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Abstract

This paper focuses on methods of constructing of reduced-order models of mechanical systems which preserve the
Lagrangian structure of the original system. These methods may be used in combination with standard spatial decomposition
methods, such as the Karhunen–Loève expansion, balancing, and wavelet decompositions. The model reduction procedure is
implemented for three-dimensional finite-element models of elasticity, and we show that using the standard Newmark implicit
integrator, significant savings are obtained in the computational costs of simulation. In particular simulation of the reduced
model scales linearly in the number of degrees of freedom, and parallelizes well.
© 2003 Elsevier B.V. All rights reserved.

Keywords:Model reduction; Karhunen–Loève expansion; Balanced truncation; Lagrangian mechanics

1. Introduction

1.1. Problem description

The problem setting. The problem of constructing
simple, yet predictive, models for complex physical
systems operating on many length and time scales
has a long and distinguished history, from finding fi-
nite dimensional Galerkin truncation models to inertial
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manifolds and to finding envelope equations, a partic-
ular love of Alan’s. Another approach, the focus of
the present paper, is to use what is variously known
as model reduction, the Karhunen–Loève expansion
(KLE), empirical eigenfunction, or proper orthogonal
decomposition method.

Systems are often modeled by nonlinear partial dif-
ferential equations that contain phenomena on many
scales, which can be both difficult to analyze mathe-
matically and computationally expensive for simula-
tion, design and control problems. The reasons for this
difficulty are manifold. For example, the system itself
may have complex geometry, such as flow through a
jet engine or the dynamic motions of an automobile.
Thus, if one attempts to model the fluid equations or
those of elasticity in such a complex geometry, the
amount of computation will of course be significant,
even for simple flows or motions. However, there may
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be intrinsic difficulties in simple geometries as well,
such as in turbulent flow with its characteristic feature
of a cascade of energy to small scales. It is very im-
portant to understand to what extent one has to model
the small scale dynamics to achieve accurate mod-
els of the large-scale motions. Recent work on large
eddy simulation models and averaged fluid equations
[10,23,25,26]suggests that indeed one can do this with
considerable savings in computational cost. In general,
multiscale phenomena, both temporal and spatial, are
of great importance as well as the source of many of
the difficulties.

Fluid computations. The Karhunen–Loève method
is perhaps best known in fluid computations, as de-
scribed in[11]. The literature is huge in this area and
we cite only the recent work of[34,35] as examples.
While fluids have a well-known variational structure
(see, for instance,[10]), it is more subtle than that of
solids because of the largeparticle relabeling symme-
try group. Thus, in this paper we have focused on solid
mechanical examples.

General goals of this paper. In this paper we fo-
cus on the problem of constructing low-dimensional
models formechanicalsystems. Our aim is to de-
velop a general methodology which is applicable to
a wide range of mechanical systems, including sys-
tems of jointed rigid bodies such as robotic systems,
as well as fluid and elastic systems modeled through
finite-element analysis.

Such systems are well studied, and a significant
amount is known about their mathematical and ge-
ometric structure. This geometric structure has fun-
damental implications for our understanding of the
behavior of many mechanical systems. It also leads
to computational methods which take advantage of
this structure, for example in ensuring that numerical
integration methods conserve energy or momentum.

In this paper, our goal is to develop a model re-
duction procedure that is consistent with and indeed
preserves the geometric structure underlying the
mechanics, and that ties in with standard computa-
tional methods for analysis and simulation of both
finite-dimensional and continuum mechanical sys-
tems. Our main focus is to develop a basic theory
behind this area ofmechanical model reduction, appli-

cable to nonlinear high-dimensional systems, whose
configuration spaces may have constraints; that is, be
manifolds. Non-trivial configuration manifolds are,
of course, often introduced in holonomic mechanical
systems by imposing configuration space constraints,
such as those encountered in articulated and robotic
systems.

We first discuss our motivation behind the basic
problem, explaining why reduced-order models of
high-dimensional systems are of both mathematical
and computational interest. We then give an overview
of the basic theory we develop later in the paper for
model reduction of mechanical systems.

1.2. Motivation

The fundamental motivation behind model reduc-
tion is that low-dimensional systems should both be
simpler to work with analytically, and be faster and
more convenient to work with computationally. There
is of course a great need for such computational sav-
ings in problems of both structural design and control
design.

Structural design. Many high-dimensional or con-
tinuum mechanical systems exhibit behavior that it is
perhaps not unreasonable to expect to be well mod-
eled by appropriate low-dimensional nonlinear sys-
tems. An example is given by the dynamic motion of
an aircraft wing in flight, where the typical motions
of the wing are large-scale and often relatively simple
bulk bending dynamics.

The computational advantages are multiplied when
considering, for example, performance evaluation
of an aircraft wing under dynamic loading. Here
finite-element methods are typically used, and per-
formance checked via Monte Carlo sampling. Since
a large number of repeated simulation trials must be
performed, any reduction in the computational costs
per simulation can allow a greater exploration of
Monte Carlo space.

Control design. Other applications include con-
trol design, where the design of a stabilizing feed-
back controller may be extremely difficult for a
high-dimensional nonlinear system, but much sim-
pler for the low-dimensional system. Model reduction
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should preserve the essential features of the system
dynamics, and for some control applications this is
all that is necessary; the controller does not depend
on the highly uncertain fine-scale features of the
dynamics. See[3,12,18,30,37].

Systems analysis. Analysis problems of interest in-
clude an understanding of the bifurcation structure of
the system. A further benefit of model reduction is that
often a low-dimensional model can provide qualitative
understanding of the phenomena under consideration.

1.3. Previous work

The most basic method of model reduction for linear
systems is that of modal expansion, where the phase
space of the system is decomposed into subspaces cor-
responding to an eigendecomposition of the generator
of the differential equations. This is a technique of
fundamental importance for many applications. How-
ever, it is important to realize that the modal decom-
position alone does not provide enough information
to decide upon a good reduced-order model. What is
additionally necessary is a method of decidingwhich
modes should be preserved in the model. Typically
the low-frequency modes are kept, however, there are
many applications where this is not the best choice; in
particular, in control systems where the frequency at
which an accurate model is necessary is at crossover,
and this may not correspond to the low-frequency
modes of the system.

One of the most widely used methods for model
reduction of general dynamical systems is to apply a
KLE to the state space, and use a Galerkin projection
to construct the reduced system. The KLE was intro-
duced by Pearson[32], and developed by several au-
thors, including[14,21]. The use of this method for
analysis of turbulent flows was pioneered by Lumley
[22].

For linear control systems, the method of balanced
truncation due to[29] has proved to be extremely use-
ful in practical applications, as it tends to preserve the
dynamics which are important for control. A mathe-
matically precise version of this statement is possible,
using the results of[6,9] on the errors obtained using
balanced truncation.

The relationship between balancing and the KLE
method was developed in the papers by Lall et al.
[17,18], where a method of using the KLE in order to
construct the balanced truncation of a linear system
of n first-order differential equations was constructed.
In fact, the standard KLE methods applied to linear
systems in first-order form is equivalent to the method
known asinput-balancingfor controlled systems with
a single-input.

For mechanical systems, many of the above rela-
tionships remain to be worked out. A possible ap-
proach is to use balancing methods as used in[18] in
combination with the methods in this paper to con-
struct reduced-order nonlinear models for a mechani-
cal system.

The reduced-order systems we construct are in-
tegrated using globally-supported basis functions,
known as Ritz functions, in contrast with the standard
locally-supported shape function approach. Previous
approaches deriving the Ritz functions from the lin-
earization of the equations of motion were probably
initiated by Nickell [31], who extended the use of
modal superposition methods for systems with nonlin-
ear dynamics. Wilson et al.[38] later introduced the
so-called load-dependent vectors. A recent overview
of these techniques was given by Leger and Dussault
[19], and this method was also used in[15,16].

2. Overview

2.1. An example: the docking device

We will illustrate the theory with an example of
finite-element analysis of nonlinear three-dimensional
elasticity, called thedocking device, shown inFig. 1.
This model consists of two rectangular blocks of rub-
ber, connected by a steel rod. One block is mounted
on fixed supports. The other block is clamped to an
unsupported rigid and massive steel frame.

The elasticity in this system is modeled by a non-
linear finite-element model with 9600 degrees of free-
dom. For this example, we construct a reduced-order
model with 36 degrees of freedom which captures the
essential dynamics of the high-order system.
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Fig. 1. The docking device.

Clear computational savings are obtained for simu-
lation of this proof-of-concept system. Simulation of
the original system for 1 s took about 24 CPU hours,
using an implicit Newmark integrator, whereas the
simulation time for the reduced system, with the same
time-step, was about 10 CPU hours.

In the final section of this paper, we discuss
the numerical methods used for simulation, and
how the problem of model reduction is fundamen-
tally connected to these methods. We show that the
reduced-order models we construct result in signif-
icantly reduced computational effort in simulation,
and we give some theoretical results showing that
these computational benefits increase substantially as
problem size increases; in particular, the model re-
duction affords linear scalability with respect to the
size of the finite-element model, and the computations
parallelize very well.

2.2. Structure preservation

Mechanical structure. We take the Lagrangian
viewpoint on mechanical systems, where the system
is defined by a Lagrangian functionL : TQ → R,
whereQ is the configuration manifold andTQ the
corresponding velocity phase space. Typically, the
Lagrangian is of the form kinetic minus potential
energy.

This mechanical structure leads to important prop-
erties. Notably, mechanical systems, in the absence of
forcing and dissipation, conserve energy as well as

quantities associated with the symmetries of the sys-
tem. The dynamics of a mechanical system also satisfy
a variational principle, and the evolution maps con-
sist of symplectic transformations. All of these prop-
erties can be viewed as fundamental to any model of a
given mechanical system, and the reduced-order sys-
tem should, if possible, possess them.

The model reduction techniques presented in this
paper preserve the mechanical structure underlying the
system dynamics, and are applicable for systems on
non-Euclidean configuration spaces.

The basic idea of how we achieve this is as follows.
Rather than considering the original system as defined
by a set of ordinary or partial differential equations,
we view it as defined by a configuration space and
an associated Lagrangian function. From this start-
ing point, the complete dynamics of the system can
be constructed, via the variational principle governing
the system behavior. We therefore take the viewpoint
that the reduced-order system should also be speci-
fied by a Lagrangian function on a new configuration
space of small dimension. All of the dynamics of the
reduced system are then completely specified by the
variational principle. Because of this construction, all
of the standard geometrical structure and properties
of the original mechanical system are inherited by the
reduced system.

Non-Euclidean configuration spaces. A further
important feature of mechanical systems is that the
configuration space is usually non-Euclidean. For
example, the configuration space of the three-dimen-
sional rigid body is the manifold SO(3) or SE(3)
and robotic systems consisting of rigid bodies with
links have configuration spaces that are products of
copies of SE(3) with constraints imposed. Fluids and
elasticity problems also have non-flat configuration
manifolds, such as defined by incompressibility con-
straints in the Lagrangian (material) representation
of the fluid. These are fundamental constraints due
to the physics of the system, which a reduced-order
model should also preserve.

Discrete mechanics, numerical methods and re-
duction. This same point of view regarding the vari-
ational principle as basic (rather than the equations
themselves) has proven useful in the development
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of discrete mechanics (see[27] for an overview and
literature). The idea here is to discretize Hamilton’s
principle rather than standard discretizations of the
Euler–Lagrange equations. This approach gives rise
to structure-preserving integration algorithms. In
fact, the ideas of structure preservation used in this
paper are also tied to the numerical techniques we
employ; we make use of the Newmark integrator,
which has recently been shown to be a variational
integrator by Kane et al.[13]; see also[20] for an
asynchronous generalization to the PDE context and
with applications to nonlinear elastodynamic simu-
lations. As such, the model reduction gives rise to
a time-discretized evolution equation which exactly
preserves momentum and the symplectic form, and
approximately preserves energy.

This variational view for obtaining structure preser-
vation also occurs in the now very popular method of
Lagrangian reduction of Marsden and Scheurle (see
[4] for a current account and literature).

Given their common variational nature, we expect
that these different lines of work can be merged in
fruitful and exciting ways.

2.3. Basis selection

In order to perform model reduction, the original
dynamics must in some sense be represented in a new
set of basis functions. However, it is important to un-
derstand that the techniques in this paper do not sim-
ply ‘project the equations’ onto a reduced-basis as in
the standard linear setting.

However, although the details are very different,
model reduction of mechanical systems requires solu-
tion of an optimization problem in order to select an
appropriate reduced-order configuration space. In this
paper, we show how even for nonlinear problems on
non-Euclidean configuration spaces, it is possible to
embed the system into a linear space in such a way
that standard optimization methods can be used for the
basis selection, and the reduced system still inherits
the natural mechanical structure of the original sys-
tem. However, the way this basis is used is different
from the usual Galerkin projection or singular pertur-
bation approach.

There exist many methods for basis selection; equiv-
alently, in the context of finite-element models of elas-
ticity, we may view this as mesh selection or element
selection. These methods can be directly plugged into
the theoretical framework in this paper. Known meth-
ods for basis selection include the following.

The Karhunen–Loève expansion. The docking-
device example in this paper makes use of the KLE
to compute the reduced-basis. This is a data-based
method for selecting a subspace of given dimension,
optimal in the sense of least-squares; it is also known
as the proper orthogonal decomposition (POD) or
method of empirical eigenfunctions. The KLE method
is widely used in fluid mechanics to find large-scale
coherent structures.

Balancing. The method ofbalanced truncationwas
introduced by Moore[29] in the context of realization
theory for linear control systems. The paper of Lall
et al. [18] showed that the process of balancing and
truncation could be separated, with balancing provid-
ing a method for selecting the basis in which to best
capture the dynamics relevant to the input–output be-
havior of a couplednonlinear system. This method
of balancing can be used in exactly the same way
as the KLE to provide a mechanically consistent
method of model reduction for controlled mechanical
systems, as well as for mechanical systems in which
coupled-dynamics play a role. An example would be
tying together a reduced-order model of an elastic
wing with a full flight simulation.

Wavelet decomposition and error bounds. Wavelet
decomposition techniques are naturally hierarchical
and multiresolutional, and provide a mathematical
framework on which to form adaptive basis methods
for finite-element elasticity. In fact, these methods
are strongly tied to new subdivision methods for rep-
resenting the dynamics of thin shells[5]. Note that
the model reduction problem for traditional dynamic
thin-shell models is more complicated than that for
three-dimensional elasticity, due to the underlying
geometry of the configuration space and the way
essential boundary conditions are treated. The subdi-
vision thin-shell models are an exception to this rule,
because their configuration spaces are Euclidean[5].
We do not give a discussion of error bounds in this
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work; this is an important but separate issue. How-
ever, following the ideas in[33], we hope to address
this issue in a future publication.

Goals. The goal of this paper is to establish the
technique ofstructure-preserving schemesfor me-
chanical model reductionas aproof-of-concept; the
examples we give are not the ultimate examples, but
show the main ideas. We are building a systematic
framework to understand coarsening and refinement
of models and as better hierarchical methods are de-
veloped, such as those of Krysl et al.[15,16], and
symmetry methods are better understood (see, for ex-
ample,[36]), these methods will become more practi-
cal. We return to some of these issues at the end of the
paper.

3. Model reduction of mechanical systems

In this paper, our goal is to develop model reduc-
tion methods for mechanical systems. We now make
precise our notion of mechanical system, following
the modern approach to mechanics; see, for example,
the treatment in[24]. Let the space of configurations
of a mechanical system be a differentiable manifold
Q. The Lagrangian is a functionL : TQ → R, where
TQ is the tangent bundle ofQ, typically given by the
difference between the kinetic and potential energy of
the system:

L(q, q̇) = T(q, q̇)− V(q).

The equations of motion of this system are given by
the Euler–Lagrange equations, which in generalized
coordinatesqi are

d

dt

∂L

∂q̇i
− ∂L

∂qi
= 0. (1)

A traditional approach. A procedure often used
for model reduction is to rewrite the Euler–Lagrange
equations in first-order form, as

ẋ(t) = f(x(t)), (2)

wherex(t) is the 2n-dimensional state of the system,
consisting of the phase variables(p, q). The model
reduction problem is then defined to be the problem of

constructing a lower dimensional dynamical system

ẏ(t) = g(y(t)), (3)

wherey(t) is k-dimensional for somek � n, and a
reconstruction functionh : y �→ x such that giveny(t)
the reconstructioñx(t) = h(y(t)) is, in some appropri-
ate sense, a good approximation tox(t) for a certain
range of system behaviors.

Mechanical problem formulation. However, since
the dynamics of a mechanical system are specified
entirely by the LagrangianL and the configuration
spaceQ, it is natural to use these as our starting point
for model reduction. Instead of the above problem
definition, we formulate the model reduction problem
as follows:

(i) Given the configuration spaceQ, find a subman-
ifold Qr ⊂ Q.

(ii) Construct a new mechanical system whose con-
figuration space isQr.

This separation of the procedure into these two
stages is very important, since it separates the con-
figuration space selection from the dynamic recon-
struction. The state space of this reduced system will
be TQr, a submanifold of the original state space
TQ.

3.1. Construction of the reduced dynamics

First-order systems. For first-order systems of the
form (2) evolving on Euclidean spaceRn, one ap-
proach is to find a set of basis functions to describe the
state evolution, and perform a linear decomposition

x(t) =
k∑
i=1

ai(t)φi,

where the basis vectorsφi lie in Euclidean spaceRn.
This is equivalent to specifying a subspaceS ⊂ R

n

of the original state space, on which the important
dynamics evolve.

The next stage of the traditional process is the
actual construction of the reduced dynamics on this
subspace; many different standard methods exist,
for example Galerkin projection and singular per-
turbation. The Galerkin projection simply projects
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the vector field locally onto the subspaceS, leading
to a reduced-dimension set of ordinary differential
equations.

Mechanical systems. Application of the Galerkin
projection to a mechanical system does not in general
preserve the mechanical structure. A better approach
for mechanical systems is to useconstraints. Rather
than projecting the dynamics onto the constraint mani-
fold, one instead applies mechanical constraints to the
system so that the dynamics naturally evolve on the
constraint submanifold.

We propose the following procedure. The orig-
inal LagrangianL is restricted to the constraint
submanifoldQr to give a new LagrangianL|Qr on
Qr. This new Lagrangian is then used to construct
Euler–Lagrange equations for the reduced dynamics
on Qr, in the usual way. These reduced dynamics
will then be truly mechanical, and satisfy all of the
structural properties of such systems.

In this way, the construction of a new mechanical
system onQr is enabled. In order to complete the con-
struction of the reduced-order model, all that remains
is to make a good choice of the submanifoldQr.

3.2. Submanifold selection

This is the critical part of the model reduction pro-
cess. We would like to find a submanifoldQr which
contains those dynamics of the system which we
would like to model.

One possible approach would be to try to directly
perform some kind of expansion in a more general
nonlinear context using manifolds. While theoreti-
cally appealing, it does not appear likely that this
approach would lead to computationally tractable
problems.

The alternative approach we present in this paper
is therefore to embedQ in a linear spaceV of higher
dimension, and apply a linear subspace decomposition
in V . Having chosen some subspaceVr ⊂ V , we can
constructQr as the intersectionQ ∩ Vr.

The particular embedding to be used here is open
to choice. In fact, for a given problem there is often
a natural linear space in which to embed the dynam-
ics. This may be motivated both by the physics of the

problem, as well as by the application to which the re-
duced model will be put. We now give some examples
for the choice of linear space.

Generalized coordinates for rigid bodies. General-
ized coordinates provide alocal parameterization of
the configuration space for a system of coupled-rigid
bodies. An example is given by the Euler angle
system used to describe the orientation of a single
rigid body in space. This choice of embedding has
the disadvantage that an arbitrary choice must be
made in the location of the singularity. These coor-
dinates also present problems in accurate integration
of systems of coupled-rigid bodies; the amount of
time spent by numerical codes in changing coordi-
nates can be comparable to that used in the rest of
the integration process. For this reason, we favor
other parameterizations described below for rigid
systems.

Trace norm. Material coordinates specify the loca-
tion in space of each rigid body relative to a specified
reference configuration. This system of coordinates
has the significant advantage in numerical simulation
that the inertia tensor is invariant over the configura-
tion space.

For coupled-rigid bodies, it is sufficient to specify
the location inR3 of three distinct points in each rigid
body, with additional constraints on their relative po-
sition. The embedding can thus be viewed as a relax-
ation of the natural constraints imposed by the rigidity
of the physical system. If the reduced-order model is
required for simulation, then these constraints can be
reimposed by the integration algorithm.

For either rigid or flexible structures, one can ex-
tend the notion of material coordinates, in the standard
method used in finite-element codes, to a specification
of the individual particle locations that make up the
system.

If we define an inner product on this space as theL2

inner product between particles, then the inner product
can be expressed in terms of the position and orienta-
tion as follows. Consider two configurationsq1, q2 ∈
SE(3) of a rigid bodyD, given by the location of
the center of massci ∈ R

3 and the orientationRi ∈
SO(3) ⊂ R

3×3, with the natural embedding of SO(3)
in the space of 3× 3 matrices. Then theL2 inner
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product is given by

〈q1, q1〉 =
∫
x∈D

(R1x+ c1)
∗(R2x+ c2)dx

=
∫
x∈D

c∗1Rxdx+
∫
x∈D

x∗R2c2 dx

+
∫
x∈D

c∗1c
∗
2 dx+

∫
x∈D

RijRikxjxk dx. (4)

If we define the constant matrixQ by

Qij =
∫
x∈D

xixj dx

and letv be the volume ofD, then the above inner
product becomes

〈q1, q1〉 = vc∗
1c2 + Trace(R1QR∗

2).

In this way, any system of (possibly connected) rigid
bodies can be embedded in a space consisting of prod-
ucts of SO(3) andR3, and the above inner product
used to compute a subspace decomposition with re-
spect to theL2 distance between configurations.

Other possible embeddings of SO(3) inR
m include

the use of quaternions, which we can view as SU(2),
a subset ofC2 equal to the unit ball inR4. We can
also map rotations to the space of skew-symmetric
matrices inR3×3, via exponential coordinates, and use
the standard inner product on that space.

Constraints. Mechanical systems often involve con-
straints. In the case of the docking-device example,
the base is rigidly clamped. These constraints areho-
mogeneous; that is, in displacement coordinates for
the finite-element representation, they simply restrict
some of the configuration variables to be zero. These
are thus linear constraints, which are simple to con-
struct in the linear spaceV in which the configuration
manifold is embedded.

4. Finite-element models of elasticity

The model reduction described below is special-
ized to three-dimensional elastodynamics, but applies
equally well to Lagrangian finite-element models of
other types of solids independently of the constitutive
equation used.

4.1. System formulation

For finite-element elasticity in three dimensions, the
configuration space of spatially discretized mechanics
consists ofn copies ofR3 (wheren is the number of
finite-element nodes). Normally, material coordinates
are used for computation, and so the Lagrangian has
the form

L(q, q̇) = 1
2 q̇

∗Mq̇− V(q), (5)

whereM is the constant mass matrix andV the poten-
tial energy. The corresponding Euler–Lagrange equa-
tions can be written as

Mq̈ = −DV(q). (6)

Form of the reduced system. We can characterizeQr

as the span of orthonormal basis vectors{φ1, . . . , φk},
and define thek × r matrixP whose rows are theφi.
Then the constraint is that(I − P∗P)q = 0, and the
restricted Lagrangian is

Lr = 1
2 ẏ

∗PMP∗ẏ − V(P∗y),

where y are the corresponding generalized coordi-
nates on the constraint surface. This leads to the
Euler–Lagrange equations for the reduced system

PMP∗ÿ = −PDV(P∗y). (7)

Note that these are not the same equations as would be
obtained by first converting(1) to first-order form(2)
on phase space and then applying the Galerkin projec-
tion. In fact, the projection operator is not defined on
phase space at all; it is only defined on the embedded
configuration space.

4.2. Computation

So far, we have not discussed how having a reduced-
order model will increase the computational efficiency
of simulation. In the case of local material coordinates,
the equations of motion for the reduced-order model
have the form ofEq. (7).

Both the Euler–Lagrange equations of the original
system and those ofEq. (7) contain the forcing term
DV. Also, when the nonlinear system of equations is
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linearized to use the Newton iteration for solution, the
forcing term derivative (Hessian) needs to be evaluated
in both the original and reduced system. A concern
is therefore that the integration of the reduced system
will be at least as computationally intensive as inte-
gration of the original system. If the nonlinearities are
of known functional form (for example, a quartic ra-
diation term in heat transfer), some of these construc-
tions may be performed only once, ‘by hand’, and it
may be possible for instance to explicitly write down
an expression for the functionP ◦ DV ◦ P∗; see, for
instance[1,39].

For general high-dimensional problems, typically
computed by discretization methods such as finite
elements, the situation is more difficult; the forcing
function DV is not known analytically, but instead
is evaluated by numerical quadrature in an assembly
process at each time-step of the integration.

In fact, even though at first glance the reduced-order
system appears at least as complex as the original sys-
tem, simulation of the reduced system requires signif-
icantly less computational effort. We now show how
integration methods are tied into the model reduction
framework, and how this leads to significant compu-
tational savings.

4.3. Newmark integrator

The classical Newmark algorithm is the following.
Let γ andβ be real numbers, usually chosen between
0 and 1. Then the Newmark method is the map from
(qn, q̇n) to (qn+1, q̇n+1), defined by

qn+1 = qn + hq̇n + 1
2(h

2)((1 − 2β)q̈n + 2βq̈n+1),

(8)

q̇n+1 = q̇n + h((1 − γ)q̈n + γq̈n+1), (9)

whereinqn, q̇n andq̈n are the discrete configurations,
velocities, and accelerations, respectively. The discrete
accelerations̈qn are defined by the Euler–Lagrange
equations

Mq̈n = −DV(qn). (10)

Hereh is the time-step of the algorithm. The Newmark
algorithm is second-order accurate if and only ifγ =

1/2, otherwise the algorithm is only consistent, and
so for the remainder of this paper we chooseγ =
1/2.

The Newmark integrator has recently been shown
to be variational, for all values ofβ, by Kane et al.
[13]. Because of the variational structure, this numer-
ical integration method is given by the solution to a
variational principle in discrete-time, and it has the
property that it exactly conserves momentum and the
symplectic form.

For explicit integration, significant computational
savings may be obtained simply by the increase in
stable time-step allowed by the reduced system, in
which the often high-frequency and fine-scale dynam-
ics of the original system have been removed. How-
ever, for implicit integration, computational savings
are obtained more directly, and it is this case we con-
sider in the next section.

4.4. Implicit integration

At each time-step, given(qn, q̇n) we have to solve
the implicit equation

R(qn+1) = 0,

where theresidualR(qn+1) is defined by

R(qn+1) := 1

h2β
Mqn+1 + DV(qn+1)

− 1

h2β
M(qn + hq̇n)+ 1 − 2β

2β
DV(qn).

(11)

As is standard, the solution of this equation is ap-
proximated via Newton–Raphson iteration. We denote
the approximation toqn+1 at each iteration byqin+1,

and write the iteration as a map fromqin+1 to qi+1
n+1,

with initial guessq0
n+1 = qn. The Newton–Raphson

iteration procedure at each time-step of the Newmark
integrator is then

qi+1
n+1 = qin+1 +%qin+1,

where%qin+1 is the solution to the linear equation

DR(qin+1)%q
i
n+1 = −R(qin+1). (12)
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The gradientDR(qin+1) is called theeffective stiffness
and is given by

DR(q) = 1

h2β
M +D2V(q)

for q ∈ Q.
Computational requirements for the original sys-

tem. In general, for eachqi this matrix is sparse, and
therefore the asymptotic growth rate of computation
time with respect to the number of degrees of freedom
n for solution of the linear system ofequations (12)
is O[s(n)], wheres(n) depends on the solver type and
the particular sparseness properties ofM andD2V .

Several other computations are required; the stiff-
nessD2V and the internal forcing termDV are both
assembled elementwise by the numerical algorithm,
and the predictorequation (9)is evaluated. All of
these steps are asymptotically linear in the number
of degrees of freedom. Therefore the total asymptotic
computational cost is dominated by the linear system
solver.

Computational requirements for the reduced sys-
tem. The Lagrangian for the reduced-order system
has the form ofEq. (5), with the corresponding
Euler–Lagrange equations of the form of(7). Appli-
cation of the Newmark integration algorithm to this
equation gives the residual

R̃(yn+1) := 1

h2β
PMP∗yn+1 + PDV(P∗yn+1)

− 1

h2β
PMP∗(yn + hẏn)

+ 1 − 2β

2β
PDV(P∗yn). (13)

The corresponding Newton–Raphson iteration re-
quires solution of the linear equation

DR̃(yin+1)%y
i
n+1 = −R̃(yin+1) (14)

with the effective stiffness given by

DR̃(y) = 1

h2β
PMP∗ + PD2V(P∗y)P∗

for y ∈ Qr.
The effective stiffness of the reduced system is now

only a (k × k)-dimensional matrix, wherek is the di-
mension of the reduced system. However, it is now a

Table 1
Asymptotic computational costs for integration

Operation Original system Reduced system

Force assembly O(n) O(n)+ O(nk)
Effective stiffness

assembly
O(n) O(n)+ O(nk2)

Linear solver O[s(n)] O(k3)

full matrix, and so the asymptotic cost for solution of
this linear equation grows as O(k3).

The effective stiffness matrix is still assembled el-
ementwise, so there is no need to assemble and store
the matricesM andD2V and then perform the con-
jugate transformation associated withP . In this way,
storage requirements are reduced ifk3 is less than
the number of elements ofM, which is typical. How-
ever, assembly of the elementwise effective stiffness
has asymptotic computational time growth of O(nk2).
Computation of the internal forcing termPDV(P∗y)
has asymptotic growth asO(nk), due to the multipli-
cation byP andP∗.

A summary of the asymptotic costs for the original
and reduced systems is shown inTable 1. This table
shows that the computational cost of simulating the
full-order system grows as O[s(n)] ≥ O(n). For in-
stance, the cost of direct solution of a banded system
grows ass(n) = n2. For iterative solvers, each itera-
tion costs O(n), and the number of iterations depends
on n, so agains(n) ≥ n. On the other hand, the com-
putational cost of simulating the reduced-order system
grows linearly in n. Thus, for larger systems, we ex-
pect to obtain considerable computational savings.

Here we make the reasonable assumption thatk does
not grow withn. This is consistent with our intuitive
understanding of the ‘mode shapes’ described byP ;
it is reasonable to suppose that, asn increases, these
mode shapes converge to appropriate basis functions
for the continuum system.

Since a very fine discretization may be necessary
to capture the effects of the fine-scale dynamics on
these coarse scale dynamics, a high-resolution model
may be needed for the original system. This doesnot
mean, however, that the reduced-order model need be
of high dimension. The number of states required to
approximately describe the important dynamics of the
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system is a function of the dynamics, not of the dis-
cretization of the full-order system.

Note that computational costs are reduced for only
part of the integration; it is only the linear solver
where time is saved. For the effective stiffness assem-
bly, the computational costs of the reduced system are
in fact slightly increased. However, the savings more
than outweigh the extra costs, and we will use the
docking-device example to illustrate this.

4.5. Explicit integration

As mentioned above, computational savings can be
achieved when using explicit time integration through
an increase in the stable time-step. For the original
system, the accelerationsq̈n are solved usingEq. (10)
(for explicit integration,M is a diagonal matrix). For
the reduced model, the accelerationsq̈n are solved
using

q̈n = −P{[(PMP∗)−1P∗]DV(qn)}, (15)

where the parentheses indicate the order of evaluation.
The matrix(PMP∗)−1P∗ is precomputed before the
time-stepping starts.

4.6. Parallel processing

It is worth noticing that the reduced model may
be parallelized very effectively. All the finite-element
operations (evaluation of the matrixM + D2V and
computation of the unbalanced force vector) may
be performed in parallel using either shared- or
distributed-memory paradigms. The solution of the
linear equations may then be performed serially, or a
parallel dense matrix solver may be used. In any case,
since the solution of the linear system represents only
a very small fraction of the total CPU time during
each step, the parallel efficiency and scalability is
likely to be high.

4.7. Dynamic update of the basis

If the basis set does not change during the time in-
tegration, i.e., if no basis function is added to or sub-
tracted from the set of basis vectors{φ1, . . . , φk}, the

solutionqn, q̇n, q̈n at any time instant may be written
as a linear combination of the basis functionsφj. Then
the time integration algorithm may be formulated ei-
ther in terms of the configuration variablesq, or in
terms of the generalized coordinatesy. Note that, be-
cause of the orthonormality of the set ofφj, the trans-
formation between theq variables and they variables
is unique.

Changing the basis at any time instant effectively
leads to an introduction of time-dependent constraints.
The above correspondence between the configuration
coordinatesq and the generalized coordinatesy no
longer holds. Moreover, the effect the time-dependent
constraints have on the mechanical properties of the
reduced system needs to be carefully considered. In
particular, even if the energy of full system is con-
served, the energy of the reduced-order model may
now vary over time.

One possible benefit of a changing basis is that it
allows use of an adaptive procedure, which would se-
lect from the complete set of basis functionsφj only
those that lead to an optimal cost vs. accuracy ratio, or
which would generate additional functions on demand
as indicated by error analysis.

Note that the basis might be changed either at the
beginning of a time-step, or each equilibrium iteration
(14) may be performed with a different basis. If a
varying basis is used, the time integration is probably
best carried in the configuration variablesq.

4.8. Computational details for the docking device

As described inSection 1, the docking device is
an example of finite-element analysis for a problem
involving three-dimensional nonlinear elasticity. Both
the steel and the rubber are handled as hyperelastic ma-
terials. The St. Venant constitutive equation adopted
here is a reasonable approximation for the small to
moderate strains occurring during the simulation. Two
faces of the rubber block are clamped (homogeneous
boundary condition). The massive frame is given ini-
tial velocity at 45◦ to the major axis of the assembly.

The original finite-element model has 9600 degrees
of freedom, and a reduced system was constructed via
the KLE consisting of 36 degrees of freedom. A 1 s
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simulation was run, which corresponds to about seven
swings of the frame.

The implicit Newmark method was used for the full
finite-element model, withγ = 1/2, β = 1/4 and
a time-step of 1.4 × 10−3. The average computation
time per time-step was 120 s, with the residual and
the effective stiffness assembly, and the linear equa-
tion solver using per iteration 0.3, 12, and 22 s, re-
spectively. The total time for the simulation for 1 s of
motion was 24 CPU hours.

The reduced model with 36 modes was also inte-
grated with an implicit Newmark algorithm, using the
same time-step as the full system. The residual assem-
bly took 0.4 s, effective stiffness assembly took 14.9 s,
and the solver took 0.001 s; the other operations were
essentially identical to those for the full system. The
total time for a 1 s simulation was 10 CPU hours. As
can be seen, the computation time has been reduced by
roughly 60% by almost totally eliminating the solver
cost. It should be realized that the finite-element model
described here is rather small; still, its solution rep-
resents a major expense. The asymptotic estimates of
Table 1indicate that the larger the full finite-element
model, the more significant the savings due to the use
of a reduced model.

5. Future opportunities

5.1. Improvements

It is clear that the procedures outlined here can be
improved in many ways that need further exploration
for future applications.

Symmetry and travelling bases. Experience has
shown that if a system has symmetry, then using
travelling Karhunen–Loève bases can dramatically
cut down the dimension of the reduced system; see,
for example,[8,36] and references therein. It is like-
wise well understood that discrete symmetries are
also important to take into account when building
bases. Thus, for a problem with symmetry there is
plenty of opportunity for further reductions. Even if
the problem does not have symmetry, one can expect
that travelling bases for propagating structures and

approximate discrete symmetries to also be useful.
This approach has proven to be very powerful for
other symmetries as well, including important scal-
ing symmetries; cf.[2]. (These remarks are based on
work of Kevrekidis, Rowley and others in progress.)

Space–time decompositions. More generally, one
can expect that any time there is more structure in a
part of a system (in a space–time sense), one should
put more effort into construction of the basis in that
part. The theory and implementation for procedures of
this sort are yet to be worked out. These ideas are also
consistent with parallel efforts to develop space–time
adaptive numerical codes such as those that are built
around multisymplectic integrators[23].

5.2. Conclusions, comments, and future directions

In this paper we have focussed on giving a context in
which model reduction and mechanics are compatible.
One could also ask why we did not do this for other
reduction techniques, such as inertial manifolds. This
is easy: for Hamiltonian or nearly Hamiltonian PDEs,
such as occur in ocean dynamics, the spectrum is on
or near the imaginary axis and so any inertial mani-
fold would be either infinite or very high dimensional.
Despite this there may be large coherent structures
and one wants to capture them with low-dimensional
models. The distinction between singular values and
eigenvalues in this situation plays, as is well appreci-
ated in the literature, a critical role.

Note that[28] has shown the sense in which Hamil-
tonian structures restricted to center manifolds retain
this structure. Also, note that when Hamiltonian sys-
tems governed by an action principle are averaged,
as in averaged fluid models, then one gets a simpler
model that also retains a Hamiltonian or variational
structure (see, for instance,[7,29]). However, the link
with either model reduction or with center manifold re-
duction is not clear. Alan Newell already raised ques-
tions like this over 15 years ago.

There are a number of interesting avenues to ex-
plore from the foundation we have laid. In particular,
application of the geometric methods in this paper
to two-dimensional thin-shell problems, in order
to achieve a mechanically consistent reduced-order
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model, is still a challenging computational task with
standard meshing techniques. This is an area where
tying together subdivision surfaces and model reduc-
tion may lead to significant benefits.

Related to balancing, model reduction which can
incorporate the dependence of system behavior on op-
timization parameters allows integration with optimal
parametric design methods.

A fundamental next step is to understand how to se-
lect the number of modes for the reduced model: when
is the response accurate enough for a given design pur-
pose, in the sense of similarity of the full and reduced
models? For control, some of these issues have been
studied in detail, although as yet there is little research
connecting these ideas to continuum mechanics.

We would also like to make use of model reduction
techniques as a way of implementing mesh refinement
and coarsening methods. Further research is also nec-
essary in order to understand how to take account of
other system features, such as symmetry, which may
also lead to greater computational savings.

It would be quite interesting to put the theory
here into a more hierarchical and adaptive context
by making use of the recent developments of PDE
asynchronous, multisymplectic integrators given in
[20] and the CHARMs (conforming hierarchical
adaptive refinement methods) methodology given in
[15,16]. This would hopefully lead to a SPAHMR
(structure-preserving adaptive hierarchical model re-
duction; pronounced “Spammer”) methodology that
would also automatically deal with any symmetries
that are present in a given problem.
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Appendix A. The Karhunen–Loève decomposition

In this appendix, we give for completeness a de-
scription of the KLE, which was used for the model

reduction example in this paper. This is only one
of the several possible approximation or optimiza-
tion methods that may be used in conjunction with
the model reduction procedure in this paper; other
such methods include balancing transformations and
wavelet expansions.

The KLE provides an optimization-based method
for finding a subspace on which to construct reduced-
order dynamics. The method is known in the litera-
ture by several names, including principal component
analysis, factor analysis, and total least-squares esti-
mation. The method has been extensively analyzed in
the literature, although the original concept goes back
to Pearson[32]. We give here a brief outline of the
method; for details, see[11].

In practical application, the method makes essential
use ofempirical data, taken either from experiments
or from numerical simulation.

For systems of the form(2), the data consists of
sampled measurements{x(1), . . . , x(N)} of x(t). For
mechanical systems, we make use of the embedding
procedure, and each measurement ofq ∈ Q corre-
sponds to a uniquex ∈ R

n.
The next step is to perform a principal component

analysis of this data, to find how well it may be ap-
proximated by projection onto ak-dimensional sub-
space of the originaln-dimensional state space.

We can characterize the subspaceS ⊂ R
n by the

projection operatorQ mappingR
n ontoS. We would

like to findQ to minimize

H(Q) =
N∑
i=1

‖x(i) − Qx(i)‖2
2

the total squared perpendicular distance of the points
from thek-plane. The following result is standard.

Theorem A.1 (Total least-squares).Let R be the cor-
relation matrix of the data, defined by

R :=
N∑
i=1

x(i)x(i)∗

and letλ1 ≥ λ2 ≥ · · · ≥ λn be the ordered eigenvalues
of R. Then
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min
Q

H(Q) =
n∑

i=n−k+1

λi,

where the minimum is over all rank k projections Q.

In general,R may not have rankn, if the given data
lies within a strict subspace ofRn. Let s = RankR,
and letφ1, φ2, . . . , φs be orthonormal eigenvectors of
R, corresponding to the non-zeroλi. Eachx(i) can be
written as

x(i) =
s∑

j=1

aijφj,

whereaij = 〈x(i), φj〉, and〈φi, φj〉 = δij . The optimal
k-dimensional subspace approximant is given by

x̂(i) =
k∑
j=1

aijφj.

Denote by P the k × n matrix whose rows are
φ1, . . . , φk, so thatPP∗ = I. The projected approx-
imant to x is given byP∗Px ∈ S, andy = Px is a
representation in terms of the new coordinatesφi on
S. This subspace approximant is then optimal, in the
sense that the total energy (2-norm) in the subspace
is given by

N∑
i=1

‖Px(i)‖2
2 =

k∑
j=1

λj

and this is the maximum achievable by anyk-plane.
The above procedure finds the optimal subspace,

passing through the origin defined by the inner prod-
uct. To find the optimalaffine subspace, we use the
fact that this must pass through the mean of the data,
and normalize the data by subtracting the mean before
constructing the correlation matrix.

The eigenvalues ofR tell us how close an approxi-
mation of the data is provided by ak-dimensional sub-
space; the goal is to choosek such that the fraction of
the total 2-norm in the subspace
∑k

i=1 λi∑n
i=1 λi

is close to 1, yetk is sufficiently small. Clearly this
will not always be possible, with models which are

better approximated by low-dimensional systems hav-
ing relatively few large eigenvalues.

The Karhunen–Loève method therefore picks the
subspace containing the interesting dynamics of the
system. In general, we would expect that the more
eigenvectors we keep, the better approximation we
will obtain.

Computationally, application of this method re-
quires only standard matrix computations, despite its
application to nonlinear systems.

We can expect such a procedure to work well for
model reduction of the system within some given re-
gion of state space, and it is within such a specific re-
gion that data should be collected. In doing this, one
must pay careful attention to symmetry, as in[8] and
references therein.
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