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Abstract

Given a Hamiltonian system on a fiber bundle, the Poisson covariant formulation of the Hamilton
equations is described. When the fiber bundle is aG-principal bundle and the Hamiltonian density is
G-invariant, the reduction of this formulation is studied thus obtaining the analog of the Lie-Poisson
reduction for field theories. The relation of this reduction with the Lagrangian reduction and the
Lagrangian and Poisson reduction for electromagnetism are also analyzed.
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1. Introduction

There is a long history of reduction theory for symplectic and Poisson manifolds, as
described in, for instance,[26]. If one takes the point of view of infinite dimensional fields,
then this same formalism of symplectic and Poisson reduction can, and has been applied
quite successfully, as in, for instance, to fluids in[25] (inspired by the work of Arnold and
others), to electromagnetism and plasma physics in[24] (inspired by work of Morrison and
others) and to Yang–Mills type equations in[16,29].

It is important to keep in mind that there is a Lagrangian reduction counterpart to the
symplectic and Poisson reduction approach that has also been applied to many field theories.
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In Lagrangian reduction one drops variational principles to quotient spaces rather than
symplectic or Poisson structures. The most basic of these is the well-known Euler–Poincaré
reduction theory as described in[21] for instance, but there have been important extensions
of this methodology, inspired by the original work of Marsden and Scheurle[22]. We
mention the papers of Cendra et al.[5,17] as typical of these.

However, it has long been recognized that it is quite important to develop a reduc-
tion theory that parallels this using the local view of classical fields, as in the classical
Poincaré–Cartan and de Donder points of view. The purpose of this paper is to contribute
to this effort mainly using the methodology of Poisson reduction.

In terms of what has been done in this direction, there are the results of Castrillón López
et al.[2,4] that study covariant Lagrangian reduction for principal bundles. This basically
gives a covariant view of the Euler–Poincaré theory. Also, the paper of Fernández et al.[8]
(and references therein) gives a useful framework for studying the Lagrangian reduction
point of view in field theory.

In our work on Poisson reduction for field theories, we are motivated of course by
the Poisson reduction theory from the infinite dimensional point of view, as described
above, as well as some of the intriguing remarks and examples in[19]. For the work
on Lagrangian reduction we are motivated by extending the covariant Euler–Poincaré
theory to a case where the gauge group action involves the derivative of the group ele-
ments. This is the case in electromagnetism and it is what make that case of particular
interest.

Our specific accomplishments are as follows:

1. In Sections 2–4we introduce the basic ingredients of the Hamilton–Cartan theory as
well as the covariant Poisson bracket. We refer the reader to the existing literature for
many of the results concerning this theory.

2. InSection 5, we develop the theory of Poisson brackets in the context of multisymplectic
and polysymplectic manifolds and give the equivalence of the Poisson equations and the
Hamilton–Cartan equations.

3. We develop a procedure inSection 6for dropping the Poisson bracket when the phase
bundle is aG-principal bundle and the considered symmetry group is the structure
group itself. This leads to a covariant theory of Lie–Poisson which, under the appropri-
ate hyper-regularity conditions, is equivalent to the covariant Euler–Poincaré reduction
mentioned above.

4. We also apply this formalism to the particular case of electromagnetism inSection 7,
giving a covariant parallel to what is known from the infinite dimensional point of
view. Although it is an example of a non-regular theory, we show that the formalism
for both covariant Lagrangian reduction as well as covariant Poisson reduction still
hold.

Some general notations and conventions that we shall use are:

1. The Einstein summation convention is assumed.
2. The space of sections of a bundleY → M is denoted byΓ(Y).
3. The projection map of a bundleA → B is denoted byπBA.
4. Our base manifoldM is assumed to be compact (only for technical simplicity).
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2. Preliminaries

The jet bundle. We will need to recall a few notations about jet bundles. For a general
exposition of jet bundles, we refer the reader to, for example,[13,28]or to [1].

Given a fiber bundleπMY : Y → M, we say that two local sectionss : U → Y ,
s′ : U ′ → Y represent the same jetj1

xs at x ∈ U ∩ U ′ iff s(x) = s′(x) andTxs = Txs
′.

In fact, representing the same jet atx ∈ M is an equivalence relation, the space of classes
of which is denoted byJ1

x Y . The total spaceJ1Y = ⋃x∈M J1
x Y can be endowed with

a smooth structure such that the target mappingJ1Y → Y , j1
xs �→ s(x), and the source

mappingJ1Y → M, j1
xs �→ x, are fibrations. The fibrationJ1Y → Y is an affine bundle

modeled over the vector bundleπ∗
ME(T

∗M) ⊗ VY, whereVY ⊂ TY is the vertical bundle,
that is, the subbundle ofTY tangent to the fibrationπMY.

Given a fiber coordinate system(xi, ya), 1 ≤ i ≤ n = dimM, 1 ≤ a ≤ m, onE we
define the coordinate system(xi, ya, yai ) onJ1Y by the condition

yai (j
1
xs) := ∂ya(s)

∂xi
(x).

We thus see that dimJ1Y = n+m+ nm.
The bundle of connections. Recall that anEhresmann connectionon a fiber bundleY →

M is a distributionA of horizontal complements to the vertical subbundle, that is, for every
y ∈ Y , we haveTyY = VyY ⊕Ay. As the elements of the jet bundleJ1Y can be understood
as a horizontal subspace by the relationj1

xs ↔ Im Txs, an Ehresmann connections onY can
be defined as a section of the bundleJ1Y → Y (see, for example,[20] or [28]). A relevant
particular case happens when theY → M is a principal fiber bundle, sayP → M, with
structure groupG. In this case the Ehresmann connections are taken to beG-invariant, that
is, the distributionA is invariant underTRg for anyg ∈ G, whereRg stands for the right
action ofG onP . Hence, principal connections may be regarded as sections of the bundle
(J1P)/G → P/G = M obtained by taking of quotient of the jet bundle byG. This bundle,
called thebundle of connectionsand denoted byC → M, is an affine bundle modeled
over the vector bundleT ∗M ⊗ g̃→ M, whereg̃→ M is the adjoint bundle. See[3] and
references therein for a more detailed study ofC → M.

The Lagrangian formalism. We shall also need to recall some of the basic notations and
results from the variational formalism for field theories. A first-orderLagrangian density
is a smooth fiber mapL : J1Y → ∧n T ∗M. We say that a (local) sections of the bundle
Y → M is acritical solutionof the variational problem defined byL if for every smooth
family of sections{sε}ε∈R such thats0 = s, we have

d

dε

∣∣∣∣
ε=0

∫
M

L ◦ j1sε = 0.

We assume that the manifoldM is oriented by a volume formv and we shall writeL = Lv,
which definesL ∈ C∞(J1Y). There is an operatorEL : Γ(Y) → Γ(V ∗Y), called the
Euler–Lagrange operator, whose local expression is

EL(s) =
(
∂L

∂yα
◦ j1s− d

dxi

(
∂L

∂yαi
◦ j1s

))
⊗ dyα
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for a local coordinate system(xi) onM with v = dx1 ∧ · · · ∧ dxn. A standard result in the
calculus of variations says thats is critical if and only ifEL(s) = 0.

3. The multisymplectic formalism

The dual jet bundle. There are many variants of the multisymplectic formalism in the
literature and many different notations. Thus, we will need to review our notation and set
up. We shall follow the version given in[13], see also[27].

Given a fiber bundleY → M, one defines thedual jet bundleJ1Y∗ to be the vector bundle
overY whose fiber aty ∈ Yx is the set of affine morphisms from(J1Y)y to the bundle of
n-forms onM, which we denote by

(∧n
T ∗M
)
x
, that is

J1Y∗ = Aff

(
J1Y,

n∧
T ∗M

)
.

Given a fiber chart(xi, ya) onY , fiber coordinates(xi, ya, pia, p) onJ1Y∗ are defined such
that an affine map has the form

yai �→ (p+ piay
a
i )dx1 ∧ · · · ∧ dxn.

We thus see that dimJ1Y∗ = n+m+ nm+ 1.
There is another characterization of the spaceJ1Y∗. LetZ be the subbundle of

∧n
T ∗Y

whose fiber aty ∈ Y is given by

Zy =
z ∈
(

n∧
T ∗Y

)
y

∣∣∣∣∣∣ iuivz = 0 for allu, v ∈ VyY
 ,

that is,Z consists ofn-covectors annihilated by the contraction (interior product) by two
vertical vectors. Locally, elements ofZ can be written as

z = pdnx+ pia dya ∧ dn−1xi,

where dnx = dx1 ∧ · · · ∧ dxn and dn−1xi = i∂/∂xi dnx. We define the mapping

Φ : Z → J1Y∗

by settingΦ(z)(j1
xs) = s∗z ∈∧n T ∗M, for z ∈ Zy, j1

xs ∈ (J1Y)y. This mapping is a vector
bundle isomorphism whose local expression simply equals the coordinate systems defined
onJ1Y∗ andZ above.

This alternative characterization of the dual jet bundle enables one to introduce in a
natural way the multisymplectic form onJ1Y∗. We first define the canonicaln-form ΘΛ
on
∧n

T ∗Y by

ΘΛ(z)(u1, . . . , un) = z(TπYΛu1, . . . , TπYΛun),

wherez ∈∧n T ∗Y , u1, . . . , un ∈ Tz
(∧n

T ∗Y
)

andπYΛ is the projection
∧n

T ∗Y → Y . If
iΛZ : Z ↪→ ∧n T ∗Y denotes the inclusion, we define thecanonical n-formonZ (resp. on
J1Y∗) to be the pull-backi∗ΛZΘΛ (resp.(Φ−1)∗i∗ΛZΘΛ). For the sake of simplicity, we
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denote the canonical form asΘ both onZ and onJ1Y∗. Thecanonical multisymplectic
(n+ 1)-form is defined as

Ω = −dΘ.

One easily finds that the local expressions forΘ is

Θ = pia dya ∧ dn−1xi + pdnx,

and so

Ω = dya ∧ dpia ∧ dn−1xi − dp ∧ dnx.

LetL : J1Y →∧n T ∗M be a Lagrangian density. Thecovariant Legendre transformation
is the fiber map

FL : J1Y → J1Y∗

overY that is defined to be the first-order vertical Taylor approximation toL; that is

FL(j1
xs)(j

1
xs

′) = L(j1
xs)+

d

dε

∣∣∣∣
ε=0
L(j1

xs+ ε(j1
xs

′ − j1
xs)).

Locally, in coordinates, we have

pia = ∂L

∂yai
, p = L− ∂L

∂yai
yai , (3.1)

whereL = Ldnx.
The following proposition is the basic link between this approach to multisymplectic

forms and the classical Poincaré–Cartan formalism in the calculus of variations, as in, for
example,[11,14].

Proposition 3.1. Given a Lagrangian densityL : J1Y →∧n T ∗M, the pull-backFL∗Θ of
the canonical n-formΘ of J1Y∗ by the Legendre transformation is the classical Poincaré–
Cartan form ofL of the calculus of variations.

Proof. A local computation taking into accountEq. (3.1)and the local expression of the
Poincaré–Cartan form (see[10])

ΘL = ∂L

∂yai
dya ∧ dn−1xi +

(
L− ∂

∂yai
yai

)
dnx. �

The polysymplectic bundle. The polysymplectic formalism provides some interesting
alternative perspectives on the geometry of field theories; it goes back to[15]; see also[27].

Since the dimensions ofJ1Y andJ1Y∗ are different,FL can never be a diffeomorphism.
This difference is due to the fact that the affine structure of the jet bundle is taken into
account in constructing the dual. This can be “fixed” by defining alinear approximation of
L instead of thevertical Taylor approximation. Given a fiber bundleY → M one defines
thepolysymplectic bundleΠ overY as

π∗
MYTM ⊗Y V

∗Y ⊗Y π
∗
MY

(
n∧
T ∗M

)
.



M. Castrillón López, J.E. Marsden / Journal of Geometry and Physics 48 (2003) 52–83 57

Whenever it is clear that all the bundles are overY , we will simply write

Π = TM ⊗ V ∗Y ⊗
n∧
T ∗M

with the pull-back notation omitted. Local coordinates(xi, ya, πia) are defined by the con-
dition

ξ = πia
∂

∂xi
⊗ dya ⊗ dnx

for anyξ ∈ Π. Hence dimΠ = n+m+ nm.
Note that the spaceΠ can be seen as the space of

∧n
T ∗M-valued forms onT ∗M⊗ VY,

which is precisely the vector bundle over which the affine bundleJ1Y → Y is modeled.
We can thus define thelinear Legendre transformation

F̂L : J1Y → Π

to be the fiber map overY defined as

F̂L(j1
xs)(.) = d

dε

∣∣∣∣
ε=0
L(j1

xs+ ε.)

for any. ∈ T ∗M ⊗ VY. Locally we have

πia = ∂L

∂yai
.

The linear Legendre transformation̂FL can now be a diffeomorphism but one has to pay a
price. Even though we can define a canonical vector bundle valued form onΠ with which
the Hamiltonian analysis can be carried out (see, for example,[12]), the manifoldΠ is not
endowed with a canonical form asJ1Y∗ is. Nevertheless, the polymomentum bundle and
the dual bundle are related as follows.

Proposition 3.2. The fiber mapJ1Y∗ → Π sendingφ ∈ Aff ((J1Y)y,
∧n

T ∗
x M) =

(J1Y∗)y, to the associated linear morphism�φ ∈ (TxM ⊗ V ∗
y Y)

∗ ⊗ ∧n T ∗
x M = Πy, is

a one-dimensional fibration.

Proof. As the mapJ1Y∗ → Π,φ �→ �φ, is a vector bundle morphism overY , the projection
J1Y∗ → Π is a fibration whose fibers are the kernel of the morphism. It is evident that the
kernel is one-dimensional. �

Hamiltonian systems. A Hamiltonian systemin the field theoretic context is a pair(Π, δ),
whereδ is a section of the bundleJ1Y∗ → Π. Given a Hamiltonian system, the canonical
multisymplectic formΩ = dΘ on J1Y∗ can be pulled back toΠ thus obtaining an(n +
1)-formΩδ = dΘδ onΠ. A sectionπ of the composite bundleΠ → Y → M is said to be
asolutionof the Hamiltonian system if the following equation holds:

π∗iXΩδ = π∗iX dΘδ = 0
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for any vertical vector fieldX onΠ. We now introduce the Hamiltonian densities. For that
we need first the following result (also see[12]).

Proposition 3.3. Given two sectionsδ1 and δ2 of J1Y∗ → Π, the n-formΘδ1 − Θδ2
is a horizontal density onΠ, that is, there is a mappingH : Π → ∧n T ∗M such that
Θδ1 −Θδ2 = H.

Proof. If we locally express a sectionδ as

δ(xi, ya, πia) = (xi, ya, pia,Hδ)

for a certain functionHδ, then we have

Θδ = dya ∧ dπia ∧ dn−1xi −Hδ ∧ dxn,

and the proof immediately follows. �

Moreover, an Ehresmann connectionA : TY→ VYonY → M naturally defines a linear
sectionδA of J1Y∗ → Π by setting

TxM ⊗ V ∗
pP ⊗

n∧
T ∗
x M ∈ w⊗ ξ ⊗ v �→ (ξ ◦A) ∧ iwv ∈ Zy � (J1Y∗)y.

Hence, due toProposition 3.3, given a Hamiltonian system(Π, δ) and a connectionA there
exists a densityHA called theHamiltonian densitydefined byδ andA such that

Θδ = ΘδA +HA.
Hence a sectionπ of Π → M is a solution if and only if

π∗iX d(ΘδA +HA) = 0. (3.2)

Conversely, a Hamiltonian system is thus equally defined by a triplet(Π,A,H), whereA
is a connection andH is a density onΠ, called Hamiltonian density. It is easy to see that
the Hamiltonequation (3.2)is locally equivalent to(

∂H

∂πiα

)
π

=
(
∂yα

∂xi
− Γ αi

)
π

,

(
∂H

∂yα

)
π

= −
(
∂πiα

∂xi
+ ∂Γ

β
i

∂yα
π
j

β

)
π

, (3.3)

whereΓ αi stands for the coefficients of the horizontal lift

∂

∂xi
�→ ∂

∂xi
+ Γ αi

∂

∂yα
, (3.4)

defined by the connectionA andH = H dnx. Eq. (3.3)are called the Hamilton–Cartan
equations of the Hamiltonian system.

Hyper-regular Lagrangians. Given a Lagrangian densityL : J1Y → ∧n T ∗M, we say
thatL is hyper-regularif FL is a diffeomorphism onto its image, or equivalently,̂FL is a
diffeomorphism. Note that dimJ1P = dimΠ = dimJ1P∗ − 1.
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For a hyper-regular LagrangianL, we define a sectionδ : Π → J1P∗ by the equation

δ = FL ◦ F̂L
−1

; that is, we have the commutative diagram

J1Y
FL→ J1Y∗

↘F̂L ↓↑ δ
Π.

Given a connectionA on Y → M, the HamiltonianHAL associated toL andA is thus
uniquely defined by the condition

Θδ = ΘδA +HAL , (3.5)

and its local expression reads

HAL = πiα(F̂L
−1 ◦ yαi − Γ αi )v − F̂L

−1 ◦ L. (3.6)

The triplet(Π,A,HAL ) is called theHamiltonian systemassociated byL andA.

Remark. There are other alternative (but equivalent) definitions of the Hamiltonian density
defined by a Lagrangian density and a connection. For example, it can be understood as
translation toΠ (by means ofF̂L) of the Lagrangian energyEAL : J1Y → ∧n T ∗M
defined byL andA (see[7]). Another definition can be geometrically done on the subspace
FL(J1Y) ⊂ J1Y∗ (see[23]). In this case what it is obtained is the densityδ∗H.

Theorem 3.4. LetL : J1Y → ∧n T ∗M be a hyper-regular Lagrangian. Given a section
s of Y → M, we define the sectionπ = F̂L ◦ j1s of the bundleΠ → M. Then s is a
critical section of the variational problem defined byL if and only ifπ is a solution of the
Hamiltonian system(Π,A,HAL ).

Proof. For a proof, see, for example[23,27]. �

4. Poisson forms onΠΠΠ

An r-form F onJ1Y∗ is said to behorizontalif iuF = 0 for any vertical tangent vector
u with respect to the fibrationJ1Y → M. In local coordinates we have

F = Fi1···ir dxi1 ∧ · · · ∧ dxir

for the component functionsFi1···ir on J1Y∗. An s-multivector fieldχ on J1Y∗ (that is,
a section of

∧s
T(J1Y∗) → J1Y∗) is said to bevertical if its contractioniχF with any

horizontals-form χ vanishes.
We say that a horizontalr-form F on J1Y∗ is a Poisson formif there is a vertical

(n− r)-multivector fieldχF onJ1Y∗ such that

iχFΩ = dF, (4.1)
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whereΩ is the multisymplectic form onJ1Y∗. Given a horizontalr-formF and a horizontal
s-formE onJ1P∗ we define theirPoisson bracketto be

{F,E} = (−1)r(s−1)iχE iχFΩ. (4.2)

Note that{E,F } is an(r + s+ 1 − n)-form onJ1Y∗.

Remark. Not every horizontal form is Poisson. In fact we are going to see that this condition
is quite restrictive for(n − 1)-forms. On the other hand, given a Poisson formF , the
associated multivector fieldχF may not be unique. Actually,χE is defined up to an element
belonging to kerΩ, that is a multivector fieldχ such thatiχΩ = 0. In the symplectic
setting mechanics, where symplectic form is non-degenerate, we haveχ = 0, thus having
uniqueness, but this is not the case forfield theories. In any case, the non-uniqueness of
χ does not obviously give an ambiguous definition of{F,E}. We explore this issue in the
following discussion.

Proposition 4.1. Any functionF : J1P∗ → R is a Poisson0-form.

Proof. In coordinates

Ω = dyα ∧ dπiα ∧ vi − dp ∧ v,

wherev = dx1 ∧ · · · ∧ dxn, andvi = i∂/∂xiv. Given a functionF we have

dF = ∂F

∂xi
dxi + ∂F

∂yα
dyα + ∂F

∂πiα
dπiα.

Hence the multivector field

χ = ∂F

∂πiα

∂

∂yα
∧ v∗

i − ∂F

∂yα

∂

∂πiα
∧ v∗

i + ∂F

∂xi

∂

∂p
v∗
i

satisfies the condition(4.1), wherev∗ = (∂/∂x1) ∧ · · · ∧ (∂/∂xn) andv∗
i = idxiv

∗. �

Proposition 4.2. If a horizontal r-form F, r > 0, onJ1Y∗ is Poisson, then it is projectable
toΠ (seeProposition 3.2).

Proof. Let

F = Fi1···isvi1···is

be the local expression ofF , with s = n− r andvi1···is = i∂/∂xi1 · · · i∂/∂xis v. Then

dF = ∂Fi2···isj

∂xj
vi2···is +

∂Fi1···is
∂yα

dyα ∧ vi1···is

+ ∂Fi1···is

∂π
j
α

dπjα ∧ vi1···is +
∂Fi1···is
∂p

dp ∧ vi1···is . (4.3)
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Using the local expression forΩ,

Ω = dyα ∧ dπiα ∧ vi − dp ∧ v

for a s-multivectorχ to verify thatiχΩ = dF , we see thatχ does not contain any elements
Xi1···is (∂/∂xi1)∧ · · · ∧ (∂/∂xis ) because they would give terms proportional to dyα ∧ dπiα ∧
vii1···is , which dF does not contain. But then, the last term of(4.3)cannot exist and hence,
the functionsFi1···is do not depend on the variablep. HenceF is projectable. �

Moreover, ifF is a Poisson form, asiχΩ = dF , from formula(4.2)we easily have that
the bracket of two projectable Poisson forms is still a projectable form toΠ. Hence, from
now on we will consider that the horizontal Poisson forms are defined onΠ and will be
seen onJ1Y∗ by pulling-back only when needed.

We now study the special case whereF is a Poisson(n− 1)-form. We write

F = Fivi,

and

dF = ∂Fi

∂xi
v + ∂Fi

∂yα
dyα ∧ vi + ∂Fi

∂π
j
α

dπjα ∧ vi.

Let χ be a vector field onJ1P∗ such thatiχΩ = dF . We write

χ = Xα
∂

∂yα
+Xiα

∂

∂πiα
+X

∂

∂p
.

Hence, for

iχΩ = Xα dπiα ∧ vi −Xiα dyα ∧ vi −Xv

to be dF , the following conditions must be satisfied:

∂Fi

∂xi
= X,

∂Fi

∂yα
= −Xiα,

∂Fi

∂π
j
α

= δijX
α.

These conditions only constraint the behavior ofF with respect toπiα. Actually, we obtain
that the general expression of a horizontal(n− 1)-Poisson form is

F = (−πiαXα + gi)vi (4.4)

for any functionsXα = Xα(x, y), gi = gi(x, y). Moreover, as every closed horizontal form
onΠ is Poisson, we can add a closed term to(4.4). This local expression of the Poisson
(n− 1)-forms can be given in an intrinsic way as follows.

Proposition 4.3. For a vertical vector field X onY → M (locally X = Xα∂/∂yα) we
construct a mapping

Π = TM ⊗Y V
∗Y ⊗Y

n∧
T ∗M → TM ⊗Y

n∧
T ∗M
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by contracting theV ∗Y part with X. By composing this mapping with the natural contraction

TM ⊗Y

∧n
T ∗M → π∗

MY

(∧n−1
T ∗M
)

we obtain a morphism

θX : Π → π∗
MY

(
n−1∧

T ∗M

)
,

that is, a horizontal(n− 1)-form onΠ. In local coordinates, the result of the composition
yields

θX

(
πiα

∂

∂xi
⊗ dyα ⊗ v

)
= πiαX

αvi.

Hence any horizontal Poisson(n− 1)-form onΠ is the sum of: a formθX with X a vertical
vector field; the pull-back toΠ of an arbitrary horizontal(n−1)-formω on Y; and a closed
horizontal(n− 1)-form Z onΠ, that is

F = θX + π∗
YΠω + Z. (4.5)

Remarks.

1. In classical mechanics (wheren = 1, Y = R × Q andM = R, with Q an arbitrary
manifold), although any function is a Poisson function, the previous Proposition gives a
special kind of functions. The three terms are of the form

F = θ(X)+G(q, t)+ k,

whereX is any vector inR ×Q, θ is the Liouville form,G is any function onR ×Q

andk is a constant which can be dropped. If(qi) is a coordinate system onQ, the local
expression of these functions reads

F = f i(q, t)pi + g(q, t)

for time depending arbitrary functionsf i andg onQ, that is, we have the affine func-
tions onT ∗Q. It is interesting to point out that the set of these functions represents a
natural class on which the Poisson bracket can be defined functorally and, are enough
to determine the full Poisson bracket on the cotangent bundle as it is discussed in, for
instance[6].

2. The notion of Poisson form as we present here follows the work of Kanatchikov[18],
where the basic definitions are presented in coordinates.

3. The definition of Poisson forms can be extended to non-horizontal forms as it is done in,
for example, see[9]. Nevertheless, the equations become much more complicated and
hence, for our purposes, working with horizontal forms will be enough.

5. The Poisson bracket and Hamilton equations

Let F be a horizontal Poisson(n − 1)-form onΠ andH a Hamiltonian density. For
the fixed volume formv, we write, as before,H = Hv. It is easy to check the following
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expression for the bracket:

{F,H} = ∂Fi

∂yα

∂H

∂πiα
− ∂Fi

∂πiα

∂H

∂yα

in a coordinate system wherev = dx1 ∧ · · · ∧ dxn.

Remarks.

1. It is clear that the previous bracket depends on the choice of the volume form and it is
not an intrinsic object of the Hamiltonian densityH. If a new volume form̃v = fv, f ∈
C∞(M), is chosen, we haveH = fH̃ and hence{F, H̃} = f {F,H}. This dependence
on v can be fixed by considering

{F,H}v,
instead of simply{F,H}. We can thus think of{F,H}v as the bracket of the Poisson
form F with the Hamiltonian densityH. Its local expression reads

{F,H}v :=
(
∂Fi

∂yα

∂H

∂πiα
− ∂Fi

∂πiα

∂H

∂yα

)
dx1 ∧ · · · ∧ dxn. (5.1)

2. The right-hand side of formula(5.1)does not depend on the chosen coordinate system
and can be defined for any functionH and any horizontal formF , no matter whetherF is
Poisson or not. That is, the bracket can be defined “geometrically” only for some special
forms, but its local expression is intrinsic for any arbitrary form. This fact is related with
the results in[6] where the Poisson bracket ofmechanicsis defined naturally only for a
special class of functions and then extended to arbitrary functions.

Proposition 5.1. Given a connectionA onY → M and a Riemannian connection on M,
there is a canonical connection on the bundleΠ → M. The horizontal lift of this connection
is

∂

∂xi
�→ ∂

∂xi
+ Γ αi

∂

∂yα
+
(
−∂Γ

β
i

∂yα
π
j

β + Γ kij π
j
α − Γ kikπ

j
α

)
∂

∂π
j
α

, (5.2)

whereΓ αi are the coefficients ofA (see formula(3.4)) andΓ ijk are the Christoffel symbols
of the Riemannian connection.

Proof. We first give a connection to the bundleV ∗Y → M. We understand the connection
A as a section̂A : Y → J1Y of the jet bundle. The differential of this map when restricted
to vertical vectors is d̂A|VY : VY → VJ1Y . In the theory of jet bundles it is known that
VJ1Y andJ1VYare canonically isomorphic (for example, see[28]). Hence we have d̂A|VY :
VY→ J1VY, that is a connection on the bundleVY→ M. By duality we have a connection
onV ∗Y → M. It is not difficult to prove that the horizontal lift of these connections are,
respectively,

∂

∂xi
�→ ∂

∂xi
+ Γ αi

∂

∂yα
+ ∂Γ

β
i

∂yα
ẏα

∂

∂ẏβ
,

∂

∂xi
�→ ∂

∂xi
+ Γ αi

∂

∂yα
− ∂Γ

β
i

∂yα
pβ

∂

∂pα
.
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AsΠ = TM⊗Y V
∗Y⊗Y

∧n
T ∗M, combining the connection onV ∗Y with the connections

onTM and
∧n

T ∗M defined by the Riemannian connection gives a connection onΠ which
is easily proved to have the local expression given in(5.2). �

Theorem 5.2. A sectionπ of the bundleΠ → M is a solution of a given Hamiltonian
system(Π,A,H), H = Hv, if and only if for any horizontal Poisson(n − 1)-form F the
following equation holds true:

{F,H}v ◦ π = d(π∗F)− (dhF) ◦ π, (5.3)

wheredhF is the horizontal differential of F, that is, the differential of F restricted to
horizontal vectors,with respect to the connection onΠ,as was introduced inProposition 5.1.

Proof. In a coordinate system such thatv = dx1 ∧ · · · ∧ dxn, we have

{F,H}v =
(
∂Fi

∂yα

∂H

∂πiα
− ∂Fi

∂πiα

∂H

∂yα

)
dx1 ∧ · · · ∧ dxn,

and

F = (−πiαXα + gi)vi.

Then

{F,H}v =
(
∂Fi

∂yα

∂H

∂πiα
−Xα

∂H

∂yα

)
dx1 ∧ · · · ∧ dxn.

On the other hand,

d(π∗F)− (dhF) ◦ π=
(
∂Fi

∂xi
+ ∂Fi

∂yα

∂yα

∂xi
+ ∂Fi

∂π
j
α

∂π
j
α

∂xi
− ∂Fi

∂xi
− Γ αi

∂Fi

∂yα

−
(
−∂Γ

β
i

∂yα
π
j

β + Γ
j

ikπ
k
α − Γ kikπ

j
α

)
∂Fi

∂π
j
α

)
v.

But taking into account thatF is Poisson, from(4.4)we have

∂Fi

∂π
j
α

= δijX
α,

and then

d(π∗F)− (dhF) ◦ h =
(
∂Fi

∂yα

(
∂yα

∂xi
− Γ αi

)
+Xα

(
∂πiα

∂xi
+ ∂Γ

β
i

∂yα
πiβ

))
v.

Hence(5.3) is true if and only if(
∂H

∂πiα

)
π

=
(
∂yα

∂xi
− Γ αi

)
π

,

(
∂H

∂yα

)
π

= −
(
∂πiα

∂xi
+ ∂Γ

β
i

∂yα
πiβ

)
π

,

which are the Hamilton–de Donder equations, thus finishing the proof. �
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Remarks.

1. We must note that the Riemannian connection defined onM does not play an important
role as the Christoffel symbolsΓ ijk do not appear in the computation of d(F◦π)−(dhF)◦π
for Poisson forms. In other words, for these forms the horizontal differential can be
defined directly by means of the connectionA only, without the use of any Riemannian
connection.

2. In mechanics, whereM = R andn = 1, for the trivial connection onR ×Q → R, the
expression(5.3)simply reads

{F,H} dt =
(

dF

dt
− ∂F

∂t

)
dt,

which is the classical formula of the Hamilton equations in the Poisson form.

6. Lie–Poisson reduction in principal bundles

We now confine ourselves to the case when the phase bundle is aG-principal bundle
πMP : P → M. The goal of this section is the reduction of the Poissonequations (5.3)
when the Hamiltonian density is invariant under the action of the full groupG. The result
of this reduction is the covariant version forfield theoriesof the well-known Lie–Poisson
equations inmechanicswhich represents the Poisson picture of the reduction principal
bundles described in[2].

The space TM⊗ g̃∗ ⊗∧n T ∗M. The rightG-action onP induces a natural action onVP
as a subset ofTP. It is known that the quotient is isomorphic to the adjoint bundle, that is

VP

G
� g̃.

Similarly, (V ∗P/G) � g̃∗. As the action ofG onΠ = TM⊗P V
∗P ⊗P

∧n
T ∗M is trivial

on the factorsTM and
∧n

T ∗M, we thus have

Π

G
� TM ⊗ g̃∗ ⊗

n∧
T ∗M.

We now work with horizontal Poisson(n − 1)-forms onΠ which areG-invariant. From
Proposition 4.3we know that such a form is of the typeF = θX + π∗

PΠω + Z, with X
a vertical vector field onP , ω ∈ Ωn−1(P) horizontal andZ ∈ Ωn−1(Π) horizontal and
closed. If we wantF to beG-invariant we thus have to deal withG-invariant vertical vector
fields. Those vector fields are precisely the gauge vector fields of the principal bundle and
they form a subalgebra ofX(P) denoted by gauP . It is well known that a gauge vector field
can be seen as sections of the adjoint bundleg̃→ M, that is gauP � Γ(g̃).

Proposition 6.1. The Poisson(n− 1)-forms onΠ which are invariant under the action of
G onΠ are of the type

F = θX + π∗
XΠω + Z,

whereX ∈ gauP , ω ∈ Ωn−1(M) and Z is a closed horizontal G-invariant form onΠ.
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Proof. This is a straightforward computation. �

The projection of theG-invariant Poisson(n− 1)-forms on

Π

G
= TM ⊗ g̃∗ ⊗

n∧
T ∗M

can be understood as follows. Given a gauge vector field onP , let ξ be the section of̃g
determined by the identification gauP � Γ(g̃). We define a mapping

TM ⊗ g̃∗ ⊗
n∧
T ∗M → TM ⊗

n∧
T ∗M

by pairing the factor̃g∗ with ξ. By composing by the natural contractionTM⊗∧n T ∗M →∧n−1
T ∗M we obtain a mapping

θξ : TM ⊗ g̃∗ ⊗
n∧
T ∗M →

n−1∧
T ∗M,

that is, an(n− 1)-horizontal form onΠ/G. In local coordinates, forξ = ξαB̃α, we have

µiα
∂

∂xi
⊗ B̃α ⊗ v �→ µiαξ

αvi.

Then it is easy to see the following proposition.

Proposition 6.2. Following the characterization given inProposition 6.1, the forms f on
Π/Gwhich are projection of G-invariant horizontal Poisson(n−1)-forms onΠ are of the
type

f = θξ + π∗
MΠ/Gω + Z, (6.1)

whereξ is any section of̃g → M; andω is any(n − 1)-form on M and Z is any closed
horizontal form onΠ/G. Dropping the last term, the local expression off is

f = f ivi = (ξαµiα + ωi)vi.

The Lie–Poisson bracket. We can define a natural bracket onΠ/G = TM ⊗ g̃∗ ⊗∧n
T ∗M between functionsh and formsf of the type described inProposition 6.2by

means of the Lie coalgebra structure of the bundleg̃∗ → M. Given any functionh ∈
C∞ (TM ⊗ g̃∗ ⊗∧n T ∗M

)
its vertical derivativeis a morphism

δh

δµ
: TM ⊗ g̃∗ ⊗

n∧
T ∗M → T ∗M ⊗ g̃⊗

n∧
TM

defined by

δh

δµ
(µ)(τ) = d

dε

∣∣∣∣
ε=0

h(µ+ ετ)
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for anyµ, τ ∈ TxM ⊗ g̃∗x ⊗∧n T ∗
x M, x ∈ M. For any formf of the type

f = θξ + π∗
MΠ/Gω

with ξ ∈ Γ(g̃), we define theLie–Poissonbrackets onΠ/G as

{f, h}±(µ) = ±
〈
µ,

[
ξ,
δh

δµ
(µ)

]〉
(6.2)

for anyµ ∈ TxM⊗ g̃∗x⊗
∧n

T ∗
x M, where the bracket [, ] is the fiberwise bracket iñg→ M

and〈, 〉 stands for the natural pairing betweenTM⊗ g̃∗ ⊗∧n T ∗M andT ∗M⊗ g̃⊗∧n TM.
Note that the Lie–Poisson bracket gives a function. The local expression of this bracket is

{f, h}±(µ) = ±cαβγµiαξβ
∂h

∂µiγ
= ±cαβγµiα

∂f i

∂µiβ

∂h

∂µiγ
, (6.3)

wherecαβγ are the structure constants of the Lie algebrag.

Remarks.

1. As it is discussed in the first Remark inSection 5, if one is dealing with densitiesh = hv
onTM⊗ g̃∗ ⊗∧n T ∗M instead of with functionsh, the Lie–Poisson bracket depends on
the choice of the volume formv. For that reason, we can define the Lie–Poisson bracket
of forms and densities by simply writing

{f, h}±v,

which is a horizontaln-form onΠ/G.
2. It is easy to check that the local expression(6.3) is intrinsic and hence one can define

the bracket{f, g}± for any (n − 1)-forms f andg non-necessarily of the form given
in Proposition 6.2. This is related with the analogous fact commented in Remark 2 of
Section 5.

3. For the case ofmechanics, that isP = R × Q → R, the bracket defined by the
formula(6.2) is nothing but the classical Lie–Poisson bracket of functions, as a simple
computation shows, see, for example[21].

Covariant Lie–Poisson reduction. We now study the relationship between the Lie–Poisson
bracket defined onΠ/Gand the bracket given inΠ when dealing withG-invariant functions
and(n− 1)-Poisson forms.

Theorem 6.3. Let πMP : P → M be a principal bundle with structure group G. Then,
given an(n− 1)-form f as in(6.1)and a function h onΠ/G, if κ : Π → Π/G represents
the projection, we have

{κ∗f, κ∗h} = κ∗{f, h}+,
where{, } is the bracket defined onΠ by the multisymplectic form(seeSection 4) and{, }+
is the Lie–Poisson bracket onΠ/G = TM ⊗ g̃∗ ⊗∧n T ∗M defined by formula(6.2).
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Proof. The formula we want to prove being local, we consider that the principal bundle is
trivial, that isP � M × G. For any pointp ∈ P we can choose a trivialization such that
p = (x, e). Let be{B1, . . . , Bm} be a basis ofg. Let (xi, yα, πiα) be a normal coordinate
system in a neighborhood of(x, e) ∈ P such thatv = d1 ∧ · · · ∧ dxn. Normal means that
we define it by means of the exponential, more precisely, for(x, g), the coordinatesyα(g)
are such that

g = exp(yα(g)Bα).

We denote as usual by(xi, yα, πiα) the induced coordinate system onΠ. For the proof of
the theorem we need the following lemma.

Lemma 6.4. If E is a G-invariant function onΠ, with the above coordinate system we have

∂E

∂yα
= 1

2
c
γ

βαπ
j
γ

∂E

∂π
j

β

, (6.4)

wherecγαβ are the structure constants of the basis{B1, . . . , Bm}.

We continue the proof of the theorem. Let us callH = h ◦ κ andF = κ∗f , F =
Fi(xj, yα, π

j
α)vi. Note that eitherFi andH areG-invariant. Hence, the local expression of

the bracket reads

{F,H}v =
(
∂Fi

∂yα

∂H

∂πiα
− ∂Fi

∂πiα

∂H

∂yα

)
v = 1

2

(
∂Fi

∂π
j

β

c
γ

βαπ
i
γ

∂H

∂πiα
− ∂Fi

∂πiα

∂H

∂π
j

β

c
γ

βαπ
j
γ

)
v,

and taking into account formula(4.4)

{F,H}v = 1

2

(
Xβc

γ

βαπ
i
γ

∂H

∂πiα
−Xα

∂H

∂π
j

β

c
γ

βαπ
j
γ

)
v = Xβc

γ

βαπ
i
γ

∂H

∂πiα
v,

which is exactlyκ∗{f, h}+.

Proof of Lemma 6.4. This proof is rather technical. It is basically the Baker–Campbell–Hausdorff
formula, which says that, forX, Y ∈ g, one has

expX · expY = exp

( ∞∑
n=1

cn(X : Y)

)
,

wherecn are some coefficients,cn(X : Y) ∈ g(n) =
︷ ︸︸ ︷
[g, [· · · , [g, g] · · · ]

n

. In fact, we will
only need the first two coefficientsc1(X : Y) = X + Y andc2(X : Y) = (1/2)[X, Y ]. We
will denotecτn(X : Y) the coordinates ofcn(X : Y) with respect to the basis{B1, . . . , Bm}
of g.

For anyg ∈ G, we compute the expression of

TgRg−1

(
∂

∂yγ

)
g

= Wβ
γ (g)

(
∂

∂yβ

)
e

,
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that is, we determine theWβ
α (g). Let (ȳ1, . . . , ȳm) be the coordinates ofg. Then

TgRg−1

(
∂

∂yγ

)
g

= TgRg−1
d

dε

∣∣∣∣
ε=0

exp(ȳτBτ + εBτ)

= d

dε

∣∣∣∣
ε=0

exp(ȳτBτ + εBτ)exp(−ȳτBτ)

=
∞∑
n=1

d

dε

∣∣∣∣
ε=0

cβn(ȳ
τBτ + εBγ : −ȳτBτ)

(
∂

∂yβ

)
e

,

wherec1(ȳ
βBβ+εBγ : −ȳβBβ) = εBγ andc2(ȳ

βBβ+εBγ : −ȳβBβ) = −(1/2)[εBγ, ȳβBβ].
That is

Wβ
γ (g) =

∞∑
n=1

d

dε

∣∣∣∣
ε=0

cβn(ȳ
τBτ + εBγ : −ȳτBτ).

Then the dual

(TgRg−1)
∗(dyα)e = Wα

β (g)(dy
γ)g.

Taking into account the previous formula, theG-action onΠ has the following local ex-
pression: it sends the point(x, e,.),. ∈ TxM ⊗ T ∗

e G⊗∧n T ∗
x M to

(xi; 0, . . . ,0;πi1, . . . , πim)e �→ (xi; ȳ1, . . . , ȳm;Wρ
1π

i
ρ, . . . ,W

1
ρπ

i
m).

If E ∈ C∞(Π) isG-invariant, we have

E(xi; 0, . . . ,0;πi1, . . . , πim) = E(xi; ȳ1, . . . , ȳm;Wρ
1π

i
ρ, . . . ,W

1
ρπ

i
m).

Making gε = exp(εBα) (that is ȳ1 = 0, . . . , ȳα = ε, . . . , ȳm = 0) and computing the
derivative with respect toε we have

0 = ∂E

∂yα
+ ∂E

∂πiβ

d

dε

∣∣∣∣
ε=0

W
γ

βπ
i
γ .

But

d

dε

∣∣∣∣
ε=0

W
γ

β (gε)=
d

dε

∣∣∣∣
ε=0

∞∑
n=1

d

dε

∣∣∣∣
ε=0

cγn(εBα + εBβ : −εBα)

= −cγ2(Bβ : Bα) = −cγβα,
and then

0 = ∂E

∂yα
− ∂E

∂πiβ
c
γ

βαπ
i
γ . �

We now recall the idea of divergence of valued vector fields. Given a principal bundle
P → M endowed with a connectionA, and an associate vector bundleV → M, we can
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define a divergence operator divA sending sections ofTM⊗V → M to sections ofV → M.
divA is the onlyR-operator such that

div 〈χ, η〉 = 〈divAχ, η〉 + 〈χ,∇Aη〉
for anyχ ∈ Γ(TM⊗ V) and anyη ∈ Γ(V ∗), where div stands for the usual divergence,〈, 〉
is the natural pairing and

∇A : Γ(V ∗) → Γ(T ∗M ⊗ V ∗)

is the covariant derivative defined by the connectionA on the dual vector bundleV ∗ →
M. Note that the principal connection endows any associate vector bundle with a linear
connection and hence a covariant derivative. In particular, forV = g̃∗, it is easy to see that
the local expression of the divA operator is

divA
(
µiα

∂

∂xi
⊗ B̃α
)

=
(
∂µiα

∂xi
+ cβγαΓ

γ
i µ

i
β

)
⊗ B̃α,

where{B̃1, . . . , B̃m} is the basis of sections ofg̃∗ induced by a chosen basis{B1, . . . , Bm}
in g.

Theorem 6.5. Let πMP : P → M be a G-principal fiber bundle wheren = dimM and
v is a chosen volume form on M. LetA be a principal connection onP → M andH a
Hamiltonian density onΠ invariant under the action of G onΠ. The dropped density to
Π/G is denoted byh = hv. For any sectionπ of the bundleΠ → M letµ be the reduced
section of

Π/G = TM ⊗ g̃∗ ⊗
n∧
T ∗M → M.

Then the following assertions are equivalent:

1. for every horizontal Poisson(n− 1)-form F onΠ, the following identity holds true:

π∗{F,H}v = d(π∗F)− dhF ◦ π,
2. the sectionπ is a solution of the Hamiltonian system(Π,A,H), that is, the Hamilton–de

Donder equations are satisfied,
3. for every horizontal Poisson(n− 1)-form f onΠ/G, the following identity holds true:

µ∗{f, h}+v = d(µ∗f)− dhf ◦ µ, (6.5)

4. the sectionµ satisfies the Lie–Poisson equations

divAµ = ad∗δh/δµµ. (6.6)

Proof. The equivalence 1⇔2 is provided byTheorem 5.2.
To establish the equivalence 1⇔3, because the projection

κ : Π → Π

G
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is Poisson, the left-hand sides of equations in points 1⇔3 are equivalent. We therefore only
need to compare the right-hand sides. The formulas being local, we may assume that the
bundle is trivializable. In fact, we choose a trivializationP = M ×G such that the section
s : M → P = M ×G is the identity sections(x) = (x, e). We identifyVP with M × TG
andg̃with a subset ofM×TeG = M×g of VP. Similarly, g̃∗ is seen as a subsetM×g∗ of

V ∗P = M × T ∗G.

In a coordinate system(xi, yα) of P such thatv = dx1 ∧ · · · ∧ dxn and(yα) is a normal
coordinate system onG, taking into account(6.4), we have

d(π∗F)− dhF ◦ h

=
(
∂Fi

∂xi
+ ∂Fi

∂yα

∂yα

∂xi
+ ∂Fi

∂π
j
α

∂π
j
α

∂xi
− ∂Fi

∂xi
− ∂Fi

∂yα
Γ αi

− ∂F
i

∂π
j
α

(
−∂Γ

β
i

∂yα
πiβ + Γ

j

ikπ
k
α − Γ kikπ

j
α

))
v

=
(
∂Fi

∂xi
+ ∂Fi

∂π
j
α

∂π
j
α

∂xi
− ∂Fi

∂xi
− 1

2
c
γ

βαπ
j
γ

∂Fi

∂π
j

β

Γ αi

− ∂F
i

∂π
j
α

(
−∂Γ

β
i

∂yα
π
j

β + Γ
j

ikπ
k
α − Γ kikπ

j
α

))
v

(∗)=
(
∂Fi

∂xi
+ ∂Fi

∂π
j
α

∂π
j
α

∂xi
− ∂Fi

∂xi
− 1

2
c
γ

βαπ
i
γ

∂Fi

∂π
j

β

Γ αj

− ∂Fi

∂π
j
α

(
−1

2
cβγαΓ

γ
i π

j

β + Γ
j

ikπ
k
α − Γ kikπ

j
α

))

=
(
∂Fi

∂xi
+ ∂Fi

∂π
j
α

∂π
j
α

∂xi
− ∂Fi

∂xi
− ∂Fi

∂π
j
α

(−cβγαΓ γi πjβ + Γ
j

ikπ
k
α − Γ kikπ

j
α)

)
v.

For the step(∗), as the connectionA is a principal connection (that is, it isG-invariant), it
is not difficult to adapt the proof ofLemma 6.4to obtain

∂Γ
β
i

∂yα
= 1

2
cβγαΓ

γ
i .

Taking into account that we are working along the identity sections(x) = (x, e), the
expression above evidently coincides with

dµ∗f − dhf ◦ µ

=
(
∂f i

∂xi
+ ∂f i

∂µ
j
α

∂µ
j
α

∂xi
− ∂f i

∂xi
− ∂f i

∂µ
j
α

(−cβγαΓ γi µjβ + Γ
j

ikµ
k
α − Γ kikµ

j
α)

)
v.

Actually, we have not used the fact thatF is Poisson. The identity is valid for any projectable
horizontal(n− 1)-form onΠ.
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For 3⇔4, taking into account the structure of the formf given in(6.1), the local expres-
sion on the left-hand side of(6.5) reads

dµ∗f − dhf ◦ µ

=
(
∂f i

∂xi
+ ∂f i

∂µ
j
α

∂µ
j
α

∂xi
− ∂f i

∂xi
− ∂f i

∂µ
j
α

(−cβγαΓ γi µjβ + Γ
j

ikµ
k
α − Γ kikµ

j
α)

)
v

= Xα
(
∂µiα

∂xi
+ cβγαΓ

γ
i µ

i
β

)
v = 〈X,divAµ〉v.

Hence, taking into account the definition of the Lie–Poisson bracket{, }+, Eq. (6.5)can be
written as

〈ξ,ad∗δh/δµµ〉 = 〈ξ,divAµ〉
for anyξ ∈ Γ(g̃), which is only possible if and only if(6.6) is satisfied. �

Remarks.

1. Eq. (6.6)become the classical Lie–Poisson equation whenY = R ×Q andA is the flat
connection, that is, the case ofmechanics, see, for instance[21] for this classical result.

Euler–Poincaré and Lie–Poisson for hyper-regular Lagrangians. The Lagrangian picture
of covariant reduction for principal bundles was studied in[2,4]. We now present the link
between that theory andTheorem 6.5when the Lagrangian densityL is hyper-regular. First,
we state the basic result of the Lagrangian reduction calledEuler–Poincaré reduction.

Theorem 6.6. Let πMP : P → M be a principal G-fiber bundle over a manifold M with
a volume formv and letL : J1P → R be G-invariant Lagrangian. Letl : C → R be the
mapping defined by L on the quotient. For an open setU ⊂ M with Ū compact and a section
s : Ū → P of π, defineσ : U → C by σ(x) = q(j1

xs), whereq : J1P → C = (J1P)/G

is the canonical projection. Then, for every principal connectionA on P, the following are
equivalent:

1. the variational principleδ
∫
U
L(j1

xs)v = 0 holds, for vertical variationsδs along s with
compact support,

2. the local sections : M → P satisfies the Euler–Lagrange equations for L,
3. the variational principleδ

∫
U
l(σ(x))v = 0 holds, using variations of the form

δσ = ∇Aη− [σA, η], (6.7)

whereη : M → g̃ is any section of the adjoint bundle with compact support, andσA is
the section ofT ∗M ⊗ g̃ such thatσ = A+ σA,

4. the Euler–Poincaré equations hold:

divA
δl

δσ
= ad∗

σA

δl

δσ
, (6.8)

whereδl/δσ ∈ Γ(TM ⊗ g̃∗) is the vertical differential of l alongσ.
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For the third point, note thatC → M is an affine bundle modeled over the vector bundle
T ∗M ⊗ g̃.

The dropped Lagrangianl : C → R defines a dropped Legendre transformation

fl : C → TM ⊗ g̃∗

by setting

fl(σ)(σ′) = d

dε

∣∣∣∣
ε=0

l(σ + εσ′),

that is, the vertical differential ofl. In fact, in order to take into account the volume formv,
we can definêfl : C → Π/G = TM ⊗ g̃∗ ⊗∧n T ∗M by f̂l = flv. It is evident that, for a
G-invariant Lagrangian density, the following diagram commutes:

In fact, given a sectionσ ∈ Γ(G), we have that

µ = f̂l ◦ σ = δl

δσ
v. (6.9)

On the other hand, form the local expression of the Hamiltonian densityH defined the
connectionA and the LagrangianL, it is clear that the “inverse Legendre transformation”

F̂H : Π → T ∗M ⊗ VP⊗
n∧
T ∗M,

F̂H(.)(.′) = d

dε

∣∣∣∣
ε=0
H(. + ε.′)

induced by the Hamiltonian density satisfies

(6.10)

whereJ1PA = T ∗M⊗VP⊗∧n T ∗M and the identificationFA is, modulo the volume factor∧n
T ∗M, the linearization of the affine bundleJ1P → P when the section̂A : P → J1P

defined by the connection is taken to be the zero section. Roughly speaking,F̂H is the
inverse ofF̂L when the identificationFA is assumed. When the diagram(6.10)is reduced
by the action of the groupG we have

C
f̂l→ Π

G

↓ ↙f̂h

CA
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whereCA = T ∗M ⊗ g̃ ⊗∧n T ∗M. Whenµ is a section ofΠ/G → M, the value of̂fh
alongµ is justδh/δµ and hence, whenµ = f̂l ◦ σ we have

δh

δµ
= σA. (6.11)

Theorem 6.7. LetπMP : P → M be a principal G-fiber bundle over a manifold M with a
volume formv and letL : J1P → ∧n T ∗M be a G-invariant hyper-regular Lagrangian
density, L = Lv. Let l : C → R be the mapping defined by L on the quotient. We endow
P → M with a connectionA on P and we define the Hamiltonian densityH = HAL onΠ
and the dropped Hamiltonianh = hv onΠ/G. For an open setU ⊂ M with Ū compact
and a sections : Ū → P of πMP, defineσ(x) = q ◦ j1

xs; π = F̂L ◦ j1s andµ = κ ◦ π.
Then, for every principal connectionA on P, the following are equivalent:

1. s is a critical section of the variational problem defined byL,
2. σ is a solution of the Euler–Poincaré equations(6.8),
3. π is a solution of the Hamiltonian equations defined by the connectionA and the Hamil-

tonian densityH,
4. µ is a solution of the Lie–Poisson equations(6.6).

Proof. The equivalence 1⇔3 is Theorem 3.4. The reductions 3⇔4 and 1⇔2 are conse-
quence ofTheorems 6.5 and 6.6, respectively. �

In fact, the equivalence of the Euler–Poincaré equations and Lie–Poisson for hyper-regular
Lagrangians can be obtained from formulas(6.9) and (6.11).

7. Electromagnetism

Infinite dimensional reduction. The reduction of Maxwell’s equations from the point of
view of symplectic, Poisson and Lagrangian reduction in the infinite dimensional context
is well known (see, for instance,[21,24]). The Poisson view starts with the canonical
symplectic structure on the cotangent bundleT ∗Q of the spaceQ of vector potentialsA on
R

3. This Maxwell configuration spaceQ has, as its cotangent bundle, the space(A,E) of
vector potentials together with their conjugate momenta, the space of electric fieldsE (up
to a sign).

The gauge groupG consists of all real valued functionsφ onR
3 with appropriate fall off

conditions at infinity. One then takes the quotient ofT ∗Q with respect to the action of the
gauge groupB whose action on configuration space is simplyA �→ A +∇φ. The quotient
of the canonical Poisson structure gives the Pauli–Born–Infeld (PBI) Poisson structure on
the space of electric and magnetic fieldsE, B. The reduction process in this sort of example,
which is due to[24], is discussed in, for example,[21]. We recall for the readers convenience
that the PBI bracket is given on functionsf andg of (E,B) by

{f, g} =
∫∫∫ [

δf

δE
·
(
∇ × δg

δB

)
− δg

δE
·
(
∇ × δf

δB

)]
d3x.
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Here it is assumed that the fields are defined on all ofR
3 for simplicity and where the

derivatives are taken in the sense of functional derivatives.
The dynamic Maxwell equations are then the Hamilton equations for this Poisson struc-

ture together with the Hamiltonian

H = 1

2

∫∫∫
[‖E‖2 + ‖B‖2] d3x.

This process is also important for understanding the Poisson structure of fields coupled to
the Maxwell equations such as charged fluids and the Maxwell–Vlasov equations, see[21]
for the literature and also[5].

Symplectic reduction. In this context, symplectic reduction is quite simple. Namely, the
momentum map for the action of the gauge group is simply the divergence of the electric
field, so the process of setting the momentum map to be a constant reproduces the Maxwell
equation divE = ρ and taking the quotient by the gauge group then mapsA to B. The
reduced symplectic form is the one associated with the Born–Infeld Poisson structure on
this space ofE andB.

Lagrangian reduction. Lagrangian reduction can be carried out following the general
principles in[22] in a straightforward way. Namely, one starts with the same Maxwell
configuration spaceQ but now one constructs the tangent bundleTQ of pairs(A, Ȧ). We
ultimately identify the time derivative ofA (or rather its negative) with the electric fieldE.
We defineB = ∇ × A and let the Lagrangian be

L(A, Ȧ) = 1

2

∫∫∫
[‖Ȧ‖2 − ‖∇ × A‖2] d3x.

One checks that the dynamic Maxwell equations are the Euler–Lagrange equations for
this Lagrangian. Of course, the Euler–Lagrange equations are equivalent to Hamilton’s
principle, namely

δ

∫∫∫
L(A, Ȧ)d3x = 0.

Lagrangian reduction focuses on the reduction of Hamilton’s principle. In this case, this
procedure is particularly simple; we form the quotient spaceTQ/B, which we identify with
the space of pairs(B,E) and define the reduced Lagrangian by the same expression asL

except now regarded as a function of(B,E):

l(B,E) = 1

2

∫∫∫
[‖E‖2 − ‖B‖2] d3x.

The reduced variational principle now states that the previous variational principle and
hence the Maxwell equations are equivalent to

δ

∫
l(B,E)dt = 0

for variations of a given curve of fields(B(t),E(t)) that have the form

δB = ∇ × ξ, δE = −ξ̇
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for some curve of vector fieldsξ(t). Variations of this form are induced by variations ofA
via δA = ξ.

Covariant Lagrangian reduction for electromagnetism. We now consider the configura-
tion bundleπT ∗ : T ∗M → M over a semi-Riemannian manifold(M, g) and the Lagrangian
density

L : J1(T ∗M) →
n∧
T ∗M, L(j1

xω) = 1
2〈dω,dω〉gvg,

where〈, 〉g is the Riemannian metric defined bygon
∧2

T ∗M andvg is the semi-Riemannian
volume. In coordinates

L(j1
xω) = 1

4FµνF
µν√g dx1 ∧ · · · ∧ dxn.

The bundleT ∗M → M can be considered as the bundle of connections of the trivial
bundleM × U(1) → M. In fact, representation of the gauge transformations on the bun-
dle of connections are symmetries of the electromagnetic Lagrangian. More precisely, for
any gauge transformationΨ : M × U(1) → M × U(1), Ψ(x, z) = (x,eiφ(x)z), with
φ ∈ C∞(M), the transformationT ∗M → T ∗M, ωx �→ ωx + (dφ)x, with ωx ∈ T ∗

x M,
leaves the LagrangianL invariant. The mappingsφ can be seen as sections of the trivial
bundleM × R → M. Hence, considering the jet bundleJ1(M,R) we have a fiberwise
action

J1(M,R)× T ∗M → T ∗M, (j1
xφ, ωx) �→ ωx + (dφ)x, (7.1)

which induces an action

J2(M,R)× J1(T ∗M) → J1(T ∗M),

by simply 1-jet prolongation.

Proposition 7.1. The quotient spaceJ1(T ∗M)/J2(M,R) can be naturally identified with∧2
T ∗M and the projectionJ1(T ∗M) →∧2

T ∗M with the differentialj1
xω �→ (dω)x.

Proof. By virtue of Poincaré lemma, two 1-jetsj1
xω andj1

xω
′ of local sections are mapped

to the same 2-covector by the differential if and only ifω′ = ω+ dφ for a local functionφ.
The prove is complete by taking into account that the differential morphism is a surjective
fibration. �

Since the electromagnetic LagrangianL is invariant under the gauge transformation, it
drops to the quotient space as a map

O :
J1(Y)

J2(M,R)
→ ΛnT ∗M.

This is a particular case of the Utiyama theorem (see, for example[11]).
Following the guide from the infinite dimensional space of fields point of view, one should

consider variations of sections of the bundleY that are needed to form the Euler–Lagrange
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equations. These variations (probably one should start with vertical variations) project to
variations on the covariant reduced spaceJ1(Y)/J2(M,R) =∧2

T ∗M that are the covariant
analog of the induced variations of the magnetic field we saw in the infinite dimensional
point of view. Namely, the variations should be of the form of the linearization of the
curvature operator applied to a variation ofA.

We start with a sectionA of T ∗M and we consider an arbitrary vertical variationAε of
the typeAε = A+ εω, whereω is another 1-form, that is, we haveδA = ω. The dropped
variation will be

d

dε

∣∣∣∣
ε=0

dAε = dω.

Hence the infinitesimal variation alongF = dA will be δF = dω and we can say
that the reduced problem is a zero-order variational problem defined by the Lagrangian
l :
∧2
(X, g̃) → R, l(F) = (1/2)‖F‖2, under constraints: the admissible variations

along a sectionF are of the type dω, with ω ∈ Ω1(X). The variational principle
yields

0= δ

∫
X

l(F)vg = 1

2

d

dε

∣∣∣∣
ε=0

∫
X

‖F + εdω‖2vg

= 1

2

d

dε

∣∣∣∣
ε=0

∫
X

〈F + εdω,F + εdω〉vg =
∫
X

〈F,dω〉vg =
∫
X

〈∂F, ω〉vg,

where∂F is the codifferential defined by the metricg. As ω is arbitrary, the variational
principle gives

∂F = 0,

which is one half of the Maxwell equations. The other half comes from the compatibility
conditions for reconstruction. Locally, a 2-form is the differential of a 1-formA if and only
if F is exact. Hence a necessary condition for reconstruction is

dF = 0.

These results for electromagnetism are similar to those of Fernández et al.[8].
Almost regular Lagrangians. We pause momentarily to recall a bit more of the general

theory. Given a fiber bundleY → M, a Lagrangian densityL is said to be almost regular if
the following properties are satisfied (see, for example[7,12]):

1. F̂L(J1Y) ⊂ Π is a closed submanifold.
2. F̂L is a submersion with connected fibers.

The manifoldP = F̂L(J1Y) is called theconstraint manifold. For κ ◦ FL = F̂L,
we have thatFL(J1Y) ⊂ κ−1(P) and we can define a sectionδ of κ alongP by set-

ting δ = FL ◦ F̂L
−1

. Note thatF̂L
−1
(.), . ∈ P, is a submanifold ofJ1Y on which

FL is constant and hence the definitionδ = FL ◦ F̂L
−1

makes sense. Using a
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diagram

A pair (P, δ) of a subbundleP ofΠ → Y and a section ofκ : J1Y∗ → Π alongP is called
aHamiltonian system with constraints. A sectionπ of P→ M is called asolutionif

π∗(iXΩPδ ) = 0 (7.2)

for any vertical vectorX, whereΩP = dΘP, ΘP = δ∗i∗Ω, with i : κ−1(P) ↪→ J1Y∗
andΩ being the multisymplectic form onJ1Y∗. In the caseY → M is endowed with a
connection we can proceed as in formula(3.5)and we decompose

ΘP = ΘPA +H,
whereH : P→∧n T ∗M is the Hamiltonian density.

If the Hamiltonian system is defined by an almost regular Lagrangian density, we have
the following equivalence (see[7,13, Section 4.5]).

Proposition 7.2. A section s of the bundleY → M is a critical section of the variational
problem defined byL if and only if F̂L ◦ J1s is a solution of the Hamiltonian system with
constraints.

Hamilton–Cartan equations for electromagnetism. It is straightforward to see that for
electromagnetism,L is not hyper-regular, that is, the Legendre transformationF̂L is not a
diffeomorphism. Nevertheless, the electromagnetic Lagrangian density is almost regular in
the sense given above.

ForY = T ∗M and the LagrangianL(j1
xω) = (1/2)〈dω,dω〉gvg, the constraintP defined

onΠ = TM ⊗ TM ⊗∧n T ∗M is

P = F̂L(J1(T ∗M)) = (TM ∧ TM)⊗
n∧
T ∗M ⊂ Π. (7.3)

Indeed, using the standard coordinates(xµ,Aν, π
µν) onΠ = (TM⊗ TM)⊗∧n T ∗M, we

have

πµν = ∂L

∂Aµ,ν
= Aµ,ν − Aν,µ,

and then

πµν + πνµ = 0.

We define a change of coordinates onΠ as

Fµν = 1
2(π

µν − πνµ) for µ < ν, Sµν = 1
2(π

µν + πνµ) for µ ≥ ν.

The constraintP is defined bySµν = 0, for allµ ≥ ν.



M. Castrillón López, J.E. Marsden / Journal of Geometry and Physics 48 (2003) 52–83 79

The pull-back of the multisymplectic formΩ to κ−1(P) is locally

ΩP = −dp ∧ v +
∑
µ<ν

dFµν ∧ (dAµ ∧ vν − dAν ∧ vµ), (7.4)

andEq. (7.2)gives

− ∂H

∂Fµν
+ ∂Aµ

∂xν
− ∂Aν

∂xµ
= 0,

∂H

∂Aµ
+ ∂Fµν

∂xν
= 0,

which are the Maxwell equationsFµν = Aµ,ν − Aν,µ andFµνν = 0. For the last formula
(and in the sequel) we define

Fµν = −Fνµ

whenµ > ν.
Poisson forms on the constraint manifoldP. For the constraint manifoldP ⊂ Π as

defined in(7.3), we say that anr horizontal formE onκ−1(P) is Poissonif there exists an
(n− r)-multivector fieldχ such that

iχΩP = dE, (7.5)

whereΩP is defined in formula(7.4). We study the caser = n− 1.

Proposition 7.3. The Poisson(n− 1)-forms onP are in coordinates

E = (FµνXν +Gµ)vµ,

whereXν = Xν(x), are functions on M andGµ = Gµ(x,A) functions onT ∗M satisfying

∂Gµ

∂Aν
= ∂Gν

∂Aµ
.

Proof. In coordinates

E = Eµvµ, dE = ∂Eµ

∂xµ
v + ∂Eµ

∂Aν
dAν ∧ vµ +

∑
γ<ρ

∂Eµ

∂Fγρ
dFγρ ∧ vµ.

On the other hand, if we have

X = X
∂

∂p
+Xν

∂

∂Aν
+
∑
µ<ν

Xµν
∂

∂Fµν

from (7.4), the condition(7.5)gives

∂Eµ

∂xµ
= −X, Xµν = ∂Eν

∂Aµ
= −∂E

µ

∂Aν
, for µ < ν,

∂Eµ

∂Fγρ
= δµγ Xρ − δµρXγ.

These conditions are satisfied if and only if the formE is as said in the statement. �
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Given two Poisson formsE andH on P, deg(E) = r, deg(H) = s, we define their
Poisson bracketto be

{E,H} = (−1)n−riχE iχHΩ
P,

whereχE andχH are the multivector fields associated toE andH , respectively. For the
special case whereE is an(n − 1)-form andH is a function, we have the following local
formula:

{E,H} =
∑
µ<ν

(
∂Eν

∂Aµ

∂H

∂Fµν
− ∂Eµ

∂Fνµ

∂H

∂Aν

)
. (7.6)

Theorem 7.4. A section F of the constraint bundleP→ M is a solution of the Hamiltonian
system(P,A,H) if and only if for every Poisson horizontal(n − 1)-form E onP we
have

{E,H}v = d(F∗E)− dhE ◦ F,
wheredh is the horizontal differential with respect to the Riemannian connection on the
bundleΠ = TM ∧ TM ⊗∧n T ∗M → M.

Proof. In coordinate system such thatv = dx1 ∧ · · · ∧ dxn, we have

{E,H}v =
∑
µ<ν

(
∂Eν

∂Aµ

∂H

∂Fµν
− ∂Eµ

∂Fνµ

∂H

∂Aν

)
v = ∂Gν

∂Aµ
Fµνv.

On the other hand,

d(F∗E)− dhE ◦ F =
(
∂Eµ

∂xµ
+ ∂Eµ

∂Aν

∂Aν

∂xµ
+ ∂Eµ

∂Fργ

∂Fργ

∂xµ
− ∂Eµ

∂xµ
+ ∂Eµ

∂Aν
Γ ρµνAρ

− ∂Eµ

∂Fργ
Γ ρµτF

τγ − ∂Eµ

∂Fτγ
Γ ρρµF

τγ

)
v

=
(
∂Gµ

∂Aν

(
∂Aν

∂xµ
− ∂Aµ

∂xν

)
+Xγ

∂Fγµ

∂xµ

)
v,

where we have used the structure of Poisson forms onP given inProposition 3.3. So the
equality holds true if and only if the Maxwell equations are satisfied. �

Reduction. For the action of the gauge group onπMY : Y = T ∗M → M is by affine
translations, the action of the gauge bundleG = J2(M,R) on V ∗Y = π∗

MYTM → T ∗M
is purely horizontal, that is, it only acts onT ∗M as in formula(7.1) and leaves the fiber
invariant. Therefore, the fiberwise action ofG on the polysymplectic bundle

Π = TM ⊗T ∗M V ∗Y ⊗T ∗M

n∧
T ∗M = TM ⊗T ∗M TM ⊗T ∗M

n∧
T ∗M → T ∗M

is trivial along the fibers and only effective onT ∗M. Moreover, we have a first-order action,
that is, it is really defined byJ1(M,R) in the way that two 2-jetsj2

xf , j2
xf

′ such that
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j1
xf = j1

xf
′ produce the same action. More precisely,(

∂

∂xi
⊗ ∂

∂xj
⊗ dnx

)
ωx

· j2
xf =
(
∂

∂xi
⊗ ∂

∂xj
⊗ dnx

)
ωx

· j1
xf.

The quotient of this action is simply

Π

G
= TM ⊗ TM ⊗

n∧
T ∗M → M,

and

P

G
= TM ∧ TM ⊗

n∧
T ∗M → M

for the constraint. If we define the coordinate system(xµ, fµν),µ < ν, onP/G, the projec-
tion simply reads(xµ,Aµ, Fµν) �→ (xµ, Fµν), that is,fµν = Fµν. It means that functions
and forms onΠ invariant under the gauge group must not depend on the coordinatesAµ
when expressed in locally. Then we have the following proposition.

Proposition 7.5. The projection toΠ/G of the set of Poisson horizontal(n− 1)-forms on
Π invariant under the action of the gauge group is

{e = (fµνXν + gµ)vµ|Xν, gµ ∈ C∞(M)}.

Theorem 7.6. Let E be a Poisson form onP and H an invariant function, both invariant
under the action of the gauge group. Then{E,H} identically vanishes.

Proof. Using the local expression(7.6)of {E,F }, if ∂Eµ/∂Aν = 0, ∂H/∂Aν = 0, we have
{E,H} = 0. �

Hence the version ofTheorem 5.2for this setting turns out to be very easy.

Theorem 7.7. For the Maxwell Hamiltonian systemP, given a section F of the bundle
Π → M the following points are equivalent:

1. F is a solution of the Maxwell equations,
2. for any Poisson form E onP we have

{E,H}v = d(F∗E)− dhE ◦ F,
3. for any Poisson form on the reduced bundleΠ/G, the reduced section satisfies

0 = d(f ∗e)− dhe ◦ f,
4. the reduced section f satisfies the equations

∂fµν

∂xν
= 0. (7.7)
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Proof. 1⇔2 is justTheorem 5.2. FromTheorem 6.3we have the 2⇔3 for the left-hand
side of the formulas. The right-hand side, is evident if we putE = κ∗e,H = κ∗h, κ being
the projectionΠ → Π/G.

Finally, for 3⇔4, we have

d(f ∗e)− dhe ◦ f = ∂eµ

∂xµ
+ ∂eµ

∂fβγ

∂fβγ

∂xµ
− ∂eµ

∂xµ
− ∂eµ

∂fβγ
Γ
β
µτf

τγ = Xγ
∂fµγ

∂xµ

for any familyXγ ∈ C∞(M). For 4⇔1, note that the reducedequation (7.7)is the half of
the Maxwell equations. The other half is just the reconstruction equation. �

8. Conclusions and future directions

In this paper we have contributed to both covariant Lagrangian reduction theory and to
covariant Poisson reduction theory. One of the reasons that we did not pursue covariant
multisymplectic reduction theory is the simple fact that it is well-known that setting the
multimomentum map equal to a constant is not appropriate (e.g., for electromagnetism, this
would not correspond to constraints) and it is not understood at this time what the covariant
analog of this should be.

We developed the theory of covariant Poisson structures a little further and showed that
there is a covariant version of Lie–Poisson theory that is parallel to the known covariant
Euler–Poincaré theory and we also showed that both the covariant Lagrangian reduction
and covariant Poisson reduction methodologies work for the case of electromagnetism.

Of course there is much to do still, but we hope that the present paper is a useful contribu-
tion towards the goal of developing covariant reduction theory. The main missing ingredient
is, as we have indicated, a reduction theory in the multisymplectic context. In addition, many
more examples need to be worked out, such as relativistic fluids and plasmas and Yang–Mills
fields. Of course there is also the big prize: general relativity.
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