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Abstract

Given a Hamiltonian system on a fiber bundle, the Poisson covariant formulation of the Hamilton
equations is described. When the fiber bundledsgrincipal bundle and the Hamiltonian density is
G-invariant, the reduction of this formulation is studied thus obtaining the analog of the Lie-Poisson
reduction for field theories. The relation of this reduction with the Lagrangian reduction and the
Lagrangian and Poisson reduction for electromagnetism are also analyzed.
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1. Introduction

There is a long history of reduction theory for symplectic and Poisson manifolds, as
described in, for instancg6]. If one takes the point of view of infinite dimensional fields,
then this same formalism of symplectic and Poisson reduction can, and has been applied
quite successfully, as in, for instance, to fluid$2b] (inspired by the work of Arnold and
others), to electromagnetism and plasma physig4h(inspired by work of Morrison and
others) and to Yang—Mills type equationgi6,29]

It is important to keep in mind that there is a Lagrangian reduction counterpart to the
symplectic and Poisson reduction approach that has also been applied to many field theories.
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In Lagrangian reduction one drops variational principles to quotient spaces rather than
symplectic or Poisson structures. The most basic of these is the well-known Euler—Poincaré
reduction theory as described[21] for instance, but there have been important extensions
of this methodology, inspired by the original work of Marsden and Schd@aég We
mention the papers of Cendra et[al.17] as typical of these.

However, it has long been recognized that it is quite important to develop a reduc-
tion theory that parallels this using the local view of classical fields, as in the classical
Poincaré—Cartan and de Donder points of view. The purpose of this paper is to contribute
to this effort mainly using the methodology of Poisson reduction.

In terms of what has been done in this direction, there are the results of Castrillon Lopez
et al.[2,4] that study covariant Lagrangian reduction for principal bundles. This basically
gives a covariant view of the Euler—Poincaré theory. Also, the paper of Fernande8Et al.
(and references therein) gives a useful framework for studying the Lagrangian reduction
point of view in field theory.

In our work on Poisson reduction for field theories, we are motivated of course by
the Poisson reduction theory from the infinite dimensional point of view, as described
above, as well as some of the intriguing remarks and exampl¢k9in For the work
on Lagrangian reduction we are motivated by extending the covariant Euler—Poincaré
theory to a case where the gauge group action involves the derivative of the group ele-
ments. This is the case in electromagnetism and it is what make that case of particular
interest.

Our specific accomplishments are as follows:

1. In Sections 2—4wve introduce the basic ingredients of the Hamilton—Cartan theory as
well as the covariant Poisson bracket. We refer the reader to the existing literature for
many of the results concerning this theory.

2. InSection Swe develop the theory of Poisson brackets in the context of multisymplectic
and polysymplectic manifolds and give the equivalence of the Poisson equations and the
Hamilton—Cartan equations.

3. We develop a procedure 8ection 6for dropping the Poisson bracket when the phase
bundle is aG-principal bundle and the considered symmetry group is the structure
group itself. This leads to a covariant theory of Lie—Poisson which, under the appropri-
ate hyper-regularity conditions, is equivalent to the covariant Euler—Poincaré reduction
mentioned above.

4. We also apply this formalism to the particular case of electromagnetiSadtion 7
giving a covariant parallel to what is known from the infinite dimensional point of
view. Although it is an example of a non-regular theory, we show that the formalism
for both covariant Lagrangian reduction as well as covariant Poisson reduction still
hold.

Some general notations and conventions that we shall use are:

. The Einstein summation convention is assumed.

. The space of sections of a bundle> M is denoted by (Y).

. The projection map of a bundle — B is denoted byrga.

. Our base manifold/ is assumed to be compact (only for technical simplicity).

A WOWNPF
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2. Preliminaries

The jet bundleWe will need to recall a few notations about jet bundles. For a general
exposition of jet bundles, we refer the reader to, for exanjfp&28]or to[1].

Given a fiber bundleryy : Y — M, we say that two local sections: U — 7,
s’ 1 U — Y represent the same jgts atx € UN U’ iff s(x) = s'(x) and Tys = Tys'.
In fact, representing the same jetvat M is an equivalence relation, the space of classes
of which is denoted by/lY. The total spacelY = J,.,, JLY can be endowed with
a smooth structure such that the target mappihg — Y, j)}s — s(x), and the source
mappingJlY — M, j}%s  x, are fibrations. The fibratio'Y — Y is an affine bundle
modeled over the vector bundig,-(7*M) ® VY, whereVY C TYis the vertical bundle,
that is, the subbundle dfYtangent to the fibratiomyy.

Given a fiber coordinate syste(m’, y¢), 1 <i <n =dimM,1 < a < m, onE we
define the coordinate systed, y¢, y¢) on JY by the condition

: ay“(s)
1. -
Vi Us) 1= =55

We thus see that diBi'Y = n +m + nm

The bundle of connectionRecall that arfEhresmann connectiam a fiber bundlg” —
M is a distributionA of horizontal complements to the vertical subbundle, that is, for every
y € Y, we havel,Y = V,Y & A,. As the elements of the jet bundIéY can be understood
as a horizontal subspace by the relatjén <> Im 7.5, an Ehresmann connections Bican
be defined as a section of the bundler — Y (see, for examplg20] or [28]). A relevant
particular case happens when tfie> M is a principal fiber bundle, sa® — M, with
structure groupd. In this case the Ehresmann connections are taken@®ibgariant, that
is, the distributionA is invariant undefR, for any ¢ € G, whereR, stands for the right
action of G on P. Hence, principal connections may be regarded as sections of the bundle
(J1P)/G — P/G = M obtained by taking of quotient of the jet bundle @y This bundle,
called thebundle of connectionand denoted by" — M, is an affine bundle modeled
over the vector bundl#*M ® g — M, whereg — M is the adjoint bundle. Sg&] and
references therein for a more detailed studg'of> M.

The Lagrangian formalismiMe shall also need to recall some of the basic notations and
results from the variational formalism for field theories. A first-ordagrangian density
is a smooth fiber mag : J'Y — A" T*M. We say that a (local) sectionof the bundle
Y — M is acritical solution of the variational problem defined k¥ if for every smooth
family of sectiongs,}.cr such thatg = s, we have

d / Lo jlse=0.
d<9 =0 M

We assume that the manifold is oriented by a volume formand we shall writef = Lv,
which definesL € C*®(J1Y). There is an operatafl : I(Y) — I(V*Y), called the
Euler-Lagrange operatgomhose local expression is

L d L
EL(s) = <8_ o jls— — (8_ o j1s>> ® dy*
Vi

(x).

ay* dx!
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for a local coordinate system’) on M with v = dx! A - - - A dx”. A standard result in the
calculus of variations says thats critical if and only if€L(s) = 0.

3. The multisymplectic formalism

The dual jet bundleThere are many variants of the multisymplectic formalism in the
literature and many different notations. Thus, we will need to review our notation and set
up. We shall follow the version given [13], see als¢27].

Given afiber bundl# — M, one defines theéual jet bundle/1Y* to be the vector bundle
overY whose fiber ay € Y, is the set of affine morphisms fro(ﬂlY)/V to the bundle of
n-forms onM, which we denote by\" T*M) , that is

n
Jy* = Aff (JlY, /\ T*M) )

Given a fiber chartx’, y%) onY, fiber coordinategx’, y, pi,, p) on J1Y* are defined such
that an affine map has the form
Yo (p4 Py det A A dx”.
We thus see that diot*Y* = n +m + nm+ 1.
There is another characterization of the spatg*. Let Z be the subbundle of\" T*Y
whose fiber ap € Y is given by

n
Zy=1z¢€ (/\ T*Y) iyipz=O0forallu,ve V,Yt,
y
that is, Z consists ofi-covectors annihilated by the contraction (interior product) by two
vertical vectors. Locally, elements @fcan be written as

z=pd'x+ pldy’ A d"x;,
where dx = dx' A+ Adx” and &~ 1x; = i), d"x. We define the mapping
®:7Z— Jy*

by setting®(z)(jis) = s*z € \" T*M, forz € Z,, jis € (J1V),. This mapping is a vector
bundle isomorphism whose local expression simply equals the coordinate systems defined
onJ1Y* andZ above.

This alternative characterization of the dual jet bundle enables one to introduce in a
natural way the multisymplectic form aftY*. We first define the canonicatform © 4
on \" T*Y by

Oa@)ua, ..., uy) = 2Ty, ua, ..., Ty, uy),

wherez € \" T*Y,u1, ..., u, € T, (\" T*Y) andry, is the projection\" 7*Y — Y. If
iaz : Z < N\" T*Y denotes the inclusion, we define tt@nonical n-fornon Z (resp. on
J1Y*) to be the pull-back’, ,0 4 (resp.(®~1)*i* ,0,). For the sake of simplicity, we
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denote the canonical form & both onZ and onJ'Y*. The canonical multisymplectic
(n + 1)-formis defined as

2 = —do.

One easily finds that the local expressionsdbis
O = pl dy* Ad" Iy + pdix,

and so
Q=dy* Adp’, Ad"Ix; —dp A d"x.

Let£: J'Y — A" T*M be a Lagrangian density. Tlkevariant Legendre transformation
is the fiber map

FL: JYY — Jiy*
overY that is defined to be the first-order vertical Taylor approximatiog;tthat is

d
FLOG)Gs) = L) + 5| LU + e’ = jio).
=0
Locally, in coordinates, we have
. oL oL
i — =1L - — {1’ 3.1
Pu 0y¢ p 0y" Y (3.1)
wherel = L d"x.
The following proposition is the basic link between this approach to multisymplectic
forms and the classical Poincaré—Cartan formalism in the calculus of variations, as in, for
example[11,14]

Proposition 3.1. Given a Lagrangiandensit§ : J'Y — A" T*M, the pull-backf £*® of
the canonical n-forn® of J1Y* by the Legendre transformation is the classical Poincaré—
Cartan form ofL of the calculus of variations

Proof. A local computation taking into accouBf. (3.1)and the local expression of the
Poincaré—Cartan form (s¢&0])

oL 9
Or = —dy* Ad" 1x; + [ L — —7) d"x. O
L ayla y xl+< 3y?yz) X

The polysymplectic bundl@he polysymplectic formalism provides some interesting
alternative perspectives on the geometry of field theories; it goes btk icee als¢27].

Since the dimensions oftY andJ1Y* are differentF £ can never be a diffeomorphism.
This difference is due to the fact that the affine structure of the jet bundle is taken into
account in constructing the dual. This can be “fixed” by definitigear approximation of
L instead of thevertical Taylor approximation. Given a fiber bundte— M one defines
thepolysymplectic bundl&f overY as

n
Ty TM®y V*Y ®y miyy (/\ T*M) :
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Whenever it is clear that all the bundles are o¥ewe will simply write

n
H:TM@V*Y@/\T*M

with the pull-back notation omitted. Local coordinate§ y*, nfl) are defined by the con-
dition
f i i ® dv? ® d?
= Tay Y *
forany¢ € I7T. Hence dimil = n +m + nm
Note that the spacH can be seen as the space/df T* M-valued forms orT*M ® VY,
which is precisely the vector bundle over which the affine budle — Y is modeled.
We can thus define tHaear Legendre transformation

FL:JY - IT

to be the fiber map ovef defined as

. d
FL(jLs) (o) = % L(js + cw)
=0

foranyw € T*M ® VY. Locally we have
;oL
T, = —:.
The linear Legendre transformatiéit can now be a diffeomorphism but one has to pay a
price. Even though we can define a canonical vector bundle valued forhwith which
the Hamiltonian analysis can be carried out (see, for exarfi#§), the manifold/T is not

endowed with a canonical form a@8Y* is. Nevertheless, the polymomentum bundle and
the dual bundle are related as follows.

Proposition 3.2. The fiber mapJly* — IT sendingg € Aff (J1V),, A" TiM) =
(JlY*)y, to the associated linear morphispn e (T,M ® V;Y)* QN'"TiM = II,, is
a one-dimensional fibratian

Proof. Asthe map/lY* — IT,$ — ¢, is a vector bundle morphism ovErthe projection
J1Y* — ITis afibration whose fibers are the kernel of the morphism. It is evident that the
kernel is one-dimensional. O

Hamiltonian system#\ Hamiltonian systerm the field theoretic context is a paif7, §),
wheres is a section of the bundlé!Y* — I7. Given a Hamiltonian system, the canonical
multisymplectic forms2 = d® on J1Y* can be pulled back té thus obtaining arin +
1)-form 25 = dO®s on I1. A sections of the composite bundl® — Y — M is said to be
asolutionof the Hamiltonian system if the following equation holds:

rix2s = nfixd@s =0
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for any vertical vector field on I7. We now introduce the Hamiltonian densities. For that
we need first the following result (also sg2]).

Proposition 3.3. Given two sections; and 8, of J1Y* — 11, the n-form®;, — O,
is a horizontal density o, that is there is a mapping{ : 11T — A" T*M such that
Os — BOs, = H.

Proof. If we locally express a sectiahas
(', ¥, my) = (&, ¥, pl, Hs)
for a certain functiorH;, then we have
s = dy* Adr’ A d" Ly, — Hs A dx”,
and the proof immediately follows. O

Moreover, an Ehresmann connectidn TY — VYonY — M naturally defines a linear
sections 4 of J1Y* — IT by setting
n
M ® v;;P@/\T;M EWRERV I (E0A) AiyV e Z, = (JIYY),.

Hence, due t®roposition 3.3given a Hamiltonian systeliT, §) and a connectios there
exists a densitg{* called theHamiltonian densitylefined bys and.A such that

05 = Os, + HA.
Hence a section of IT — M is a solution if and only if
iy d(©s, + HYH = 0. (3.2)

Conversely, a Hamiltonian system is thus equally defined by a tiipletd, ), whereA
is a connection and@{ is a density orf1, called Hamiltonian density. It is easy to see that
the Hamiltonequation (3.2)s locally equivalent to

‘ B
oH ay” oH om,, oI}
() (5 -r) () (i) e
oy ) . ox . ). ox 9y .
wherel stands for the coefficients of the horizontal lift
0 i) 0

o
o o + 1 oy’ (3.4)
defined by the connectiod and = H d"x. Eqg. (3.3)are called the Hamilton—Cartan
equations of the Hamiltonian system.
Hyper-regular LagrangiansGiven a Lagrangian densit : J1Y — A" T*M, we say
that £ is hyper-regularif FL is a diffeomorphism onto its image, or equivalently; is a
diffeomorphism. Note that dini P = dim I7 = dim J1pP* — 1.
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For a hyper-regular Lagrangiafy we define a sectiod : IT — J1P* by the equation
§=FLo I?Z_l; that is, we have the commutative diagram

sy % pap

N rs
II.

Given a connectiosd on ¥ — M, the Hamiltoniar?{/ associated ta¢ and A is thus
uniquely defined by the condition

O5 = Os, + HA, (3.5)
and its local expression reads

HA =7l (FL oy — IV —FL "o L. (3.6)
The triplet(/1, A, Hf) is called theHamiltonian systemassociated by and.A.
Remark. There are other alternative (but equivalent) definitions of the Hamiltonian density
defined by a Lagrangian density and a connection. For example, it can be understood as
translation to/7 (by means off L) of the Lagrangian energ&f cJYY = N'T*M

defined byL and.A (se€[7]). Another definition can be geometrically done on the subspace
FL(J'Y) c Jiy* (see[23]). In this case what it is obtained is the density.

Theorem 3.4. LetL : J1Y — N'T*M be a hyper regular Lagrangian. Given a section
s ofY — M, we define the sectiom = FL o jls of the bundlelT — M. Then s is a
critical section of the variational problem defined Byif and only if is a solution of the
Hamiltonian systenar7, A, H7).

Proof. For a proof, see, for examp|3,27] O

4. Poisson formson IT

An r-form F on J1Y* is said to benorizontalif i, F = 0 for any vertical tangent vector
u with respect to the fibratiodlY — M. In local coordinates we have

F=F;y.; d't Ao Adx

for the component functions;,...;. on JLY*. An s-multivector field x on J1Y* (that is,
a section of \* T(J1Y*) — J1Y*) is said to bevertical if its contractioni »F with any
horizontals-form x vanishes.

We say that a horizontal-form F on J1Y* is a Poisson formif there is a vertical
(n — r)-multivector fieldy » on J1Y* such that

iy 82 =dF, (4.1)
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wheres2 is the multisymplectic form odY*. Given a horizontat-form F and a horizontal
s-form E on J1P* we define theiPoisson bracketo be

(F,E} = (=1 iyi, 2. (4.2)
Note that{E, F}is an(r + s + 1 — n)-form on J1y*.
Remark. Notevery horizontal formis Poisson. In fact we are going to see that this condition
is quite restrictive for(n — 1)-forms. On the other hand, given a Poisson fafinthe
associated multivector fieldr may not be unique. Actuallyz is defined up to an element
belonging to kek2, that is a multivector fieldy such thati, 2 = 0. In the symplectic
setting mechanics, where symplectic form is non-degenerate, wexhav, thus having
uniqueness, but this is not the case fietd theories In any case, the non-uniqueness of

x does not obviously give an ambiguous definitior{ Bf E}. We explore this issue in the
following discussion.

Proposition 4.1. Any functionF : J1P* — R is a PoissorD-form.

Proof. In coordinates
Q=dy* Adr, Av; —dp AV,
wherev = dx! A - .- A dx", andv; = i5/9xV. Given a function” we have

OF . OF . OF .
dF:de +Wdy +ﬁdna.

Hence the multivector field

_OF 0 . F D L, OF 3
X o gy T Gy D T o gp
satisfies the conditiof#.1), wherev* = (3/dx1) A - -- A (8/0x™) andv? = ig.v*. O

Proposition 4.2. If a horizontal r-form F > 0,on J1Y* is Poissonthen it is projectable
to IT (seeProposition 3.2

Proof. Let
F = I‘ﬁilmi"vl'lu.l"Y

be the local expression &f, with s = n — r andvi,...;, = iy 5,1 - - - iy, V. Then

8Fi2---i5j 8Fil'”is
dr = P, Vigei, + oy dy® A Vi,
JFiLis . JFiLis
7 dT[g, A Vij.iy + dp A Vig i (43)

oy,



M. Castrillon Lépez, J.E. Marsden/Journal of Geometry and Physics 48 (2003) 52-83 61

Using the local expression fae,
Q=dy*Adr, Av; —dp AV

for as-multivector y to verify thati, £2 = dF, we see thay does not contain any elements
X (3/ax't) A -+ - A (9/x') because they would give terms proportional 16 d dr’, A
Vii,...i;, Which dF does not contain. But then, the last term(4f3) cannot exist and hence,
the functionsF’1s do not depend on the variabfe HenceF is projectable. O

Moreover, if F' is a Poisson form, as $2 = dF, from formula(4.2) we easily have that
the bracket of two projectable Poisson forms is still a projectable forf.telence, from
now on we will consider that the horizontal Poisson forms are defined @md will be
seen or/1Y* by pulling-back only when needed.

We now study the special case whétés a Poissorin — 1)-form. We write

F = Fv;,
and
aF  OF F
dF = WV+ay—wdy"‘/\v,~+—jdﬂa/\Vi-

o

Let x be a vector field on'* P* such thai, 2 = dF. We write
— X“i + Xi i + Xi
XK= R e T e T gy
Hence, for
i, 2= X"drl, Av; — XL, dy* AV — XV
to be dF, the following conditions must be satisfied:
OF" OF" ; aF
— =X, — =X, — =8 X"
ox e arl J
These conditions only constraint the behavioFofiith respect tor’,. Actually, we obtain
that the general expression of a horizortal- 1)-Poisson form is
F = (—m, X" + gV (4.4)

for any functionsX® = X*(x, y), g’ = g'(x, y). Moreover, as every closed horizontal form
on I7 is Poisson, we can add a closed tern{4a!). This local expression of the Poisson
(n — 1)-forms can be given in an intrinsic way as follows.

Proposition 4.3. For a vertical vector field X or¥ — M (locally X = X*3/0y%) we
construct a mapping

n n
n=TM@y V*Y®y \T*M — TMey \ T*M
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by contracting thé/*Y part with X. By composing this mapping with the natural contraction
TMRy N\"T*M — iy (/\"_1 T*M) we obtain a morphism

n—1
ex:n>+nﬁY</\Tﬂw>,

that is a horizontal(n — 1)-form onI1. In local coordinatesthe result of the composition
yields

9 .
Ox (n(’xg @dy*® V) = 1, XV;.
Hence any horizontal Poissan — 1)-form onIT is the sum of: a formiy with X a vertical
vector field the pull-back td'7 of an arbitrary horizontaln — 1)-formw on Y; and a closed
horizontal(n — 1)-form Z onI1, that is

F =6x +nigo+Z. (4.5)

Remarks.

1. In classical mechanics (whete= 1,Y = R x Q andM = R, with Q an arbitrary
manifold), although any function is a Poisson function, the previous Proposition gives a
special kind of functions. The three terms are of the form

F=0X)+G(q1+k,

whereX is any vector inR x Q, ¢ is the Liouville form,G is any function orR x Q
andk is a constant which can be dropped(df) is a coordinate system ap, the local
expression of these functions reads

F = f(q.0pi +8(g,1

for time depending arbitrary functiong andg on Q, that is, we have the affine func-
tions onT* Q. It is interesting to point out that the set of these functions represents a
natural class on which the Poisson bracket can be defined functorally and, are enough
to determine the full Poisson bracket on the cotangent bundle as it is discussed in, for
instancq6].

2. The notion of Poisson form as we present here follows the work of Kanatc[ipv
where the basic definitions are presented in coordinates.

3. The definition of Poisson forms can be extended to non-horizontal forms as it is done in,
for example, se§d]. Nevertheless, the equations become much more complicated and
hence, for our purposes, working with horizontal forms will be enough.

5. The Poisson bracket and Hamilton equations

Let F be a horizontal Poissom — 1)-form on I7 andH a Hamiltonian density. For
the fixed volume fornv, we write, as before{ = Hv. It is easy to check the following
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expression for the bracket:
dF' 9H  OF' 9H
(FH = —— — ——
oy* oml,  oml, oy“
in a coordinate system wheve= dx® A - - - A dx".

Remarks.

1. Itis clear that the previous bracket depends on the choice of the volume form and it is
not an intrinsic object of the Hamiltonian densty If a new volume fornv = fv, f €
C°(M), is chosen, we havel = fH and hencdF, H} = f{F, H}. This dependence
onv can be fixed by considering

{F, H}v,

instead of simply{F, H}. We can thus think of F, H}v as the bracket of the Poisson
form F with the Hamiltonian densit§{. Its local expression reads
1 13
(F, Hv = (aia—H—aia—H) del A Ady. (5.1)
oy oml,  oml, oy*

2. The right-hand side of formul®.1) does not depend on the chosen coordinate system
and can be defined for any functiéhand any horizontal forn, no matter whethefF is
Poisson or not. That is, the bracket can be defined “geometrically” only for some special
forms, but its local expression is intrinsic for any arbitrary form. This fact is related with
the results iff6] where the Poisson bracketmiechanicss defined naturally only for a
special class of functions and then extended to arbitrary functions.

Proposition 5.1. Given a connectiotd onY — M and a Riemannian connection on M
there is a canonical connection on the bunfile~ M. The horizontal lift of this connection
is

ox! ox! ay B ay* J

o

p
9 9 9 orr ; i\ 0
IR —.+F,-"—a+< : ”fﬁfiﬁé—ﬂﬁﬂé) —, (5.2)

wherel are the coefficients ofl (see formulg3.4)) and I“JL are the Christoffel symbols
of the Riemannian connection

Proof. We first give a connection to the bundléY — M. We understand the connection
Aas asectiod : Y — JY of the jet bundle. The differential of this map when restricted
to vertical vectors is él|vy : VY — VJ'Y. In the theory of jet bundles it is known that
VJY andJVYare canonically isomorphic (for example, §28]). Hence we have d|yy
VY — J1VY, thatis a connection on the bundly — M. By duality we have a connection
onV*Y — M. Itis not difficult to prove that the horizontal lift of these connections are,
respectively,

o o o

— — o y

- > - Py ) — > —+1; —.
ox’ O’ Loy o gy 9yP ox’ O’ N bp Py

9 9 o orf ,a 9 9 o o
I —
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AsIl = TM®y V*Y ®y /\" T*M, combining the connection dri*Y with the connections
onTMand/\" T*M defined by the Riemannian connection gives a connectidd waich
is easily proved to have the local expression give(big). O

Theorem 5.2. A sectionr of the bundlelT — M is a solution of a given Hamiltonian
system(I1, A, H), H = Hv, if and only if for any horizontal Poissotx — 1)-form F the
following equation holds true

(F,HVor =d@*F) — d"F) o, (5.3)
whered"F is the horizontal differential of Fthat is, the differential of F restricted to
horizontal vectorswith respect to the connection 6h as was introduced iRroposition 5.1
Proof. In a coordinate system such that= dx! A --- A dx”, we have

F' 9H  dF' 9H

(FHvV=—— — —— ) dxt A+ A dx",

oy* oml,  oml, oy
and

F=(—7,X"+ g'v;.

Then
aF 9H oH
(FHvV=—— —X*— ) dx* A -+ A dx".
ay“ orl, ay¥
On the other hand,
AFT  OF 3y  oF ol  9F aF!
dx*F) — [d"For = o Yy 9 e OF i
ox' - oy* ax' - gl ox! ox! ay*

ﬂ .
ary ; i\ OF
- (_ Tt Lyl — ﬂﬁm{,) —1) V.
y oy
But taking into account thaf is Poisson, fron{4.4) we have
8—Fl: = &L X~
aml 7

and then

i .
oF" a orn! ol .
* h L y o o o |

Hence(5.3)is true if and only if

PHY (WL, or __(om, ory
ont, ) oxt ) aye ) i gy P n’

which are the Hamilton—de Donder equations, thus finishing the proof. O
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Remarks.

1. We must note that the Riemannian connection defined @oes not play an important
role as the Christoffel symbo!%‘l'( do not appear in the computation @fftb ) — (d" F) o
for Poisson forms. In other words, for these forms the horizontal differential can be
defined directly by means of the connectidronly, without the use of any Riemannian
connection.

2. In mechanics, wher® = R andn = 1, for the trivial connection o x QO — R, the
expressior(5.3) simply reads

dF 8F> dr,

{F,H}df=<a—§

which is the classical formula of the Hamilton equations in the Poisson form.

6. Lie—-Poisson reduction in principal bundles

We now confine ourselves to the case when the phase bundl&-prancipal bundle
amp - P — M. The goal of this section is the reduction of the Poisseqoations (5.3)
when the Hamiltonian density is invariant under the action of the full gi@uphe result
of this reduction is the covariant version field theoriesof the well-known Lie—Poisson
equations inmechanicswhich represents the Poisson picture of the reduction principal
bundles described if2].

The space TM §* ® A" T*M. The rightG-action onP induces a natural action &P
as a subset ofP. It is known that the quotient is isomorphic to the adjoint bundle, that is

VP
— ~g.

G
Similarly, (V*P/G) ~ §*. Asthe actionofG onIT = TM®p V*P ®p \" T*M is trivial
on the factor§M and \" T*M, we thus have

n

n
—~TM® g* T"M.
. R ® /\

We now work with horizontal Poissofx — 1)-forms onIT which areG-invariant. From
Proposition 4.3ve know that such a form is of the tyge = 0y + np 0 + Z, with X

a vertical vector field orP, w € £2"~1(P) horizontal andzZ e £2"~1(IT) horizontal and
closed. If we wanf' to beG-invariant we thus have to deal with-invariant vertical vector
fields. Those vector fields are precisely the gauge vector fields of the principal bundle and
they form a subalgebra &f(P) denoted by gaw. It is well known that a gauge vector field

can be seen as sections of the adjoint bugdie M, thatis gauP >~ I(g).

Proposition 6.1. The Poissorin — 1)-forms onlI7 which are invariant under the action of
G onIT are of the type

F=0x +nygow+ Z,

whereX € gauP, w € 2"~1(M) and Z is a closed horizontal G-invariant form @.



66 M. Castrillon Lépez, J.E. Marsden/Journal of Geometry and Physics 48 (2003) 52-83

Proof. This is a straightforward computation. O

The projection of th&-invariant Poissorin — 1)-forms on

H n
—=TMg* \T*M
G EAIAN

can be understood as follows. Given a gauge vector fiel® det & be the section of
determined by the identification g&u~ I'(g). We define a mapping

n n
MR§ ® \T*M > TM® \ T*M
by pairing the factog* with &. By composing by the natural contractibM® A" T*M —
N'"~1 T*M we obtain a mapping
n n—1
b TMR§*® \T*M — \ T*M.
that is, an(n — 1)-horizontal form on/7/G. In local coordinates, fof = £*B,, we have
- R ‘
/fo? ® B* @V~ u,&%;.
Then it is easy to see the following proposition.

Proposition 6.2. Following the characterization given iRroposition 6.1the forms f on
I1/ G which are projection of G-invariant horizontal Poissgn— 1)-forms on/T are of the

type
[ =0+ 7ym o+ Z, (6.1)

where¢ is any section off — M; andw is any (n — 1)-form on M and Z is any closed
horizontal form on/7/ G. Dropping the last termthe local expression of is

f=flvi=E"u1, + o).

The Lie—Poisson brackeWe can define a natural bracket ofyG = TM ® g* ®
A" T*M between functiong& and formsf of the type described iRroposition 6.2y
means of the Lie coalgebra structure of the burgile—> M. Given any functiom: €
C>® (TM® §* ® A\" T*M) its vertical derivativeis a morphism

(Sh ~ n B n
5 MET @ AT'M = T"Meie \TM
defined by

h(pn +e7)
e=0

Sh _ d
a(ﬂ)(f) = de
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foranyu,t € M ® g5 ® \" TiM, x € M. For any formf of the type
[ =0+ n;,[n/(;a)
with & € I(g), we define thé.ie—Poissorbrackets on7/ G as

Sh
{f () = i<u, [f; a(M)D (6.2)

foranyu € M @ g5 ® /\" T M, where the bracket | is the fiberwise bracket i — M
and(, ) stands for the natural pairing betweBM ® g* ® A" T*M andT*M @ g /\" TM.
Note that the Lie—Poisson bracket gives a function. The local expression of this bracket is

i g O L Of on
{ﬁh}i(ﬂ) = ﬂ:c(é M;Eﬁ—. — 2 f
14 alu;/

& ot ————, (6.3)
B
y "‘3Mig BMIV

Wherec‘)ﬂ‘y are the structure constants of the Lie algghra

Remarks.

1. Asitisdiscussed in the first RemarkSection 5if one is dealing with densitigs = hv
onTM® g*® /" T*M instead of with functions, the Lie—Poisson bracket depends on
the choice of the volume form For that reason, we can define the Lie—Poisson bracket
of forms and densities by simply writing

{f h}rv,

which is a horizontak-form on71/G.

2. Itis easy to check that the local express(61B) is intrinsic and hence one can define
the bracketf{ f; g}+ for any (n — 1)-forms f and g non-necessarily of the form given
in Proposition 6.2This is related with the analogous fact commented in Remark 2 of
Section 5

3. For the case ofmechanicsthat isP = R x QO — R, the bracket defined by the
formula(6.2) is nothing but the classical Lie—Poisson bracket of functions, as a simple
computation shows, see, for exam[#é].

Covariant Lie—Poisson reductioWe now study the relationship between the Lie—Poisson
bracket defined ofV/ G and the bracket given iif when dealing withG-invariant functions
and(n — 1)-Poisson forms.

Theorem 6.3. Letwiwp : P — M be a principal bundle with structure group.Ghen
given an(n — 1)-form f as in(6.1) and a function h o1/ G, if « : IT — I1/G represents
the projectionwe have

(" f "R} = k*{f h}+,

where{, } is the bracket defined aff by the multisymplectic forigseeSection 4 and{, } .
is the Lie—Poisson bracket dii/G = TM® g* ® A" T*M defined by formuld6.2).
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Proof. The formula we want to prove being local, we consider that the principal bundle is
trivial, that isP ~ M x G. For any pointp € P we can choose a trivialization such that

p = (x,e). Letbe{Bs, ..., B,} be a basis ofi. Let (x', y*, 7},) be a normal coordinate
system in a neighborhood ¢f, ¢) € P such thaw = d* A --- A dx". Normal means that

we define it by means of the exponential, more preciselyfpg), the coordinates®(g)

are such that

g = exp(y*(g)Ba)-

We denote as usual k', y*, i) the induced coordinate system éh For the proof of
the theorem we need the following lemma.

Lemma6.4. If Eis a G-invariant function o7, with the above coordinate system we have
0E 1, ;OE

— — V —
ay“ N Zcﬁany o) ’ (6.4)
B
Whereczﬁ are the structure constants of the bagy, ..., B, }.

We continue the proof of the theorem. Let us cllll= hox and F = «*f, F =

Fi(x/, y*, m})v;. Note that eithe’ and H areG-invariant. Hence, the local expression of
the bracket reads

OF' 0H  oF 0H 1(0oF o i 0 OF' 0H 7
{(FHV=|——7F+——— V== CpoTT ch y v,
2\ o J yarr’ o o J o

and taking into account formuld.4)

Cpa’t Vanz P N CpaTly Ca Y5

1 . OH OH OH
{F,H}v_2<XﬂV —X—c )v_xﬂ”n—v
g

which is exactly«*{ f. h} .

Proof of Lemma6.4. This proofisrathertechnical. Itis basically the Baker—Campbell-Hausdorff
formula, which says that, fax, Y € g, one has

o0
expX - expY = exp(Z cn(X Y)) ,

n=1
n
wherec, are some coefficients, (X : ¥) € g™ = [g,[---,[g.g]---] . In fact, we will
only need the first two coefficientg(X : ¥Y) = X + Y andca(X : Y) = (1/2)[X, Y]. We
will denotec] (X : Y) the coordinates of, (X : Y) with respect to the basisy, ..., Bx}
of g.

For anyg € G, we compute the expression of

ke (37), = o (55)
-1 _— = g _— ,
8§°g ayy ¢ Y ayﬁ .
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that is, we determine thwf(g). Let (¥, ..., ") be the coordinates @f Then

0 d
TgRg—l ay—y . = TgRg—l @

exp(y*B; + €B;)
e=0

= ;8 o exp(y* Br + eBy) eXp(—" Br)
s
- n=1 d
wherec1(y#Bg+¢B, : —y#Bg) = ¢ B, andca(3# Bg+¢B, : =3/ Bg) = —(1/2)[¢B,, ¥ Bg].
Thatis

ad
B/t . =T
C(yB+SB.—yB)<—),
=0 ! 4 T\ oyP e

oo

d
Wie=> &

n=1
Then the dual
(TeRy-1)"(dy*)e = W (g)(dy"),.

Taking into account the previous formula, tGeaction on/T has the following local ex-
pression: it sends the poitt, e, @), w € M @ TG ® \" Ti M to

Py B +¢B,: —y"By).
=0

(50,0, ) s (YL an;), o W/}Trin).
If E € C°°(II) is G-invariant, we have

E(x":0,...,0; ni,...,nfn) = E(x'; 5}1,...,)7'”; an;,, Wgnfn).

Making gc = exp(eBy) (thatisy* = 0,...,3* = ¢, ..., 3" = 0) and computing the
derivative with respect te we have

L
IWy*  omy del._g P77
But
—| Wi = 4 i d cl(eBy + eBg : —€By)
del._g * de =07 de|,_o "
=—c3(Bg i By) = —Ch,,
and then
0= §7€ — ;%CZJT;' O
B

We now recall the idea of divergence of valued vector fields. Given a principal bundle
P — M endowed with a connectiod, and an associate vector bundle—~ M, we can
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define a divergence operator digending sections M® V — M to sections ot/ — M.
div4 is the onlyR-operator such that

div (x, n) = (divy, n) + (x, V)

foranyy e I(TM® V) and anyy € I'(V*), where div stands for the usual divergenge,
is the natural pairing and

VA (VY — I(T*M @ V*)

is the covariant derivative defined by the connectibion the dual vector bundlg* —

M. Note that the principal connection endows any associate vector bundle with a linear
connection and hence a covariant derivative. In particularVfer g*, it is easy to see that

the local expression of the dhoperator is

divA fi@Ba = a”2‘+cﬁrﬂ ® B*
Ha oxt T\ oxd wlti Mg ’

where{B1, ..., B} is the basis of sections @f induced by a chosen bagiBy, ..., By}
ing.

Theorem 6.5. Letzvp : P — M be a G-principal fiber bundle where = dim M and
v is a chosen volume form on M. Lét be a principal connection o® — M and?# a
Hamiltonian density odT invariant under the action of G ofl. The dropped density to
IT/ G is denoted by = hv. For any sectionr of the bundlel7 — M let u be the reduced
section of

I7/G :TM®§;*®/n\T*M—> M.
Then the following assertions are equivalent
1. for every horizontal Poissotr — 1)-form F on/1, the following identity holds true
7{F, H\V = d(x*F) —d"F o,

2. the sectiorr is a solution of the Hamiltonian systeifl, A, H), thatis, the Hamilton—de
Donder equations are satisfied
3. for every horizontal Poissotr — 1)-form f onI1/ G, the following identity holds true

pHER Y =d@t H—d"fop, (6.5)
4. the sectionu satisfies the Lie—Poisson equations
divy = ady, /5, 1. (6.6)

Proof. The equivalence &2 is provided byrheorem 5.2
To establish the equivalences13, because the projection
7

kIl — —
G
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is Poisson, the left-hand sides of equations in poiri8Jare equivalent. We therefore only
need to compare the right-hand sides. The formulas being local, we may assume that the
bundle is trivializable. In fact, we choose a trivializatiBn= M x G such that the section

s M — P =M x G is the identity section(x) = (x, ¢). We identifyVP with M x TG

andg with a subset oM x T,G = M x g of VP. Similarly, g* is seen as a subsét x g* of

VP =M x T*G.

In a coordinate systertx’, y%) of P such thaty = dx! A --- A dx” and(y%) is a normal
coordinate system off, taking into accoung6.4), we have

dx*F) —d"Foh
<aF" IF y*  OF aml 9F  3F!

— 4+ —= 4 : :
axt -y oxt o ppd oxt o axl 9y !

: B

oFt [ orf . :

i <—8y—fx”fs + T, = Fifiﬂé)) v
o

_ (oF, oF oy, OF 1, ;0F

S\ e ot o 2P

: p
oFt (orf ;L
g (S5 b it - ) )
o
w (OF  oF om, 9F 1., ,oF
= <a_ T o a2y 7l
Ty 871/3
9F! 1 . . .
e (‘505aﬂyﬂfz + Teg — ﬂﬁﬂé))
o
IF  9F aml OF  OF S :
= (y t ot el el — D )V-
X oy 0X X oy

For the stefx), as the connection is a principal connection (that is, it G-invariant), it
is not difficult to adapt the proof dfemma 6.4to obtain
B
i _1p v
gyr 2t
Taking into account that we are working along the identity section = (x, ¢), the
expression above evidently coincides with

du*f—d'fop
_@gﬁwéw o'

Y9 By, Jok _ pk,J
i gyl oo g,) li g + Tictte F'k““)> V-
o o

Actually, we have not used the fact thfats Poisson. The identity is valid for any projectable
horizontal(n — 1)-form onIT.
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For 34, taking into account the structure of the foghgiven in(6.1), the local expres-
sion on the left-hand side ¢6.5) reads

dutf—d"fou
_ <%"+i"am’; o af

_Y %Y By, Jok _ ok,
o gl i ad g ol i Mt Flk“ﬂ)"
o

o

aMi ; - A
= X <W§x + c&ﬂ”%) v = (X, diviu)v.
Hence, taking into account the definition of the Lie—Poisson brgcket Eq. (6.5)can be
written as

(& ady, 5, 1) = (€ divip)

for any& e I(g), which is only possible if and only {{6.6)is satisfied. O

Remarks.

1. Eq. (6.6)become the classical Lie—Poisson equation wheaR x Q andA is the flat
connection, that is, the casemkchanicssee, for instancR1] for this classical result.

Euler—Poincaré and Lie—Poisson for hyper-regular Lagrangidre Lagrangian picture
of covariant reduction for principal bundles was studiefid]. We now present the link
between that theory aricheorem 6.5vhen the Lagrangian densifyis hyper-regular. First,
we state the basic result of the Lagrangian reduction c&iddr—Poincaré reductian

Theorem 6.6. Letmyp : P — M be a principal G-fiber bundle over a manifold M with
a volume formv and letL : J1P — R be G-invariant Lagrangian. Let: C — R be the
mapping defined by L on the quotient. For an operiset M with U compact and a section
s:U — Pofn, defines : U — Cbyo(x) = q(j}s),whereq 2 JiP - Cc=Up/G

is the canonical projection. Thefor every principal connectiont on P, the following are
equivalent

1. the variational principles |, L(j%s)v = 0 holds for vertical variationss, along s with
compact support

2. the local section : M — P satisfies the Euler—-Lagrange equations for L

3. the variational principles [, /(o(x))v = 0 holds using variations of the form

so = VA — [0, 1], (6.7)

wheren : M — §is any section of the adjoint bundle with compact suppti o is
the section of *M ® § such thatr = A + ¢4,
4. the Euler—Poincaré equations hold

—, (6.8)

whereél/do € M(TM ® g*) is the vertical differential of | along.
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For the third point, note that — M is an affine bundle modeled over the vector bundle
"M ® g.
The dropped Lagrangian C — R defines a dropped Legendre transformation

fl:C—>TM®g*
by setting

d
flio)(c)) = —| (o +e0d),
de e=0
that is, the vertical differential df In fact, in order to take into account the volume form
we can defindl : C — IT/G = TM® g* ® \" T*M by fl = flv. It is evident that, for a
G-invariant Lagrangian density, the following diagram commutes:
sip 5 oq
ql s

c Y /¢

In fact, given a section € I'(G), we have that
~ 8l
u=floo=—v. (6.9)
S0

On the other hand, form the local expression of the Hamiltonian defsitefined the
connection4 and the Lagrangiag, it is clear that the “inverse Legendre transformation”

n
FH:IT— T*"M@VP® /\ T*M,

(o) () = 3

H(w + swv’)
de

e=0

induced by the Hamiltonian density satisfies

ip F£
FAl /ﬁ'(

J'Pa (6.10)

I

whereJ1P4 = T*M®VP® \" T* M and the identificatio 4 is, modulo the volume factor
A" T*M, the linearization of the affine bundlé P — P when the sectiot : P — J1P
defined by the connection is taken to be the zero section. Roughly speﬁl?m'gs, the
inverse off £ when the identificatiorF 4 is assumed. When the diagrgf10)is reduced
by the action of the groug we have
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whereCy = T*M @ § ® /\" T*M. Wheny is a section off7/G — M, the value offh
alongu is justéh /s and hence, whep = fl o o we have

Sh =o0y4. (6.11)

Su

Theorem 6.7. Letmyp : P — M be a principal G-fiber bundle over a manifold M with a
volume formv and let£ : J*P — A" T*M be a G-invariant hyper-regular Lagrangian
density £ = Lv. Letl : C — R be the mapping defined by L on the quotient. We endow
P — M with a connection4 on P and we define the Hamiltonian density= 7—[2“ onIl

and the dropped Hamiltoniah = iv on IT/G. For an open seU ¢ M with U compact
and a sections : U — P of myp, defines(x) = go jls; 7 = FLo jlsandu = « o 7.
Then for every principal connectiom on P, the following are equivalent

1. sis a critical section of the variational problem definedfy

2. o is a solution of the Euler—Poincaré equatiofs8),

3. wis asolution of the Hamiltonian equations defined by the connegtiand the Hamil-
tonian densityH,

4. nis a solution of the Lie—Poisson equatiq(6s6).

Proof. The equivalence 4>3 is Theorem 3.4The reductions 3-4 and k2 are conse-
quence ofTheorems 6.5 and 6.6espectively. O

Infact, the equivalence of the Euler—Poincaré equations and Lie—Poisson for hyper-regular
Lagrangians can be obtained from formul@®) and (6.11)

7. Electromagnetism

Infinite dimensional reductiorThe reduction of Maxwell's equations from the point of
view of symplectic, Poisson and Lagrangian reduction in the infinite dimensional context
is well known (see, for instancé?1,24]). The Poisson view starts with the canonical
symplectic structure on the cotangent buritife of the space of vector potentialé\ on
RR3. This Maxwell configuration spac@ has, as its cotangent bundle, the spgkeE) of
vector potentials together with their conjugate momenta, the space of electricHi@lgs
to a sign).

The gauge group consists of all real valued functiogson R3 with appropriate fall off
conditions at infinity. One then takes the quotienTéf) with respect to the action of the
gauge groups whose action on configuration space is simply> A 4+ V¢. The quotient
of the canonical Poisson structure gives the Pauli-Born—Infeld (PBI) Poisson structure on
the space of electric and magnetic fiel}$8. The reduction process in this sort of example,
which is due tg24], is discussed in, for exampl@1]. We recall for the readers convenience
that the PBI bracket is given on functiogfisandg of (E, B) by

_ S 38\ _ 3% Y] e
{ﬁg}‘///[aE (VXSB> 5E (VXSBHM'
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Here it is assumed that the fields are defined on alkR®dffor simplicity and where the
derivatives are taken in the sense of functional derivatives.

The dynamic Maxwell equations are then the Hamilton equations for this Poisson struc-
ture together with the Hamiltonian

H = %///[||E||2+||B||2]d3x.

This process is also important for understanding the Poisson structure of fields coupled to
the Maxwell equations such as charged fluids and the Maxwell-Vlasov equatiofa] see
for the literature and alsf®].

Symplectic reductiarin this context, symplectic reduction is quite simple. Namely, the
momentum map for the action of the gauge group is simply the divergence of the electric
field, so the process of setting the momentum map to be a constant reproduces the Maxwell
equation diE = p and taking the quotient by the gauge group then mfaps B. The
reduced symplectic form is the one associated with the Born—Infeld Poisson structure on
this space oE andB.

Lagrangian reductionLagrangian reduction can be carried out following the general
principles in[22] in a straightforward way. Namely, one starts with the same Maxwell
configuration spac€ but now one constructs the tangent buriti@of pairs(A, A). We
ultimately identify the time derivative dk (or rather its negative) with the electric fidid
We defineB = V x A and let the Lagrangian be

LA, A) = 5// [AIZ = [V x Al d3x.

One checks that the dynamic Maxwell equations are the Euler—Lagrange equations for
this Lagrangian. Of course, the Euler—Lagrange equations are equivalent to Hamilton's
principle, namely

8///L(A,A)d3x=0.

Lagrangian reduction focuses on the reduction of Hamilton’s principle. In this case, this
procedure is particularly simple; we form the quotient spe@¢2, which we identify with

the space of pairéB, E) and define the reduced Lagrangian by the same expressibn as
except now regarded as a function(Bf E):

1
8.5 = ///[IIEIIZ —1BIA &

The reduced variational principle now states that the previous variational principle and
hence the Maxwell equations are equivalent to

8[[(8, E)dr =0

for variations of a given curve of field8(z), E(¢)) that have the form

SBB=Vx¢& SE=—£
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for some curve of vector fieldgr). Variations of this form are induced by variations/f
viasA = &.

Covariant Lagrangian reduction for electromagnetisie now consider the configura-
tion bundlery+ : T*M — M over a semi-Riemannian manifold, g) and the Lagrangian
density

LINT*M) > \NT*M,  L(jio) = §(do, dw),V,,

where(, ), is the Riemannian metric definedg)ym/\2 T*M andv, is the semi-Riemannian
volume. In coordinates

L(jlw) = %FMUF””@dxl Ao Ad".

The bundleT*M — M can be considered as the bundle of connections of the trivial
bundleM x U(1) — M. In fact, representation of the gauge transformations on the bun-
dle of connections are symmetries of the electromagnetic Lagrangian. More precisely, for
any gauge transformatio®r : M x U(l) - M x U(1), ¥(x,z) = (x, €?Wz), with

¢ € C®(M), the transformatio*M — T*M, w, +— wy + (d¢),, With w, € T} M,
leaves the Lagrangiaf invariant. The mappingg can be seen as sections of the trivial
bundleM x R — M. Hence, considering the jet bundlé(M, R) we have a fiberwise
action

JHM,R) x T*M — T*M,  (jih, wx) > ox + (do), (7.1)
which induces an action

J2(M,R) x JXT*M) — JX(T*M),
by simply 1-jet prolongation.

Proposition 7.1. The quotient spacé™(T*M)/J?(M, R) can be naturally identified with
A? T*M and the projection/(T*M) — A T* M with the differentialjlw > (dw),.

Proof. By virtue of Poincaré lemma, two 1-jef$w andjle’ of local sections are mapped

to the same 2-covector by the differential if and onlyif= @ + d¢ for a local functionp.

The prove is complete by taking into account that the differential morphism is a surjective
fibration. O

Since the electromagnetic Lagrangiéns invariant under the gauge transformation, it
drops to the quotient space as a map

JHr)

L AMT*M.
J2(M, R)

This is a particular case of the Utiyama theorem (see, for exafhp]e
Following the guide from the infinite dimensional space of fields point of view, one should
consider variations of sections of the bun#lléhat are needed to form the Euler—Lagrange
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equations. These variations (probably one should start with vertical variations) project to
variations on the covariant reduced spate’) / J2(M, R) = /\2 T*M that are the covariant
analog of the induced variations of the magnetic field we saw in the infinite dimensional
point of view. Namely, the variations should be of the form of the linearization of the
curvature operator applied to a variationAf

We start with a sectiod of 7*M and we consider an arbitrary vertical variatidp of
the typeA, = A + cw, wherew is another 1-form, that is, we hasd = w. The dropped
variation will be

i dA; = dw.

dE =0

Hence the infinitesimal variation alon = dA will be §F = dw and we can say

that the reduced problem is a zero-order variational problem defined by the Lagrangian
l: /\Z(X, 9 — R, I(F) = (1/2)|F||% under constraints: the admissible variations
along a sectionF are of the type @&, with » e £2(X). The variational principle
yields

1d
0=5|[ I == — F + e do)|?
/;((F)Vg 2 de 820/;(” +¢ Cl)“ Vg

d
— /(F—f—sda), F + edw)v, = / (F, dw)v, = / (OF, w)Vg,
de e=0JX X X

1
2

wheredF is the codifferential defined by the metrgc As w is arbitrary, the variational
principle gives

dF =0,

which is one half of the Maxwell equations. The other half comes from the compatibility
conditions for reconstruction. Locally, a 2-form is the differential of a 1-feriiand only
if F is exact. Hence a necessary condition for reconstruction is

dr =0.

These results for electromagnetism are similar to those of Fernandef33t al.

Almost regular LagrangiansNVe pause momentarily to recall a bit more of the general
theory. Given a fiber bundlE — M, a Lagrangian densitg is said to be almost regular if
the following properties are satisfied (see, for exanip|&2]):

1. FL(JY) C [T s a closed submanifold.
2. FL is a submersion with connected fibers.

The manifold? = FL(J1Y) is called theconstraint manifold For k o F£ = FZ,
we have thaff£(J1Y) c «1(P) and we can define a sectidnof « along P by set-
tings = FL o FZ . Note thatIfZ’fl(w), w € P, is a submanifold of/'Y on which
FL is constant and hence the definition = FL o FZ ' makes sense. Using a



78 M. Castrillon Lépez, J.E. Marsden/Journal of Geometry and Physics 48 (2003) 52-83

diagram
J&vo B ke o gy
I R k110 | K
vy % p <
! !
M = M

A pair (P, 8) of a subbundl¢® of IT — Y and a section of : J1Y* — [T alongPis called
aHamiltonian system with constrainta sectionr of P — M is called asolutionif

T (ix$25) =0 (7.2)

for any vertical vectorX, where2” = do?, ©F = §*i*@2, with i : « 1(P) — Jly*
and 2 being the multisymplectic form ori'Y*. In the case¥ — M is endowed with a
connection we can proceed as in form(8sb) and we decompose

of = 0" +H,

whereH : P — A" T*M is the Hamiltonian density.
If the Hamiltonian system is defined by an almost regular Lagrangian density, we have
the following equivalence (sd&,13, Section 4.5]

Proposition 7.2. A section s of the bundlg — M is a critical section of the variational
problem defined by if and only ifF£L o J's is a solution of the Hamiltonian system with
constraints

Hamilton—Cartan equations for electromagnetidinis straightforward to see that for
electromagnetismy is not hyper-regular, that is, the Legendre transformaliBris not a
diffeomorphism. Nevertheless, the electromagnetic Lagrangian density is almost regular in
the sense given above.

ForY = T*M and the Lagrangiad(jle) = (1/2)(do, dw)4V,, the constrainP defined
onlI=TMRTM® N\" T*M is

P=FLUNT*M)) = (TMATM)® \ T*M C 1. (7.3)

Indeed, using the standard coordinates, A,, 7**) on1 = (TM® TM) ® \" T*M, we
have

Ly
= =Auv— Ay,

and then
a*’ + 7" = 0.
We define a change of coordinatesi@ras
FH = %(7‘[‘“’ — "y for u <, SHY = %(JT’” + 7y for u>v.

The constrain® is defined bys#” = 0, for all u > v.
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The pull-back of the multisymplectic fori? to x~1(P) is locally

QP = —dp AV + Z dF*Y A (DA, AV, —dA, AV, (7.4)

n<v

andEg. (7.2)gives

oFHv oaxV oxH

0H  9A 9A 0H  oF™"
+ L — +—— =0
0A, ox”

’

which are the Maxwell equations,, = A, , — A, , and F*Y = 0. For the last formula
(and in the sequel) we define

)2 —

whenu > v.

Poisson forms on the constraint manifd®l For the constraint manifol® c IT as
defined in(7.3), we say that an horizontal formE on«~1(P) is Poissorif there exists an
(n — r)-multivector fieldy such that

i,2" = dE, (7.5)
where2? is defined in formulg7.4). We study the case=n — 1.
Proposition 7.3. The Poissorin — 1)-forms onP are in coordinates

E = (F"X, + G")v,,,

whereX, = X, (x), are functions on M and'* = G*(x, A) functions onr™* M satisfying

IG"*  3G”
dA,  9A,°

Proof. In coordinates

oEH oEM oEH
— M — )74
E = Elv,,, dE_axﬂv+aAvdA”AV”+ZaFWdF AVy.
rY<p
On the other hand, if we have
ad d 0
X=X—+X,— XHv
ap + "9A, + Z dFKY
n<v
from (7.4), the condition(7.5) gives
oEM oEY oEM oEM
— =X, X"= =——— foru<nv, =X, —8"X,.
i dA, A, dFw Y p

These conditions are satisfied if and only if the faofhis as said in the statement. O
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Given two Poisson form& and H on P, deg E) = r, deg H) = s, we define their
Poisson bracketo be

{E, H} = (=) "i iy, 27,

where xg and xy are the multivector fields associatedEoand H, respectively. For the
special case wherE is an(n — 1)-form andH is a function, we have the following local
formula:

OEY OH
(EHy =D, (8A# aFmy

n<v

oE" 8H> . (7.6)

dFVH 0A,

Theorem 7.4. Asection F of the constraint bundie— M is a solution of the Hamiltonian
system(P, A, H) if and only if for every Poisson horizontgh — 1)-form E onP we
have

(E,H\v = d(F*E) —d"Eo F,

whered" is the horizontal differential with respect to the Riemannian connection on the
bundlell = TMATM® \"T*M — M.

Proof. In coordinate system such that= dx® A - -- A dx”, we have

0EY O0H oE* OH aGY
(E,Hyv =" " )v=—""F,V
0A, OF®Y 0FVH 0A, 0A
<y ! Iz
On the other hand,
. h dEM  QEM A,  JEM FPY  YEM  JEM
d(FFE)y—d"EoF=— + + - +—1I0A,
axt  9A, OxH  IFPY 9xH axk  9A, M
o0EH™ oEH
— P gty _ P pTy
gy TP 5 o )v

G (A, 03A, dFTH
= — + X, v,
0A, \ oxHt oxV oxH
where we have used the structure of Poisson form® given in Proposition 3.3So the
equality holds true if and only if the Maxwell equations are satisfied. O

Reduction For the action of the gauge group afy : ¥ = T*M — M is by affine
translations, the action of the gauge bundle= J2(M, R) on V*Y = mj TM — T*M
is purely horizontal, that is, it only acts dfii* M as in formula(7.1) and leaves the fiber
invariant. Therefore, the fiberwise action®bn the polysymplectic bundle

n n
MT=TM®py VY Qi /\T*M = TM @7y TM @751 /\T*M —~ T*M

is trivial along the fibers and only effective @it M. Moreover, we have a first-order action,
that is, it is really defined by*(M, R) in the way that two 2-jetg2f, j2f’ such that
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jif = jlf’ produce the same action. More precisely,

ox!

0 0 n 2 o 0 0 n .1
<—®7®d X)wX'fo— <—-®@®d X wX']xf
The quotient of this action is simply

n n
— =TMTM® \ T*M — M,
G A\

and

P n
—=TMATM® \NT*M > M
g A

for the constraint. If we define the coordinate systeth f*"), u < v, on’P/g, the projec-
tion simply readgx*, A,, F*V) — (x*, F*"), thatis, f*¥ = F*'. It means that functions
and forms on/7 invariant under the gauge group must not depend on the coordiaagtes
when expressed in locally. Then we have the following proposition.

Proposition 7.5. The projection ta'7/G of the set of Poisson horizontél — 1)-forms on
IT invariant under the action of the gauge group is

{e=(f""Xy + g"VulXy, g € CT(M)}.

Theorem 7.6. Let E be a Poisson form oR and H an invariant functionboth invariant
under the action of the gauge group. ThHén H} identically vanishes

Proof. Using the local expressidii.6)of {E, F}, if 0E*/3dA, = 0,0H/JA, = 0, we have
{E,H}=0. O

Hence the version dFheorem 5.Zor this setting turns out to be very easy.

Theorem 7.7. For the Maxwell Hamiltonian systefR, given a section F of the bundle
IT — M the following points are equivalent

1. Fis a solution of the Maxwell equations
2. for any Poisson form E o® we have

(E,HV = d(F*E) —d"Eo F,
3. for any Poisson form on the reduced bundigg, the reduced section satisfies
0=d(f*e) —deo £

4. the reduced section f satisfies the equations
afry
™ 0
oxV

(7.7)
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Proof. 12 is justTheorem 5.2From Theorem 6.3ve have the 2>3 for the left-hand
side of the formulas. The right-hand side, is evident if we Put «*e, H = «*h, « being
the projection — I1/G.
Finally, for 34, we have
del del ofFY  Bet  det

* h _ e e S S
diffey —dleo f =g+ 3 oo aun  afhr

8fMV

B
mew =Xy oxM

for any family X,, € C*°(M). For 41, note that the reducegtjuation (7.7)s the half of
the Maxwell equations. The other half is just the reconstruction equation. O

8. Conclusions and future directions

In this paper we have contributed to both covariant Lagrangian reduction theory and to
covariant Poisson reduction theory. One of the reasons that we did not pursue covariant
multisymplectic reduction theory is the simple fact that it is well-known that setting the
multimomentum map equal to a constant is not appropriate (e.g., for electromagnetism, this
would not correspond to constraints) and it is not understood at this time what the covariant
analog of this should be.

We developed the theory of covariant Poisson structures a little further and showed that
there is a covariant version of Lie—Poisson theory that is parallel to the known covariant
Euler—Poincaré theory and we also showed that both the covariant Lagrangian reduction
and covariant Poisson reduction methodologies work for the case of electromagnetism.

Of course there is much to do still, but we hope that the present paper is a useful contribu-
tion towards the goal of developing covariant reduction theory. The main missing ingredient
is, as we have indicated, a reduction theory in the multisymplectic context. In addition, many
more examples need to be worked out, such as relativistic fluids and plasmas and Yang—Mills
fields. Of course there is also the big prize: general relativity.
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