp

)
,

where f, g ∈ F(T ∗Q) and where the fiber functional derivative δf/δp ∈ TqQ is
defined by

〈
(q, p′),

δf

δp

〉
=

d

dt

∣∣∣∣
t=0

f(q, p + tp′)

for all (q, p′) ∈ T ∗
q Q.

We give two proofs. The first is a brute force coordinate proof and the second
is by reduction.

Coordinate Proof. Let the two-form Σ0 be written in components as

Σ0 = Σijdqi ⊗ dqj ,
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where the sum is understood to be over all i, j (no restriction on indices, such as
i < j, which would introduce factors of 2) and where Σij is a function of q alone.
Then we have

{f, g}Σ0 = Σij
∂f

∂pi

∂g

∂pj
.

The only axiom that is not obvious is the Jacobi identity. To check it, we compute
directly in coordinates as follows:

{f, {g, h}Σ0}Σ0 = Σkl
∂f

∂pk

∂

∂pl

(
Σij

∂g

∂pi

∂h

∂pj

)

= ΣklΣij
∂f

∂pk

∂2g

∂pl∂pi

∂h

∂pj
+ ΣklΣij

∂f

∂pk

∂g

∂pi

∂2h

∂pl∂pj
.

Therefore, we get

{f, {g, h}Σ0}Σ0 + {g, {h, f}Σ0}Σ0 + {h, {f, g}Σ0}Σ0

= ΣklΣij
∂f

∂pk

∂2g

∂pl∂pi

∂h

∂pj
+ ΣklΣij

∂f

∂pk

∂g

∂pi

∂2h

∂pl∂pj

+ ΣklΣij
∂g

∂pk

∂2h

∂pl∂pi

∂f

∂pj
+ ΣklΣij

∂g

∂pk

∂h

∂pi

∂2f

∂pl∂pj

+ ΣklΣij
∂h

∂pk

∂2f

∂pl∂pi

∂g

∂pj
+ ΣklΣij

∂h

∂pk

∂f

∂pi

∂2g

∂pl∂pj
.

The sum of the first and the last term is

ΣklΣij
∂f

∂pk

∂2g

∂pl∂pi

∂h

∂pj
+ ΣklΣij

∂f

∂pi

∂2g

∂pl∂pj

∂h

∂pk

= ΣklΣij
∂f

∂pk

∂2g

∂pl∂pi

∂h

∂pj
+ ΣjlΣki

∂f

∂pk

∂2g

∂pl∂pi

∂h

∂pj

= (ΣklΣij + ΣjiΣkl)
∂f

∂pk

∂2g

∂pl∂pi

∂h

∂pj
,

where in the first equality we renamed the summation indices and in the second
we used symmetry of the mixed partial derivatives. This expression vanishes since
Σij = −Σji. There are two similar pairs whose sum is also 0 by the same argument.
Thus, Jacobi’s identity holds.

Now we shall prove that πΣ0 : (T ∗TQ, { , }) → (T ∗Q, { , }Σ0) is a Poisson map.
Let f, g : T ∗Q → R and denote by (qi, δqi, pi, δpi) the canonical coordinates on
T ∗TQ. By definition of pull-back and the map πΣ0 we have

(
πΣ0

)∗
f(qi, δqi, pi, δpi) = f

(
qi, δpi −

1
2
Σjiδq

j

)
.
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Therefore, by the chain rule, we have the following identities:

∂
(
πΣ0

)∗
f

∂qi
=

∂f

∂qi
− 1

2
∂f

∂pj

∂Σkj

∂qi
δqk,

∂
(
πΣ0

)∗
f

∂(δq)i
= −1

2
Σik

∂f

∂pk
,

∂
(
πΣ0

)∗
f

∂pi
= 0,

∂f

∂(δp)i
=

∂f

∂pi

where the right hand sides are evaluated at the point
(
qi, δpi − 1

2Σjiδq
j
)
. Therefore,

the canonical Poisson bracket of
(
πΣ0

)∗
f and

(
πΣ0

)∗
g is given by

{
(
πΣ0

)∗
f,

(
πΣ0

)∗
g} =

∂
(
πΣ0

)∗
f

∂qi

∂
(
πΣ0

)∗
g

∂pi
+

∂
(
πΣ0

)∗
f

∂(δq)i

∂
(
πΣ0

)∗
g

∂(δp)i

− ∂
(
πΣ0

)∗
g

∂qi

∂
(
πΣ0

)∗
f

∂pi
− ∂

(
πΣ0

)∗
g

∂(δq)i

∂
(
πΣ0

)∗
f

∂(δp)i

= −1
2
Σik

∂f

∂pk

∂g

∂pi
+

1
2
Σik

∂g

∂pk

∂f

∂pi

= Σik
∂g

∂pk

∂f

∂pi
=

(
πΣ0

)∗ {f, g}Σ0 .

Uniqueness follows since
(
πΣ0

)∗ is a surjective submersion. �

Proof by Reduction. The strategy of the proof is to reduce the canonical Poisson
structure on T ∗TQ to T ∗Q by means of the map πΣ0 . Let us first recall some general
facts about how one does such a procedure.

To motivate the construction, we note that if π : P → R is a submersive Poisson
map from the Poisson manifold P to the Poisson manifold R, and if f, g ∈ F(P )
are such that for z ∈ P , df(z), dg(z) vanish on kerTπ(z), then d {f, g} (z) vanishes
on kerTπ(z) as well. In fact, the condition on a one-form α ∈ T ∗

z P needed for it to
push down to a well defined one-form at π(z) ∈ R is precisely that α vanish on the
kernel of Tzπ.

Now suppose that we want R to inherit a Poisson structure from P . The condi-
tion needed for the Poisson structure to push down from P to R under a submersion
f : P → R is exactly that if f, g ∈ F(P ) are such that for z ∈ P , df(z), dg(z) vanish
on kerTπ(z), then d {f, g} (z) vanishes on kerTπ(z). If this condition holds, then it
is a straightforward procedure to compute the reduced bracket on R, as in the last
part of the preceding proof. This technique has been developed in a more general
context by Marsden and Ratiu [1986] and has been used in interesting ways in the
study of integrable systems (see, for instance Pedroni [1995]).

In our case, consider the foliation of T ∗TQ whose leaves are the level sets of
the map πΣ0 . To establish the theorem it is enough to show that for all functions
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f, g : T ∗TQ → R, the condition df | kerTπΣ0 = 0 and dg| kerTπΣ0 = 0 implies
d{f, g}| kerTπΣ0 = 0. Differentiating along a curve (qi(t), δqi(t)), we find that

d

dt

∣∣∣∣
t=0

Σij(q)δqi =
∂Σij(q)

∂qk
q̇kδqi + Σij(q) ˙δqi.

It follows that the tangent of the map πΣ0 is given by

TπΣ0(qi, δqi, pi, δpi, q̇, ˙δqi, ṗi, δ̇pi)

=
(

qj , δpj −
1
2
Σij(q)δqi, q̇j , ˙δpj −

1
2

(
∂Σij(q)

∂qk
q̇kδqi + Σij(q) ˙δqi

))
.

Thus, a typical tangent vector (qi, δqi, pi, δpi, q̇, δ̇q
i
, ṗi, δ̇pi) to the foliation can be

written in the form (
qi, δqi, pi, δpi, 0, ˙δqi, ṗi,

1
2
Σij(q) ˙δqi

)
.

From this it follows that, for a given f(qi, δqi, pi, δpi), the condition

df(qi, δqi, pi, δpi) ·
(

0, δ̇q
i
, ṗi,

1
2
Σij(q) ˙δqi

)
= 0

is equivalent to

∂f

∂pi
= 0 (2.8)

∂f

∂δqi
+

1
2

∂f

∂δpj
Σij(q) = 0. (2.9)

Assume that f and g satisfy (2.8) and (2.9). We must show that the canonical
Poisson bracket on T ∗TQ given by

{f, g} =
∂f

∂qi

∂g

∂pi
+

∂f

∂δqi

∂g

∂δpi
−

(
∂g

∂qi

∂f

∂pi
+

∂g

∂δqi

∂f

∂δpi

)

also satisfies (2.8) and (2.9). One can easily check that if both f and g satisfy (2.8)
and (2.9), then

{f, g} =
1
2
Σij(q)

(
− ∂f

∂δpj

∂g

∂δpi

)
+

1
2
Σij(q)

∂g

∂δpj

∂f

∂δpi

= Σij(q)
∂f

∂δpi

∂g

∂δpj
.

Using this expression it follows directly that (2.8) holds for {f, g}, that is,

∂{f, g}
∂pi

= 0.
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It remains to show that (2.9) holds for {f, g}, that is,

∂

∂δqi
Σlk(q)

∂f

∂δpl

∂g

∂δpk
+

1
2
Σij(q)

∂

∂δpj
Σlk(q)

∂f

∂δpl

∂g

∂δpk
= 0

Let us write, for short,

∂

∂δqi
Σlk(q)

∂f

∂δpl

∂g

∂δpk
= αi

and
1
2
Σij(q)

∂

∂δpj
Σlk(q)

∂f

∂δpl

∂g

∂δpk
= βi.

The kth-components of α and β are

αk =
∂

∂δqk
Σij(q)

(
∂f

∂δpi

∂g

∂δpj

)

= Σij
∂2f

∂δqk∂δpi

∂g

∂δpj
+ Σij

∂f

∂δpi

∂2g

∂δqk∂δpj

and

βk =
1
2
Σkl(q)

(
∂

∂δpl

(
Σij

∂f

∂δpi

∂g

∂δpj

))

=
1
2
Σkl(q)

(
Σij

∂2f

∂δpl∂δpi

∂g

∂δpj

)
+

1
2
Σkl(q)

(
Σij

∂f

∂δpi

∂2g

∂δpl∂δpj

)
.

We have, by (2.9)
∂2f

∂δpi∂δqk
=

1
2
Σlk

∂2f

∂δpi∂δpl

and, similarly,
∂2g

∂δpi∂δqk
=

1
2
Σlk

∂2g

∂δpi∂δpl
.

Replacing these expressions for ∂2f/∂δpi∂δqk and ∂2g/∂δpi∂δqk in the expression
of αk it follows that αk + βk = 0. �

3 Compatible Brackets

Recall (see, for instance, Marsden and Weinstein [1983]2 or Marsden and Ratiu
[1999]) that if g is a Lie algebra, its dual g∗ is a Poisson manifold relative to the
Lie-Poisson bracket

{f, g}(µ) =
〈

µ,

[
δf

δµ
,
δg

δµ

]〉
, (3.1)

where f, g : g∗ → R, µ ∈ g∗, and 〈 , 〉 : g∗ × g → R denotes the canonical pairing
between the Lie algebra and its dual. We now prove that the Lie-Poisson and the
momentum Σ-bracket are compatible exactly when Σ is a cocycle.

2Historical note: This is the paper that first proposed the name “Lie Poisson brackets”, which
is now in common use.
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Theorem 3.1. Let g be a Lie algebra and Σ : g×g → R be a bilinear skew-symmetric
map. For f, g : g∗ → R, the Lie-Poisson bracket and the Σ–bracket are compatible,
that is,

{f, g}Σ := {f, g} + {f, g}Σ

is also a Poisson bracket on g∗, if and only if Σ is a two-cocycle, that is, Σ satisfies
the identity

Σ([ξ, η], ζ) + Σ([η, ζ], ξ) + Σ([ζ, ξ], η) = 0 for all ξ, η, ζ ∈ g. (3.2)

Remarks.
1. As an important special case of a cocycle Σ, one can take an arbitrary coboundary,
which is also known as the modified or constant Lie-Poisson bracket; that is,
for each given ν ∈ g∗ define

Σν(ξ, η) = 〈ν, [ξ, η]〉, ξ, η ∈ g

and consider the associated Poisson bracket { , }Σν . This Poisson bracket appears in
connection with several integrable systems and gives rise, via the associated recur-
sion operator, to the commuting integrals of motion (see, for instance Ratiu [1980]
for details).

2. In Libermann and Marle [1987], page 213 (chapter IV, Section 5.1, of the 1987
translation), there is a note on the sum of the canonical bracket on the dual of a Lie
algebra plus a cocycle bracket which gives essentially the content of the preceding
theorem. However, we give very direct proofs and, in addition, we give a more
general version, not only because we do it in infinite dimensions, but also because of
the more general Theorem 3.3 that follows of which Theorem 3.1 is a special case.

There are three interesting ways to prove the preceding theorem.

Coordinate Proof. Let {ξ1, . . . , ξn} be a basis of the Lie algebra g and denote by
Ck

ij the structure constants, that is, Ck
ij are defined by

[ξi, ξj ] = Ck
ijξk.

The Jacobi identity for the Lie bracket is equivalent to

Cs
irC

r
jk + Cs

jrC
r
ki + Cs

krC
r
ij = 0 (3.3)

for all i, j, k, s = 1, . . . , n. The Lie-Poisson bracket has the coordinate expression

{f, g}(µ) =
〈

µ,

[
δf

δµ
,
δg

δµ

]〉
= µkC

k
ij

∂f

∂µi

∂g

∂µj
,

where µ = µiξ
i and {ξ1, . . . , ξn} is the dual basis of {ξ1, . . . , ξn} in g∗.

The momentum Σ-bracket has the coordinate expression

{f, g}Σ(µ) = Σij
∂f

∂µi

∂g

∂µj
,
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where, as before, Σ = Σijξ
i⊗ξj (with a sum over all i, j). Therefore, the coordinate

expression of the sum bracket is

{f, g}Σ(µ) =
(
µkC

k
ij + Σij

) ∂f

∂µi

∂g

∂µj
.

Recall that (1.2) shows how to express the Jacobi identity on a Poisson manifold
(P, { , }) in terms of the components of the Poisson tensor. For our case, the quantity
we must show vanishes for the validity of the Jacobi identity, is

(µsC
s
ir + Σir)

∂

∂µr

(
µsC

s
jk + Σjk

)
+

(
µsC

s
jr + Σjr

) ∂

∂µr
(µsC

s
ki + Σki)

+ (µsC
s
kr + Σkr)

∂

∂µr

(
µsC

s
ij + Σij

)
= (µsC

s
ir + Σir)Cr

jk +
(
µsC

s
jr + Σjr

)
Cr

ki + (µsC
s
kr + Σkr)Cr

ij

= µs

(
Cs

irC
r
jk + Cs

jrC
r
ki + Cs

krC
r
ij

)
+ ΣirC

r
jk + ΣjrC

r
ki + ΣkrC

r
ij .

The term
(
Cs

irC
r
jk + Cs

jrC
r
ki + Cs

krC
r
ij

)
vanishes by (3.3). The rest vanishes if and

only if the cocycle identity (3.2) holds, since

Σ(η, [ζ, θ]) = Σ(ηiξi, C
r
jkζ

jθkξr) = ΣirC
r
jkη

iζjθk,

for η, ζ, θ ∈ g. �

Direct Proof. To show that the two Poisson brackets are compatible we must
establish Jacobi’s identity, so we proceed to a direct computation of the term

{{f, g}Σ, h}Σ = {{f, g}, h} + {{f, g}Σ, h} + {{f, g}, h}Σ + {{f, g}Σ, h}Σ .

The sum of the first term and the other two obtained by circular permutations of
(f, g, h) vanishes because the Lie-Poisson bracket satisfies the Jacobi identity. The
same is true for the last term because the Σ–bracket satisfies the Jacobi identity, as
we have already proved. To compute the two cross terms we shall need the following
formula which is readily checked:

δ

δµ
{f, g}(µ) =

[
δf

δµ
,
δg

δµ

]
− D2f(µ)

(
ad∗

δg/δµ µ, ·
)

+ D2g(µ)
(
ad∗

δf/δµ µ, ·
)

. (3.4)
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Therefore, using (2.6) and (3.4) yields

{{f, g}Σ, h}(µ) + {{f, g}, h}Σ(µ)

=
〈

µ,

[
δ

δµ
{f, g}Σ ,

δh

δµ

]〉
+ Σ

(
δ

δµ
{f, g}, δh

δµ

)

= −
〈

ad∗
δh/δµ µ ,

δ

δµ
{f, g}Σ

〉
−

〈
Σ�

(
δh

δµ

)
,

δ

δµ
{f, g}

〉

= D2f(µ)
(

Σ�

(
δg

δµ

)
, ad∗

δh/δµ µ

)
− D2g(µ)

(
Σ�

(
δf

δµ

)
, ad∗

δh/δµ µ

)

+ Σ
([

δf

δµ
,
δg

δµ

]
,
δh

δµ

)

+ D2f(µ)
(

ad∗
δg/δµ µ, Σ�

(
δh

δµ

))
− D2g(µ)

(
ad∗

δf/δµ µ, Σ�

(
δh

δµ

))
.

The sum of the four terms involving second derivatives and the terms obtained by
circular permutations of (f, g, h) vanishes in view of the symmetry of the second
derivatives.

The sum of the third term and those obtained by circular permutations of (f, g, h)
vanishes if and only if the cocycle identity (3.2) holds. �

Reduction Proof. This will be discussed after we prove the more general Theo-
rem 3.3.

Affine Poisson Structures. The following calculations are similar to some of the
previous coordinate calculations, but reveal that, instead of dealing with the dual
of a Lie algebra, which is a Poisson manifold on a vector space in which the Poisson
tensor depends linearly on µ ∈ g∗, one can as well start with a slightly more general
situation, in which the bracket depends affinely on µ.

Let (M, { , }) be a Poisson manifold and assume for the moment that M is a
vector space. The Poisson structure { , } defines a tensor field C ∈ T 2

0 (M) such that,
for any given f, g ∈ F(M), (1.1) is satisfied. Let us choose linear coordinates xi on
M , where i = 1, ..., m and m is the dimension of M . Then the Poisson structure is
written as follows

{f, g} = Cij ∂f

∂xi

∂g

∂xj

where Cij are the components of C in the chosen coordinate system. An immediate
corollary of (1.2), which we have already utilized, is that for any skew-symmetric
constant tensor C ∈ T 2

0 (M) the structure on M defined by (1.1) defines a Poisson
bracket.

Now let us consider a skew-symmetric tensor field C ∈ T 2
0 (M) depending linearly

on x, that is,

C = Csx
s (3.5)
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Then the Jacobi identity (1.2) becomes

xs(Cir
s Cjk

r + Cjr
s Cki

r + Ckr
s Cij

r ) = 0 (3.6)

By differentiation with respect to xs we obtain the equivalent condition

Cir
s Cjk

r + Cjr
s Cki

r + Ckr
s Cij

r = 0, (3.7)

which, of course, coincides with (3.3). Let a ∈ M be fixed and consider the constant
Poisson structure C(a) = Csa

s. Then consider the structure C + C(a), whose
components are Cij + Cij(a) = (xs + as)Cij

s . The Jacobi identity (1.2) becomes

(xs + as)(Cir
s Cjk

r + Cjr
s Cki

r + Ckr
s Cij

r ) = 0 (3.8)

which is satisfied because of (3.7). We have therefore proven that C + C(a) is a
Poisson structure that depends affinely on x ∈ M .

Example. Let M = g∗, where g is a Lie algebra. Then, as we have remarked
already above, the Lie-Poisson bracket is given by

{f, g} =
〈

µ,

[
δf

δµ
,
δg

δµ

]〉
= µkC

k
ij

∂f

∂µi

∂g

∂µj
, (3.9)

where Ck
ij are the structure constants of the Lie algebra g, which depends linearly

on µ. From the previous results we can conclude that, for any µ0, the expression

{f, g} =
〈

µ,

[
δf

δµ
,
δg

δµ

]〉
+

〈
µ0,

[
δf

δµ
,
δg

δµ

]〉
(3.10)

defines a Poisson bracket.
We must remark that any linear Poisson structure on a vector space, in the sense

of (3.5), comes from a Lie algebra structure on the dual of the vector space.
This discussion proves the following theorem.

Theorem 3.2. If C is a Poisson structure on the vector space M that depends
linearly on x and if a ∈ M is fixed then C + C(a) is a Poisson structure.

Compatibility of brackets on T ∗Q. Now we shall prove the following theorem,
from which Theorem 3.1 can be deduced by reduction, as we will show in a moment.

Theorem 3.3. Let Q be a manifold and Σ0 a two-form on Q. The bracket

{ , }Σ0 = { , }0 + { , }Σ0

on T ∗Q, where { , }0 is the canonical Poisson bracket and where { , }Σ0 is the bracket
defined in Theorem 2.6, satisfies the Jacobi identity if and only if Σ0 is closed.



4 Spin Glasses 18

Proof. By working in a canonical (Darboux) chart, we can assume without loss of
generality that Q is an open subset of R

n. A point of T ∗Q is denoted in the usual way
as (q, p) = (q1, ..., qn, p1, ..., pn). However, in order to use the notation introduced in
the previous paragraph, we shall denote (q1, ..., qn, p1, ..., pn) ≡ (x1, ..., xn, ..., x2n).

The canonical Poisson structure on T ∗Q is given by the constant tensor field
defined by Cij

0 = −δi,j−n if j > n, Cij
0 = δi−n,j if i > n, and Cij

0 = 0 otherwise.
Now let Σ0 be a two-form on Q. Then we have the bracket {F, K}Σ0

defined in
Theorem 2.6, whose associated tensor field, using the notation xi instead of qi or pi

for the coordinates of a point of T ∗Q, is given by Cij
Σ = 2Σi−n,j−n if i > n and j > n;

Cij
Σ = 0, otherwise. Define the tensor field Cij = Cij

0 + Cij
Σ . It is antisymmetric

because Cij
0 and Cij

Σ are antisymmetric. Now let us see which condition Σ0 must
satisfy in order for Cij to be the associated tensor field to a Poisson bracket. This
can be achieved using the coordinate expression of the Jacobi identity (1.2). Taking
into account that Cij

Σ satisfies the Jacobi identity and the fact that the tensor field
Cij

0 is constant, it can be easily shown that the Jacobi identity reduces to

Cir
0

∂Cjk
Σ

∂xr
+ Cjr

0

∂Cki
Σ

∂xr
+ Ckr

0

∂Cij
Σ

∂xr
= 0, (3.11)

from which, using the special form of Cij
0 , one can easily deduce the equivalent

condition

∂Σjk

∂qi
+

∂Σki

∂qj
+

∂Σij

∂qk
= 0. (3.12)

This last identity simply states that dΣ0 = 0, that is, Σ0 is a closed two-form. �

Proof of Theorem 3.1 by Reduction. If Q ≡ G is a Lie group and Σ0 is a left-
invariant closed two-form on G, then { , }Σ0 is a Poisson bracket on T ∗G if and only
if Σ0 is closed, which is equivalent to the statement that the restriction Σ of Σ0 to
the Lie algebra g of G is a 2-cocycle. (This is easily seen by writing the standard
formula for the three form dΣ0 acting on three left invariant vector fields as a sum
of six terms. Three of these vanish by left invariance and the remaining terms are
the terms that are involved in the cocycle identity). From this and the previous
theorem we obtain easily a proof of Theorem 3.1, by reduction. �

4 Spin Glasses

Holm and Kupershmidt [1988] show that the evolution equations for spin glasses is
governed by an affine bracket on the dual of a Lie algebra. Formula (2.26a) of that
article gives

∂t




Pi

ρ

Gα

Aα
i


 = −




Pk∂i + ∂kPi ρ∂i Gβ∂i ∂kA
β
i − Aβ

k,i

∂kρ 0 0 0
∂kGα 0 tγαβGγ δβ

α∂k + tβαγAγ
k

Aα
k∂i + Aα

i,k 0 δα
β ∂i + tαβγAγ

i 0







δH/δPk

δH/δρ

δH/δGβ

δH/δAβ
k


 .
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The Hamiltonian matrix in this equation is given by the Lie-Poisson structure on
the dual of the Lie algebra X �

(
Λ0 ⊕

((
Λ0 ⊗ g

)
�

(
Λn−1 ⊗ g∗

)))
augmented by a

two-cocycle. We shall show below how this bracket is obtained as a corollary of
Theorem 3.1 and in the process introduce the dynamic variables and explain the
above notation.

Consider two Lie algebras a, b and a vector space U. Assume that U is a rep-
resentation space for a and that a acts on b, as a Lie algebra, i.e. there is a Lie
algebra homomorphism a → Der (b) , where Der b denotes the derivations of the Lie
algebra b. Consider U ⊕ b as a direct sum of Lie algebras, U with the trivial Lie
algebra structure. Then the diagonal action of a on U ⊕ b is a Lie algebra action of
a on U ⊕ b and one can form the semidirect product Lie algebra a � (U ⊕ b) whose
bracket is given by

[(ξ1, u1, η1), (ξ2, u2, η2)] = ([ξ1, ξ2], ξ1 · u2 − ξ2 · u1, ξ1 · η2 − ξ2 · η1 + [η1, η2]) , (4.1)

for ξi ∈ a, ηi ∈ b and ui ∈ U.
Now let us assume that b = c � W, for c a Lie algebra and W a representation

space of c. In addition, assume that a acts on c as a Lie algebra, that W is also an
a-module, and that these three actions are compatible in the sense that the following
identity holds

ξ · (σ · w) = (ξ · σ) · w + σ · (ξ · w)

for ξ ∈ a, σ ∈ c and w ∈ W. Then the diagonal action of a on c � W, given by
ξ · (σ, w) = (ξ · σ, ξ · w), ξ ∈ a, σ ∈ c, and w ∈ W, is a Lie algebra action of a on
c � W. Then, taking in (4.1) b = c � W, we get

[(ξ1, u1, σ1, w1), (ξ1, u1, σ1, w1)]
= ([ξ1, ξ2], ξ1 · u2 − ξ2 · u1, ξ1 · σ2 − ξ2 · σ1 + [σ1, σ2],

ξ1 · w2 − ξ2 · w1 + σ1 · w2 − σ2 · w1) . (4.2)

As a particular case, we shall take

• a = X(Rn), the Lie algebra of all vector fields on R
n,

• W = Ω⊗V, where Ω is the space of all tensor fields on R
n of a given type and

V is a given vector space,

• c = Λ0 ⊗ g, where Λ0 denotes the space of smooth functions in R
n and g is a

given finite dimensional Lie algebra, with bracket

[(f1 ⊗ ξ1), (f2 ⊗ ξ2)] = f1f2 ⊗ [ξ1, ξ2],

for fi ∈ Λ0 and ξi ∈ g, i = 1, 2.

In addition, we assume that the a-representation on W is given by

X · (ω ⊗ v) = £Xω ⊗ v,
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for X ∈ X(Rn), ω ∈ Ω, v ∈ V and where £ denotes the Lie derivative. The Lie
algebra action of a on c is given by

X · (f ⊗ ξ) = £Xf ⊗ ξ,

for X ∈ X(Rn), f ∈ Λ0, ξ ∈ g. The c-representation on W is given by

(f ⊗ ξ) · (ω ⊗ v) = fω ⊗ ξ · v

for ξ ∈ g, f ∈ Λ0, v ∈ V, ω ∈ Ω. Using the derivation property of the Lie derivative,
a direct verification shows that the compatibility identity (4.2), which in this case
becomes

X · ((f ⊗ ξ) · (ω ⊗ v)) = (X · (f ⊗ ξ)) · (ω ⊗ v) + (f ⊗ ξ) · (X · (ω ⊗ v)) ,

is satisfied. Therefore, we can form the semidirect product Lie algebra

X(Rn)�
[
Λ0 ⊕

(
(Λ0 ⊗ g)� (Ω ⊗ V )

)]
whose bracket is thus given by

[(X1, g1, f1 ⊗ ξ1, ω1 ⊗ v1), (X2, g2, f2 ⊗ ξ2, ω2 ⊗ v2)]
= ([X1, X2], £X1g2 − £X2g1, £X1f2 ⊗ ξ2 − £X2f1 ⊗ ξ1 + f1f2 ⊗ [ξ1, ξ2],

£X1ω2 ⊗ v2 − £X2ω1 ⊗ v1 + f1ω2 ⊗ ξ1 · v2 − f2ω1 ⊗ ξ2 · v1) . (4.3)

This Lie algebra bracket coincides with the one given by formula (3.3) in Holm and
Kupershmidt [1988].

If V = g∗, Ω = Λn−1(Rn), the space of (n− 1)-forms on R
n, and the representa-

tion of g on g∗ is the coadjoint representation ξ · µ = − ad∗
ξ µ, for ξ ∈ g and µ ∈ g∗,

then the dual of the Lie algebra above is the phase space of spin glasses. Let us
denote the variables in(

X(Rn)�
[
Λ0 ⊕

(
(Λ0 ⊕ g)� (Λn−1 ⊗ g∗)

)])∗ = Λ1 × Λn × (Λn ⊗ g∗) × (Λ1 ⊗ g)

by (P, ρ,G, A); here, Λk denotes the space of k-forms on R
n. In coordinates, Pi is

dual to Xi, ρ is dual to 1 ∈ Λ0, Gα is dual to 1 ⊗ eα, where eα is a basis of g∗, Aα
i

is dual to (∂i dnx) ⊗ eα ∈ Λn−1 ⊗ g∗.
Consider the skew symmetric bilinear map given by

Σ ((X1, g1, f1 ⊗ ξ1, ω1 ⊗ µ1), (X2, g2, f1 ⊗ ξ2, ω2 ⊗ µ2))

=
∫

(df1 ∧ ω2)〈µ2, ξ1〉 − (df2 ∧ ω1)〈µ1, ξ2〉. (4.4)

A direct verification, using the Stokes theorem and the usual exterior differential
calculus, shows that Σ satisfies the cocycle identity, which in this case comes down
to proving that the sum of all cyclic permutations of

Σ
(
([X1, X2], X1[g2] − X2[g1], X1[f2] ⊗ ξ2 − X2[f1] ⊗ ξ1 + f1f2[ξ1, ξ2],

£X1ω2 ⊗ µ2 − £X2ω1 ⊗ µ1 + f1ω2 ⊗ ξ1 · µ2 − f2ω1 ⊗ ξ2 · µ1) ,

(X3, g3, f3 ⊗ ξ3, ω3 ⊗ µ3)
)
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is zero. An alternative way to express (4.4) is the following

Σ ((X1, g1, f1 ⊗ ξ1, ω1 ⊗ µ1), (X2, g2, f2 ⊗ ξ2, ω2 ⊗ µ2))

=
∫ (

(∂kω
k
1 )f2〈µ1, ξ2〉 + (∂if1)ωi

2〈µ2, ξ1〉
)

dnx,

which gives

Σ�(X, g, f ⊗ ξ, ω ⊗ µ) =




0 0 0 0
0 0 0 0
0 0 0 δβ

α∂k

0 0 δα
β ∂i 0







Xi

g

fξβ

ωkµβ


 =




0
0

∂kω
kµα

(∂if)ξα.




Applying Theorem 3.1 it follows that the bracket given by the operator matrix

−




Pk∂i + ∂kPi ρ∂i Gβ∂i ∂kA
β
i − Aβ

k,i

∂kρ 0 0 0
∂kGα 0 tγαβGγ δβ

α∂k + tβαγAγ
k

Aα
k∂i + Aα

i,k 0 δα
β ∂i + tαβγAγ

i 0


 ,

which coincides with the Hamiltonian matrix in formula (2.26a) of Holm and Ku-
pershmidt [1988], defines a Poisson bracket.

Conclusions. In this paper we have given a glimpse at a possible connection of
constructions of Poisson brackets with cocycles and brackets that one finds in the
theory of complex fluids. We explicitly considered one example, namely that of
spin glasses, following Holm and Kupershmidt [1988], but the approach hopefully is
generalizable to other systems, such as those found in Holm [2002]. One of the longer
term objectives of this endeavor would be to gain a deeper insight into the origins
of cocycles. One approach to this is an algebraic one developed by Kuperschmidt
[1985], but another, as mentioned earlier, is to view cocycles as magnetic terms that
arise by reduction as the curvature of a connection. For example, the Bott-two
cocycle can be viewed as arising this way and there is a rather general approach to
this theory on both the Hamiltonian and Lagrangian sides, as shown in Marsden,
Misiolek, Ortega, Perlmutter, and Ratiu [2002] and Cendra, Marsden, and Ratiu
[2001a] respectively. We hope to pursue this line of thinking in the future as well as
making links with multisymplectic geometry and reduction.
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