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Abstract— Matching techniques are applied to the problem
of stabilization of uniformly accelerated motions of mechanical
systems with symmetry. The theory is illustrated with a simple
model—a wheel and pendulum system.

I. INTRODUCTION

In this paper we apply the method of controlled La-
grangians to the problem of stabilization of accelerated
motions of Lagrangian mechanical systems with symme-
try. The method of controlled Lagrangians for stabilization
of relative equilibria (steady state motions) originated in
Bloch, Leonard, and Marsden [4] and was then developed
in Auckly [1], Bloch, Leonard, and Marsden [5], [6], [7],
Bloch, Chang, Leonard, and Marsden [8], and Hamberg
[10], [11]. A similar approach for Hamiltonian controlled
systems was introduced and further studied in the work of
Blankenstein, Ortega, van der Schaft, Maschke and Spong
and their collaborators (see [2], [14], [15], [16]) and the two
methods were shown to be equivalent in [9]. A nonholonomic
version of the method of controlled Lagrangians was studied
in [3], [17], [18].

According to the method of controlled Lagrangians, the
original controlled system is represented as a new, uncon-
trolled Lagrangian system for a suitable controlled Lagran-
gian. The energy associated with this controlled Lagrangian
is designed to be positive or negative definite at the (relative)
equilibrium to be stabilized. The time-invariant feedback con-
trol law is obtained from the equivalence requirement for the
new and old systems of equations of motion. If asymptotic
stabilization is desired, dissipation emulating terms are added
to the control input.

In Bloch, Chang, Leonard, and Marsden [8], the problem
of tracking was briefly discussed and, based on some nu-
merical evidence and the study of some simple cases, it was
proposed that tracking problems could be studied by means
of the method of controlled Lagrangians. The idea is to create
a time-dependent function that has a minimum at the point
one wishes to track. The goal of the present paper is, in
fact, to study the stabilization of a certain class of motions
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of mechanical systems with symmetry, which one may view
as a special case of the general tracking problem. Assuming
that the symmetry group is commutative, one can represent
motions for which the component of acceleration in the group
direction is constant as equilibria of the reduced system.
Stabilization of such equilibria will thus produce orbitally
stable accelerated trajectories.

In this paper we suggest a stabilization strategy using the
framework of time-dependent Lagrangians. We expect this
method to be applicable to more general tracking problems.
In particular, we anticipate implementing our approach in
problems of simultaneous tracking of a given trajectory in
the symmetry group and stabilizing of an appropriate shape
equilibrium.

The paper is organized as follows: In Section II we intro-
duce a simple mechanical example—a wheel coupled with a
pendulum—that demonstrates unstable accelerated dynamics.
The main results are presented in Sections III and IV. In
Section III we study a class of time-dependent Lagrangians
with uniformly accelerated group dynamics represented by
relative equilibria. We also discuss an energy-based stability
analysis for these relative equilibria. In Section IV we derive
the matching conditions and then illustrate the theory using
the wheel and pendulum system.

In a future publication we intend to treat systems with
noncommutative symmetry as well as systems with nonholo-
nomic constraints.

II. THE MECHANICAL EXAMPLE

Consider a homogeneous vertical disk that is rolling with-
out slipping along a horizontal straight line. A pendulum
is attached to the center of the disk. The configuration
coordinates are the angles (θ, φ); note that φ is measured
from the rod. See Fig. 1 for details. This system is SO(2)-
invariant; the group action is given by φ 7→ φ + α. See [12]
and [13] for details about symmetry in mechanics.

We use the following notation for the parameters of the
system:

M = the mass of the disk,

R = the radius of the disk,
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Fig. 1. The disk with inverted pendulum.

A = the principal moment of inertia of the disk,

l = the rod length,

m = the bob mass.

The kinetic energy of this system is

K =
1

2

(
A(θ)θ̇2 + 2B(θ)θ̇φ̇ + Cφ̇2

)
,

where

A = A + MR2 + m(R2 + 2Rl cos θ + l2),

B = A + MR2 + m(R2 + Rl cos θ),

C = A + MR2 + mR2.

The potential energy is

V (θ) = mgl cos θ.

The Lagrangian equals the kinetic minus potential energy,
K−V . To simplify the exposition, we divide the Lagrangian
by C, i.e., we put

l(θ, θ̇, φ̇) =
1

2

(
α(θ)θ̇2 + 2β(θ)θ̇φ̇ + φ̇2

)
− U(θ),

where

α(θ) = A(θ)/C, β(θ) = B(θ)/C, U(θ) = V (θ)/C.

Assume there is a constant torque k applied to the disk.
The equations of motion are

d

dt

∂l

∂θ̇
=

∂l

∂θ
,

d

dt

∂l

∂φ̇
= k.

This dynamics can be rewritten in the form of the Euler–
Lagrange equations

d

dt

∂L

∂θ̇
=

∂L

∂θ
,

d

dt

∂L

∂φ̇
= 0

if a new, time-dependent Lagrangian

L(θ, θ̇, φ̇, t) = l(θ, θ̇, φ̇) − kφ̇t

is used instead of l(θ, θ̇, φ̇).
One can check that the system performs the uniformly

accelerated motion

θ = θ0, φ̈ = φ̈0 (1)

if k and θ0 satisfy the condition

kβ(θ0) + U ′(θ0) = 0.

The value of φ̈ for such a motion is k. Straightforward
computations confirm spectral instability of (1). Below we
discuss how to design a torque actuator that stabilizes (1)
with respect to θ.

III. TIME-DEPENDENT LAGRANGIANS AND
ACCELERATED DYNAMICS

A. Accelerated Motions
Consider the following class of moving system La-

grangians:

L(r, ṙ, ṡ, t) =
1

2

(
gαβ(r)ṙα ṙβ + 2gαa(r)ṙα ṡa + δabṡ

aṡb
)

+ (aα(r)ṙα + ba(r)ṡa)t − U(rα). (2)

See [13] for details about moving systems.
Here and below α, β, γ, . . . = 1, . . . , m and a, b, c, . . . =

1, . . . , n, and summation over repeated indices is understood.
Remark. The variables s are cyclic. Without loss of gen-

erality, we assume that the quadratic form obtained from the
kinetic energy of the system by setting ṙα = 0 is 1

2
δabṡ

aṡb.
(One can find an r-dependent basis in the commutative Lie
algebra R

n that takes any positive-definite quadratic form
gab(r)ṡ

aṡb to its canonical form δabṡ
aṡb.)

We intend to study here accelerated motions of the form

r = r0, s̈ = s̈0. (3)

The forces and/or torques that influence such motions are
produced by the time-dependent terms in the Lagrangian.

The dynamics is governed by the Euler–Lagrange equa-
tions

d

dt

∂L

∂ṙα
=

∂L

∂rα
,

d

dt

∂L

∂ṡa
= 0

or

gαβ r̈β + gαas̈a =

(
1

2

∂gβγ

∂rα
− ∂gαβ

∂rγ

)
ṙβ ṙγ

+

(
∂gβa

∂rα
− ∂gαa

∂rβ

)
ṙβ ṡa

+

(
∂aβ

∂rα
− ∂aα

∂rβ

)
tṙβ

+
∂ba

∂rα
tṡa − aα(r) − ∂U

∂ra
, (4)

gαaṙα + δabṡ
b + bat = pa. (5)

Equation (5) represents the momentum conservation law.



Substituting (3) in (4) and (5), we obtain

ṡa = δab(pb − bb(r0)t),

s̈a
0

= −δabbb(r0),

−gαa(r0)δ
abbb(r0) =

∂ba

∂rα
δab(pb − bb(r0)t)t

− aα(r0) −
∂U

∂rα
.

The last equation implies

∂ba

∂rα
(r0) = 0.

The latter can be satisfied by setting ba(r) = −ka = const,
which is assumed in the rest of the paper. The accelerated
motions become

r = r0, s̈a = ka, (6)

where r0 is determined from

gαa(r0)δ
abkb + aα(r0) +

∂U

∂rα
(r0) = 0.

Assuming that (6) is unstable, we impose a control input
u in the group direction in order to stabilize (6) with respect
to the shape variable r.

B. Reduced Dynamics and Stability Analysis
Recall that ba(r) = −ka. Since sa are cyclic variables, the

reduced dynamics is

d

dt

∂R

∂ṙα
=

∂R

∂rα
, (7)

where the Routhian R is

R(rα, ṙα, pa, t) =
1

2

(
gαβ − δabgαagβb

)
ṙαṙβ

+
(
δabgαa(pb + kbt) + aαt

)
ṙα

− 1

2

∑

a

(pa + kat)2 − U. (8)

Since pa are the flow-invariant cyclic momenta, the terms
1

2

∑
a(pa + kat)2 in the Routhian are independent of the

reduced phase variables and thus can be safely omitted. This
is assumed in the rest of the paper. The partial derivatives of
the Routhian are computed below:

∂R

∂ṙα
=

(
gαβ − δabgαagβb

)
ṙβ

+ δabgαapb + (aα(r) + δabgαabb)t,

∂R

∂rα
=

1

2

∂

∂rα

(
gβγ − δbcgβbgγc

)
ṙβ ṙγ

+
∂

∂rα

(
δabgβb(pa + kat) + aβt

)
ṙβ − ∂U

∂rα
.

The equilibria of (7) correspond to the accelerated motions
(6). The accelerated motions are orbitally stable if the equi-
libria of the reduced system (7) are stable.

The reduced energy associated with (8) is

E = ṙα ∂R

∂ṙα
− R =

1

2

(
gαβ − δabgαagβb

)
ṙαṙβ + U.

Its flow derivative Ė equals

−(aα + δabgαakb)ṙ
α.

Assuming that the one-form

(aα + δabgαakb) drα

is closed, define the modified energy by

E = E +

∫
(aα + δabgαakb) drα. (9)

The modified energy is flow-invariant and thus can be used
as a Lyapunov function.

IV. MATCHING AND STABILIZATION OF UNIFORMLY
ACCELERATED MOTIONS

A. Matching Conditions

Given the Lagrangian (2), one writes the controlled dy-
namics as

d

dt

∂L

∂ṙα
=

∂L

∂rα
,

d

dt

∂L

∂ṡa
= ua. (10)

Consider the controlled Lagrangian

L̃(r, ṙ, ṡ, t) =
1

2

(
g̃αβ(r)ṙα ṙβ + 2g̃αa(r)ṙ

α ṡa + δabṡ
aṡb

)

+ (ãα(r)ṙα − kaṡa)t − U(rα).

We require that the dynamics determined by L̃,

d

dt

∂L̃

∂ṙα
=

∂L̃

∂rα
,

d

dt

∂L̃

∂ṡa
= 0, (11)

is equivalent to (10); this imposes certain conditions on
the controlled kinetic energy. These are called the matching
conditions. They are specified in Theorem 1 below.

Put

F δ
α = GαβG̃βδ,

where

Gαβ = gαβ − δabgαag̃βb, G̃αβ = g̃αβ − δabg̃αag̃βb.

The matrix G̃αβ is invertible as it represents the controlled
Lagrangian’s reduced kinetic energy metric, which is as-
sumed to be non-degenerate.



Theorem 1: Equations (10) and (11) are equivalent if and
only if

F δ
α

[
1

2

∂g̃βγ

∂rδ
− ∂g̃δβ

∂rγ
+ δabg̃δa

∂g̃βb

∂rγ

]

=
1

2

∂gβγ

∂rα
− ∂gαβ

∂rγ
+ δabgαa

∂g̃βb

∂rγ
,

F δ
α

[
∂g̃βa

∂rδ
− ∂g̃δa

∂rβ

]
=

∂gβa

∂rα
− ∂gαa

∂rβ
,

F δ
α

[
∂ãβ

∂rδ
− ∂ãδ

∂rβ

]
=

∂aβ

∂rα
− ∂aα

∂rβ
,

F δ
α

[
ãδ + δabkbg̃δa +

∂U

∂rδ

]
= aα + αabkbgαa +

∂U

∂rα

and the control inputs are

ua = (gαa − g̃αa)r̈α +
(∂gαa

∂rβ
− ∂g̃αa

∂rβ

)
ṙαṙβ . (12)

Using equations (11), one can eliminate the accelerations
r̈α from the control law (12).

The controlled dynamics is s-invariant, and thus one can
use the modified energy (9) for stability analysis of its relative
equilibria. These relative equilibria represent the accelerated
motions (3). Below we demonstrate this approach using our
mechanical example.

B. Stabilization of the Accelerating Wheel-Pendulum Sys-
tem

1) The Stability Condition: Recall that the Lagrangian has
the following structure:

L =
1

2

(
α(θ)θ̇2 + 2β(r)θ̇φ̇ + φ̇2

)
− kφ̇t − U(θ).

The controlled dynamics is governed by the equations

αθ̈ + βφ̈ +
1

2
α′θ̇2 = −U ′,

βθ̈ + φ̈ + β′θ̇2 = k + u. (13)

Consider the controlled Lagrangian

L̃ =
1

2

(
α̃(θ)θ̇2 + 2β̃(θ)θ̇φ̇ + φ̇2

)
+ ã(θ)θ̇t − kφ̇t − U(θ).

The equations of motion associated with L̃ become

α̃θ̈ + β̃φ̈ +
1

2
α̃′θ̇2 + ã = −U ′,

β̃θ̈ + φ̈ + β̃′θ̇2 = k. (14)

We require that these equations are equivalent to (13). This
equivalence implies the following matching conditions (see
Theorem 1):

α̃′(α − ββ̃) + 2β̃′(−αβ̃ + βα̃) = α′(α̃ − β̃2), (15)

(ã + U ′)(α − ββ̃) − k(−αβ̃ + βα̃) = U ′(α̃ − β̃2). (16)

After β̃ has been chosen, (15) becomes a linear first order
differential equation for α̃. After solving (15), one finds ã that

satisfies (16). The equivalence requirement also determines
the feedback control input u.

We now discuss the conditions for stability of the acceler-
ated motion (1). As before, we discuss stability with respect
to θ.

Using the Routh reduction, one finds the reduced dynamics

d

dt

∂R

∂θ̇
=

∂R

∂θ
,

or, explicitly,

(α̃ − β̃2)θ̈ + (α̃′/2− β̃β̃′)θ̇2 + ã + β̃k = −U ′.

The (time-dependent) Routhian is

R =
1

2
(α̃ − β̃2)θ̇2 + (β̃kt + ãt + β̃p)θ̇ − U.

According to (9),

E(θ, θ̇) =
1

2
(α̃ − β̃2)θ̇2 + U +

∫
(ã + β̃k) dθ. (17)

The relative equilibrium θ = θ0 is stable if E is definite at
(θ0, 0).

We now discuss how one achieves stability. First, we
obtain a new representation of the second matching condition
(16). We have

(ã + U ′)(α − ββ̃) − k(−αβ̃ + βα̃)

= (ã + U ′ + β̃k)(α − ββ̃)

− β̃k(α − ββ̃) − k(−αβ̃ + βα̃)

= (ã + U ′ + β̃k)(α − ββ̃) − βk(α̃ − β̃2)

and thus (16) becomes

(ã + Ũ ′ + β̃k)(α − ββ̃) = (U ′ + βk)(α̃ − β̃2). (18)

At θ = θ0, both U ′ + kβ and ã + U ′ + kβ̃ vanish, and
therefore

(ã′ + U ′′ + β̃′k)(α − ββ̃) = (U ′′ + β′k)(α̃ − β̃2).

Recall that U ′′ + β′k is negative at θ = θ0 and
the stability condition requires that ã′ + U ′′ + β̃′k and
α̃ − β̃2 are of the same sign. The stability condition thus
becomes

α(θ0) − β(θ0)β̃(θ0) < 0. (19)

After choosing β̃ that satisfies (19) one can assign a suitable
initial condition α̃(θ0), find α̃(θ) from (15), and find ã(θ)
from (18). The above procedure determines the controlled
Lagrangian L̃.



2) The Control Input: The equivalence of (13) and (14)
implies that the control input is given by

u =
[(

(α̃ − β̃2)(β′ − β̃′) − (β − β̃)(α̃′/2 − β̃β̃′)
)
θ̇2

− (β − β̃)(ã + β̃k + U ′)
]/

(α̃ − β̃2). (20)

Summarizing, we have:
Theorem 2: If (19) holds for the system (13) and the

control is defined by (20), then the accelerated motion (1)
of the wheel-pendulum system is stable in the orbital sense,
i.e., it is stable with respect to the variables (θ, θ̇, φ̈).

3) The Stability Region: We now demonstrate that the
controller proposed in this paper is capable of producing a
large region of stability. Choose the numerical values of the
parameters of the wheel-pendulum system to be such that

mRl

A + MR2 + mR2
=

1

8
,

ml2

A + MR2 + mR2
=

1

16
,

mgl

A + MR2 + mR2
= 1.

For the motion with the pendulum tilt of θ = π/4 one
computes

φ̈ =
8

8
√

2 + 1
.

The controlled Lagrangian can be evaluated explicitly for
this problem (details are omitted here and will appear in
a future publication). The stability region for the relative
equilibrium θ = π/4, which is the region inside the critical
level of the modified energy (17) is shown in Fig. 2.
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Fig. 2. The stability region for θ = π/4.

V. CONCLUSIONS

This paper has extended matching techniques to tracking
of relative equilibria of a class of time-dependent Lagrangian
dynamical systems as well as developed an energy-based
procedure for stability analysis of these equilibria. Although
the stability analysis proposed here relies on the time-
independence of the modified energy, we expect our approach
to be applicable to more general tracking problems and we
intend to address this issue in a future publication.
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