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Nonsmooth Lagrangian Mechanics
and Variational Collision Integrators∗

R. C. Fetecau†, J. E. Marsden‡, M. Ortiz§, and M. West¶

Abstract. Variational techniques are used to analyze the problem of rigid-body dynamics with impacts. The
theory of smooth Lagrangian mechanics is extended to a nonsmooth context appropriate for colli-
sions, and it is shown in what sense the system is symplectic and satisfies a Noether-style momentum
conservation theorem.

Discretizations of this nonsmooth mechanics are developed by using the methodology of vari-
ational discrete mechanics. This leads to variational integrators which are symplectic-momentum
preserving and are consistent with the jump conditions given in the continuous theory. Specific
examples of these methods are tested numerically, and the long-time stable energy behavior typical
of variational methods is demonstrated.

Key words. discrete mechanics, variational integrators, collisions

AMS subject classifications. 37M15, 70F35, 58E30

DOI. 10.1137/S1111111102406038

1. Introduction. In this paper, we investigate nonsmooth Lagrangian mechanics and its
discretization by means of variational, numerical, and geometric methods. In particular, we
are interested in the problem of rigid-body collisions, for which the velocity, acceleration, and
forces are all nonsmooth or even discontinuous.

We shall begin with a survey of some history and literature to put our own work into
context. The literature and history is of course quite complex with many points of view, so
we focus on selected highlights only.

History and literature: Theory. The problem of collisions has been extensively treated in the
literature since the early days of mechanics. More recently, much work has been done on the
rigorous mathematical foundation of impact problems, in particular, by generalizing Newton’s
law to include forces which are measure-valued and hence can include impulses at the point of
impact. The contact dynamics is thus governed by a measure differential inclusion, a general
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formulation that can directly incorporate impulsive forces and nonsmooth solutions. In this
context, a measure differential inclusion has the form

dv

dt
∈ F (t, x),

dx

dt
= g(t, x, v),

where v(t) and x(t) denote the velocity and the position, F is a set-valued function, and v(·)
is required only to have bounded variation.

The extension of the concept of a differential equation to that of a differential inclusion
was first considered in [12, 13, 14]. These works provide a deep study of ODEs with a
discontinuous right-hand side, but the fact that solutions are required to be continuous in the
phase space makes the theory inapplicable to collisions. Measure differential inclusions can
be found in different contexts in [51, 52], and the use of this concept in rigid-body dynamics
was further developed in [38, 39], where the (unilateral) contact between rigid bodies received
a formulation (called by the author a sweeping process) that combines differential inclusions
with convex analysis. Since then, an extensive literature has been devoted to the theoretical
and numerical study of nonsmooth dynamics within the mathematical framework of measure
differential inclusions.

Substantial progress has been made in the last two decades on the existence and uniqueness
theory for the generalized solutions of rigid-body dynamics. The first rigorous results in this
area were produced in [33] for the case of an inelastic collision with a single convex constraint.
Further results generalized the existence theory to more general contacts in [42, 43], to more
general (nonconvex, but of class C1) constraints in [34], or even to a less regular constraint
for an arbitrary frictionless impact in [32]. The recent works [55, 56] consider the impact
dynamics with friction and give a rigorous mathematical solution to the famous problem of
Painlevé.

In the same elegant framework of differential inclusions, but oriented toward the control
and stability of nonsmooth dynamical systems, we mention the works of Brogliato [6, 7] and
Brogliato, Niculescu, and Orhant [5].

History and Literature: Computations. The measure differential inclusion has also been
proved to be an excellent mathematical foundation for the study of numerical methods for
discontinuous ODEs. It is not within our scope to give a complete account of these meth-
ods, but we refer the reader to the excellent overviews of numerical methods for differential
inclusions in [11] and [30]. In particular, such numerical approaches have been pursued to de-
velop efficient numerical methods for rigid-body dynamics in the sweeping process formalism
in [38, 40, 44, 56].

Various other numerical methods for rigid-body systems have been studied extensively
in the engineering and mathematics literature. We refer to the excellent book [47] for a
comprehensive account of some of these methods. We particularly note the approach that
reduces the contact to a complementarity problem, a concept frequently used in constrained
optimization, to decide at each step which constraints are active.

However, most existing practical codes are based on smoothing techniques, a class of
methods which use a penalty formulation to regularize the problem. This approach relies on
the definition of a proper gap function as a means to detect and penalize the interpenetration;
see, for example, [54, 8, 60, 57]. An obvious weakness of the penalty methods is that they
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cannot handle collisions of irregularly shaped bodies (bodies with corners), where neither
normals nor gap functions can be defined. An elegant solution to this problem is offered by
the nonsmooth analysis approach from [25], where new robust contact algorithms are derived
using the powerful tools of nonsmooth calculus (see [10]).

An important issue in contact dynamics is how to formulate physically correct friction
models, and an extensive body of literature has addressed this problem. Frictional effects are
generally accounted for by introducing a friction law (Coulomb’s law is an example) which
relates the sliding velocity to the contact forces. An alternative approach uses the maximum
dissipation principle, where the friction force cf is required to maximize the rate of energy
dissipation −cTf vrel, where vrel is the relative velocity at the contact, out of all possible friction
forces allowed by a given contact force cn. However, the correct modeling of friction still has
many open questions which generate controversy in various engineering and mathematical
communities. All the various numerical methods for contact that we mentioned above have
introduced friction in the dynamics, and we refer to [2] and [39] for measure differential
inclusion methods, [23, 28, 45, 48, 58, 59, 46, 3] for the complementarity and gap function
formulation, and [41] for the nonsmooth analysis approach.

Variational methodology. Our approach, in contrast, is based on a variational methodology
that goes back to [61] which allows the direct handling of the nonsmooth nature of contact
problems. We also use a variational approach to develop numerical integrators for nonsmooth
rigid-body dynamics. The procedure is based on a discrete Lagrangian principle and automat-
ically generates a symplectic-momentum preserving integrator. Near impact, we introduce a
collision point and a collision time and solve for them using a variational method.

Variational integrators are known to have remarkable near-energy preserving properties,
and we will recover this excellent energy behavior even in the nonsmooth case. We want to
emphasize that the variational point of view is not confined to conservative systems but also
applies to forced and dissipative systems, as demonstrated in [26]. In future works, we will
investigate how forces and friction can be added to our collision algorithm and also how to
incorporate other dissipative effects (inelastic collisions).

Issues addressed in this paper. We first show that, by introducing a space of configuration
trajectories extended by introducing curve parameterizations as variables, the traditional ap-
proach to the calculus of variations can be applied. Moreover, the formulation in the extended
setting enables us to address and give a rigorous interpretation of the sense in which the flow
map of a mechanical system subjected to dissipationless impact dynamics is symplectic. The
nonautonomous variational approach also leads to Weierstrass–Erdmann-type conditions for
impact, in terms of energy and momentum conservation at the contact point (see [19] and
[61]).

On the discrete side, the variational formalism leads to symplectic-momentum preserving
integrators that are consistent with the jump conditions and the continuous theory.

The theory of geometric integration (see, for example, [50] and [18]) is typically concerned
with smooth Hamiltonian or Lagrangian systems posed on smooth spaces. These techniques do
not immediately apply to nonsmooth settings, and naive applications can result in extremely
bad behavior, as demonstrated in [56].

Our methods answer an important question posed by [56]: How can geometric integrators
be formulated and implemented for collision problems? In fact, the algorithms developed in



384 R. C. FETECAU, J. E. MARSDEN, M. ORTIZ, AND M. WEST

the present paper show how a symplectic method can be constructed for nonsmooth systems
so that it retains the good behavior normally associated with symplectic methods.

Some work on extensions of geometric integration to collision problems exists. In par-
ticular, [4] has constructed time-symmetric methods for contact, and [21] (see also [20]) has
developed methods for impacts of hard spheres. To date there have been no symplectic meth-
ods for collisions presented, in part due to difficulties with understanding symplecticity in
a nonsmooth setting. However, the variational formulation of continuous time nonsmooth
systems that we develop here is a key which allows us to understand the geometric struc-
ture of the problem, both before and after discretization. Our methods can be considered
extensions of the large body of work on geometric integration of ODEs (see, for example,
[16, 17, 18, 22, 29, 37]).

We caution that the algorithm presented in this paper is implicit and very expensive and
thus may not be appropriate for use with large collision systems. Nonetheless, it is the first
geometric integrator for collision problems and thus serves as a basis for the construction of
more efficient methods in the future. In fact, the methods of this paper have already led to
the development of more computationally feasible collision integrators (see [9]).

We also discuss how nonsmooth analysis techniques [25] can be incorporated into the
variational procedure such that the integrator can cope with nonsmooth contact geometries
(such as corner-to-corner collisions). As we mentioned before, this is the case which most
existing algorithms cannot handle (the standard penalty methods simply fail since no proper
gap function can be defined for such geometries).

Organization of the paper. In section 2, we first consider the time-continuous situation and
extend the conventional setting of geometric Lagrangian mechanics (see, for example, [36]) to
include nonsmooth but still continuous trajectories. This allows us to recover the standard
jump conditions at impact and to prove that the flow map of the system is symplectic in the
extended sense.

To apply the standard geometric mechanical tools in nonsmooth situations, it is necessary
to formulate the problem so that the space of admissible trajectories of the system has a
smooth manifold structure. To do this, we work in the extended framework, where both
configuration variables and time are considered as functions of a fixed parameter space. This
is the same approach as that used in multisymplectic mechanics (see [15, 35]), where it was
introduced to allow the consideration of right, or horizontal, transformations of the system.

Next, in section 3, we discretize the variational structure of the system, based on the
concept of discrete mechanics (see [37] for an overview and history), to obtain variational
integrators for collision problems. By discretizing the variational structure, rather than some
generalized equations of motion, we are able to show that our methods have various geometric
properties, including the preservation of momentum maps and symplectic structures.

Finally, in section 4, we consider particular examples of our variational integrators for
collision problems and investigate their behavior on a number of sample problems of rigid-body
collisions. In the appendix, we lay the foundations of some future work by briefly discussing
possible uses of the nonsmooth calculus approach (see [25]) in the context of variational
collision integrators.
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1.1. Overview of the continuous model. Before we begin with the body of the paper,
we will first give a brief overview of the main ideas and techniques used. This is not a rigorous
treatment, but everything stated here will be precisely defined and proven later.

Consider the system defined by the Lagrangian L(q, q̇) = 1
2 q̇

TMq̇ − V (q), where M is a
mass matrix and V is a potential function. Here q = (q1, . . . , qn) is a vector of configuration
variables which lives in the configuration manifold q ∈ Q. We now consider a subset C ⊂ Q,
which we call the admissible set and which represents those configurations for which no contact
is occurring. The boundary ∂C of the admissible set is all of those points at which contact
has just occurred but for which no interpenetration is taking place.

We now consider a trajectory q(t) which maps q : [0, T ] → Q such that q(t) ∈ C, except
at a particular time ti for which q(ti) ∈ ∂C. The time ti is thus the time at which contact
occurs, and we allow the trajectory q(t) to be nonsmooth but still continuous at this time.

Proceeding in the standard way for Lagrangian mechanics, we construct the action of the
trajectory by integrating the Lagrangian along q(t). We then compute variations of the action
with respect to variations in both the curve q(t) and the impact time ti, holding the endpoints
of the curve fixed, to give

δ

∫ T

0
L
(
q(t), q̇(t)

)
dt

=

∫ ti

0

[
∂L

∂q
· δq + ∂L

∂q̇
· δq̇

]
dt+

∫ T

ti

[
∂L

∂q
· δq + ∂L

∂q̇
· δq̇

]
dt

−
[
L(q, q̇) · δti

]t+i
t−i

=

∫ ti

0

[
∂L

∂q
− d

dt

(
∂L

∂q̇

)]
· δq dt+

∫ T

ti

[
∂L

∂q
− d

dt

(
∂L

∂q̇

)]
· δq dt

−
[
∂L

∂q̇
· δq + L

]t+i
t−i
,

where we have used integration by parts and the condition δq(T ) = δq(0) = 0. Requiring that
the variations of the action be zero for all δq implies that on the intervals away from ti the
integrand must be zero, giving the well-known Euler–Lagrange equations

∂L

∂q
(q, q̇)− d

dt

(
∂L

∂q̇
(q, q̇)

)
= 0.

For the particular form of the Lagrangian chosen above, this is simply

Mq̈ = −∇V (q),

which is Newton’s equation of mass times acceleration equals force, and this equation describes
the motion of the system away from impact.

Not only must the two integrals in the variation equation be zero, but the jump term at
ti must also be zero. Here it is necessary to recall that the curve at time ti must lie in the
boundary ∂C of the admissible set, and differentiating this relationship q(ti) ∈ ∂C gives the



386 R. C. FETECAU, J. E. MARSDEN, M. ORTIZ, AND M. WEST

condition

δq(ti) + q̇(ti) · δti ∈ T∂C,

which states that the combined variation on the left-hand side must be in the tangent plane
to ∂C at the impact point. The space of allowable δq(ti) and δti is spanned by the set of
δq(ti) ∈ T∂C with δti = 0, together with the additional variation δq(ti) = −q̇(ti) with δti = 1.
Substituting each of these into the jump term in the variation equation gives the two relations

[
∂L

∂q̇

∣∣∣∣
t+i

− ∂L

∂q̇

∣∣∣∣
t−i

]
· δq(ti) = 0 for all δq(ti) ∈ T∂C,

[
∂L

∂q̇
· q̇ − L

]
t+i

−
[
∂L

∂q̇
· q̇ − L

]
t−i

= 0.

When the Lagrangian is of the form kinetic minus potential, as above, these can be written
as

q̇(t+i )− q̇(t−i ) ∈ NC(qi(t)),(1a)

EL(t
+
i )− EL(t

−
i ) = 0,(1b)

where the energy is EL(q, q̇) = 1
2 q̇

TMq̇ + V (q) and NC(q) is the normal cone to ∂C at q.
The first of these two equations states that the jump in velocity at the impact point must
be orthogonal to the boundary ∂C, while the second equation states that energy must be
conserved during the impact. Together these two equations constitute a system of n equations
which describe the evolution of the system during the collision.

It is well known that the system described by the Euler–Lagrange equations has many
special properties. In particular, the flow on state space is symplectic, meaning that it con-
serves a particular two-form, and if there are symmetry actions on phase space, then there
are corresponding conserved quantities of the flow, known as momentum maps. All of these
geometric properties can be proven directly from the variational principle used above, and so
they also hold for nonsmooth systems. Later we will see how this can be precisely formulated.

1.2. Overview of the discrete model. Discrete variational mechanics is based on replac-
ing the position q and velocity q̇ with two nearby positions q0 and q1 and a timestep h. These
positions should be thought of as being two points on a curve at time h apart so that q0 ≈ q(0)
and q1 ≈ q(h) for some short curve segment q(t).

We next consider a discrete Lagrangian Ld(q0, q1, h), which we think of as approximating
the action integral along the curve segment between q0 and q1. For concreteness, consider the
very simple approximation given by

Ld(q0, q1, h) = h

[(
q1 − q0
h

)T

M

(
q1 − q0
h

)
− V (q0)

]
.

This is simply the rectangle rule applied to approximate the action integral, with the velocity
being approximated by the difference operator.
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Now consider a discrete curve of points {qk}Nk=0 in C and corresponding times tk = kh,
together with a special impact point q̃ ∈ ∂C and an impact time t̃ = αti−1 + (1− α)ti. Here
α ∈ [0, 1] is a parameter which interpolates t̃ with the interval [ti−1, ti]. Given such a discrete
trajectory

(q0, t0), . . . , (qi−1, ti−1), (q̃, t̃), (qi, ti), . . . , (qN , tN ),

we calculate the discrete action along this sequence by summing the discrete Lagrangian on
each adjacent pair, with the timestep being the difference between the pair of times. Following
the continuous derivation above, we compute variations of this action sum with respect to
variations in the qk as well as q̃ and α (and hence t̃), with the boundary points q0 and qN held
fixed. This gives

δ

[
i−2∑
k=0

Ld(qk, qk+1, h) + Ld(qi−1, q̃, αh)

+ Ld(q̃, qi, (1− α)h) +
N−1∑
k=i

Ld(qk, qk+1, h)

]

=
N−1∑
k=0

[
D1Ld(qk, qk+1, h) · δqk +D2Ld(qk, qk+1, h) · δqk+1

]

=
i−2∑
k=1

[
D2Ld(qk−1, qk, h) +D1Ld(qk, qk+1, h)

]
· δqk

+
N−1∑
k=i+1

[
D2Ld(qk−1, qk, h) +D1Ld(qk, qk+1, h)

]
· δqk

+
[
D2Ld(qi−2, qi−1, h) +D1Ld(qi−1, q̃, αh)

]
· δqi−1

+
[
D2Ld(qi−1, q̃, αh) +D1Ld(q̃, qi, (1− α)h)

]
· δq̃

+
[
D2Ld(q̃, qi, (1− α)h) +D1Ld(qi, qi+1, h)

]
· δqi

+
[
D3Ld(qi−1, q̃, αh)−D3Ld(q̃, qi, (1− α)h)

]
· hδα,

where we have rearranged the summation and we have used the fact that δq0 = δqN = 0. This
calculation is illustrated graphically in Figure 1.

If we now require that the variations of the action be zero for any choice of δqk, then we
obtain the discrete Euler–Lagrange equations

D2Ld(qk−1, qk, h) +D1Ld(qk, qk+1, h) = 0,

which must hold for each k away from the impact time. For the particular Ld chosen above,
we compute

D2Ld(qk−1, qk, h) =M

(
qk − qk−1

h

)
,

D1Ld(qk, qk+1, h) = −
[
M

(
qk+1 − qk

h

)
+ h∇V (qk)

]
,
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∂C
q̃

αh
qi−1

h

qi−2

(1− α)h

qi
h

qi+1

Figure 1. The discrete variational principle for collisions.

and so the discrete Euler–Lagrange equations are

M

(
qk+1 − 2qk + qk−1

h2

)
= −∇V (qk).

This is clearly a discretization of Newton’s equations, using a simple finite difference rule for
the derivative.

If we take initial conditions (q0, q1), then the discrete Euler–Lagrange equations define a
recursive rule for calculating the sequence {qk}Nk=0. Regarded in this way, they define a map
FLd

: (qk, qk+1) 
→ (qk+1, qk+2), which we can think of as a one-step integrator for the system
defined by the continuous Euler–Lagrange equations, away from impact.

Near impact, we must consider the other equations which are implied by the discrete vari-
ation equation being zero. Assume that we have used the discrete Euler–Lagrange equations
to compute the trajectory up until the pair (qi−2, qi−1), just before impact. Now we have the
equation

D2Ld(qi−2, qi−1, h) +D1Ld(qi−1, q̃, αh) = 0,

which becomes

M

(
q̃ − qi−1

αh

)
−M

(
qi−1 − qi−2

h

)
= −αh∇V (qi−1).

Combining this with the condition that q̃ ∈ ∂C we obtain n+1 equations to be solved for the
n + 1 unknowns q̃ and α. We thus now know the point and time of contact. Next, we recall
that q̃ ∈ ∂C, and so its variations must lie in the tangent space. This means that we have the
pair of equations

[
D2Ld(qi−1, q̃, αh) +D1Ld(q̃, qi, (1− α)h)

]
· δq̃ = 0 for all δq̃ ∈ T∂C,

D3Ld(qi−1, q̃, αh)−D3Ld(q̃, qi, (1− α)h) = 0,
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which become

M

(
qi − q̃

(1− α)h

)
−M

(
q̃ − qi−1

αh

)
+ (1− α)h∇V (q̃) ∈ NC(q̃),[

1

2

(
qi − q̃

(1− α)h

)T

M

(
qi − q̃

(1− α)h

)
+ V (q̃)

]

−
[
1

2

(
q̃ − qi−1

αh

)T

M

(
q̃ − qi−1

αh

)
+ V (qi−1)

]
= 0.

These are discrete versions of (1), and they give n equations to be solved for qi. Finally, we
use the equation

D2Ld(q̃, qi, (1− α)h) +D1Ld(qi, qi+1, h) = 0,

which is

M

(
qi+1 − qi

h

)
−M

(
qi − q̃

(1− α)h

)
= −∇V (qi),

to solve for qi+1, and then we can revert to using the standard discrete Euler–Lagrange
equations to continue away from the impact.

The power of the variational approach becomes apparent when we consider the geometric
properties of the discrete system. Just as in the continuous case, we can derive conservation
laws of the discrete system directly from the variational principle. In particular, we will see
that there is a conserved discrete symplectic form, and conserved discrete momentum maps
arise from symmetries. In addition, in section 4, we will investigate the numerical behavior
of the discrete system, regarded as an integrator for the continuous problem, and we will see
that it also has excellent long-time stable energy behavior.

To understand the geometry and properties of both the continuous and discrete nonsmooth
mechanics, however, we now need to return to the beginning and develop a more rigorous
treatment of the variational procedure.

2. Continuous model. As noted in the introduction, the basic methodology used here
is that of variational mechanics and variational discretizations. Clearly, a generalization to
the nonsmooth setting of the autonomous, smooth variational mechanics cannot be done in
a straightforward way. One of the major obstacles is that the lack of smoothness for the
mappings prevents us from using the differential calculus on the manifold of mappings, as one
essentially does in the smooth case (see [36]).

The main issue addressed in this section is how to overcome this difficulty and how to
derive the conservation of quantities such as energy, momentum maps, and the symplectic
form using a variational approach. The approach we use is to extend the problem to the
nonautonomous case so that both configuration variables and time are functions of a separate
parameter τ . This allows the impact to be fixed in τ space while remaining variable in both
configuration and time spaces, and it means that the relevant space of configurations will
indeed be a smooth manifold, as we shall prove.
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To make our variational procedure clear, we initially consider only the frictionless, purely
elastic impact problem. In the last subsection, however, we show how the results can be
extended to deal with friction and nonelastic impacts.

2.1. Lagrangian mechanics in a nonsmooth setting. Consider a configuration manifold
Q and a submanifold with boundary C ⊂ Q which represent the subset of admissible config-
urations. Let ∂C be called the contact set, and let L : TQ→ R be a regular Lagrangian.

Remark. Similar results are obtained if we considered the configuration Q a manifold with
boundary and the contact set to be ∂Q.

Let us now consider the path space defined by

M = T × Q([0, 1], τi, ∂C,Q),

where

T = {ct ∈ C∞([0, 1],R) | c′t > 0 in [0, 1]},
Q([0, 1], τi, ∂C,Q) = {cq : [0, 1] → Q | cq is a C0, piecewise C2 curve,

cq(τ) has only one singularity at τi, cq(τi) ∈ ∂C}.
A path c ∈ M is thus a pair c = (ct, cq). Given a path, we can form the associated curve
q : [ct(0), ct(1)] → Q by

q(t) = cq(c
−1
t (t)),

and we denote by C the space of all these paths q(t) ∈ Q.
The theory we will develop applies to rigid-body impact problems, such as a particle

bouncing on a rigid wall or two rigid bodies colliding, where the submanifold ∂C is obtained
from the condition that interpenetration of matter cannot occur. The moment of impact τi
is fixed in the τ space but is allowed to vary in the t space according to ti = ct(τi); thus the
setting we suggest is not restrictive in this sense.

We use a nonautonomous formulation of an autonomous mechanical system in order to
achieve smoothness of the manifold of mappings, as one can see from the following lemmas.

Lemma 2.1. T is a smooth manifold.
Proof. T is an open set in C∞([0, 1],R), which is a smooth manifold (see [36]). Then T

is a submanifold of C∞([0, 1],R) and thus a manifold.
Lemma 2.2. Q([0, 1], τi, ∂C,Q) is a smooth manifold.
Proof. Fix a chart U in Q such that U ∩ ∂C �= ∅ and U ∩ ∂C is a chart in ∂C. Consider

the set
QU = Q([0, τi], U)×Q([τi, 1], U)× (U ∩ ∂C),

where
Q([0, τi], U) = {q : [0, τi] → Q | q is a C∞ curve, q(τi) ∈ U},
Q([τi, 1], U) = {q : [τi, 1] → Q | q is a C∞ curve, q(τi) ∈ U}.

An element c ∈ Q([0, 1], τi, ∂C,Q) is the inverse image of the origin for some map gU : QU →
R

2n given by

gU (q1(τ), q2(τ), qi) =

(
q1(τi)− qi
q2(τi)− qi

)
,
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where we denote the dimension of Q by n. One can prove that 0 is a regular value of gU , and
then the set g−1

U (0) is a submanifold of QU , and thus it has a manifold structure.
Now {g−1

U (0)}U represents a covering of Q([0, 1], τi, ∂C,Q), where each element of the
covering is a manifold. The elements of the covering satisfy the compatibility conditions
necessary to ensure that Q([0, 1], τi, ∂C,Q) itself is a manifold (see [1]).

Corollary 2.3. M is a smooth manifold.
Remark. The theory can be easily extended to a problem involving more than one impact

by simply taking multiple points τi at which the trajectory is nonsmooth.
Note that the tangent space at q ∈ Q can be written as

TqQ = {v : [0, 1] → TQ | v is a C0 piecewise C2 map , v(τi) ∈ Tq(τi)∂C},

which will be a convenient form below when we consider variations of trajectories. The tangent
space to the path space M is then given by TM = TT × TQ.

Remark. As we have noted above, fixing the impact point τi in τ space allows us to
rigorously define what we mean by a variation of the impact point in t space. This is similar
to the introduction of a parameterized spacetime in [35] and [31].

The action map G : M → R is given by

G(ct, cq) =

∫ 1

0
L

(
cq(τ),

c′q(τ)
c′t(τ)

)
c′t(τ) dτ,(2)

where c′ denotes the derivative with respect to τ .
Remark. c′q(τ) does not exist at τi, but the definition makes sense nonetheless.
If q is the associated curve for c ∈ M, by the change of coordinates s = ct(τ) we can also

write G as

G(q) =

∫ ct(1)

ct(0)
L(q(s), q̇(s))ds,(3)

where q̇ denotes the derivative with respect to t.
Define the extended configuration manifold to be Qe = R × Q and the second order sub-

manifold of T (TQe) to be

Q̈e =

{
d2c

dτ2
(0) ∈ T (TQe) | c : [0, 1] → Qe is aC

2 curve

}
.(4)

Now we can derive the equations of motion and the jump conditions in a purely variational
way, by taking variations of the actions with respect to the path. This leads to the following
fundamental theorem.

Theorem 2.4. Given a Ck Lagrangian L, k ≥ 2, there exist a unique Ck−2 mapping EL :
Q̈→ T ∗Qe and a unique Ck−1 one-form ΘL on TQe such that for all variations δc ∈ TcM of
c we have

dG(c) · δc =
∫ τi

0
EL(c′′) · δc dτ +

∫ 1

τi

EL(c′′) · δc dτ +ΘL(c
′) · δ̂c|τ

−
i

0 +ΘL(c
′) · δ̂c|1

τ+
i
,(5)
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where

δ̂c(τ) =

((
c(τ),

∂c

∂τ
(τ)

)
,

(
δc(τ),

∂δc

∂τ
(τ)

))
.

The mapping EL is called the Euler–Lagrange derivative and the one-form ΘL is called the
Lagrangian one-form. In coordinates they have the expression

EL(c′′) =
[
∂L

∂q
c′t −

d

dτ

(
∂L

∂q̇

)]
dcq +

[
d

dτ

(
∂L

∂q̇

c′q
c′t

− L

)]
dct,(6)

ΘL(c
′) =

[
∂L

∂q̇

]
dcq −

[
∂L

∂q̇

c′q
c′t

− L

]
dct.(7)

Proof. Consider δc ∈ TcM. We calculate dG(c) · δc using the definition (see [36])

dG(c) · δc = d

dλ
G(cλ)

∣∣∣∣
λ=0

,(8)

where cλ is a curve in M with c0 = c and dcλ

dλ |λ=0 = δc. Splitting cλ into components

cλ = (cλt , c
λ
q ), we then have ( d

dλc
λ
t |λ=0,

d
dλc

λ
q |λ=0) = (δct, δcq), and we can calculate

dG · δc =
∫ 1

0

[
∂L

∂q
δcq +

∂L

∂q̇

(
δc′q
c′t

− c′qδc′t
(c′t)2

)]
c′t dτ +

∫ 1

0
Lδc′t dτ.

Now we split the integral
∫ 1
0 into

∫ τi
0 +

∫ 1
τi
in order to integrate the δc′q and δc′t terms by parts.

Some straightforward algebra then leads to (5).

2.2. Hamilton’s principle of critical action. Hamilton’s principle of critical action tells
us that we should consider critical points of the action function. Therefore, let us define the
space of solutions ML ⊂ M to be the set of all paths c ∈ M which satisfy dG(c) · δc = 0 for
all variations δc ∈ TcM which are zero at the boundary points 0 and 1.

Using (5), we can see that c is a solution if it satisfies

∫ τi

0
EL(c′′) · δc dτ +

∫ 1

τi

EL(c′′) · δc dτ +ΘL(c
′)|τ

+
i

τ−i
· δ̂c(τi) = 0(9)

for all variations δc ∈ TcM.

From (9) it is clear that c is a solution iff the Euler–Lagrange derivative is zero on smooth
portions and the Lagrangian one-form has a zero jump at τi. Splitting EL(c′′) into the two
components, we obtain

∂L

∂q
− d

dt

(
∂L

∂q̇

)
= 0 in [t0, ti) ∪ (ti, t1],(10)

d

dt

(
∂L

∂q̇
q̇ − L

)
= 0 in [t0, ti) ∪ (ti, t1],(11)
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where t0 = ct(0), t1 = ct(1), and ti = ct(τi).
In fact, (11) is redundant, as it is a consequence of (10). Indeed, if c is a path satisfying (10)

for all t ∈ (t0, ti) ∪ (ti, t1), then the second component (11) of the Euler–Lagrange equations
is identically satisfied. To see this, we may calculate

d

dt

(
∂L

∂q̇
q̇ − L

)
=

d

dt

(
∂L

∂q̇

)
q̇ +

∂L

∂q̇
q̈ − dL

dt

=

[
∂L

∂q
q̇ +

∂L

∂q̇
q̈

]
− dL

dt

= 0,

where we used (10) to pass from the first to the second line.
The second part (11) of the Euler–Lagrange equations represents the conservation of en-

ergy for an autonomous system, provided the motion is smooth. The energy E : TQ → R is
defined to be

E(q, q̇) =
∂L

∂q̇
(q, q̇) · q̇ − L(q, q̇).

It is not surprising that the second part of the Euler–Lagrange equations (11) is redundant,
since the first part (10) already has the energy evolution built into it.

The previous definition of the energy function allows us to write the Lagrangian one-form
in the compact notation

ΘL =
∂L

∂q̇
dq − Edt,(12)

where we use (q, t) to refer to the two components of c. The conservation of the Lagrangian
one-form at the impact time reads

ΘL|τ−i = ΘL|τ+
i

on TQe|(R × ∂C).(13)

Splitting this into the two components gives

∂L

∂q̇

∣∣∣∣
t=t−i

· δq = ∂L

∂q̇

∣∣∣∣
t=t+i

· δq(14)

for any δq ∈ Tq(ti)∂C and

E(q(t−i ), q̇(t
−
i )) = E(q(t+i ), q̇(t

+
i )).(15)

These equations are the Weierstrass–Erdmann-type conditions for impact. That is, (14) states
that the linear momentum must be conserved in the tangent direction to ∂C, while (15) states
that the energy must be conserved during an elastic impact.

The system of (14) and (15) must be solved for q̇(t+i ). An obvious solution is q̇(t+i ) = q̇(t−i ),
but this is ruled out since the resulting trajectory would no longer lie in the admissible set.
That is, it would violate the physical noninterpenetration condition.
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Remark. Of course, existence and uniqueness for nonsmooth systems are very deep ques-
tions. Here, we will simply remark that for a codimension-one smooth boundary ∂C and
quadratic kinetic energy, solutions to the system (14), (15) exist and are unique locally. The
questions of global existence and uniqueness of solutions for more general Lagrangians is left
for future works.

2.3. Lagrangian flows and conservation of the symplectic form. As we have already
seen, a path c ∈ M is a solution of the variational principle if its associated curve q(t) satisfies
the Euler–Lagrange equations (10) and the jump conditions (14) and (15). It is a well-known
fact that, in the smooth case, such a trajectory is uniquely determined by an initial condition
in TQ. Since we work in a nonsmooth context, we must assume uniqueness of the physical
trajectory at the impact point; we have already discussed in the previous subsection some
conditions under which this actually occurs.

Under this hypothesis, the space CL, defined to be the space of curves q(t) that satisfy (10),
(14), and (15), may be identified with the space of initial conditions (t0, q0, q̇0) on R × TQ.

Based on these remarks, we can define a flow Ft : R × TQ→ R × TQ as

Ft(t0, q0, q̇0) = (t0 + t, q(t0 + t), q̇(t0 + t)),(16)

where q(t) is the unique trajectory in CL corresponding to (t0, q0, q̇0) ∈ R×TQ. The mapping
Ft is called the Lagrangian flow. In the nonsmooth setting, Ft will not necessarily be a smooth
map on the whole of its domain. Later, we will restrict our attention to the parts of the domain
on which Ft is smooth in order to use the derivatives of Ft with respect to the initial conditions
and to time.

Remark. Even though we have worked within an extended configuration manifold formu-
lation up until this point, here we have defined a flow on TQ rather than taking a flow on
TQe with initial conditions in TQe. The reason for doing this is that the derivative t′0 has no
physical meaning, and no mechanical problem has the derivative of time with respect to some
parameter as an initial condition.

Next, we will show in which sense the Lagrangian flow Ft is symplectic. We begin by
relating the previous approach to the one used in the rest of the section.

As we noted above, to any initial condition (t0, q0, q̇0) in R × TQ there corresponds a
unique trajectory q(t) ∈ CL such that (q(t0), q̇(t0)) = (q0, q̇0). Trajectories in CL are unique
up to reparameterization in τ . Accordingly, we can define an equivalence relation in ML by

c0 ∼ c1 iff c0q ◦ (c0t )−1 = c1q ◦ (c1t )−1,(17)

where c0, c1 ∈ ML, c
0 = (c0q , c

0
t ), c

1 = (c1q , c
1
t ). That is, two paths are equivalent if they

have the same associated curve, and so to a given trajectory q(t) in CL there corresponds an
equivalence class ĉ of curves in the extended space.

In a similar manner, we can define an equivalence relation on TQe by

(t0, q0, t
′
0, q

′
0) ∼ (t1, q1, t

′
1, q

′
1) iff t0 = t1, q0 = q1, and

q′0
t′0

=
q′1
t′1
,(18)

which is a pointwise version of the previous equivalence relation (17).



NONSMOOTH LAGRANGIAN MECHANICS 395

Now, the quotient space TQe/∼ may be identified with the product R×TQ, and the flow
Ft may be regarded not as a flow on TQe (which would not be desirable, as explained in the
previous remark) but as a flow on the equivalence classes of TQe.

To prove symplecticity for the flow Ft in a precise sense, we must reinterpret Theorem 2.4
by slightly modifying the definition of the Lagrangian one-form ΘL.

That is, Theorem 2.4 stands with the same statement and fundamental relation (5) if
we replace ΘL with the one-form Θ̄L on R × TQ ∼= TQe/∼, where Θ̄L is given by the same
coordinate expression as ΘL, i.e., relation (7). More precisely, (5) becomes

dG(c) · δc =
∫ τi

0
EL(c′′) · δc dτ +

∫ 1

τi

EL(c′′) · δc dτ + Θ̄L(c̃) · δc̃|τ
−
i

0 + Θ̄L(c̃) · δc̃|1τ+
i
,(19)

where

c̃(τ) =

(
ct(τ), cq(τ),

c′q(τ)
c′t(τ)

)
,

δc̃(τ) =

((
ct(τ), cq(τ),

c′q(τ)
c′t(τ)

)
,

(
δct(τ), δcq(τ),

(
δc′q
c′t

− c′qδc′t
(c′t)2

)
(τ)

))
.

It is exactly this one-form Θ̄L on R × TQ which is preserved by the flow Ft, as we will now
show.

To any fixed (t0, q0, q̇0) ∈ R × TQ we associate the integral curve s 
→ Fs(t0, q0, q̇0) for
s ∈ [0, t]; the value of G on that curve is denoted by Gt and again called the action. Thus we
define the map Gt : R × TQ→ R by

Gt(t0, q0, q̇0) =

∫ t0+t

t0
L (q(s), q̇(s)) ds,(20)

where q(t) ∈ CL is the solution corresponding to (t0, q0, q̇0).

If c = (ct, cq) is any representative in the equivalence class ĉ corresponding to q, we can
write

Ft(t0, q0, q̇0) =

(
ct(τ), cq(τ),

c′q(τ)
c′t(τ)

)
,(21)

where τ = c−1
t (t0 + t).

Consider now an arbitrary curve λ 
→ (tλ0 , q
λ
0 , q̇

λ
0 ) in R×TQ which passes through (t0, q0, q̇0)

at λ = 0. Denote by qλ(t) the unique trajectories in CL corresponding to (tλ0 , q
λ
0 , q̇

λ
0 ) and by

ĉλ their equivalence classes in ML. (At λ = 0 they reduce to q(t) and ĉ, respectively.) We
pick representatives (cλt , c

λ
q ) in ĉ

λ such that for any λ ≥ 0 we have

(cλt )
−1(tλ0 + t) = const(22)

for some t > 0; we denote this common value by τ .
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Then, using (21) and (22), the fundamental (19) becomes

dGt((t0, q0, q̇0)) · (δt0, δq0, δq̇0) = Θ̄L(Ft(t0, q0, q̇0)) · d

dλ
Ft(t

λ
0 , q

λ
0 , q̇

λ
0 )

∣∣∣∣
λ=0

− Θ̄L(t0, q0, q̇0) · d

dλ
(tλ0 , q

λ
0 , q̇

λ
0 )

∣∣∣∣
λ=0

,(23)

where (δt0, δq0, δq̇0) =
d
dλ |λ=0

(tλ0 , q
λ
0 , q̇

λ
0 ).

Taking the exterior derivative of (23), we derive

0 = ddGt = F ∗
t (dΘ̄L)− dΘ̄L.(24)

Defining the Lagrangian symplectic form by ΩL = −dΘ̄L, we now see that relation (24) gives
the symplecticity of the flow in the extended sense

F ∗
t ΩL = ΩL.(25)

Thus we derived conservation of the canonical symplectic structure in the extended sense (see
[24]), namely,

ΩL = ωL + dE ∧ dt,(26)

where ωL = −dθL is the canonical symplectic form. Here, θL represents the component of the
Lagrangian one-form given by (12)

θL =
∂L

∂q̇
dq.(27)

It is the term dE ∧ dt that distinguishes the nonautonomous structure used here from the
autonomous approach, for which the symplectic structure is given only by the canonical sym-
plectic form ωL.

2.4. Noether’s theorem. Suppose that a Lie group G, with Lie algebra g, acts on Q
by the (left or right) action Φ : G × Q → Q. Consider the tangent lift of this action to
TΦ : G × TQ → TQ given by (TΦ)g(vq) = T (Φg) · vq, and for ξ ∈ g define the infinitesimal
generators ξQ : Q→ TQ and ξTQ : TQ→ T (TQ) by

ξQ(q) =
d

dt |t=0

exp(tξ) · q,

ξTQ(vq) =
d

dt |t=0

Tqφt(vq),

where φt is the flow of the vector field ξQ.

In this subsection, we will not use the extended configuration manifold setting with varia-
tions in both time and configuration variables, as is done in the rest of the paper. This means
that we are restricted to symmetries of the configuration variables, which do not involve alter-
ing the time variable. This allows us to deal with most of the interesting physical problems,
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while still keeping the theory relatively simple. For a full account of the conservation of
momentum maps in the extended setting, see [37].

For a fixed initial time t0 ∈ R, define the flow map F̃t : TQ→ TQ by

F̃t(q0, q̇0) = (q(t0 + t), q̇(t0 + t)),(28)

where q(t) is the unique trajectory in CL corresponding to (q0, q̇0) ∈ TQ, as initial condition
at t0.

In the autonomous setting, the Lagrangian one-form Θ̄L reduces to the configuration
component θL given by (27), and the action Gt from (20) becomes the map Ḡt : TQ → R

defined by

Ḡt(q0, q̇0) =

∫ t0+t

t0
L (q(s), q̇(s)) ds.(29)

Define the Lagrangian momentum map JL : TQ→ g∗ to be

JL(vq) · ξ = θL · ξTQ(vq).

We will now show that when the group action is a symmetry of both the Lagrangian and the
submanifold ∂C, then the momentum maps are conserved quantities of the flow.

A Lagrangian L : TQ → R is said to be infinitesimally invariant under the lift of the
group action Φ : G×Q→ Q if dL · ξTQ = 0 for all ξ ∈ g, and in this case the group action is
said to be a symmetry of the Lagrangian.

In proving the following theorem, we will essentially use the assumption that the group
action Φ leaves the boundary ∂C of the collision set invariant (locally). An example where
this assumption is valid is the case of two or more irregular bodies (for example, binary
astroids) moving in space under gravitational forces. In this case, the collision set is invariant
to translations and rotations (G = SE(3)).

Theorem 2.5 (Noether’s theorem). Consider a Lagrangian system L : TQ → R which is
infinitesimally invariant under the lift of the (left or right) group action Φ : G × Q → Q.
Under the assumption that the group action leaves ∂C invariant (locally), the corresponding
Lagrangian momentum map JL : TQ→ g∗ is a conserved quantity of the flow so that JL◦F̃t =
JL for all times t.

Proof. The group action of G on Q induces a group action of G on the space C of paths
q(t) in Q by pointwise action so that Φg(q)(t) = Φg(q(t)). The tangent lift of Φ acting on C
will thus be the pointwise group action of the tangent lift of Φ group action on Q. From this
we derive

dG(q) · ξC(q) =
∫ t1

t0
dL · ξTQ dt,

and so, symmetries of the Lagrangian induce symmetries of the action. This implies that Φg

leaves the space of solutions CL of the Euler–Lagrange equations invariant, and so we may
restrict Φg to CL.
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Furthermore, the flow map F̃t : TQ → TQ commutes with the tangent lift of Φ on C:
F̃t ◦ TΦg = TΦg ◦ F̃t. Differentiating this with respect to g in the direction ξ gives

T (F̃t) · ξTQ = ξTQ ◦ F̃t.

We now follow the same idea used to prove symplecticity of the flow map Ft and identify the
space of solutions CL with the space of initial conditions TQ. For an initial condition vq ∈ TQ
and corresponding solution curve q ∈ CL, we thus have

dG(q) · ξC(q) = dḠt(vq) · ξTQ(vq)

= ((F̃t)
∗(θL)− θL)(vq) · ξTQ(vq)(30)

from (23).
To derive (30), one uses the assumption that the group action Φ leaves ∂C invariant

(locally). More precisely, it is essential that the path curves qλ ∈ C corresponding to vλq =
ηλ(vq) (by ηλ we denote the flow of ξTQ on TQ) have exactly the same impact time ti as the
curve q. We conclude this from the relation

qλ(ti) = Φexp(λξ)(q)(ti) = exp(λξ) · q(ti)
as well as the assumption on the group action and the condition that q(ti) ∈ ∂C.

As the left-hand side of (30) is always zero, the previous identity gives

(θL · ξTQ) ◦ F̃t = θL · ξTQ,

which is the definition of conservation of the momentum map. We complete the proof by
noting that the argument above is valid for all times t ∈ R.

2.5. Forcing and friction. In this subsection, we extend the theory developed so far to
include forcing and friction. To do this in the variational framework, we turn from using
Hamilton’s principle to the Lagrange–d’Alembert extension of it.

The usual force field description of impact dynamics contains a given external force, a
normal contact force field over the area in contact, and a friction force field required to be
self-equilibrated and tangential to the surfaces in contact.

Following [36], we define the exterior force field as a fiber-preserving map F : TQe → T ∗Qe

over the identity, which we write in coordinates as

F : (c, c′) 
→ (c, F (c, c′)).(31)

We use a unified treatment of contact forces (the normal and the frictional forces) by defining
the contact force field to be a map f con : TQe|(∂C × R) → T ∗(∂C × R).

Given a Lagrangian L and the exterior and contact force fields defined as above, the
integral Lagrange–d’Alembert principle for a curve c ∈ M states that

δ

∫ 1

0
L

(
cq(τ),

c′q(τ)
c′t(τ)

)
c′t(τ) dτ +

∫ 1

0
F (c(τ), c′(τ)) · δc(τ) dτ(32)

+ f con(c(τi), c
′(τi)) · δc(τi) = 0
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for all admissible variations δc vanishing at the endpoints.
Using integration by parts and notation from section 2.1, one can show that (32) is equiv-

alent to ∫ τi

0

[
EL(c′′) + F (c′)

] · δc dτ + ∫ 1

τi

(EL(c′′) + F (c′)) · δc dτ(33)

+ ΘL(c
′)|τ

+
i

τ−i
· δ̂c(τi) + f con(c(τi), c

′(τi)) · δc(τi) = 0.

From (33) we obtain the extended forced Euler–Lagrange equations, which have coordinate
expressions

d

dτ

(
∂L

∂q̇

)
− ∂L

∂q
c′t = Fq in [0, τi) ∪ (τi, 1],(34)

− d

dτ

(
∂L

∂q̇
q̇ − L

)
= Ft in [0, τi) ∪ (τi, 1],(35)

where (Ft, Fq) denote the corresponding components of F .
However, the first part (34) of the extended forced Euler–Lagrange equations has the

energy evolution built into it, as can be seen from

dE

dt
=

d

dt

(
∂L

∂q̇
q̇ − L

)

=

(
d

dt

(
∂L

∂q̇

)
− ∂L

∂q

)
q̇(36)

=
Fq

c′t
q̇,

where we used (34) to pass from the first to the second line.
Therefore, from (35), the time component Ft of the exterior force field must necessarily

be of the form

Ft = −Fq · q̇.(37)

This compatibility condition is a consequence of the fact that the mechanical system is au-
tonomous and the equations must depend only on the associated curve q(t). The nonau-
tonomous approach is relevant only in the context of nonsmooth mechanics, and it is not
surprising that there is no particular gain from this approach wherever the motion is smooth.

Now we turn to (33) and write the remaining terms on the left-hand side in components
to obtain

∂L

∂q̇

∣∣∣∣
t+i

t−i
· δq + f con

q · δq = 0(38)

for any δq ∈ Tq(ti)∂C, and

E(q(t+i ), q̇(t
+
i ))− E(q(t−i ), q̇(t

−
i ))− f con

t = 0.(39)
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Equations (38) and (39) represent the standard jump conditions for an inelastic impact
with friction. Equation (38) gives the jump in the tangential component of the linear momen-
tum due to the frictional forces acting on the tangent plane of the contact submanifold ∂C.
The energy dissipation, given by (39), is due to the tangential frictional forces as well as to
the normal reaction force exerted by the constraint. For frictionless collisions, f cont plays the
same role as the coefficient of restitution from the measure differential inclusion formulation
of contact dynamics [27, 56].

3. Discrete model. We now turn to considering discrete models of contact problems, in
which the continuous time variable is replaced with a discrete time index. The equations of
motion are thus algebraic rather than differential equations, and they can be regarded as an
integrator for the continuous system.

The approach we use is based on discrete variational mechanics (see [37]), in which the
variational principle is discretized and the discrete equations and their conservation properties
are derived as in the continuous case. This has the advantage of automatically capturing much
of the geometric structure of the true problem even in the approximate discrete setting.

3.1. Discrete configurations and equations of motion. Disregard for the moment the
continuous formulation of the previous section, and introduce a fixed timestep h ∈ R. Consider
a discrete Lagrangian Ld : Q×Q→ R, which is a function of two configuration points and the
timestep, so that Ld = Ld(q0, q1, h). The discrete Lagrangian will be chosen to approximate
the continuous action integral over an interval of length h so that

Ld(q0, q1, h) ≈
∫ h

0
L(q, q̇)dt,

where q : [0, h] → R is an exact solution of the Euler–Lagrange equations, for L satisfies the
boundary conditions q(0) = q0 and q(h) = q1.

We now consider an increasing sequence of times

tk = kh for k = 0, . . . , N,

we also fix α̃ ∈ [0, 1], and we let τ̃ = ti−1+ α̃h denote the fixed impact time (corresponding to
τi from the continuous model) and t̃ = ti−1+αh denote the actual impact time (corresponding
to ti). We take α = td(α̃), where td is some strictly increasing function which maps [0, 1] onto
[0, 1] . Thus we assumed only that the step at which the impact occurs is known and not the
impact time t̃, which is allowed to vary according to variations in α.

The discrete path space is defined by

Md = Td ×Qd(α̃, ∂C,Q),(40)

where

Td = {td(α̃) | td ∈ C∞([0, 1], [0, 1]), td onto, t
′
d > 0 in [0, 1]},(41)

Qd(α̃, ∂C,Q) = {qd : {t0, . . . , ti−1, τ̃ , ti, . . . , tN} → Q, qd(τ̃) ∈ ∂C}.(42)
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Remark. The set Td is actually the real interval [0, 1], but we used (41) to define it in order
to emphasize the analogy with the continuous case.

We identify the discrete trajectory with its image

(α, qd) = (α, {q0, . . . , qi−1, q̃, qi, . . . , qN}),
where qk = qd(tk) for k ∈ {0, . . . , N}, q̃ = qd(τ̃), and α = td(α̃). Thus a discrete trajectory
can be regarded as a sequence of points in Q, one of which must be in ∂C, and a single real
number α ∈ [0, 1].

The discrete action map Gd : Md → R is defined by

Gd(α, qd) =
i−2∑
k=0

Ld(qk, qk+1, h) +
N−1∑
k=i

Ld(qk, qk+1, h)(43)

+ Ld(qi−1, q̃, αh) + Ld(q̃, qi, (1− α)h).

As the discrete path space Md is isomorphic to [0, 1] × Q × · · · × ∂C × · · · × Q (N copies of
Q), it can be given a smooth manifold structure.

For qd ∈ Qd(α̃, ∂C,Q), the tangent space TqdQd(α̃, ∂C,Q) is the set of all maps vqd :
{t0, . . . , ti−1, τ̃ , ti, . . . , tN} → TQ such that πQ ◦ vqd = qd and vqd(τ̃) ∈ Tq̃∂C. For simplicity
we will identify vqd with its image in TQ.

The tangent space to the full discrete path space is now TMd = TTd × TQd. At a given
point (α, qd) ∈ Md we will write a tangent vector in T(α,qd)Md as

(δα, δqd) = (δα, {δq0, . . . , δqi−1, δq̃, δqi, . . . , δqN}).
Define the discrete second order manifold to be

Q̈d = Q×Q×Q,

which has the same information content as the continuous second order manifold Q̈.
We now proceed, as in the continuous case, to derive the discrete equations of motion and

the conservation laws from Hamilton’s principle of critical action. We take variations of the
discrete action sum with respect to the discrete path and to the parameter α, as stated in the
following theorem.

Theorem 3.1. Given a Ck discrete Lagrangian Ld : Q × Q × R → R, k ≥ 1, there exist
a unique Ck−1 mapping ELd : Q̈d → T ∗Q and unique Ck−1 one-forms Θ−

Ld
and Θ+

Ld
on the

discrete Lagrangian phase space Q × Q such that, for all variations (δα, δqd) ∈ T(α,qd)Md of
(α, qd), we have

dGd(α, qd) · (δα, δqd)

=
i−2∑
k=1

ELd(qk−1, qk, qk+1) · δqk +
N−1∑
k=i+1

ELd(qk−1, qk, qk+1) · δqk

+ Θ+
Ld
(qN−1, qN ) · (δqN−1, δqN )−Θ−

Ld
(q0, q1) · (δq0, δq1)

+ [D2Ld(qi−2, qi−1, h) +D1Ld(qi−1, q̃, αh)] · δqi−1(44)

+ h [D3Ld(qi−1, q̃, αh)−D3Ld(q̃, qi, (1− α)h)] · δα
+ i∗(D2Ld(qi−1, q̃, αh) +D1Ld(q̃, qi, (1− α)h)) · δq̃
+ [D2Ld(q̃, qi, (1− α)h) +D1Ld(qi, qi+1, h)] · δqi,
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where i∗ : T ∗Q→ T ∗∂C is the cotangent lift of the embedding i : ∂C → Q.
The map ELd is called the discrete Euler–Lagrange derivative and the one-forms Θ+

Ld
and

Θ−
Ld

are the discrete Lagrangian one-forms. In coordinates these have the expressions

ELd(qk−1, qk, qk+1) = [D2Ld(qk−1, qk, h) +D1Ld(qk, qk+1, h)] dqk(45)

for k ∈ {1, . . . , i− 2, i, . . . , N − 1} and

Θ+
Ld
(qk, qk+1) = D2Ld(qk, qk+1, h) dqk+1,

Θ−
Ld
(qk, qk+1) = −D1Ld(qk, qk+1, h) dqk.

Proof. The formula is derived by straightforward algebra, by computing the derivative of
the discrete action map, and by some rearrangement of the summation. This rearrangement
corresponds to a discrete version of integration by parts, resulting in two boundary terms
which are interpreted as the discrete Lagrangian one-forms.

By using the discrete version of Hamilton’s principle, we consider the paths (α, qd), which
are critical points of the discrete action. Therefore, we define the discrete space of solutions
to be the set of all paths which satisfy dGd(α, q) · (δα, δq) = 0 for all variations (δα, δqd) ∈
T(α,qd)Md which are zero at the boundary points 0 and N .

From (44) we conclude that (α, qd) is a solution iff the discrete Euler–Lagrange derivative
is zero at all k other than {0, i− 1, i, N}. This statement at an arbitrary k reads

D2Ld(qk−1, qk, h) +D1Ld(qk, qk+1, h) = 0(46)

and is known as discrete Euler–Lagrange equations. These describe the motion of the system
away from the impact point by implicitly defining a map (qk−1, qk) 
→ (qk, qk+1).

Near the point of impact, the discrete Hamilton’s principle gives three additional sets of
equations, namely,

D2Ld(qi−2, qi−1, h) +D1Ld(qi−1, q̃, αh) = 0,(47a)

q̃ ∈ ∂C,(47b)

which is a system of n+ 1 equations to be solved for q̃ and α, and

D3Ld(qi−1, q̃, αh)−D3Ld(q̃, qi, (1− α)h) = 0,(48a)

i∗(D2Ld(qi−1, q̃, αh) +D1Ld(q̃, qi, (1− α)h)) = 0,(48b)

which is a system of n equations for the unknown qi. Finally, we also have

D2Ld(q̃, qi, (1− α)h) +D1Ld(qi, qi+1, h) = 0,(49)

which gives n equations to be solved for qi+1.
A discrete trajectory can thus be formed by starting from an initial condition (q0, q1),

using (46) to solve successively for the qk until the impact time is reached, and then solving
the systems (47), (48), and (49) in turn to obtain q̃, α and then qi and qi+1, before once again
continuing with (46) to complete the trajectory.
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Remark. The discrete energy conservation through the collision depends critically on ex-
actly resolving the collision time with the parameter α. This is also the key feature of the
recent improvements of [41] to the nonsmooth collision methods developed by [25].

3.2. Relationship between discrete and continuous models. Having established the ba-
sic discrete variational mechanics, we now consider how the discrete model can be regarded
as an approximation to the continuous model.

At first glance it appears that the discrete Euler–Lagrange equations are defined only in
terms of pairs of configuration positions. We will now see, however, that they can also be
interpreted as defining a mapping on the cotangent bundle T ∗Q. Define the discrete Legendre
transforms or discrete fiber derivatives F

+Ld,F
−Ld : Q×Q→ T ∗Q as given by

F
+Ld(q0, q1) · δq1 = D2Ld(q0, q1, h) · δq1,

F
−Ld(q0, q1) · δq0 = −D1Ld(q0, q1, h) · δq0,

where h is the timestep in between q0 and q1. We note the implicit dependence on the
timestep of the definition above. This dependence is completely neglected in the constant
timestep discrete variational mechanics or rigorously treated in the nonautonomous setting
(using adaptive timesteps), and we refer to [37] for a complete account of these ideas.

These also can be written

F
+Ld : (q0, q1) 
→ (q1, p1) = (q1, D2Ld(q0, q1, h)),(50a)

F
−Ld : (q0, q1) 
→ (q0, p0) = (q0,−D1Ld(q0, q1, h)).(50b)

If both discrete fiber derivatives are locally isomorphisms, then we say that Ld is regular. We
will generally assume that we are working with regular discrete Lagrangians.

We introduce the notation

p+
k,k+1 = p+(qk, qk+1, h) = F

+Ld(qk, qk+1),(51a)

p−k,k+1 = p−(qk, qk+1, h) = F
−Ld(qk, qk+1)(51b)

for the momentum at the two endpoints of each interval [k, k + 1].
We can now use definitions (50a) and (51) of the discrete fiber derivatives and of the

discrete momenta to see that the discrete Euler–Lagrange equations (46) can be written as

F
+Ld(qk−1, qk) = F

−Ld(qk, qk+1)(52)

or simply

p+
k−1,k = p−k,k+1.(53)

That is, the discrete Euler–Lagrange equations enforce the condition that the momentum at
time k should be the same when evaluated from the lower interval [k − 1, k] or the upper
interval [k, k + 1].

In this interpretation, (48b) represents conservation of the projection of momentum (by
i∗, on T ∗∂C) at the moment of impact

i∗p+(qi−1, q̃, αh) = i∗p−(q̃, qi, (1− α)h),(54)
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which is a discrete version of the jump condition (14) from the continuous case.

To give an interpretation of the discrete equations around the impact time, we define the
discrete energy to be

Ed(qk, qk+1, h) = −D3Ld(qk, qk+1, h).(55)

Using this, we can write (48a) as

Ed(qi−1, q̃, αh) = Ed(q̃, qi, (1− α)h),(56)

so this equation simply represents conservation of discrete energy at the impact time, a discrete
analogue of (15).

Remark. The discrete energy defined in this way is used in [24] and can be motivated in
several ways; first, for Lagrangians of the form of kinetic minus potential energy, and with the
choice of discrete Lagrangians given by

Ld(q0, q1, h) = L

(
γq0 + (1− γ)q1,

q1 − q0
h

)
,(57)

where γ ∈ [0, 1] is an interpolation parameter, the discrete energy gets the usual expression

Ed(q0, q1, h) =
1

2

(
q1 − q0
h

)T

M

(
q1 − q0
h

)
+ V (γq0 + (1− γ)q1).(58)

A second motivation is the fact that the discrete energy becomes exactly the Hamiltonian
when one uses the exact discrete Lagrangian LE

d —that is, the discrete Lagrangian is equal to
the action integral taken along exact solutions of the Euler–Lagrange equations.

3.3. Symplecticity of the flow. Define the discrete Lagrangian map FLd
: Q×Q→ Q×Q

by

(q0, q1) 
→ (q1, q2),(59)

where q2 is obtained by using the algorithm from section 3.1. A solution (α, qd) ∈ Md is
formed by iteration of the map FLd

, and it is uniquely determined by the initial condition
(q0, q1) ∈ Q × Q and the choice of timestep h. Hence we parameterize the discrete solutions
of the variational principle by the initial conditions (q0, q1), and we consider the restriction of
Gd to that solution space.

The discrete fiber derivatives enable us to push the discrete Lagrangian map FLd
: Q×Q→

Q×Q forward to T ∗Q. We define the discrete Hamiltonian map F̃Ld
: T ∗Q→ T ∗Q by

F̃Ld
= F

+Ld ◦ FLd
◦ (F+Ld)

−1,(60)

with the coordinate expression

F̃Ld
: (q0, p0) 
→ (q1, p1).(61)
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We note that the discrete Hamiltonian map can be equivalently defined using the other discrete
Legendre transform

F̃Ld
= F

−Ld ◦ FLd
◦ (F−Ld)

−1.(62)

Define the restricted discrete action map Ĝd : Q × Q → R to be Ĝd(q0, q1) = Gd(α, qd),
where (α, qd) is the corresponding solution in Md such that (qd(t0), qd(t1)) = (q0, q1). Then
(44) becomes

dĜd = (FN
Ld
)∗Θ+

Ld
−Θ−

Ld
.(63)

Taking a further derivative of this expression and using the fact that d2Ĝd = 0, we obtain

(FN
Ld
)∗(ΩLd

) = ΩLd
,(64)

where ΩLd
= dΘ+

Ld
= dΘ−

Ld
is the unique discrete Lagrangian symplectic form, with coordinate

expression

ΩLd
(q0, q1) =

∂2Ld

∂qi0∂q
j
1

dqi0 ∧ dqj1.(65)

We have thus proven that the discrete evolution map exactly preserves a discrete symplectic
structure, so, regarding Fd as an integrator for the continuous system, we see that it is
automatically a symplectic method.

Note that the discrete Lagrangian symplectic form is the pullback under either discrete
Legendre transform of the canonical symplectic form on T ∗Q. The discrete Hamiltonian map
F̃Ld

: T ∗Q→ T ∗Q thus preserves the canonical symplectic form and the canonical momentum
maps on T ∗Q.

3.4. Discrete Noether theorem. Consider the (left or right) group action Φ : G×Q→ Q
of a Lie group G on Q, with infinitesimal generator as defined in section 2.4. This action can
be lifted to Q × Q by the product Φg(q0, q1) = (Φg(q0),Φg(q1)), which has the infinitesimal
generator ξQ×Q : Q×Q→ T (Q×Q) given by

ξQ×Q(q0, q1) = (ξQ(q0), ξQ(q1)).(66)

The two discrete Lagrangian momentum maps J+
Ld
, J−

Ld
: Q×Q→ g∗ are

J+
Ld
(q0, q1) · ξ = Θ+

Ld
· ξQ×Q(q0, q1),(67a)

J−
Ld
(q0, q1) · ξ = Θ−

Ld
· ξQ×Q(q0, q1).(67b)

As in the continuous approach to Noether’s theorem from section 2.4, we are restricted to
symmetries of the configuration variables only. We consider symmetries which do not involve
altering the time variable and thus consider the timestep h to be a fixed constant.

If a discrete Lagrangian Ld : Q × Q → R is such that dLd · ξ = 0, then Ld is said to
be infinitesimally invariant under the group action, and Φ is said to be a symmetry of the
discrete Lagrangian. Note that

dLd · ξ = (Θ+
Ld

−Θ−
Ld
) · ξQ×Q,



406 R. C. FETECAU, J. E. MARSDEN, M. ORTIZ, AND M. WEST

and so, when Ld is infinitesimally invariant under the group action Φ, the two discrete mo-
mentum maps are equal. In such cases, we will use the notation JLd

: Q × Q → g∗ for the
unique single discrete Lagrangian momentum map.

Theorem 3.2 (discrete Noether’s theorem). Consider a discrete Lagrangian system Ld : Q×
Q × R → R which is infinitesimally invariant under the lift of the (left or right) action Φ :
G×Q→ Q. If we assume that the action leaves ∂C invariant (locally), then the corresponding
discrete Lagrangian momentum map JLd

: Q×Q→ g∗ is a conserved quantity of the discrete
Lagrangian map FLd

: Q×Q→ Q×Q so that JLd
◦ FLd

= JLd
.

Proof. We introduce an action of G on the discrete path space Md by pointwise action
on the configuration components so that Φg : Md → Md is given by Φg(α, qd) = (α,Φg(qd)).
Then the infinitesimal generator ξMd

: Md → TMd is given by

ξMd
(α, qd) = (0, ξQ(q0), . . . , ξQ(qi−1), ξQ(q̃), ξQ(qi), . . . , ξQ(qN )).

From (43) we derive

dGd(α, qd) · ξMd
(α, qd) =

N−1∑
k=0

dLd · ξ,(68)

and so the space of solutions of the discrete Euler–Lagrange equations is invariant under the
action of G, and the Lagrangian map FLd

: Q×Q→ Q×Q commutes with the lifted action
Φg : Q×Q→ Q×Q.

Identifying the space of solutions with the space of initial conditions Q×Q and using (63),
we obtain

dGd(α, qd) · ξMd
(α, qd) = dĜd(q0, q1) · ξQ×Q(q0, q1)

= ((FN
Ld
)∗(Θ+

Ld
)−Θ−

Ld
)(q0, q1) · ξQ×Q(q0, q1).

From (68) and the invariance of the discrete Lagrangian, the left-hand side of the previous
equation is zero, and so we have

(Θ+
Ld

· ξQ×Q) ◦ FN
Ld

= Θ−
Ld

· ξQ×Q.(69)

The last relation is simply the statement of preservation of the discrete momentum map, given
that for symmetry actions there is only a single unique discrete momentum map and that the
above argument holds for all subintervals, including a single timestep.

Observe that JLd
is the pullback under F

±Ld of the canonical momentum map JH on T ∗Q
and that JH is thus preserved by F̃Ld

.

4. Numerical examples. In this section, we will choose a particular discrete Lagrangian
and illustrate the performance of the algorithm from the previous section on two simple
conservative systems. Here we are particularly interested in the extent to which the variational
integrator preserves the energy for very long time simulations.

The examples that we present very much simplify the issues regarding grazing impacts
and multiple nearby solutions, such as one would encounter in complex collisions (simulation
studies of powder flows, for example). Our algorithm, as presented in this paper, is limited to



NONSMOOTH LAGRANGIAN MECHANICS 407

relatively simple situations, when one can readily identify and resolve the impacts. However,
considerable progress has already been made in extending these methods to more practical
schemes which are demonstrated in examples involving very complicated collision sequences
(see [9]).

4.1. The discrete algorithm. For systems of the form

L(q, q̇) =
1

2
q̇TMq̇ − V (q),(70)

where M is a mass matrix and V is a potential function, the Euler–Lagrange equations are
given by

Mq̈ = −∇V (q),

which is simply Newton’s equation of mass times acceleration equals force. We consider the
second order discrete Lagrangian

Ld(q0, q1, h) =
h

2

(
q1 − q0
h

)T

M

(
q1 − q0
h

)
− h

(
V (q0) + V (q1)

2

)
,(71)

which is clearly an approximation to the action integral over an interval of length h. The
discrete energy function for this choice of discrete Lagrangian is

Ed(q0, q1, h) =
1

2

(
q1 − q0
h

)T

M

(
q1 − q0
h

)
+

(
V (q0) + V (q1)

2

)
,(72)

and the discrete Euler–Lagrange equations are

M
qk+2 − 2qk+1 + qk

h2
= −∇V (qk+1).(73)

Using the discrete Legendre transform (50a), we can push this algorithm forward on T ∗Q and
obtain a map

(qk, pk) 
→ (qk+1, pk+1)

given by

qk+1 = qk + hM−1pk − h2

2
M−1∇V (qk),

pk+1 = pk − h

2
(∇V (qk) +∇V (qk+1)) .

The integrator defined by the previous set of equations is called the leap-frog/Verlet integrator
and is one of the most popular integration schemes in molecular dynamics. It is a second order
accurate integrator, as one can also infer from the fact that the discrete Lagrangian is second
order (see [37] for details about this theory).



408 R. C. FETECAU, J. E. MARSDEN, M. ORTIZ, AND M. WEST

This equation describes the motion of the discrete system away from the point of impact.
Given a point (qi−1, pi−1) just before impact, we must then solve (47) for q̃ and α, which are

M
q̃ − qi−1

αh
−M

qi−1 − qi−2

h
+ (1 + α)

h

2
∇V (qi−1) = 0,(74a)

q̃ ∈ ∂C.(74b)

Next we solve (48) for qi, which reads

1

2

(
qi − q̃

(1− α)h

)T

M

(
qi − q̃

(1− α)h

)
− 1

2

(
q̃ − qi−1

αh

)T

M

(
q̃ − qi−1

αh

)

+
1

2
(V (qi)− V (qi−1)) = 0,(75a)

i∗
(
M

qi − q̃

(1− α)h
−M

q̃ − qi−1

αh
+
h

2
∇V (q̃)

)
= 0.(75b)

To implement the system (75), we write (75b) in a form using Lagrange multipliers. More
precisely, we consider ∂C to have a local representation ∂C = φ−1(0) ⊂ Q, where 0 is a regular
point of the constraint function φ : Q→ R. Then we solve (75a) together with the system

M
qi − q̃

(1− α)h
−M

q̃ − qi−1

αh
+
h

2
∇V (q̃) + λ∇φ(q̃) = 0(76)

for the unknowns qi ∈ R
n and λ ∈ R.

Finally, we solve for qi+1 by (49), which is

M
qi+1 − qi

h
−M

qi − q̃

(1− α)h
+ (2− α)

h

2
∇V (qi) = 0,(77)

and we then continue integrating with (73) above.
We can also handle multiple impacts within a single timestep by dividing the impact step

into as many substeps as we need and solving (74) and (75) sequentially for any constraint in-
volved in the impact. We will explicitly derive the equations for the case of two impacts solved
within the timestep (ti−1, ti); generalization to an arbitrary number would be immediate.

If multiple impacts are realized in the timestep (ti−1, ti), then the system (75) will return
a solution qi which is not admissible (qi /∈ C). Let us assume that there is only one additional
impact in the subinterval (t̃, ti) which occurs at the contact point q̃′ ∈ ∂C and time t̃′ = t̃+βh,
with 0 < β ≤ 1− α. Then the conservation of the discrete energy and the momentum at the
impact point q̃, in addition to the condition that q̃′ must lie on ∂C, give the system of n+ 1
equations

1

2

(
q̃′ − q̃

βh

)T

M

(
q̃′ − q̃

βh

)
− 1

2

(
q̃ − qi−1

αh

)T

M

(
q̃ − qi−1

αh

)

+
1

2
(V (q̃′)− V (qi−1)) = 0,(78a)

i∗
(
M
q̃′ − q̃

βh
−M

q̃ − qi−1

αh
+ (α+ β)

h

2
∇V (q̃)

)
= 0,(78b)

q̃′ ∈ ∂C,(78c)
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to be solved for q̃′ and β.
Next, the analogous versions of (78a) and (78b) for the second impact point q̃′ give n

equations for qi:

1

2

(
qi − q̃′

(1− α− β)h

)T

M

(
qi − q̃′

(1− α− β)h

)
− 1

2

(
q̃′ − q̃

βh

)T

M

(
q̃′ − q̃

βh

)

+
1

2
(V (qi)− V (q̃)) = 0,(79a)

i∗
(
M

qi − q̃′

(1− α− β)h
−M

q̃′ − q̃

βh
+ (1− α)

h

2
∇V (q̃′)

)
= 0.(79b)

The case of an arbitrary number of impacts is treated in a similar manner, by dividing the
timestep (ti−1, ti) into as many substeps as needed and sequentially solving systems of type
(78) to find all the contact points and times. Finally, we solve a system of type (79) for qi,
and then we revert to the standard discrete Euler–Lagrange equations to continue away from
the impact.

In the numerical examples, we solve the implicit sets of (74) and (75) with nested Newton
loops.

4.2. Particle colliding with a rigid surface. The first example we consider consists of a
particle with unit mass moving under gravity in the (x, y)-plane and successively colliding and
bouncing on a horizontal rigid floor located at y = 0. This simple system has two degrees of
freedom (the coordinates of the particle) q = (x, y), the configuration manifold is Q = R

2, and
the contact submanifold ∂C is the line y = 0. The particle moves with trajectory q(t) ∈ R

2

in the admissible set y ≥ 0.
The Lagrangian describing this problem is in the form (70), where M is the diagonal 2×2

mass matrix with diagonal elements (m,m) (m denotes the mass of the particle) and V is the
gravitational potential given by

V (q) = mgy.(80)

Here, g denotes the gravitational acceleration.
The discretization we use is (71), the one for which the variational collision integrator was

explicitly derived in the last subsection. The integrator is run with a step size of h = 0.01; the
initial conditions we used in the simulation are q0 = (0, 1) and q̇0 = (−2, 0). We considered a
unitary mass particle (m = 1).

The energy behavior in this case is shown in Figure 2 for a relatively large number of
impacts (1000 impacts). The same pattern is observed if the simulation is carried out for
essentially arbitrarily long times. This fluctuating energy behavior is typical of symplectic
methods. A detailed account on how the variational symplectic methods perform on smooth
conservative systems can be found in [26].

4.3. Rotating nonconvex rigid body colliding with a rigid surface. Now consider a
sequence of collisions and bounces on a horizontal rigid floor for a three-degree-of-freedom
system, namely, a rotating four-point star-shaped rigid body (see Figure 3) moving in a
plane. The convex hull of the star-shaped body is a square with sides of length L. The rigid
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Figure 2. The long-time energy behavior for a particle bouncing on a rigid floor.
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Figure 3. A rotating four point, star shaped rigid body colliding and bouncing on a horizontal rigid floor.

body moves under the gravitational force field in the vertical (x, y) plane. The configuration
manifold Q is SE(2) with local coordinates q = (x, y, θ), where (x, y) ∈ R

2 stand for the
coordinates of the center of mass and θ ∈ [0, 2π] stands for the oriented angle that a line
moving rigidly with the body makes with the horizontal axis. The contact set ∂C given by
the nonpenetration condition is given explicitly by

y =
L

2
(| sin θ|+ | cos θ|) .(81)

The subset of points where y ≥ L
2 (| sin θ|+ | cos θ|) represents the admissible set C ⊂ Q, and

contact occurs whenever the relation becomes an equality.

The Lagrangian describing this problem has the expression (70), where V is the gravita-
tional potential (80) andM is the diagonal 3×3 mass matrix with diagonal elements (m,m, I),
where m is the mass of the body and I is the moment of inertia of the star-shaped body with
respect to the z-axis through its center of symmetry. In terms of m and L, I is given by
I = 29

192mL
2.

We use again the discretization given by (71) and run the variational collision integrator
from section 4.1 with a timestep h = 0.005 and initial conditions q0 = (0, 3.5, 0) and q̇0 =
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Figure 4. The long-time energy behavior for a star-shaped rigid body bouncing on a rigid floor. Note the
fluctuating energy behavior typical of symplectic methods.
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Figure 5. Log-log error diagram for the method in the star bounce example, after one collision. The second
order accuracy of the integrator from the smooth setting is preserved through collision. In this case a nonlinear
gravity was used to avoid the degeneracy of the exactly integrable linear gravitational potential.

(−2, 0, 5). We considered the body to have unitary mass m = 1 and a square convex hull
of size L = 1. A long-time (1,500 impacts) energy plot is shown in Figure 4. The long-
time energy behavior appears to be reasonably stable. It is not clear from these numerical
experiments whether this is an indication of a nearby conserved energy, as exists for variational
integrators applied to smooth systems, or simply a fairly stable random walk. More numerical
investigations and analytical work are needed to resolve this question.

We numerically checked the order of accuracy of the algorithm for the star bounce example.
A log-log error diagram after one collision is presented in Figure 5. The numerical results show
that the integrator is second order accurate; i.e., the order of the method is the same as the
order of the discrete Lagrangian Ld. This is in fact a fundamental property of the variational
integrators developed in smooth settings (see [37]), and we believe that it extends to the
nonsmooth setting as well. In our future work on the subject, we intend to formulate and
prove such results for the variational collisional algorithms presented in this paper.
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5. Appendix: Nonsmooth analysis approach. The purpose of this appendix is to discuss
collisions with multibody nonsmooth contact geometries when the contact set ∂C has a large
number of singularities. For example, in granular flows or fragmentation of brittle solids, there
are a large number of fragments undergoing complex collision sequences. For these collisions,
situations like corner-to-corner contact are very likely to occur, and the variational algorithm
from section 3.1 cannot cope with contact in singular points of the contact set ∂C.

However, the nonsmooth analysis (see [10]) provides an efficient analytical tool to formu-
late and treat algorithmically complex contact situations, as shown in [25]. The goal of this
appendix is to combine discrete Lagrangian mechanics with nonsmooth calculus to derive a
variational formulation of the nonsmooth contact (in the sense of nonsmooth admissible con-
figuration sets). The symplectic nature of such an algorithm is poorly understood, but one
can conjecture that future theory on that would depend on approaches like this one.

If C is the admissible set (possibly nonsmooth and nonconvex) of the system, we must
have q(t) ∈ C for all times or, in the discrete case, qk ∈ C for all k. These constraints may be
enforced by adding to the Lagrangian the indicator function IC of C defined by

IC(x) =

{
0 if x ∈ C,

∞ otherwise.
(82)

In the discrete context, this translates into defining a constrained discrete Lagrangian L̃d by
adding contributions from the indicator function. One particular way to do this is

L̃d(qk, qk+1, h) = Ld(qk, qk+1, h)− 1

2
[IC(qk) + IC(qk+1)] .(83)

We use, as before, the variational principle of Hamilton to derive the discrete equations of
motions. Thus the discrete Euler–Lagrange equations become

D2Ld(qk−1, qk, h) +D1Ld(qk, qk+1, h)− ∂IC(qk) � 0,(84)

where ∂IC denotes the generalized gradient of the indicator function.
For points q in the interior of C, ∂IC(q) = {0}, while for points on the boundary of C,

∂IC(q) = NC(q), where NC(q) represents the normal cone to C at q defined in the nonsmooth
analysis framework (see [10] for a complete account of the nonsmooth calculus used here).
However, if q is a convex point, NC(q) reduces to the normal cone in the usual convex analysis
sense.

The constrained discrete equations (84) are thus the usual discrete Euler–Lagrange equa-
tions (46) away from the impact. The generalized gradient ∂IC is not trivial only for q̃ ∈ ∂C.
If we specialize (84) for points qi−1, q̃, and qi+1, then we obtain

D2Ld(qi−1, q̃, αh) +D1Ld(q̃, qi+1, (1− α)h)− ∂IC(q̃) � 0,(85)

which is a natural generalization of (48b) in the case when q̃ is a singular point of ∂C.
Alternatively, using the previous notation for discrete momenta (51), (85) can be written

as

p+(qi−1, q̃, αh)− p−(q̃, qi+1, (1− α)h) ∈ NC(q̃),(86)
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where we used ∂IC(q̃) = NC(q̃) for q̃ ∈ ∂C. Therefore, (86) generalizes (54) in the case when
q̃ is a corner of ∂C and we cannot define a tangent plane at that point.

For Lagrangians consisting of only kinetic energy and for the particular discretization
(57), the momentum conservation (85) leads to a very interesting geometrical interpretation.
Indeed, for a unitary mass matrix, (85) becomes

q̃ − qi−1

αh
− qi − q̃

(1− α)h
− ∂IC(q̃) � 0.(87)

The inclusion (87) can be rewritten in the form

(1− α)qi−1 + αqi ∈ (I − ∂IC)(q̃).(88)

Now we will connect (88) with the concept of the closest point projection. First recall the
definition of the resolvent of the set-valued operator ∂IC as

R = (I + ∂IC)
−1.(89)

It is a well-known fact that the resolvent of the subgradient of the indicator function of a
convex set is the closest-point projection onto that set (see [49]). Under the assumption that
C̄, the complement of C, is a convex set (see Figure 6), the inclusion (88) can be written as

q̃ = PC̄(qi−α),(90)

where PC̄ represents the closest-point projection operator onto C̄ and qi−α is the convex
combination of the points qi−1 and qi

qi−α = (1− α)qi−1 + αqi.

We will conclude this appendix by the following two remarks which re-emphasize the particular
benefit of the nonsmooth calculus approach.

Remark. Besides its theoretical attractiveness, the nonsmooth analysis approach has a
great advantage over the standard penalty formulation methods in dealing with complex
nonsmooth contact geometries (see [25]) where neither normals nor gap functions may be
defined. Indeed, for such problems penalty methods simply fail.

Remark. The nonsmooth approach also gives the natural framework for constructing time-
adaptive variational integrators for collisions (see [24] and [37]), but we will leave the devel-
opment and illustration of such contact algorithms for future work.

6. Future directions.
Order of accuracy. For systems without collisions, the order of accuracy of the discrete

Lagrangian Ld and the discrete Hamiltonian map F̃d are the same. In principle, this will also
be true for contact algorithms as developed in this paper (see the numerical results presented
in Figure 5), but precise proofs remain to be formulated.

Elastic bodies. Although the numerical simulations presented in section 4 were all for rigid-
body collisions, the discrete variational formalism applies for arbitrary potential energies, such
as those for hyperelastic materials. We have not yet tested these methods for such systems,
however. In this context, it will also be very interesting to use the techniques of section 2.5
to include external forces and dissipative effects.
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Figure 6. Collision at a singular point of the contact set ∂C.

Multisymplectic extensions to PDEs . While PDE contact systems can be first discretized
in space and then treated as a system of contact ODEs in time with the algorithms developed
in this paper, much greater understanding can be gained by a fully space-time variational
formulation of both the continuous and discrete problems. The framework of multisymplectic
mechanics [15] and multisymplectic discretizations [35] is particularly appropriate for this,
and we will treat this subject in a forthcoming paper.
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latérale et perte d’énergie aux impacts, en dimension finie, C. R. Acad. Sci. Paris Sér. I Math., 317
(1993), pp. 211–215.
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