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Abstract

We describe anew class of asynchronous variational integrato¢aV1) for non-
linear elastodynamics. The AVIs are distinguished by the following attributes: (i)
The algorithms permit the selection of independent time stepsin each element, and
the local time steps need not bear an integral relation to each other; (ii) the algo-
rithms derive from a spacetime form of adiscrete version of Hamilton’svariational
principle. As a consequence of this variational structure, the algorithms conserve
local momenta and alocal discrete multisymplectic structure exactly.

To guide the development of the discretizations, a spacetime multisymplectic
formulation of elastodynamicsis presented. The variational principle used incorpo-
rates both configuration and spacetime reference variations. This allows a unified
treatment of all the conservation properties of the system. A discrete version of ref-
erence configuration is also considered, providing anatural definition of a discrete
energy. The possibilities for discrete energy conservation are evaluated.

Numerical tests reveal that, even when local energy balance is not enforced
exactly, the global and local energy behavior of the AVIs is quite remarkable, a
property which can probably be traced to the symplectic nature of the algorithm.

1. Introduction

The main goal of this paper is to develop the theory and implementation of
AsynchronousVariational Integrators (AV1s) for elastodynamics. Theseintegrators
are symplectic-momentum preserving. The energy behavior is remarkably good,
and we believethat thetheory introduced here al so providesabasisfor the construc-
tion of symplectic-energy-momentum preserving integrators. Theseintegrators are
based on essentialy two ideas:

e The introduction of spacetime discretizations allowing different time steps for
different elementsin afinite element mesh.
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o Thederivationof timeintegration algorithmsin thecontext of discrete mechanics,
i.e., theagorithmisgiven by aspacetime version of the Discrete Euler-Lagrange
(DEL) eguations of a discrete version of Hamilton's principle.

The main accomplishments of this paper are:

o Elastodynamicsis formulated within the context of multisymplectic mechanics
(Gotay et al.[1997]). The spacetime bundle picture used here providesan el egant
generalization of Lagrangian mechanics, including temporal, material and spatial
variations and symmetries as specia cases. This unites energy, configurational
forces and the Euler-L agrange equations within a single picture.

e Multisymplectic variational integration methods for the discretization of me-
chanical systems described by PDEs (partial differential equation) are extended
to include the context of elastodynamics.

e The clear understanding of the continuous systems is used to guide the devel-
opment of discrete analogues of the geometric structure, such as discrete con-
servation laws and discrete symplectic forms. Thisis one of the most appealing
aspects of this methodology and iswidely used throughout the paper.

o A general framework isdevel oped for asynchronoustime integration algorithms,
allowing each element to have a different time step, with no constraints on the
ratio of time step between adjacent elements.

e A local discrete energy-balance equation is obtained. This equation is expected
to be satisfied by adjusting the elemental time steps. Asaconsequence, the global
balance of the discrete energy is also obtained. However, in the example of the
AV agorithm presented here, it is not always possible to do this.

e The formulation and implementation of one algorithm in this framework. The
implementation is accomplished via the notion of a priority queue

e Some numerical examplesintwo and three spatial dimensionsare giventoillus-
trate the performance of this algorithm.

The discrete variational mechanics used in this paper is based on discretizing
Hamilton’s principle of stationary action in Lagrangian mechanics. Whilethisidea
is standard for elliptic problems, in the form of Galerkin and finite-element meth-
ods (e.g., Jounson [1987]), it has only been applied relatively recently to derive
variational time-stepping algorithms for mechanical systems. We refer to MARs-
DEN & WEST [2001] for an overview of the method for ODE (ordinary differential
equation) problems, including a survey of the previous literature. Variationa inte-
grators are symplectic-momentum methods, which preserve a symplectic structure
on phase space and momentum maps arising from symmetries of the system.

It has been often observed computationally (with some theoretical basis) that
symplectical gorithmspossessremarkabl e near-energy-preserving behavior. Widely
used algorithms can be recast into the discrete mechanics framework, such as some
versionsof Newmark, asdonein KaNg, MARSDEN, OrTiZ & WEST [2000]. Thevari-
ational nature of Newmark’s explicit second-order algorithm isthe basis on which
the examples presented in this work are built. The remarkable results obtained in
conserving total energy, even without deliberately adjusting thetime step to achieve
this, probably originate from its symplectic and variational nature. One of the at-
tractive features of these variational methods is that if a problem has symmetries
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and, correspondingly, has the attendant conserved quantities such as total angular
momentum, then these quantities are automatically conserved by variational algo-
rithms with this symmetry. Moreover, not only are these quantities conserved in
total, but by taking alocal spacetime approach, the algorithm exactly respectstheir
local conservation behavior, as we shall explain as we proceed.

We should point out that because of the result of GE & MaRSDEN [1988], the
literature divided into those favoring symplectic-momentum methods and those
favoring energy-momentum methods. Amongst the latter, contributions were made
by Stmo, TARNOW & WONG [1992], GoNzALEZ & Stvmo [1996] and GONZALEZ
[1996]. The approach in this paper paves the way towards constructing symplectic-
energy-momentum integrators.

The construction of an analogous symplectic-energy-momentum time integra-
tor for finite degree-of-freedom mechanical systems (such asthe N-body problem
or rigid body mechanics) was carried out in KANE, MARSDEN & ORrTiz [1999],
where the time step of the complete system was computed in order to preserve the
total energy. Conditionsfor the solvability of the time step wereinvestigated there,
and some of these features also appear in the PDE context developed here.

The asynchronous algorithm devel oped here shares many features with multi-
time-step integration algorithms, sometimes termed subcycling methods. These
algorithms have been developed in NEAL & BELYTscHKO [1989] and BELYTSCHKO
& MULLEN [1976], mainly to allow high-frequency elementsto advance at smaller
time steps than the low-frequency ones. Initsoriginal version, the method grouped
the nodes of the mesh and assigned to each group a different time step. Adjacent
groups of nodeswere constrained to haveinteger time-step ratios (see BELYTSCHKO
& MULLEN [1976]), a condition that was relaxed in NEAL & BELYTsCHKO [1989]
and BELYTscHKO [1981]. Recently an implicit multi-time-step integration method
was developed and analyzed in SmMoLiNsk1 & Wu [1998]. We also mention the
relatedwork doneby HuGHEs & Liu [1978] and HuGHEs et al. [1979]. Thefreedom
to choose the time step for each element, subject to stability considerations, aswell
as the way nodes are updated, are the distinguishing features of the asynchronous
algorithms introduced here.

There are also many connections between the multi-time-step impulse method
(also known as Verlet-l and r-RESPA) which is popular in molecular dynamics
applications and the AV algorithm developed in this paper (see GRUBMULLER et
al. [1991] and TuckerMAN et al.[1992]). If theAVI method was applied to asystem
of ODEs, then it could be regarded as ageneralization of the impul se method to the
fully asynchronous case. Here we concentrate on the application to PDEs, however,
and elastodynamicsin particular.

It is known that shocks can develop in nonlinear elastodynamicsin finite time
(see, eg., ANTMAN [1995]). This makes the study of convergence of discrete
schemes a subtle and complex problem. Although it is a very important and in-
teresting problem, we do not address such issues here.

The organization of the paper isasfollows. Section 2 briefly reviewsthe contin-
uum formulation of the elastodynamics problem in a Lagrangian framework. The
discrete problem is formulated in Section 3. Spacetime asynchronous discretiza-
tions and discrete L agrangians are defined, the discrete version of Hamilton’s prin-
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cipleis stated, and the algorithmically conserved quantities are obtained from the
symmetries of the discrete Lagrangian, in away exactly analogous to the contin-
uous case. It is seen here that, by way of contrast with the continuum case, the
discrete Euler-Lagrange equations do not guarantee the conservation of energy in
the discrete case, having to request it as a separate set of local energy-conservation
equations on the conjugate variables, the time steps. As an illustrative example, a
particular choice of discrete Lagrangian is analyzed. Section 4 discusses the im-
plementation of an algorithm based on the former choice of discrete Lagrangian.
The possihility of solving the local energy-conservation equations to obtain the
time step isbriefly discussed. Results of simulationsin two- and three-dimensional
examples are shown.

To set the stage for extensions and new applications of the theory presented
here (for example, to materials with microstructure), Section 5 devel ops the gen-
eral multisymplectic variational view of continuum mechanics, and shows how
elastodynamics as developed in the first sections of the paper are a special case.
Then in Section 6 Noether’s theorem, conservation laws and the multisymplectic
nature of the Euler-Lagrange equations are developed in this context. It is shown
how the Betti reciprocity principle and symplecticity of the flow map are special
cases of this formalism. In Section 7, a genera procedure for discretizing multi-
symplectic theoriesis presented. This procedure preservesthe variational structure
and thisiscritical for proving the same properties asin the continuous case, which
isdonein Section 8. The paper concludes with a summary in Section 9.

2. Formulation of the continuum problem

Inthissectionwereview the Lagrangian description of continuum elastic bodies
undergoing finite deformations and the derivation of the governing equations from
Hamilton’s principle.

2.1. Lagrangian description of motion

In describing the dynamic response of elastic bodies under loading, we select
areference configuration B ¢ R? of the body at time 7o. The coordinates of points
X € B are used to identify material particles throughout the motion. The motion
of the body is described by the deformation mapping

x =@(X,1), X e B. (D]

Thus, x isthe location of material particle X at time ¢. The material velocity and
acceleration fields follow from (1) as ¢(X, t) and ¢(X, t), X € B, respectively,
where a superposed dot denotes partial differentiation with respect to time at a
fixed material point X. The deformation mapping is subject to essential boundary
conditions on the displacement boundary 9,8 C 3.
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Thelocal deformation of infinitesimal material neighborhoods is described by
the deformation gradient?
F=Dg(X,1), X € B, 2
where Dy denotes the derivative of ¢ with respect to X. The scalar function
J = det (F(X, 1)) ©)

is the Jacobian of the deformation.

Inorder to allow for general mixed boundary conditions, we partition the bound-
ary o5 of BB into a Dirichlet or displacement boundary 9,5, and a Neumann or
traction boundary a. B3. The displacement boundary conditions then take the form:

®=¢o OnyB, 4)

wherepo (X, t) istheprescribed deformation mapping on 9, B. Thetractionsapplied
on 9.8 are denoted by T(X, r). Finaly, the body is acted upon by body forces
B(X, t) per unit mass defined on 5.

2.2. Hyperelastic materials

Hyperelastic materials are characterized by stress-deformation relations of the
form:

P=DW(, X), (5)

where P is the first Piola-Kirchhoff stress tensor (see, for example, MARSDEN &
HuchEs [1994]), and W isthe strain-energy density per unit undeformed volume.
The strain-energy density is subject to the requirement of material frame indiffer-
ence. The Cauchy stress tensor follows from P through the relation

o = J PFT, (6)

where FT denotes the transpose of F.
A convenient choice of strain-energy density adopted in the numerical tests
presented subsequently is

W(F, X) =

ro(X) 2 mo(X) T
5 (10g.1)2 = uo(X) l0g J + =2 tr(F F), @)

which describes a neo-Hookean solid extended to the compressible range. In this
expression, Ao(X) and uo(X) are — possibly inhomogeneous — Lamé constants.
The corresponding stress-deformation relation follows from (5) in the form:

P =10logJ F~T + uo (F—F—T). ®)

1 We use the term “deformation gradient” to conform to standard practice; of courseit is
not agradient at all, but just the derivative of the mapping ¢ with respect to X.
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2.3. Hamilton’s principle

For definiteness, the potential energy of the body is assumed to be of the form
V[goc,r),r]:f W(Dgo,X>dV—/pB~<pdv-f T.pds, (9
B B 3B

where p isthe mass density over 5. In addition, the kinetic energy of the body is
assumed to be of the form

T[p(. 1] =/ Dlglav. (10)
B2
The corresponding Lagrangian of the body is

Lp(.0), (1), 1) =T[@] — Vg, 1]. (11)

Consider now a motion of the body during the time interval [#o, #£]. The action
attendant on the motion is

I
Stot 1= [ L.gndr. 12
10
We note that, upon insertion of (11) in (12), the evaluation of the action functional
entails a spacetimentegral. This viewpoint will be further developed in Section 5.

Within the framework just outlined, Hamilton’s principle postulates that the
motion ¢ (X, t) of the body which joins prescribed initial and final conditions ren-
dersthe action functional S stationary with respect to all admissiblevariations, i.e.,
variations of ¢ (X, t) vanishing at 7o and 7y and satisfying the essential boundary
conditionson o, 8. A standard cal cul ation showsthat under appropriate smoothness
hypotheses, the Euler-Lagrange equations corresponding to Hamilton's principle
are

. d .
for &l ¢ € [to, t7]. Here and subsequently, the symbol D; is used to denote differ-
entiation of a function with respect to its ith argument. For the Lagrangian (11),
(13) gives

oG — DiVP = pB (14)
foral X e Bandt € [1o, 7], aswell asthe traction boundary conditions

on 3. B and for al € [ro, t7]. In (14) the superposed double dot signifies double
partial differentiationwith respect totime, Div indicatesthe divergencewith respect
to materia coordinates, and in (15) N denotes the unit outward normal over 9. 5.
By Noether’s theorem, a continuous symmetry of the Lagrangian leadsto con-
served quantities, such as energy and linear and angular momentum. Section 6
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investigates conservation laws for the multisymplectic theory of continuum me-
chanics and provides a precise statement of Noether’s theorem. Within that frame-
work, the conservation of energy and linear and angular momenta follow by con-
sidering the action of trandation and rotation symmetry groups. In Section 5.2
Hamilton’s principle is generalized to the spacetime configuration bundle, which
includes not only the deformed configuration of the body but also the time and
reference configuration. In this expanded space, energy conservation arises both as
one of the Euler-L agrange equations derived from Hamilton’s principle and also as
the Noether conservation law corresponding to time translation symmetry.

3. Discrete problem

Discrete dynamics may be regarded as a complete theory of Lagrangian me-
chanicsinwhichtimeistreated asadiscretevariable. Inthiswork weareparticularly
concerned with finite-dimensional systems obtained by a spatial discretization of
elastic bodies. The discrete action sum thus follows as the result of adouble spatial
and temporal discretization of the original action integral. However, the approach
presented here carriesover, essentially unchanged, to any systemwhose L agrangian
isthe sum of the Lagrangians of a collection of subsystems. A casein point isfur-
nished by the molecular dynamics of systems described by means of empirical
potentials having the property that the total energy of the system is expressible as
the sum over al atoms of single-atom energies. In this case, the subsystems may
be identified with the atoms in the system, or, more generally, with the subsetsin
any arbitrary partition of the collection of atoms.

3.1. Spatial discretization

Let 7 be atriangulation of 5. The corresponding finite-dimensional space of
finite-element solutions consists of deformation mappings of the form

on(X) =Y x4 Na(X), (16)
aeT

where N, isthe shape function corresponding to node a, x,, represents the position
of the node in the deformed configuration. A key observation underlying the for-
mulation of AVIsisthat, owing to the extensive character of the Lagrangian (11),
the following element-by-element additive decomposition holds:

L= Z Lk, (17)
KeT

where L is the contribution of element K € 7T to the total Lagrangian, which
followsby restricting (11) to K . Each elemental or local Lagrangian Lk caninturn
be written as afunction of the nodal positions and velocities of the element, i.e.,

L (on(-, 1), ¢n(-, 1), 1) = Lg (Xg (1), Xk (1), 1), (18)
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where Xk isthe vector of positions of all the nodesin element K. In particular, for
the Lagrangian (11) the local Lagrangians have the form

Lx(Xk,Xg,t) = Tk (Xg) — Vg Xk, 1), (19
where Vi (Xg, t) isthe elemental potential energy, and
Tk (Xk) = Xk Mg Xk (20)

is the elemental kinetic energy. Here M ¢ is the element mass matrix, which is
constant by conservation of mass and will be assumed to be expressiblein diagonal
or lumped form.

3.2. Time discretization

A key featureof theAV I sisthat theel ementsand nodesdefining thetriangul ation
of thebody areupdated asynchronouslin time. To thisend, weendow each element
K € T with adiscrete time set

@Kz{toztll(<~-~<t11¥’<_l<t;<v’<} (21)

with t11<vK—1 <t < t11<vK_ In addition, Wewritex{( = xK(th(), t,j( € Ok, for the

discrete element coordinates, and
o= []ex (22)
KeT

for the entire time set. We shall also need to keep proper time at al nodes in the
mesh. To thisend, we let

0= |] ®K={zo=¢a1§...
{KeTlaek}

[IA

tNa—1 < tj,v] (23)

a

denote the ordered nodal time set for node a. In these definitions, the symbol |_|

denotes digjoint union. For notational simplicity, we assume that t{< # t;(/, for
any pair of elements K and K’. The case of time coincidences between elements
can be treated simply by taking the appropriate limits and does not change any
of our results. We additionally write x|, = x,(t}), t; € ©,, for the discrete nodal
coordinates, and let

E={xl,aeT,i=1,...,N,} (24)
denote the set of nodal coordinates defining the discrete trajectory.

The particular class of AVIs under consideration here is obtained by allowing
eachnodea € T tofollow alinear trgjectory withineachtimeinterval [, #i1]. The
corresponding nodal vel ocitiesare pi ecewise constant intime. Thenodal trajectories
thus constructed are defined in the time intervals [1o, tﬁ’"]. An x — r diagram of

the motion of a three-element one-dimensional mesh is shown in Fig. 1 by way
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Fig. 1. Spacetime diagram of the motion of a three-element, one-dimensional mesh. The
reference configuration is shown on the left, while the deformed configuration is on the
right. The tragjectories of the nodes are depicted as dashed lines in both configurations. The
horizontal segments above each element K definetheset © .

of illustration. Higher-order AVI methods could also be devised by considering
piecewise polynomial nodal trgjectories.

We note that the pair of sets (2, ®) completely defines the trajectories of the
discrete system. A class of discrete dynamical systemsis obtained by considering
discrete action sums of the form (see, e.g., MarsDEN & WEST [2001] for a recent
review on discrete dynamics and variational integrators)

S«B. @)=Y > L%, (25)

KeT 1<j<Ng

where the discrete Lagrangian Lf,; approximates the incremental action of element
K over theinterval [1}, 111 ie,

‘ t;‘(ﬂ

L ~ /i L dt. (26)

Ik

In generdl, Lf( depends on some subset of E of nodal coordinates, and some
subset of ® of elemental times. Specifically, Lf,( depends on the time set

oy = [@K/ﬂ[t{(,t{jl]}. (27)
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Likewise, Lﬂ'{ depends on the nodal coordinate set
Eé:{xé,,ae[(, tée@%}. (28)

A particular choice of discrete Lagrangian, resulting in explicit integrators of
the central-difference type, is given by

i1
oAl

. K . . . .
Ll = f o Tkt di — W =iy Vet 1, (29)
t

K

3.3. Discrete variational principle

The discrete version of Hamilton's principle states that the discrete trajectory
having prescribed initial and final end points renders the discrete action sum sta-
tionary with respect to admissible variations of the coordinate set E (see MARSDEN
& WEsT [2001] and MARSDEN, PATRICK & SHKOLLER [1998]). Notethat since each
element carries its own set of time steps, the final configurations of the elements,
corresponding to tg’( > t7, K € T, are not synchronized in general. Thus, X/, is
not to be varied if #; = t7, as the node belongs to the final configuration of some
element in the mesh. Similarly, theinitial nodal positions at g are not to be varied.
The discrete Hamilton principle leads to the discrete Euler-L agrange equations:

DiS; =0 (30)

forala € T suchthatrg < ¢, <ty anda € T \ 94 B. Here and subsequently, D!,
denotes differentiation with respect to x,. The discrete Euler-Lagrange equations
(30) define the equations of motion of the discrete problem. If the discrete time
set © is given a priori, then the discrete equations of motion (30) determine the
coordinate sets E which define the discrete tragjectories of the system.

For the particular case of the discrete Lagrangian (29), astraightforward calcu-
lation gives the discrete Euler-Lagrange equations explicitly in the form

i+1/2 i—1/2 i
L2 —p =1l (31)
where
10 xitl _ i 12
P2 =M, e = M Y (32)
g —tl

are discrete linear momenta and M, are the nodal mass matrices. In addition, we
define

1 = —(t) — 7Y DyVie Xk 1)), (33)

which may be regarded as the impul ses exerted by element K on its nodes at time
t,j(. In equation (31) I! represents the component of I}; corresponding to node
a, with 1 = z,’( Equation (31) may be interpreted as describing a sequence of
percussions imparted by the elements on their nodes at discrete instants of time.
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Thus, the element K accumulates and stores impulses If; over the time interval

(t,’{l, 1%). At the end of the interval, the element releases its stored impulses by
imparting percussions on its nodes, causing the linear momentum of the nodes to
be altered. The resulting nodal trgjectories are piecewise linear in time, asinitialy
assumed. We note that adjacent elementsinteract by transferring linear momentum
through their common nodes.

3.4. Discrete energy conservation

In perfect analogy to the continuous case, the energy-balance equation of the
discrete system may be deduced from the effect of time trandations on the discrete
action. To this end, introduce the time parametrization (A®, ), wheret € R is
some referencetimeand A® = @ — 7 = {r — 1, t € O). Let S;(E, AO, 1) =
S4(E, ©) be the action sum in the new parametrization. Finaly, let S; o be the
one-parameter family of action sums defined as

Sio=S4(8,0+a) (34a)
=S4(8,A0, 7+ ) (34b)
=S84(E,A® +, 1) (340)

fordl « € R,where® + a = {t + «a | t € ®}. Thisleadsto

=Y DESa+ > DfSa+ Y. Y DiSa (353)

a=0 g1 KeT KeT 1<j<Ng
= D.S;(E, A®, 1), (35h)

de,oz
da

where D}; denotes differentiation with respect to t,’; . Assume now that the discrete
time set ® is chosen such that

D}S;=0 (36)
foral K € T andal 1 < j < Ng. Then it follows that
> DESs+ Y DRFSq = D: Sy (37)
KeT KeT

In the particular case in which the discrete Lagrangian is invariant under time
trandation, D, S; = 0 and (37) reduces to

Eq=—) DySq= Y DiSa. (38)
KeT KeT

where E, isthe conserved value of the global energy of the discrete system.
Equations (36) and (37) are analogous to their continuous counterparts. Thus

(37) expresses the precise way in which the discrete system satisfies global energy

balance between the initial and final configurations. In addition, each equation in

(36) expressesalocal energy balancefor element K at time t}< . Thecallection of all
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K1 K> K3
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Fig. 2. Intermediate configuration number 8 (inthick lines) for the spacetimediagram shown

o : 1 1 1 2 2 2 .3 .3 _ _
|1r;F|g. 1. Inthiscase ® = {tKl, TRy TKar TRae TRy TR TRes: tKl,...}, Ny =3and Ng =

equations (36), may be regarded as a set of conditions determining ®. Conversely,
treating the discrete time set © as a set of variables, in addition to E, enables
the local energy-balance equations (36) to be satisfied for every element K in the
triangulation 7 and every discrete time t}< in ©. Indeed, (36) may be regarded
as an additional set of discrete Euler-Lagrange equations corresponding to the
variables ®. In Section 7.3 the local energy-conservation eguations are obtained as
a subset of the discrete Euler-Lagrange equations over the discrete configuration
bundle, which includes time and the nodal coordinates as variables.

Itisalso possibleto establish aglobal energy balance between any two interme-
diate configurations of the system, not necessarily coincident with theinitial and fi-
nal configurations. Sincethevariouselementsin the system evolve asynchronously,
the definition of a configuration of the system requires some care. To this end, re-
gard ® as an ordered set. The order of the discrete times t}( in ©® determines the
order in which the various element in the triangulation become active. Let Nt be
the number of elements in the triangulation. For every integer N < m < Ne,
let ®,, be the set containing the first m timesin ®. In addition, we introduce the
partial element and nodal time sets Ok, = Ok N By, and O, = Oy N Oy,
and let Nk ,, and N, ,,, betheir cardinals, respectively. Then, the mth intermediate
configuration of the system is defined asthe collection of all the element configura-
tions corresponding to times 7y, . A sSimple example illustrative of this definition
isshowninFig. 2.

Now let S, ,, bethepartial action sum over thetimeset ®,, corresponding to the
mth intermediate configuration of the system. An identity analogous to (35) holds
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for each partial action sum. However, satisfying (36) does not necessarily imply
that D{( Sa.m = Ofor @l of the elemental timesin G ,,. Equation (36) expresses
arelationship between the derivatives of all the discrete Lagrangians that have z};
as a degree of freedom, whereas possibly not all of these contribute to Sz .. In
particular, if t-,’; <t = ming t;(v’””, Equation (36) does imply that D{(Sd,m =0.
Then, speciaizing ( 7) for two intermediate configurations m < m2 gives.

> > DiSam+ Y DkSamy = DrSam. (39)
KGT I}QEQ')K,ml KET

t-,’;zt}"l, j>1
Z Z D]I('Sd,/nz + Z D1l(Sd,m2 = Drgd,mz- (40)
KeT th(EG)K.mZ KeT

ism2
2ty e, j>1

Assuming that mq and mo are such that t}"z > t}’Z” > 1o, and subtracting these
equations, we obtain:

Z |: Z D;(Sd,mz - Z D;(Sd,ml:| = Dr(Sd,mz - Sd,ml)a (41)
KeT t{ée@,«mz I{(E@[(_ml
1l >t/ t{(;t}“
whichexpressesaglobal energy balancebetween configurationsm1 andm. Finaly,
for the special case of a discrete Lagrangian invariant under time trandation, (41)
reduces to

—Ld = éd,mlz ];d,mzv
Eq=Y Y DS > > Dys (42)

J J
KETtKE(-)KJHl KETtKG(")K,mZ
J > m1 J > m2
12ty 12ty

which generalizes (38).

For the particular case of the discrete Lagrangian (29), thelocal energy-balance
equation (36) yields, after straightforward manipulations,

1 Ve (ko) + o k) DoV ko) = 18 v (4 47)

(43)
forl < j < Ny andVK € T.Inthisexpression
. 1 NT .
T = ZE(V;M) M.V, (44)
ack
+ it \T v it
Ti=Y 3 (Vi) MV, (45)
ack

are the kinetic energies carried by the nodes of K before and after the element
strikes those nodes and changes their linear momenta according to (31). It should
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be noted that the kinetic energies (44) and (45) are to be computed based on the
total mass of the nodes.

It is evident that (43) encodes a discrete local balance of energy. It should be
noted that thelocal energy-balance equation (43) allowsfor energy transfer between
the elements, as required. Specifically, the energy is transferred between elements
by the condit of the variationsin kinetic energy. Thus, ingeneral 7/t 799~
which implies that part of the kinetic energy is exchanged between neighboring
elements. In particular, T[((] - T} equalsthework doneon element K between
two successive elemental updates.

In order to determinetheform of the global energy-balance equation for discrete
Lagrangian (29), we note that the right-hand side of (37) evaluatesto

DSy =— Z (t}( - t1j<_1> DoV (x}< t;() , (46)

J @
Ix €O

J
Iy #10

whereupon the global energy-conservation equation (37) becomes

> (t}< —~ t,j(_1> DyVk (xk t,’()

t,’:(e@
f'[’(?’éfo 1 1 T 1 2 .2
+Y > > (vaa) Mk 4 (vaa) + > Vg (xK, tK>
aeT KeT, KeT
1 AT _
=y > > (v%fu ) Mk .q (v][}’f{u >-|- > vk (XZK,t;(VK), (47)
acT KeT, KeT

where7, ={K € T | a € K}. Mg , isthe elemental mass matrix corresponding
tonodea; it satisfiesM, = g .- Mk 4. For smplicity, in (47) we assumed that
the velocities of the nodes do not change for timest = #;. The global conservation
of energy for intermediate configurations takes an anal ogous form.

Therelative ease with which the discrete dynamicsformalismyieldsacomplete
and internally consistent set of equations of motion and balance eguations, such
as (31) and (43) for the discrete Lagrangian (29), can hardly be overstated. Thus,
whilein hindsight (31) and (43) are eminently reasonable, arriving at them without
the benefit of aformal procedure would require uncommon intuition (or luck).

3.5. Conservation of discrete linear and angular momenta

Thepreceding analysisreveal sthat discrete energy conservation doesnot follow
directly from thediscrete Eul er-L agrange equations. By contrast, thediscrete Euler-
Lagrangeequationsdoimply global balanceof discretelinear and angular momenta,
asshowninthissection. Section 5 shedsfurther light on this connection, which may
be traced to the fact that the discrete Euler-Lagrange equations and the conserved
momenta arise from vertical variations and symmetries, respectively.
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In order to derive the discrete momentum-bal ance equations, we consider con-
tinuously differentiable trajectories Q(e) : R — SO(3) and u(e) : R — R3, such
that Q(0) = id, Q'(0) = W € s0(3), u(0) = 0, and u’(0) = v € R3. Hereand in
the remainder of this derivation, a prime denotes differentiation with respect to «.
We further introduce the one-parameter family of perturbed actions:

Sa.m(€) = Sa.m (Q(e)E + u(e), ©), (48)

where we write: QE + u = {Qx!, + u, x|, € E}. Assuming differentiability, the
following identities hold:

Sym@©@=1>"">" DiSam |-V
a€T tie@up
+3 Y DiSum- Wx)=R-V+M- 0, (49

a€T tie@um

where w € R3 isthe axial vector of W, or, in terms of Hodge's star operator (),
o = *W, and

R=>" Y DiSim (50)
a€T tie®up

M=Y" > xixDiSim (51)

a€T tie®qp

are the resultant force and moment, respectively.

Assume, in addition, that thetrgjectory of the system satisfiesthediscrete Euler-
Lagrange equations (30). Then, DS, ,» = O, for al a € 7 such that x/, is uncon-
strained and 7 < tfz < t,‘?Z. For simplicity, assume also that m is such that tf > 1o.
Under these conditions, (50) reduces to

2. 2. DiSam+) 2L DiSam=R= 3 D DiSum
“ETlé§®a,m aETt,’;_e@)u,m aeTNiB t,ie@a,m
l‘zllzlo t"lzt}n t0<l“tl<l‘}n

(52)
which expresses the balance of linear momentum for al intermediate configura-

tions. In particular, if the discrete action sum is invariant under rigid trandations,
then R = 0. If, in addition, 9,8 = @, then (52) reduces to

D> DiSum=-)_, Y DiSim (53)

a€T 1ie®ym acT 1 eOy
i__ i m
th=tg 15217
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which furnishes a precise statement of linear-momentum conservation for the dis-
crete system. Likewise, the angular-momentum balance equation takes the form

D IERT AT S DA
ae'7—t,’;§®a,m aeT’é?®a,m
th=to 1,2t

=M— > > X, xDiSim. (54)
a€TNB tie®

o<t <t}

a,m

In the particular case in which the discrete action sum is invariant under rigid
rotations and 9,8 = @, we have

Y XoxDiSam=—Y_ Y XiyxDiSam (55)

a€T 1ie®ym acT 1 eOy
i__ i m
th=tg 15217

which is a statement of angular-momentum conservation for the discrete system.
By way of illustration, for the particular Lagrangian (29), thelinear- and angular-
momentum balance equations follow, after some trite manipulations, as

>oopd P Y P Y Y =0 (56)

acT\ozB acT\ozB aeT\d4B o<t <t}"
and
im o im_12 1. 172 P i
RV TS YD SR
aeT\ozB aeT\ozB aeT\ozB [0<[(‘; <[;’.7

(57)

respectively, where i) is such that tf;"’n =min{t €Oy |t 2 t?’}. Evidently, these
equations conform with the familiar intuition that change in linear and angular
momentum should equal the total impulse and moment of impulse imparted to the
system.

3.6. Time-adaption and spacetime formulation

The discrete Euler-Lagrange and energy-balance equations (30) and (36) may
be collected to form the extended system of equations:

Dis,(8,0) =0, (58)
D4 Sq(E,0) =0, (59)

which determines boththe discrete displacements E aswell asthediscretetimes ®,
provided that the system of equationsadmitssolutions. Thisresultsintime adaption
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b
1

(éi’ ﬁi—l/Z)

hi=1/25i

(C}H—l, pAi-l—l/Z)

Fig. 3. Graphical interpretation of the algorithm. There are two intersections of the constant
energy and momentum surfaces. The cross denotes a solution rendering a negative val ue of

hit1/2 whilethe circle indicates the positive solution.

inasmuch asthetime set ® isnot prescribed at the outset but is determined as part
of the solution instead. The resulting method generalizes that proposed by KaNE,
MARSDEN & OrTiz [1999], which allows for one adaptable time variable only and
thus resultsin global energy conservation only.

An aternativeinterpretation of (58) and (59) isasjoint discrete Euler-Lagrange
equations corresponding to a spacetimealiscretization of the spacetime domain B.
In this approach, the spatial coordinates & and the temporal coordinates ® are
placed on an equal footing, and regarded jointly as spacetime coordinates.

Of course, theviahility of the spacetime approach relies on the solvability of the
spacetimediscrete Euler-L agrange equations (58), (59). However, KANE, MARSDEN
& OrTiZ [1999] pointed out that it is not always possible to determine a positive
time step from the discrete energy-conservation equation, especially near turning
pointswhere velocities are small. KANE, MARSDEN & ORrTiz [1999] overcame this
difficulty by formulating a minimization problem that returns the exact spacetime
solution whenever one exists.

Inthecontext of AV s, thefollowing simpleexample demonstratesthat solvahil-
ity cannot be always counted on, especially for explicit algorithms. The example
concerns a simple harmonic oscillator with mass m and spring constant «. For
this system, the discrete spacetime Eul er-L agrange equations corresponding to the
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discrete Lagrangian (29) are

PitY2 _ pi=2 — _pi=12, 0 (60)
%(pi—l/z)z_,_ %K(qi)Zz %(pi—&-l/z)Z_’_ %K(qiﬂ)z —H. (61)
where
pi+1/2 _ mqi;il_/zqi (62)
and we write
RitY2 _ il i (63)

It should be noted that (60) describes avariabletime step central-difference scheme,
and therefore the algorithm is explicit. In terms of the dimensionless variables

A D n K N h
p:m7 qg =49 E9 h = m//(’ (64)
equations (60), (61) and (62) may be recast in the form:

pIHY2 _ pi=12 — _fi=1/2 i (65)
(ﬁi*l/Z)Z + (51)2 — (ﬁi+l/2)2 + (éi+1)2 — 1 (66)

ril _ i

ri1/2 _ ¢ g
hitY2 — e (67)

The problem is now to solve these equations for (§/+1, pi+1/2, hi+1/2) subject to
the constraint 4°+1/2 > 0, given (g, p'~Y/2, hi=1/2) ji=1/2 > Q.

This problem can readily be solved graphically in the phase plane (4, p) € R?,
Fig. 3. Equation (66) defines a constant-energy surface, which in the present case
reducesto acircle, and (65) defines the constant linear-momentum surface, which
here reducesto ahorizonta line. Theintersections of thislinewith thecirclereturn
two possible solutions of the system. The value of 42/+%/2 js given by the inverse
of the slope of the segment joining (¢, 0) with (§**1, p**%/2). valid solutions
correspond to segments with positive slopes.

Itisclear from this construction that solutionsfail to exist for sufficiently large
|hi=Y 24'|, as under such conditions the constant linear-momentum line does not
intersect the constant-energy circle. Since both ¢¢ and 4 ~/2 are given as initial
conditions, this lack of solvability implies that the explicit agorithm may not be
able to conserve energy over some time steps. It does not appear to be known at
present whether it is always possible to formulate — most likely implicit — discrete
Lagrangians such that the discrete spacetime Euler-Lagrange equations (58) and
(59) are dways solvable.
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4. Numerical examples

In this section weturn our attention to discussing theimpl ementation and show-
ing selected examples of the AV corresponding to the discrete Lagrangian (29). In
these examples, the elemental time steps are determined from the Courant condi-
tion, which provides an estimate of the stability limit for explicit integration (cf.,
e.g., HuGHEs [1987]). The value of thetime step for each element isset to afraction
of thislimit and is computed to be

At =f g (68)

where f = 1/10, h istheradius of the largest ball contained in the element, and

ro + 2o
c= | —,
0

which is the speed of propagation of volumetric waves in the undeformed state
of the material. The time steps are kept constant in each element throughout the

Explicit AVI Algorithm

Input data: 1o, 77, 7. {x[},xg/z lae T}

> Initialization
b Qe < Xb Ve <« %% 1y < rofordlae T
> Dofordl K € T
> Tg <10
> Compute 12
> Push (12, K) into priority queue
> End Do
> |terate over the elementsin time
> Do until priority queueis empty
> Extract next element: Pop (¢, K) from priority queue
Update positions: q, < Qg + V4 (t — 74), forala € K
Update node'stime: 7, < ¢, fordla € K
Ifr <ty
> Update velocities:
Va < Va =Mzt —x) GE (ag. 0, fordla e K
> Update element’'stime: tx <« ¢
> Compute 3
> Schedule K for next update:
Push (:}®, K) into priority queue

vV VvV

> End Do
> End

Fig. 4. Algorithm implementing the discrete Euler-Lagrange equations of the action sum
given by (29).
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computation. In consequence of this choice of local time step, the local energy-
balance equations (59) are not satisfied exactly by the algorithm. As we shall see,
however, the numerical solution still exhibits excellent energy-conserving proper-
ties. Note that there is no pattern in the choice of time steps which would permit
them to resynchronize at any time. That is, the AVl method in these examples is
not equivalent to any constant time-step method.

Because of the algorithm’s asynchronous nature, a suitable scheduling pro-
cedure which determines the order of operations while ensuring causality must
be carefully designed. One particularly efficient implementation consists of main-
taining a priority queue (see, e.g., KnuTh [1998]) containing the elements of the
triangulation. The elementsin the priority queue are ordered according to the next
time at which they are to become active. Thus, the top element in the queue, and
consequently the next element to be processed, isthe element whose next activation
timeis closest to the present time.

The general flow of the calculationsis asfollows. The priority queueis popped
in order to determine the next element to be processed. The new configuration of
this active element is computed from the current velocities of the nodes. Subse-
quently, these vel ocities are modified by impul ses computed using the new element
configuration. Finally, the next activation time for the element is computed as a
fraction of the Courant limit and the element is pushed into the queue. A flow chart
of the numerical procedureisgivenin Fig. 4.

4.1. Two-dimensional neo-Hookean block

Our first example concerns a square block 1 m in size, fixed on one side and
traction-free on the remaining three sides, released from rest from a stretched con-
figuration, Fig. 5. The block is free of body forces. The material is acompressible
neo-Hookean solid characterized by a strain-energy density of the form (7). The
values of the material constants used in calculations are; g = 93 GPa, ug =
10 GPa, and p = 7800 kg/mS3. The initial stretch applied to the block is 1.2. The

1.2m

1m

Im

Fig. 5. Geometry of the two-dimensional neo-Hookean block example.
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Fig. 6. Neo-Hookean block example. Snapshots of the deformed shape of the block at
intervalsof 2 x 10~%s. Timeincreases from |eft to right and from top to bottom of thefigure.

finite-element mesh contains a distribution of element sizesin order to have a cor-
responding distribution of elemental time steps. The mesh is composed of 380
guadratic six-noded triangular elements and 821 nodes.

A sequence of snapshots of the AVI solution is shown in Fig. 6. In addition,
Fig. 7 shows a comparison of the AVI solution and a baseline solution obtained
using Newmark’s second-order explicit algorithm (cf., e.g., HucHgs [1987]). A
noteworthy feature of the AVI solution is that, despite its asynchronous character,
it advances smoothly in time without ostensible jerkiness or vacillation. The AVI
and Newmark solutions appear to remain in lockstep over long runs and to be of
comparable qudlity, Fig. 7.

Themain advantage of the AV | isillustrated in Fig. 8, which depicts the number
of updates in each of the elements of the mesh. Asis evident from the figure, the
large elementsin the mesh are updated much lessfrequently than the fine el ements.
Some relevant statistics are collected in Table 1. Overall, in the present example
the number of AVI updates is roughly 60% of the number of Newmark updates.



A.LEw, J. E. MARSDEN, M. ORrRTIZ & M. WEST

0.75

0.25

Fig. 7. Neo-Hookean block example. Comparison of the deformed configurationsat t = 16
ms computed using Newmark’s second-order explicit algorithm (dashed lines) and the AV
(solid lines). The time corresponds to 2,208,000 Newmark steps, or 8 compl ete oscillation
cycles.

It should be carefully noted, however, that in the example under consideration the
vast majority of the elements in the mesh are small in size, and the number of
large elements is correspondingly small. It is easy to set up examplesin which the
update count of the Newmark algorithm bearsan arbitrarily largeratio to the update
count of the AVI. A case which arises in practice with some frequency concerns
aroughly uniform triangulation of the domain which contains a small number of
high aspect-ratio elements. The presence of a single bad element suffices to drive
down the critical time step for explicit integration to an arbitrarily small value. This
problem often besets explicit dynamics, especially in three dimensions where bad
elements, or dlivers, aredifficult to eliminate entirely. The AV algorithm effectively
sidestepsthisdifficulty, as bad elements drive down their own times steps only, and

Table 1. Neo-Hookean block example. Number of elemental updates after 10 ms of simu-
lation.

AVI Newmark
Maximum 1,374,413 1,380,000
Minimum 42,759 1,380,000

Total inthemesh 302,000,000 524,400,000
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Fig. 8. Neo-Hookean block example. Contour plot of thelogq of the number of times each
element is updated by the AVI after 10 ms of simulation.

not the time steps of the remaining elementsin the mesh. In this manner, the overall
calculation is shielded from the tyranny of the errant few.

The excellent energy-conservation properties of Newmark’s second-order ex-
plicit algorithm have been extensively documented in the engineering literature. In
calculations, this good behavior manifestsitself in the way in which the energy os-
cillates near the exact value, without displaying ostensible overall growth or decay.
These empirical observations have some basisin theory, in as much as Newmark’s
second-order explicit algorithm can be shown to be symplectic (KANE, MARSDEN,
OrTiz & WEST [2000]). Thisin turn rendersresults on the long-time energy behav-
ior of symplectic methods applicable to Newmark’s algorithm (see, e.g., HAIRER
& LusicH [1997] and ReicH [1999]). In particular, the theory of backward error
analysis establishes that, for sufficiently small time steps Az, symplectic methods

710 T T T T T T T T T

708 r n ‘ o ‘ . 1
706 1
704 1
702 ]

700 1 1 1 1 1 1 1 1 1
0O 10 20 30 40 50 60 70 80 90 100

tms]

Total Energy [MJ]

Fig. 9. Neo-Hookean block example. Total energy as afunction of time as computed by the
AVI.
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Fig. 10. Neo-Hookean block example. | nstantaneous and accumul ated local energy residual
as afunction of time for an element of the mesh. The accumulated energy residual remains
below 0.3% of the value of the elemental energy at al times after an initial transient. Some
high-frequency ringing is evident, asistypical of quadratic triangular elements.

have errors of order (Ar)” for timesupto (Ar)e=€/(A) where r isthe order of the
method and C is a constant.

Our numerical tests suggest that the AV algorithm possesses excellent energy-
conservation properties aswell. Thus, for instance, Fig. 9 shows the time evolution
of thetotal energy of the block. It is remarkable that, despite not enforcing energy-
balance exactly, the energy of the solid remains nearly constant throughout the
calculations, up to 12,500,000 updates of the smallest element in the mesh, or 50
periods of oscillation of the block. The residual of the energy equation (43), given
by theleft-hand side of (36), for asingle element of the meshisalso of considerable
interest. The evolution of this residual in time, and the accumulated residual, are
showninFig. 10 for an element chosen at random. Thisaccumul ated residual equals
the excess energy stored by the element asaconsequence of thelack of enforcement
of local energy conservation. These numerical tests suggest that the local energy
behavior of the AVI agorithm is also excellent.

4.2. Three-dimensional L-shaped beam

A second example concerns a three-dimensional free-standing L-shaped beam
released from rest from a distorted configuration, Fig. 11. The material isidentical
to that in the preceding example. The mesh comprises 621 10-node tetrahedral
elements and 1262 nodes. The local time step is computed as afixed fraction of the
Courant time step of the element.

A sequence of snapshots of the AV solution is shown in Fig. 12. After 100 ms,
the maximum and minimum number of elemental updates are 432,877 and 49,792
respectively, while the total number of elemental updates is 9 x 107. By way of
comparison, the number of updates required by Newmark’s algorithm is 27 x 107,



Asynchronous Variational Integrators

= =

3m

2m 1m

Fig. 11. Geometry and initial loading of the L-shaped beam.
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Fig. 13. L-shaped beam example. Total energy as a function of time as computed by the
AVI.
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Fig. 14. An L-shaped beam example. Instantaneous and accumulated local energy residual
as afunction of time for an element of the mesh. The accumulated energy residual remains
below 0.03% of the value of the elemental energy at al times.

or afactor of threelarger than the AV update count. The energy behavior of theAVI
algorithm isagain remarkable, both asregards global energy conservation, Fig. 13,
and local energy balance, Fig. 14.

5. Multisymplectic continuum mechanics

The purpose of the next sections is to put the material developed so far into a
general context. Thisisimportant for the future development of similar algorithms
for other models, such asel asticity with director fields, microstructure, dislocations,
etc.

Aswe have seen in Section 2, the basic objects for amaterial picture of contin-
uum mechanics are a reference configuration B C R”" of the body, atime interval
[0, T] C R and an ambient space S = R™. There we considered the configuration
map ¢; : B — S which defines the particle placement or configuration at each
timez.

We will now develop this theory in a multisymplectic formulation, and see
how the AVI algorithm is an example of a multisymplectic discretization. The
material below is formulated intrinsically in MARSDEN, PEKARSKY, SHKOLLER &
WesT [2001], but here we will restrict ourselves to Euclidean spaces. For more
on multisympl ectic mechanics and multisymplectic discretizations, See MARSDEN,
PATRICK & SHKOLLER [1998], GoTAy et al. [1997], and BRIDGES & REICcH [1999].
Thedifferential geometry notation used herefollowSABRAHAM, MARSDEN & RATIU
[1988].
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5.1. Configuration geometry

Base Space. Thebasespace X = R x R? isdefined to be spacetime. Coordinates
on X are (X% = 1, X1, ..., X™), and we will sometimes write (¢, X) to distin-
guish the time and space coordinates. Lowercase Greek |etters are used to range
overQ,1,...,n,sothat X* isall base-space coordinates. Alternatively, lowercase
Roman letters i, j, k range over 1,2, ..., n, and we write t = X° for time, so
(X*) = (¢, X*). We will abuse the notation and use the symbol X to denote points
in both the base space and the reference configuration B, explicitly distinguishing
when there is the possibility of confusion.

We introduce the parameter spacelf = [0, T] x B. Thiswill alow usto con-
sider variations of the base-space variables. Coordinates on U/ are s, ..., UM,
corresponding to the coordinates on X’'.

Configuration Bundle. Above the base space we construct the configuration
bundleY = X x S, which is the product of the base space X’ with the ambient
space S. Thisisan example of afiber bundle over X'; takeryy : Y — X tobethe
projection map, and let coordinateson ¥ be (X9, X1, ... X" x1, ... x™). We
will uselowercase Roman lettersa, b, c torangeover 1, ... , m, So coordinates on
Y can be written either as (7, X*, x?) or as (X*, x9).

A configuration of the system is specified by amap ¢ : &/ — Y covering amap
dx U — X.Thatis, ¢ satisfiesnyyop = ¢, sothatp(U) = (¢*(U), p*(U)).
The map ¢ is taken to be smooth and ¢x is assumed to be a diffeomorphism, so
that it is smooth with a smooth inverse. The exact class of regularity will not be

Fig. 15. A graphica representation of a section ¢ of a bundle for elastodynamics. The
horizontal axes represent spacetime and together they form the base space X = R x R3.
The vertical axis represents the ambient space, so theentirebundleis S x X'. Taking aslice
of ¢ with constant X € R3 gives the trajectory of the particle with material coordinates X
for al time. Alternatively, taking aslice of ¢ with constant ¢ € R gives the configuration of
the entire body at a single instant of time.
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of importance at the moment, but of course such notions are crucial for analytical
studies, including error estimates.

We will frequently be interested in the composition ¢ = ¢ 0 ¢ 3" : pxU) C
X — Y which maps atime r and a materia position X to the corresponding de-
formed position x. The fiber component of this map isthus exactly the deformation
mapping from Section 2, and we have the following commutative diagram:

Y
T¢=¢o¢xl
U—= dxU)
X

A deformation mapping is thus a section of the configuration bundle, defined over
all space and time, meaning that = o ¢ = id. Thisis shown graphically in Fig. 15,
where the section is regarded as a surface in the fiber bundle over the base space.

Jet Bundle. Given a configuration bundle Y over a base space X', we next con-
struct the jet bundle J1Y over Y with fibers over xy consisting of linear maps
y : TxX — T,Y suchthat Trxy -y = idy. Thisisthe space of partial derivatives
with respect to space and time (spacetime velocities). Coordinates on J1Y are de-
noted (X*, x4, v?,) = (¢, X, x4, v%,, v%;). When we are writing time and space
coordinates separately, we will use (¢, X, x, v, vx) to indicate the time and space
partial derivatives.

Given a section ¢ of Y, Txg is an element of (J1Y)y, and we define the
jet extension of ¢ to be jl¢p : X — (X, Txy). Thisis ¢ together with its partial
derivativesandin coordinatesitiswritten jlo(X) = (X*, ¢ (X), ¢“ (X)), where
we denote the partial derivativesby ¢ (X) = %ﬁi (X).Weuse (X, x, v) to refer
to a genera point in J1Y, and jlo(X) = (X, ¢(X), ¢.x(X)) to refer to a point
which comes from thefirst jet of a section. A jet extension isthus an example of a
section of the fiber bundle J1yY — X.

In the terminology of Section 2, the time component of the first jet of a section
is the material velocity and the space components form the deformation gradient.
That is,

v = ¢(X) and vy = F(X),

where (X, x, v) = jlp(X).

Note that J1Y is not the tangent bundle TY of Y. It is also not the tangent
bundle TS, as this would only include one derivative (for example, with respect
to time) of a configuration, whereas each element of the jet bundle includes the
derivatives with respect to all the base-space coordinates (space and time).

Lagrangian. Todefineaparticular system it is necessary to specify alLagrangian
L : J1Y — R, which mapsthefirst jet bundle to the real numbers. For continuum
mechanics the Lagrangian has the form

1
L(t. X, x, v, vy) = [Epor)uvfnz] — WX, vx) + pOV(X. 1], (69)
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where p : B — R isthe (materid) density, W : (X, vx) — R isthe stored energy
function per unit volumeand V : Y — R isthe external potential function per
unit mass. Different forms of W determine the different types of continua, such as
fluids and solids, while V specifies the environmental potentials such as gravity.
The external potential V specifies body forces of potential type used in Section 2
by B = —VV. Thetwo termsin the Lagrangian (69) correspond to the kinetic and
potential energy respectively.

Unlike the standard L agrangians or Hamiltonians used for continuum mechan-
ics, the multisymplectic Lagrangian is purely local. Thisis an explicit formulation
of the fact that classical continuum theories do not involve long-range dependen-
ciesin their constitutive or geometric foundations, and it is apparent in the fact that
the Lagrangian (11) is essentially the integral of the local Lagrangian (69) over
the reference configuration. The Lagrangian (11) also includes traction boundary
terms, which we discuss further below.

Anintrinsic formulation of multisymplectic mechanics of continua(such asthat
in MARSDEN, PEKARSKY, SHKOLLER & WEST [2001]) is based on the Lagrangian
density, whichisamap from J1Y to the space A"*1(X') of volume densitieson X'.
To form a Lagrangian density from our Lagrangian, simply take Ld"+1X, where
d"+1X isthe standard volume element on R*+1.

Dual Jet Bundle. We now briefly consider the Hamiltonian viewpoint of multi-
symplectic field theories. The approach taken hereis non-intrinsic, and we are thus
neglecting much of the geometry underlying such systems. The interested reader
is referred to MARSDEN & SHKOLLER [1999] for an intrinsic formulation of mul-
tisymplectic Hamiltonian mechanics and to MARSDEN, PEKARSKY, SHKOLLER &
WEsT [2001] for the special case of continuum mechanics.

For multisymplectic mechanics, the natural dua to the jet bundle is the affine
dual J1Y*, with coordinates (X*, x4, p,*, p), representing the map v = p+
patvat. Here p,* arethe spacetime momenta, and p isan additional scalar, which
we will seeis related to the energy. The need to consider the affine dual, rather
than the linear dual as in classica mechanics, becomes apparent when we con-
sider Noether’s theorem for multisymplectic mechanics. Note that J1Y* is not the
cotangent bundle T*Y of Y.

Legendre Transform. Given a Lagrangian L on a jet bundle /1Y — X, we

construct a map from the jet bundle to the dual jet bundle known as the Legendre
transformFL : J1Y — J¥*Y. Itisdefined by

FL : (X*, x9, v — (X*, x9, pa*, p), (70

where

L
pa“zm(x,y,v) and p=p,v" — L(X, x,v).
m
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Calculating the Legendre transform for the continuum-mechanics Lagrangian (69)
gives

pa' = p(X)v, (71a)
Pat = =P (X), (71b)

1
p= [EP(X)IIszIZ} +[W(X, vx) + p(X)OV(X, )] = F(X) : P(X). (71c)

We see here that the time momenta are the classical momentum values, while the
space momenta are the (negative of) the first Piola-Kirchhoff stress tensor.

If FL has maximal rank at some point in J1Y, then the Lagrangian is said to be
regular at that point. Note that this does not imply that FL isalocal isomorphism,
asthe dimension of the dual jet bundle is one more than that of the jet bundle, and
so the Legendre transform can never be surjective.

The Legendre transform can also be used to define the energy function £, :
J1Y — R associated with a Lagrangian L by

Ep(X,x,v) = p*v,' — L(X, x,v)
1
= [EP(X)||Ut||2:| +[W(X, vx) + p(X)V(X, x)],

where (X, x, p) = FL(X, x, v). This will be important later when we consider
conservation laws for Lagrangian systems.

5.2. Variations and dynamics

Configuration Space and Variations. Take C(Y) to be the space of al config-
urations ¢. We will frequently wish to consider variations of solutions, which are
tangent vectors to a smooth curve of configurations. To define these, first consider
the tangent bundle TY of Y, which has coordinates (X, x, 6 X, 8x).

Using this, we see that the tangent space to C(Y) at a configuration ¢ is de-
noted 7,C(Y) and consists of all maps 6¢ : U/ — TY of the form §¢(U) =
(p*, 9%, 3pH, 5¢*). Such tangent vectorsare called variations of the configuration
¢. The components §¢¢ are termed vertical variations, while the s¢* are called
horizontal variations. While the definition of avertical variationiswell defined, se-
lecting a particular direction for horizontal variations requires additional structure
on the configuration bundle. Here we have implicitly assumed this by workingin a
preferred set of coordinates. An intrinsic alternative can also be provided by taking
horizontal variations to be those which are tangent to j1(¢ o ¢;(1) (see MARSDEN
& SHKOLLER [1999]).

Euler-Lagrange Equations. Given the configuration space C(Y) of all possible
¢, itisnecessary to determine which of these configurations will be adopted by the
system. To do this, we introduce the action integral S : C(Y) — R, defined as

S(¢) = / L(jY@ooh)dv, (72)
dxU) <J X )
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where dV is the volume element on X’. This is the same as the action defined
by (12), without the terms from the traction boundary conditions. We will treat
boundary conditions in detail below.

Note that S(¢) only depends on ¢ through ¢, so that for any diffeomorphism
y:U—> U, S@oy) = S(@). Wewill seelater that thisimplies that the Euler-
L agrange equations only determine ¢ uniquely, rather than the full ¢.

Hamilton's principle now states that the physical configurations ¢ are those
whicharecritical pointsof theaction function. Moreprecisely, Hamilton’sprinciple
requires that

dS(¢) - 8¢ =0 (73)

for all variations 8¢ € T4C(Y) which are zero on the boundary i/ of I. Thisis
the classical weak form of the equation.
To derive the strong form, we first rewrite the action as

— a ad)a 8¢X -1 84);(
S(¢)—/L{L<¢“<U>,¢ ). 55 [W} )det [W} au

and now we compute dsS to obtain

ds(e) - 6¢

_/ IL gy DL 540
— Jul\axwk dxa
AL [ 384" a¢T | 35" )
O g, =20 e 097y ) det | 20
v, | auv au” " P aur aU

5 250"
+Ldet| 20% | v 00070 4y
U AU

_/ L d (L]
- ‘PX(U) dx4 dXH 81)“#
L d [ OL 9%\ dL
+ + Y V_2> 1ser) ax
oxv " dx#\avi, X’ ) dx
JL AL 9g"
+/ ( Bd)“NM—[— d —L(S]‘)‘](SQ’)”NM) dA, (74)
dp ) \ OV v, XV

]

0

where

and we have written ¢ instead of ¢ when taking derivatives with respect to X.
Restricting to variations which are zero on the boundary of ¢/ eliminates the

boundary term from the above expression, and then requiring that it is zero for

all such variations implies that both components of the integrand in the above
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expression must be zero. Thefirst of theseis the Euler-Lagrange equations, which
are

oL 4 0 oL 4
8x"(] v(X)) oX0 |:8v“u(J ¢(X)):| =0 foral X e X. (75)
ThisisaPDE with dependent variables ¢* and independent variables X*. Indeed,
aswe will see below, the second termin (74) is zero whenever the Euler-Lagrange
equations are zero, which is the reason that the Euler-Lagrange equations are suf-
ficient to describe the motion of the system.

For the continuum-mechanics Lagrangian (69), the Euler-Lagrange equations
are

A%
dx¢

3 [ ow
p(X)g ;= [ (X, 9(X)).  (76)

— X X —p(X
IXK ava#( s p.x( ))] p(X)
Equations of Motion. Substituting the definitions for the material velocity and
first Piola-Kirchhoff stresstensor into the Euler-Lagrange equations (76) gives the
familiar equation

p@ = DIVP — pVx V. (77)

Theterm —VV issimply the external body forces, which was expressed as B(X, ¢)
in Section 2. If there are non-potential forces present, these are added to the right-
hand side of (77).

Boundary Conditions. For first-order multisymplectic theories we consider only
zeroth- or first-order boundary conditions. That is, we allow boundary conditions
of theform

p(px(U)) = go(U) forU € dold, (789)

% wWpx(U) =1,(U) forU e iU, (78b)
"

where dpl4 and 91U are subsets of the boundary di4, ¢g is a given section, t isa
given1-formand N, (X) isthenormal 1-formto the boundary ¢ x (9U/). We say that
(78a) isa zeroth order boundary condition, whereas (78b) isafirst order boundary
condition. For the moment, we do not require that dpl/ and 914/ be digjoint, nor do
we require that their union cover a4, although such conditions on the partitions of
U become important for well-posedness.

Asin standard Lagrangian theories, we can either impose the boundary condi-
tions (78a) and (78b) directly, or we can modify Hamilton's principle (73) and then
derive the boundary conditions from the variational principle. To do this, we say
that ¢ isa solution satisfying the boundary conditions if

dS($) - 66 = 7,8¢% dA (79)
¢ (010

for al variations 8¢ which are zero on the set U4 \ 9144, and wherewe only consider
sections ¢ which satisfy (78a).
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Note that this is different from the approach taken in Section 2, where the
potential energy (9) includes a term whose derivative gives the traction bound-
ary conditions. That approach is simpler, but the additional potentia term is not
intrinsic, whereas the expression (79) isintrinsically well defined.

Computing the left-hand side of (79) and using integration by parts gives (74).
The boundary term can be taken only over 31/ asé¢ is zero elsewhere on 9/, and
this matches with the right-hand side of (79) to imply the traction boundary condi-
tion (78b). The displacement boundary condition (784) is satisfied by assumption.
Asthe set of variations 8¢ which are zero on al of di/ is a subset of those we are
using here, we also recover the Euler-L agrange equations (75) from the variational
principle with boundary terms (79).

For continuum mechanics we are particularly interested in the case of aninitial
boundary value problem. Recall that our parameter spaceist/ = [0, T] x B and
that the boundary is therefore 0U/ = ({0} x B) U ({T'} x B) U ([0, T] x aB). An
initial boundary value problem specifies that

¢“(¢x(0,Ux)) = (90)* (0, Ux)  foral Ux € B, (80a)
¢“ 1(px (0, Ux)) = (p0)* ;(0, Ux) foral Ux € B, (80b)

9" (px (U, Ux)) = (po)* (U;, Ux) foral U; € [0, T1, Ux € 348,
(80c)

L
307 Ni(px(U;, Ux)) = —=T,(U;, Ux) fordl U; € [0,T], Ux € 9:B,
v
(80d)

where ¢g and T, are given functionson/ and 9,15 and 9. B are digjoint subsets of
a8 whose union covers d3. Thefirst two conditions (80a) and (80b) are theinitial
conditions, while (80c) and (80d) are the boundary conditions.

In terms of the conditions (78), we identify the zeroth- and first-order boundary
conditions as defined on

dold = ({0} x B) U ([0, T'] x 94B),
91U = ({0} x B) U ([0, T'] x 3. B).

Note that these sets are neither digoint nor covering.

5.3. Horizontal variations

Requiring stationarity with respect to horizontal variations implies that the
second term in (74) must be zero, which gives

9L d (OL dg*) dL
0Xv " dx#\ove, 0X¥) dXV

— 0. (81)

Whileitmightinitially seemthat dS(¢)-3¢ = Ofor all §¢ zeroon dif would require
that both the Euler-L agrange equations (75) and the equation (81) are satisfied, in
fact it is sufficient to require that only the Euler-Lagrange equations are satisfied.
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Thereason for thisisthat (81) isimplied by the Euler-Lagrange equations, as can
be seen by calculating

oL d (3L ¢\ dL
oxv " dxe\9ve, 0xv ) dxv

_8L+ d ([ 9L a<pa+ AL d [ 9¢°
C Xy dx#\dve, JaXy o dve, dXH\9XY
oL oL d¢“ aL [ dp?
B n A %
XV 3% aXV  Jv4, \dXH
_[aL d ([ OL \]de"
— Lage  dxm\ave, ) axv’
and thus we see that whenever the Euler-Lagrange equations are satisfied, so too
is (81). This can also be understood as a reflection of the symmetry of the action
under thetransformation ¢ — ¢ oy . Equation (81) isexactly Noether’stheorem for
this action. By now considering the space and time components of (81) separately,

we will next see that thisisin fact a restatement of very well-known facts about
solutions of the equations of motion.

Energy Conservation. Considering the special case of the base space X being
spacetime, the time component of (81) is

OL d (0L, . d (L N o
ot dr \ave,? axi\ove,? )T

which isthe energy-evol ution equation. Assuming that ¢y = id, in the specia case
that L does not depend explicitly on ¢ we can integrate over the material body to

obtain
d L o, gy / d_(OL 2\ .
di Ju \ove,? = Jgaxi \ove?

oL .,
= — () Ni dA
9B OV

= —/ 7,0 dA.
B

In the particular case of traction-free boundary conditions, when r = 0 on 955, this
reduces to

d oL .,
— —L)dV =0, 82
dt B(avat“” ) (82

which is the statement of global energy conservation. As we will see below, this
calculation can also be recast in the form of Noether's theorem for horizontal
symmetry actions.
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Configurational Forces. Having considered the time component of (81) above,
we how consider the full expression

L d <8L d¢"

— Ls" )=0. 83
ax T axe\ o, axv ) (83)

In this equation we can recognize the Eshelby energy-momentum tensor C ( see,
e.g., GUrTIN [2000] )

" aL d¢p“ _ Lt
v, 9XV

)

and (83) expresses the balance of the configurational forces. Surface independent
integrals, such as the static and dynamic J-integrals, are obtained from it. These
appear whenever % = Oby integrating over an arbitrary volume and using Stokes
theoremto transform it into aboundary integral. In the two-dimensional case, these
integrals are path integrals.

6. Conservation laws

One of the primary advantages of multisymplectic theoriesis the clear under-
standing which can be gained from the conservation laws satisfied by the system.
Aswe shall see, al conservation laws considered here can be expressed in either a
local divergence form or in aglobal form.

Spaceof Solutions. Tounderstand bothlocal and global statementsof conservation
laws it is necessary to take variations and divergences along solutions.

Recall that we are using C(Y) to denote the space of al configurations ¢ :
U — Y. The space of solutionsCy,(Y) C C(Y) isthe subset which is composed of
those ¢ which satisfy the Euler-L agrange equations everywhere, for any boundary
conditions. Thatis, C; (Y) isthe set of solutionsfor all possible choicesof boundary
conditions. Aswe have aready remarked, the fact that the action (72) only depends
on ¢ viag meansthat solutions¢ € Cy (Y) areonly unique up to reparametrization
¢ oy for diffeomorphismsy : U — U.

The tangent bundle of the space of solutionsisdenoted TCy (Y), and avariation
V e TyCr (Y) isthusthederivativeof acurveof solutions, typically having different
boundary data. Such V are known as first variations of ¢. In fact C; (Y) may not
be a smooth manifold (see, for example, FisSCHER, MARSDEN & MONCRIEF [1980]
and ArRMS, MARSDEN & MoONCRIEF [1982]) and so amore general definition of first
variations should be used. Herewewill assume smoothness, and werefer the reader
to MARSDEN, PATRICK & SHKOLLER [1998] for the details of the general case.

Local Actions. In what follows it will frequently be convenient to consider the
action integral taken over a subset I/’ of U. We will denote thisby S’(¢), so that

S'(¢) = f L(jYXpooxh)av.
iy LU 930)
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6.1. Multisymplectic forms

In this section we introduce the multisymplectic structures which give mul-
tisymplectic mechanics its name. This can be done in two ways, either on the
Lagrangian sidefrom the variational principle, or on the Hamiltonian side by direct
construction. We will consider only the Lagrangian side of the picture, and werefer
to MARSDEN & SHKOLLER [1999] for a comparison of the Lagrangian and Hamil-
tonian constructions. For simplicity, the material here is a non-intrinsic version of
the theory developed in Gotay et al. [1997] and MARSDEN, PATRICK & SHKOLLER
[1998].

Givenavariation V : U — T'Y of aconfiguration ¢, we denoteby j1V : ¢/ —
T (J'Y) itsjet prolongation. If ¢¢ isasmooth curve from R to C(Y) such that

a &
V= ¢
de

then the jet prolongation of V is defined by

8'1 e
v = ¢
de

and ¢° = ¢,
e=0

e=0
In coordinates thisis given by

av4 vy
vy = Woga Ko oya a
J ()—(¢,¢,V,V,—8XM—8M11V>.

FreeAction Variations. For avariational derivation of the multisymplectic struc-
ture, we return to the variational principle and consider the expression dS(¢) - 8¢
for arbitrary 8¢. That is, we do not require that ¢ vanishes on the boundary a2/,
so we have the full expression (74) for action variations.

Multisymplectic (n + 1)-form. We now restrict ourselves to configurations ¢ €
Cr(Y) which are solutions of the Euler-Lagrange equations, and thus also satisfy
the horizontal equation (81), and we consider variations V which lie in the tangent
space TCr(Y) of the space of solutions. This means that the first integral in the
above expressionisidentically zero, and working with an arbitrary /' C U/ we can
write

ds'(¢) -V = /

iL(pod))*(i.1,0 s 84
oM@ 002 (v 6L) (849)

where the Lagrangian (n + 1)-form ©; on J1Y is defined by
oL

a
v,

O =

JaL
dxa VAN anﬂ — <a—avaﬂ — L) dn+1X.
Vi

Here we use the notation from MARSDEN, PATRICK & SHKOLLER [1998] in which
d"+1x isthevolumeformon X andd" X, = i/5,d"t1X areaset of n-forms. This
is related to the previous expression for dS by the fact that iyd*t1X = vV - NdA
on asurface with area element A induced from the volume form.
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The fact that ®; has degree higher than 1 is one reason for the “multi” in the
term“multisymplectic”. Another interpretation of thisterm, usedin BRipGes [1997]
and BripGEs & REIcH [1999], arises from defining the vector valued 1-forms

oL
o) = dy?
v,
foreach u = 1,...,n. For vertical first variations V, we can then write the

derivative of the action as

ds’'(¢) - v =/ ek . jlvda,
dx(QU)
where we are somewhat vague about the precise meaning of this expression. The
fact that there are n + 1 different 1-forms ©/ gives a second meaning to the prefix
“multi”. Note, however, that this decomposition into n + 1 1-forms depends on the
choice of coordinates and so is not intrinsic, whereas ®; is.

Multisymplectic (n + 2)-form. Having derived the Lagrangian (n + 1)-form as
the boundary terms in the variations of the actions, we can now take the exterior
derivative to obtain the multisymplectic Lagrangian (n + 2)-form

Qp =—-dO;.

We will shortly see why thisis animportant object. This can be written as

oL oL
Qp =dx“ Ad ( ) Ad"X, +d <—vaﬂ — L) AdHx,
av? av?
" n
where d" X, and d"t1X are as defined above. Fully expanded in coordinates, this
becomes
92 92L

= ———dx’ Ad"TX + ———dx* Adx’ A DX,

AXHIve, axboave,,

3L b 82
dea/\dv VAanﬂ+

92L oL
— v dvP, Ad"TIX — —dx® A d" X,
dvb,dve, dxa

Qr

+ vaﬂdxb Aditly

axbave,,

6.2. Multisymplectic form formula

Now that we have defined the multisymplectic forms, we will derive the con-
servation properties associated with them.

Recal| that the exterior derivative satisfies d2 = 0. For Euclidean (flat) spaces,
thiscan bewritten d2S(V, W) = D(DS-W)-V —D(DS-V)-W,where D denotes
the Fréchet derivative. This expression is zero as the partia derivatives commute,
athough it is also true in more genera non-flat settings as well.

We can now usethisfact to take a second exterior derivative of the identity (84)
restricted to the space of solutions C; (Y) and conclude that it must be zero. The
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intrinsic calculation of this (see MARSDEN, PATRICK & SHKOLLER [1998]) givesthe
multisympl ectic-form formula

d2s'(p)(V, W) = /

iY@ odpT N (iawinyQr) =0 85
Bt (ijwipv ) (85)

for al first variations V and W of a solution ¢. This is the global form of the
multisymplectic conservation law.

Applying Stokes' theorem and using the fact that 24" isarbitrary impliesthat the
above statement is equivalent to the local multisymplectic form formula

d[ (7 0z (ipwijve )| =0, (86)

where V and W are again first variations of a solution ¢. This statement holds at
every point in{ or, equivaently, in X.

As mentioned earlier, the above results cannot in fact be obtained simply by
taking exterior derivatives of (84), as the space of solutions may not be a smooth
manifold. This necessitates the use of amore general definition of afirst variation,
and somewhat complicatesthe proof of the multisympl ectic-form formula. Werefer
to MARSDEN, PATRICK & SHKOLLER [1998] for the details.

Notethat herewe do not appear to have explicitly considered initial or boundary
conditions. Thisis because the variations V and W implicitly contain variationsin
theinitial or boundary conditions, asthese conditions act as a parametrization of the
space of solutionsCy (Y) by distinguishing nearby solutions from each other (away
from bifurcation points), up to reparametrization by diffeomorphismsy : U/ — U.

In the general case, the coordinate expressions for the multisymplectic form
formula are very complicated. If we restrict attention to only vertical variations,
however, then we can write (85) explicitly, as we will now see.

6.3. Spatial multisymplectic form formula and reciprocity

We now turn to an explicit interpretation of the globa multisymplectic form
formulainthe case of static continuum mechanics. Asweshall seg, inthisparticular
case it issimply arestatement of the well-known Betti reciprocity theorem, when
the variations are restricted to being purely vertical.

Linearized Equations. Assume that ¢y = id. Recall that we say that ¢ is a
solution of the Euler-L agrange equations with displacement and traction boundary
conditions (80c) and (80d) if it satisfies

DS(qb)-V:/ T-VdA

8.8

for al variations V which are zero on the displacement boundary d,8. We now
define W to be a solution of the linearized problem at ¢ if

D(DS(¢)-V)-W =0

for al V vanishing on the displacement boundary. More generally, we say that
W is a solution of the linearized problem with incremental body force B(W) and
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incremental traction (W) if

D(DS(¢)-V)-W:/ B(W)-VdV—i—/ (W) -V dA
B 3B
for al V vanishing on 9,.

We now use the fact that for any two variations V and W, not necessarily
vanishing anywhere, the multisymplectic-form formula is simply the statement
that D(DS(¢) - V) - W = D(DS(¢) - W) - V. Thisimplies that

fB(W)-VdV+/ r(W)~VdA=/B(V)-WdV+/ T(V)-WdA,
B 9B B

0

which is exactly the statement of Betti reciprocity (see, for example, MARSDEN &
HuGHES [1994] or TRUESDELL & NoLL [1965]).

In words, thismeansthat if B(W) and t(W) are applied forces which produce
thelinearized response W, and B(V) and t (V) similarly produce V , then measuring
the response V in the direction of the forces B(W), ©(W) gives the same answer
as measuring the response W in the direction B(V), (V).

Inclassical mechanicsit isalso common to write adynamic reciprocity theorem
which holds at a given instant of time (see, for instance, MARSDEN & HUGHES
[1994]). This is done by including the linear momentum in the body-force terms
in the above system. Thisis not the same as afully spacetime reciprocity theorem,
which can be derived exactly as above by simply considering a dynamic problem
and taking the action over the full spacetime base space [0, 7] x B. By taking
spacetime slices of theform [¢, t + (At)] x B and letting At go to zero, the fully
spacetime reciprocity theorem then can be used to derive the standard dynamic
reciprocity theorem.

In general, reciprocity occursin any system arising from a potential function.
For an elegant general theory based on Lagrangian submanifolds see MARSDEN &
HuUGHES [1994].

6.4. Temporal multisymplectic form formula and symplecticity

As we have seen above, reducing the multisymplectic form formula to only
apply in space recovers the standard reciprocity theorem of elastostatics. We will
now show how to recover the standard symplecticity relation of Hamiltonian or
Lagrangian mechanicsin time.

Assumethat ¢y = id. Recall that aHamiltonian system onthe cotangent bundle
T*Q of aconfiguration manifold Q with canonical symplectic structuredg’ A dp;
will haveaflow map F}, : T*Q — T*Q which preservesthis symplectic structure
on T*Q. The Lagrangian equivalent of this statement is that the Lagrangian flow
map F] : T Q — T Q onthetangent bundle T Q preservesthe Lagrangian 2-form
dg' Ad (%)

To see how thisis aconsequence of the multisymplectic form formula, we first
define the instantaneous space of solutionsto be Cp(S) = {¢ : B — S}, whichis
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the space of configurations at a given instant of time. The flow map of the system
can now be written

F : TCp(S) — TCR(S), (90, 90) = (@1, @1),

where ¢, (X) satisfies the Euler-Lagrange equations for some given boundary con-
ditions (80c) and (80d) with T = 0 and the initial conditions (¢g, ¢o).

If we now take the boundary conditions and the Lagrangian to be constant in
time, and consider a variation (8¢, 8¢p) in theinitial condition, then defining

Vi =Tnp - TF} - (890, 8¢0),

whereng : (¢, ¢) — ¢, weseethat V isexactly aparticular vertical first variation,
in the sense of the previous sections. Note also that dS(¢) - V will only consist of
boundary integrals at theinitial and final times, as V isavariation which preserves
the boundary conditions and thus is zero on the displacement boundary of the
reference configuration, while 7 is zero on the traction boundary.

Constructing two such vertical first variations V and W and applying the
multisymplectic-form formula, we obtain

/BQ’L(O,X)(jlv(O,X),fW(O, X)) dVv
—/l392<r,x>(le(T, X), jYW(T, X)) dV = 0.

Recall, however, that Q) = dg“ Adp,’, and sowecan rewritethe above expression
as

/BQIL(O,X)<(V0, Vo). (Wo, Wo)) dv
= /B%T,X) (TFZ - (Vo, Vo), TF[ - (Wo, Wo)) av,

where we have used the definition of thevariations V and W asbeing induced from
initial variations (Vo, Vo) and (Wo, Wo), respectively.

The left-hand side of the above expression is simply the field-theoretic La-
grangian 2-form on TCi(S), whichis

L
Q{T=d(/ —,dV)/\d(p”,
B 9¢¢

whereas the right-hand side is the pullback of this under the flow map. That is, we
have derived the statement

Q" =FHe" 87)

of time-symplecticity of the flow.
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6.5. Noether’s theorem

An important source of conservation laws in continuum mechanics isthe exis-
tence of symmetriesin the system. Noether’ stheorem isthe statement which relates
a symmetry to the corresponding conserved quantity, and we will now show how
thiscan beformulated within the context of variational multisymplectic mechanics,
asin Goray et al. [1997] and MARSDEN, PATRICK & SHKOLLER [1998].

Consider a Lie group G with Lie algebra g and identity ¢ which acts on the
lefton Y accordingto ® : G x Y — Y by diffeomorphisms g : Y — Y covering
the action & : G x X — X by diffeomorphisms gx : X — X. That is, each
element of G can be written as g(X, x) = (gx(X), gy(X, x)). The prolongation
of the group actionis ®’"Y : G x J1¥ — J1Y givenby

-1
g-y=TgyroyoTlgy,

which in coordinatesis

agy  9gy , }a@?)“)
. .

X ) = (0. g (X, x),
g-( X, p,) (gx( )gy( x) |:8Xv b JXH

This definition is chosen so that j(g o ¢ 0 g31) = g o j*¢ 0 g3, Given agroup
action and its prolongation, we next define the infinitesimal generators associated

with aLie dgebraelement ¢ e gtobeéy : X - TX, & : Y - TY and
£y 1 JYY — T(JY), where

d
Ex(X) = — <<I>§‘ (X)) 3
g=e

d
§y(y) = — (‘Dg(y)) -&,
g=e

dg
d 1
_ 4 oY E.
Eny(¥) dg g:e< 2 (V)) 3
Computing the coordinate expressions for the infinitesimal generators gives
" " 3(@?)“ m
Ex(X) = (X", ¢ :8—’"5 ,
8
0(d,)?
Ey(X.x) = (X“,x“, M ET = %(e)sm),

axb U T axe T axnr’

8 a 3 a 8 v
Eny(X,x,v) = (X”,x“,v”u,é“,é“f“u: 5 o i i "u>-
If the symmetry action is purely vertical or purely horizontal, then the above coor-
dinate expressions simplify somewhat.
We now define the Lagrangian momentum map (sometimes called the multi-
momentummap) J; : J1Y — g* ® A"(J1Y) tobe

JL(€) =g, O, (88)

Jly



A.LEw, J. E. MARSDEN, M. ORrRTIZ & M. WEST

where g* isthe dual of the Liealgebrag of G and A" (J1Y) isthe space of n-forms
on J1Y. In coordinates, this reads

oL oL JaL
= a __ | _ a _ T H ny 7 gVdx@ n—lX .
JL(S) (81)[1“%—)/ |:avavv ) i|$Y)d m avaﬂsl/dx Ad w
(89)

where d”*lx,w = ip/90d"X,.. While it is of interest to consider general group
actions, we are particularly interested here in those which are symmetries of the
L agrangian system. To make this precise, we say that the L agrangian is equivariant
with respect to the prolongation of the group action @ if

L(g- (X, x, U))dn+lX = L(X, x, U)(g;(l)*(d”“X),

In such cases we say that G is asymmetry of the Lagrangian.

Observe that equivariance of the Lagrangian is not the same as the Lagrangian
being invariant under the prolonged group action. Invariance would simply mean
that L(g - (X, x,v)) = L(X, x,v), and it turns out that this is not sufficient for
g - ¢ to be asolution whenever ¢ is. The reason that it is necessary to include the
transformation of the volume form d”*1X is that invariance of solutions (that is,
solutions map to solutions) relies upon invariance of the action, and invariance of
the action requires equivariance of the Lagrangian, aswe will see explicitly below.
This distinction is only important if the symmetry action has non-zero base-space
components, such as atime scaling or reparametrization.

A necessary condition for the Lagrangian to be equivariant is infinitesimal
equivariance, which is simply the derivative with respect to g of the definition of
equivariance. That is, the Lagrangian is infinitesimally equivariant with respect to
the prolonged group action if

dL - £;1y = —L Div(£x).

Thisis simply the derivative of the above definition of a symmetry with respect to
g inthedirection & at the identity, and it has coordinate expression

oL _, 9L [0& ,  03&  0& A&y
éy‘i‘ bU w — vy
0x4 v, [ dx dXH dXH dXH

oL
aXH

=0.

£ +

Wewill now show that whenever the L agrangian isequivariant under the prolonged
group action, the corresponding momentum map is a conserved quantity.

Theorem 1 (Noether’s theorem). Consider a Lagrangian system L : J1Y — R
which is equivariant under the prolongation of a left action ® : G x Y — Y as
described above. Then the corresponding Lagrangian momentummap J;, : J1Y —
g* ® A"(Y) given by (88) or (89) satisfies the global conservation law

/ Glpop )N JLE) =0 (90)
dpxU)
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and the equivalent local conservation law
d[(/{@ 0 93N L ®)] =0 (@)
for all £ € g and all subsetsit’ of U.

Proof. Theaction of G onY inducesan action of G on the space of configurations
C(Y) by pointwiseaction, sothat d)?m :C(Y) — C(Y)isgivenby ¢§(Y)(¢)(U) =
g(¢(U)). We now see that equivariance of L implies

S’(g ¢) :f L<j1(¢/0 (d)‘/)()—l)) dn-'rlX
gx (@xU)
= L(goj popyhogyt) d X
v/z:’X(%c(U’)) ( A X)
:/ L(g'jl(¢°¢§l))(gx)*(d"+lX)
dx U

- / LG4 o p3H)d X
dpxU)
=5

and so the action isinvariant under the action of ™). If ¢ isan extremum of the
action, then invariance impliesthat g - ¢ is aso an extremum, and so the space of
solutionsisinvariant under the group action. That is, g - C, (Y) = Cp(Y).

If we now denote the infinitesimal generator of the group action on the space
of configurations by &c(yy : C(Y) — T(C(Y)), then invariance of the action can
be written dS"(¢) - £&c(yy = Ofor al £ € g, which still holdsif we restrict S to the
space of solutionsCy,(Y).

Using (84), however, we can also write the derivative of the action in the group
direction as

as'6) e = [ 0093 (ic,01).

9P (

where we have used the fact that &1, = j gy, Using the definition of the La-
grangian momentum map and the above statement of invariance of the action, we
now have

/ (Y 0 31" J1(€) = dS () - ey = O.
dpxU)

which isthe global statement of Noether’s theorem.
Applying Stokes' theorem shows that thisis equivalent to

d{ L@ op N IL(E) | =0
P CRCRaet)

for any U’ C U, and thus we can conclude that the integrand itself is zero, giving
thelocal (or divergence) statement of Noether’'stheorem. 0O
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The above proof shows that in fact only infinitesimal equivariance is required
for Noether’stheorem, rather that the stronger statement of equivarianceitself. This
is often useful in examples.

In the above theorem we have not explicitly accounted for boundary conditions,
and the assumption of equivariance requires that body forces arising from external
potential sinthe Lagrangian do not act inthe symmetry direction. If wenow consider
amoregeneral situation, inwhich the sol ution satisfiestraction boundary conditions
in the sense of (79) and we do not require equivariance of the Lagrangian, then for
an arbitrary variation V we have

ds(o) - V:/ T- VdA—i—/ (jl(¢o¢;(1))*(ij1V®L)
dx (01U) dx (BUN\NU)

and so taking the variation to be V = &¢(y) givesus

(GHpodx N JL®) = —/ T &y dA+dS(@) - Ecqr).

/¢X U\3U) dx (1U)
(92)

6.6. Symmetries and momentum maps

We now turn to considering the three main symmetries which arise in contin-
uum solid mechanics problems. These are trand ation, rotation and time translation
invariance, and they give rise to conservation of linear momentum, angular mo-
mentum and energy respectively, as discussed in Section 3.4 and Section 3.5. Here
we reframe those facts in the language of the previous section.

Trandation Invariance. The group of trandationsis G = Yy = R3, and it acts
by n" (X, x) = (X, x 4+ r). Theinfinitesimal generator correspondingto &” € g'" is
thus given by £7 (X, x) = (X, x, 0, r) for each r € RS,

TheLagrangian (69) isclearly equivariant becauseit hasno explicit dependence
on thefiber spatial coordinate x. Computing the Lagrangian momentum map gives

] r aL a dl’lX
L") = de, r m

and it can be easily seen that the local Noether theorem (91) recovers the Euler-
Lagrange equations?.

Using the global form of Noether’s theorem with boundary conditions (92) and
assuming that ¢ = id, we compute the various termsto be

1 1y L T aL
(7 (@ody ) JL) = - dv + ——N; dAdt,
3X\X B v |_r o JoB 0vY;

T
/ T-&ydA = / / T, dAdt + / (po)a(—dV),
97X 0 9. B B
T r oL
dS(@) - Ecr) = / / v,
0 B

dx?

2 This can also be predicted from general theory, because the action of GU is vertically
transitive (see GoTtay et al. [1997])
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If we now substitute in the Lagrangian (69) and use the expressions (71), then we
see that (92) becomes

fpa(T,X)dV—/pa(O,X)dV
B B

T T
=/ / P, (¢, X)N; (X) dAdt—i—/ f T,(X) dAdt
0 B 0 3. B

T
+/ /Bu(t,x)dth.
0o JB

This shows how the whole-body linear momentum changes from timeOto time T
under the influence of traction boundary forces 7, = —1,, displacement boundary
conditions, and body forces B, = —V, V. In the case of free boundary conditions,
when 9.8 = B and r = 0, and zero body forces, we recover the conservation of
whole-body linear momentum.

Rotation Invariance. The group of rotationsis G' = SO(3), with action given
by n%(X, x) = (X, exp(R)x) for each skew matrix R € so(3). The infinitesimal
generator for an element £® e g™ isgiven by £R (X, x) = (X, x, 0, Rx).

The assumption of material frame indifference, namely that the stored-energy
function W in (69) depends only on F’ F, means that the Lagrangian itself is
invariant under the action of G'. The Lagrangian momentum map is

JLER) =

L a b An
avaMR »o” d X,

and so the local Noether’s theorem is the statement that R,,0%¢ = 0 for al R, so
skew-symmetry of R implies that the Cauchy stress tensor o is symmetric. This
recovers the standard balance of moment of momentum. The global Noether theo-
rem is simply the statement of global angular-momentum conservation, assuming
compatible boundary conditions.

Time Translation Invariance. The group of time trandlationsis G'™e = R, with
actionn®(t, X, x) = (t+a, X, x) and &% € g™ for each € R. Theinfinitesimal
generator for £* € g"™®isg%(r, X, x) = (1, X, x, a, 0, 0). The Lagrangian (69) is
equivariant with respect to the action of G'™® asit isindependent of time and the
L agrangian momentum map gives

oL
avau

(L@ 0 o3 IL(EY) = [— o d"X, — ELd”X,] .

The local Noether theorem then gives the local energy-continuity eguation, while
the global Noether theorem givesthe statement of whole-body energy conservation.
In fact, arbitrary time reparametrizations are a symmetry of the system, and also
lead to energy conservation. In considering such actionsit is crucia to distinguish
between equivariance and invariance of the Lagrangian.
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7. Multisymplectic discretizations

Having investigated the variational multisymplectic structure of continuum me-
chanicsanditsassociated conservation properties, we now turnto the general theory
of constructing variational discretizations of such systems. The fundamental idea
here is to discretize the variational structure, and then derive both the equations
of motion (an integrator for the system) as well as conservation properties of the
discrete system by using the same variational proofs asin the continuous case.

In this section we proceed in the same order asfor the continuous case. Namely,
first we consider the discrete geometry of the problem, then define a discrete La-
grangian and a discrete variational principle and use these to derive first the Euler-
Lagrange eguations and then the conservation properties.

As we progress through this section we will develop an abstract theory of
variational discretizations, and simultaneously wewill consider the example of AV
algorithms described in the earlier sections. We concentrate here on the geometry
of the discrete problem. Of course, for an actual agorithm it is also important to
consider other aspects, such as numerical analysis and implementation issues.

7.1. Discrete configuration geometry

Discrete Base Spaces. A discrete base-space configuration ¢, x consists of aset
X, caled the nodal base space, of pointsin X’ and aset £, of subsetsof X, called
the elemental base space. Elementsin &, areregarded as encoding the connectivity
between sets of nodes X € X;, and we assume that we haveamap E — X from
elements E e &, to elemental subsets X'r of X'. Wewrite Xg, = Ugcg, X for the
subset of X’ covered by the elemental subsets. Given anode X € X; we denote by
£4(X) theset of elementscontaining that node, sothat £;(X) = {E € £; | X € E}.

Note that the elements and nodes referred to here are spacetime elements and
nodes. That is, each elemental subset is a subset of space and time, while each
node specifies both a spatial position and a particular time. Thisis in contrast to
the normal usage in finite elements, where the terms element and node refer solely
to spatial objects. We also do not necessarily consider a set of basis functions
over the elements, as we may wish to use different discretization schemesin some
components, such as finite differences for time derivatives.

For discussing boundary conditions and equationsit is necessary to specify the
boundary and interior of the nodal base space. These are, respectively,

0y ={X e Xy | X € 0&g,},
int(Xy) = Xy \ 0X;,.
Wedenote by C,4 (X)) the space of all allowed discrete base-space configurations
¢q.x, whichwewill taketo all have the same number of nodes and elements. Note

that we will generally not be allowing arbitrary nodal base spaces, but will rather
impose some restrictions on the configurations under consideration.

AV Base Spaces. Inthe particular case of AVI methods, we assume afixed refer-
encemesh 7, and so the space of discrete base-space configurationsis parametrized
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by the set of elemental times t,j( . We assume that we have afixed spatial discretiza-
tion, asin Section 3.1. For given elementa times t,’< and induced nodal times, as
defined in Section 3.2, the corresponding discrete nodal and elemental base spaces
are

Xy={Xy =g, X) la €T, LSi < N,

a
5d=[E-,"(={x;|aeK, i e0kiy|KeT, 1§j<NK}.
The map from an element E to a subset X'z for AVI methods is given by XE_; =
. X K
(1], it x K.

Discrete Configuration Bundles. Having defined discrete base-space configu-
rations, we now turn to constructing discrete representations of the configuration
bundle ryy : ¥ — X. For agiven ¢, x, we define the discrete configuration
bundle Y, to be the fiber bundle over X; with the fiber over X € X; being simply
the configuration bundle fiber Yy itself.

A discrete configuration ¢, now consists of adiscrete base-space configuration
¢4.x and asection of Y;. Such a section can also beregarded asamap X; — Y
covering the identity. A discrete configuration ¢, thus specifies a set of nodes X,
aset of elements &£;, and afiber value denoted xx at each node X € X);.

AVI Configuration Bundle. For AVI methods, we have seen abovethat thediscrete
nodal and elemental spaces which make up the discrete base-space configuration
¢4, x are specified by the times t}( .AnAVI configuration ¢, thus consists of these
sets, together with the fiber positions x/, for each node X!, € Aj.

The variable information specified by ¢, is thus exactly the same as that con-
tained in the expression (E, ©®) in Section 3.2, for example as in (25). Variations
of ¢4 will thus be equivalent to variations of the components of E and ®.

We denote the set of all allowable discrete configurations by C4(Y). This is
the space of alowable discrete base-space configuration C, (X)) together with the
product of as many fibers Yx asthere are nodes.

Discrete Jet Bundle. Oneof thefundamental foundations of the discrete approach
isto replace continuous derivative information with a finite collection of samples
of a function. To formulate this more precisely, for a given discrete base-space
configuration ¢, x we define the discrete jet bundle to be the fiber bundle J ly,
over &; wherethe fiber over E € &, isthe product of the fibers over each node in
E.Thatis,

Yoe =[] ¥x.
XeE

Each point in the discrete jet bundle thus stores the value of the configuration at all
nodes of the given element.

Given adiscrete configuration ¢, we definethe discretejet extension j1¢, to be
the section of J1Y, specified by jl¢,(E) = (E, {xx | X € E}), which issimply
the configuration evaluated at all nodes within a single element. This is enough
information to form discrete approximations to the derivative.
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AVI Discrete Jet Bundle. For AVI methods, we have seen that a discrete base-
space configuration consistsof nodes X/, = (¢}, X,,) and elements E . Thediscrete
configuration bundle then consists of all possible spatial positionsfor each material
node X, at each time ¢}. The corresponding discrete jet bundle therefore consists
of elements E7,, specifying amaterial element K and times 1, t};’l, together with
the set of possible spatial positions for each node X, € K at eachtimer! @f.
The discrete jet extension of a discrete configuration ¢, isthus given by

Jea(EY) = (Eé (x| X! e Ek})

- (E}(, i laeK, 1 @f}).

Discrete Lagrangian. To complete the specification of the discrete system, we
must now provide a discrete equivalent of the Lagrangian function, namely a dis-
crete Lagrangian Ly : J1Y; — R. This should not approximate the continuous
Lagrangian, however, but rather should be thought of as an approximation to the
continuous action integral over asingle element. That is,

L4(E.{xx | X € E}) %/ L(jtp) d"H1X,
XE
where ¢ isan exact solution of the Euler-L agrange equationsfor L over the elemen-
tal subset Xr which is approximated by the fiber values xx at the nodes X € E.
We will frequently use the shorthand notation Ly (E) = Ly(E, {xx | X € E}) for
the arguments of the discrete Lagrangian.

Example of AVI Discrete Lagrangian. We have seen that a single point in the

AVI discrete jet bundle consists of an element E+., consisting of the nodes X/, =
(ti, X,), together with the spatial positions x/, corresponding to each node. The
nodal times include the elemental times ¢/ and /", so adiscrete et bundle point
isprecisely the quantitiesonwhichthe AV discrete Lagrangian (29) from Section 3
is defined. This clearly approximates the action over the elemental subset X', =
(1], i x K.

7.2. Discrete variations and dynamics

Discrete Variations. We first consider horizontal variations. The space of varia-
tions of a discrete base-space configuration ¢, x isthe tangent space 7y, 5 Ca(X),
with each variation being amap é¢,; x : Xy — T X covering the identity. Here
we will assume that the elemental base space does not alter its connectivity, and
thus moves along with the nodes. It will beimportant bel ow to distinguish between
boundary variations and interior variations. We thus assume that we can write the
tangent space as adirect sum

Ty xCa(X) = Tj, ,.Ca(X) ® T}, ,.Ca(X)
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of interior and boundary components respectively. We write 7 ;5 and 7 3’( for theas
sociated projections, and for agiven variation §¢,_x wedenotethe two components
by 8ipa,x = 7y - S x AN 89y x = 75 - Sbu -

Now we define full (vertical and horizontal) variations. Similarly to the above,
the space of variations of adiscrete configuration ¢, isthe tangent space T, C4(Y)
consisting of variations 8¢, : Xy — TY covering the section of Y,. This decom-
poses naturally into a horizontal base-space component and a vertical component,
according to

Tp,Ca(Y) = Tp, 1 Ca(X) & T, Ca(¥),

T, Ca(Y) = @ Ty, Yx.
XeX,

The vertical component of avariation can thus be written as a sum of variations of
each fiber variable, which we denote by éxx € Ty, Yx for each X € A;. We will
abuse the notation and also write dxx and §; 3¢, 1 for the relevant projectionsin
Ty,Ca(Y). This gives afull decomposition of a variation into the vertical interior,
vertical boundary, horizontal interior and horizontal boundary components as

Spa= D Sxx+ Y. Sxx+08idax+8dax. (93)
Xeint(Xy) XedXy

Boundary and interior variations differ in akey property. Interior variations are zero
onal X € dXg,, whereas boundary variations have non-zero components on the
boundary.

Variationsof AVI Configurations. GivenanAV| configuration ¢, and avariation
8¢ of it, we can decompose it as above into horizontal components and vertical
per-fiber components. We can al so, however, take advantage of the special structure
of the AV configuration bundles to further decompose the horizontal components.

AnAV | base-space configuration ¢, _x isspecified by the elemental timesrl,]< , SO
variationsin the configuration are induced by variationsin the times. We denote by
8}<¢d, x theconfiguration variation induced by 8t{< , and we take the boundary vari-
ationsto be those associated with times t,l< and t,]}”( . This provides adecomposition
of any variation of an AVI configuration into

Spa= Y Sxi+ Y 8xl

Xj,eint(Xd) leeaXd
+ 3N Shax+ Y Grdax + 55 bax). (94)
KeT 1<j<Ng KeT

Discrete Euler-Lagrange Equations. To formulate a discrete variationa princi-
ple, we begin by defining the discrete action sum S, : C4(Y) — Rtobe

Sa(@a) = D La((j'¢a)(E)). (95)

Ee&y
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We can now formulate the discrete Hamilton principle, which states that we must
seek critical points of thediscreteaction function. That is, we say that ¢ isadiscrete
solution if

dSq(¢q) - 8¢a =0

for al variations §¢,; with zero boundary components. We will write Dy and Dy
for the derivatives with respect to vertical and horizontal components respectively,
so that using the above decomposition (93) of variations gives

oL4(E
dss60) 000 = 3 3 LB 5 4 Dy Su@0) -5 x

EcE; XeE dxx
0L4(E)
— Z Z : -8xx + Dy Sa(¢a) - 8ida x
xeinxy) \Eegyx) XX
(96)
0L4(E)
+ Z ( Z ) 0xx + DuSa(pa) - S9¢a.x-
8)CX
XeaXy \Ec&y(X)

The requirement that this expression be zero for all non-zero interior variations
impliesthat the first two terms must be zero. Thefirst of these, arising from vertical
variations, is termed the discrete Euler-Lagrange equations:

3 ALa(E) _ -

Ee&y(X) dxx

for al X e int(Xy). Thisisafinite set of equations which relate the configuration
variables making up ¢,;. We will investigate the second term in (96) below.

Observe that we obtain one discrete Eul er-L agrange equation per fiber configu-
ration variable xx associated with an internal node X < int(Xy). If wethusregard
both the base-space configuration ¢, x and the fiber variables xx for X € 0, as
fixed, then the discrete Euler-Lagrange equations are sufficient, at least in terms of
an equation count, to uniquely solve for a discrete configuration ¢,.

Equationsfor AVI Methods. Requiring that the discrete AV action is stationary
with respect to variations in the configuration variables x/, for internal nodes X,
gives the equations

Z dLa(Ey) _0
, axi )
Ege€q(Xh)

For the discrete Lagrangian (29) we have aready calculated this explicitly in Sec-
tion 3.3 to be the equation (31).
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Boundary Conditions. Asin the continuous problem, we consider zeroth- and
first-order boundary conditions of the form

xx = xo(X) for X € dpXy, (98a)

L4 (E
P (a ) _1(X) for X € iy, (98h)
Ecy(X)

where dpX; and 91X, are subsets of the discrete nodal space boundary 9.X;, and
xo and t are given functions. We do not require that 9o X; and 91X; be digoint, nor
that they cover 9 X;. Note that this = will typically only be an approximation to the
7 in the continuous case.

Weimpose the boundary conditions by modifying the discrete Hamilton's prin-
cipleto seek discrete configurations ¢4 satisfying (98a) for which

dSa(@a) - 8¢a = Y T(X)-dxx (99)

XenX

for al variations 8¢, of ¢, which are zero on the set 9.X,; \ 91X;. Thisis exactly
anal ogous to the way we imposed boundary conditions for the continuous problem
in Section 5.2.

AVI Boundary Conditions. In applications of the AVl method we are generally
concerned with initial boundary value problems (IBVP), for which the boundary
conditions are given as

x}=(x0)} foralnodesaeT, (100a)
dL4(Ex
Z %’i)) = —(po), foralnodesa €T, (100b)
KeT, dxg
xl=(xo)i  fordli=1,...,N, X,€d,8, (1000)
dLq(E! )
>y %:r& forali=1,...,Na Xq € d:B. (100d)
KeTa Ya
tie®k.J

In the context of solid mechanics, the first two of these are termed the initial con-
ditions and the final two are termed boundary conditions. The initial conditions
are both zeroth- and first-order boundary conditions, and so we have the spacetime
boundaries

Bon:{Xi“(l’K) lacT, K e u{xfl lae€oT, 1§i§Na},

7.}
Ny = {Xé“(l’K) laeT, K en}u{xg laed,T, 1§i§Na}.
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7.3. Horizontal variations

In continuous multisymplectic mechanics, we have seen that horizontal varia-
tions give equationswhich are functionally dependent on the Euler-L agrange equa-
tionsderived fromvertical variations, and so they may be considered asconservation
laws of the system.

This is not the case once the system has been discretized. Indeed, requiring
stationarity with respect to horizontal variations for the discrete system gives new
equations which can be used to solve for the discrete base-space configuration, and
thus for the spacetime mesh. Both space and time adaptivity could eventually be
driven by this set of discrete equations.

More precisely, from the discrete Hamilton principle and (96) for the action
variations, we see that interior horizontal variations give the equations

Dy Si(pa) - 8ipa,x =0 (101)

foral 8i¢g x € Tq;‘d’xcd(/’\f). As there is one equation arising from each interior
horizontal variation, these equations are sufficient to solve for ¢4 x given appro-
priate boundary conditions.

It is important to be clear that (101) is not simply a conservation law for a
system satisfying (97), but is an independent set of equations. Nonetheless, this
equation can also be regarded as enforcing the conservation of discrete quantities
corresponding to continuous horizontal conserved quantities.

AVI Methodsand Energy Conservation. For AVI methodswe have seen that the
discrete base-space configurations ¢,y are parametrized by the space of elemental

times t1j< , and that these al so parametrize the space of horizontal variations. Requir-
ing that the action be stationary with respect to thevariation 5%({),1’)( associated with

each interior time t;( for 1 < j < Nk givesthe local energy-conservation equa-
tions (36), which evaluate to (43). Summing over al elements K € 7 then gives
the discrete global energy-conservation equation (47) as a consequence, which is
the discrete analogue of (82). We will also see below how this may be viewed as a
consequence of the discrete Noether theorem.

Inthe AVI method of Section 3 we have taken the set of allowed discrete base-
space configurations to be those with spacetime nodes of the form X!, = (¢i, X,)
for fixed material nodes X,. A larger class of base space configurations could
be considered, where the spatial coordinates of each X! were alowed to vary

independently. The nodal timeswould still beinduced by the elemental times t{( , S0

the set of spacetime mesheswould be parametrized by thet;, and positions X/, € B
for each node a and time ¢). Requiring stationarity of the action with respect to
the times would still give discrete energy conservation, and we could additionally
require stationarity with respect to the horizontal spatial nodal variations. This
would give discrete configuration forces, in analogy to Section 5.3.

We shall seein Section 8.1 and Section 8.2 that the multisymplectic nature of
the discrete algorithm does not depend on requiring stationarity with respect to
horizontal variations. A similar statement holds for the discrete Noether theorem.
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8. Discrete conservation laws

We will now see how the variational derivations of the conservation laws for
continuous multisymplectic systems carry over directly to variational multisym-
plectic discretizations.

Discrete Space of Solutions. Recall that C;(Y) denotes the space of discrete
configurations ¢4. By Cr,(Y) we denote the discrete space of solutions, which is
all configurations ¢, which satisfy the discrete Euler-L agrange equations for some
boundary conditions. Tangent vectors V; € Ty,Cr,(Y) are caled discrete first
variations and are derivatives of a curve of solutions. We write the decomposition
of V; according to (93) as

Vi = Z Vixy + Z Vi xy + V;,X + Vj’;{;
Xeint(X,) Xed Xy

we decompose it into the interior vertical, boundary vertical, interior horizontal,
and boundary horizontal components respectively. We will also use the notation
Vi, and V?, to denote the entire interior vertical and boundary vertical terms
above. Given adiscrete variation V; we can construct itsjet extension j1V,, which
takes E to the set of variations V,(X) foreach X € E.

It is often useful to consider different spaces of solutions corresponding to the
requirement of action stationarity with respect to different classes of variations. For
example, we could consider the space of solutionsfor the AVI agorithm with only
the discrete Euler-Lagrange equations arising from vertical variations satisfied, or
we could consider the space of solutionsto also havethe requirement of stationarity
with respect to horizontal variations. In either case we will have a discrete multi-
symplectic form formulaand discrete Noether theorem, but the exact expression of
each will differ for the different solution spaces. Here we will write the expressions
inthe general case of full vertical and horizontal variations, so that the expressions
for vertical-only solutions can be obtained by dropping the horizontal terms. While
this providesthe most generality, we should remember that the numerical examples
from Section 4.1 and Section 4.2 were performed using the AV algorithm without
considering horizontal variations.

8.1. Discrete multisymplectic forms

One of the powerful features of variational multisymplectic discretizations is
that there is a unique discrete multisymplectic structure defined by a given dis-
cretization. This appears as the boundary term in free action variations, just asin
the continuous case.

Equations (96) and (101) show that restricting to the space of solutions elimi-
nates the interior terms, and so we can write

dSa(pa) - Va= D Y OLX('Ga(E)) - j'Va+ DuSa@a) - V] x
XedXy EcEy(X)
(102)
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for all solutions ¢, andfirst variations V. Here @f;x arethediscrete Cartan forms
defined by

dL4(E)
8xX

OLX _

L dxy.

As in the continuous case, we now define the discrete multisymplectic La-
grangian forms Qf;x to be the exterior derivatives of the corresponding discrete
Cartan forms with respect to vertical variables:

E.X E.X
Q0 =—-dye,".
Calculating this explicitly gives

82Lq(E
Qfdx = — aLa()dxX/ Adxy.
x'ep\x TXX XX

8.2. Discrete multisymplectic form formula

Taking asecond exterior derivative of the action derivative expression (102) and
using d? = 0 now immediately gives the discrete multisymplectic form formula

SN QPXGa(E)) - (jVa. jPWa) + Dy DuSa(@a) - V] 5 - WS
XedXy; EcEy(X)

+ Dy DySa(pa) - Vyy - Wi x + DuDuSa(da) - V] x - Wj =0

for all discretefirst variations V,; and W,. Thisis adiscretization of the expression
(85) of the continuous multisymplectic form formula.

If we repeat this calculation for asingle element rather than the entire configu-
ration, we obtain the discrete local multisymplectic form formula

3 QEX (A 9aE) - (Vi Wa) + Dy DuLa(E) -V - W)
XeE

+ DyDyLy(E)-Vyy W)y + DuDpLy(E) - V) W) =0

for any element E, and al discrete variations V; and W, (not necessarily first
variations). This expression is a discretization of the divergence form (86) of the
continuous multisymplectic form formula, and summing over al elements and
using the discrete Euler-Lagrange equations will give the above global form.

If we are considering only vertical variations, then the global and local discrete
multisymplectic form formulas simplify to give just

0= Y QEX(a(E)) - (i Va. j*Wa),
Xed X, EeEq(X)

0= Q" (1eu(E)) - (j*Va. J*Wa)
XeE

for solutions ¢, and first variations V; and W,.
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8.3. Discrete reciprocity and time symplecticity

In the continuous case we have seen that the multisymplectic form formula
is a generalization of the notions of reciprocity for static problems and time—
symplecticity for dynamic problems into one single spacetime statement. In the
discrete case this is also true, and so by restricting the above statements to par-
ticular classes of variations we can recover exact discrete reciprocity and exact
symplecticity in time for variational discretizations.

Discrete Reciprocity. Consider now a discrete problem with only vertical varia-
tions. A linearized solution W, about ¢, of the discrete system (99) for the incre-
mental body force B and incremental traction " satisfies

Dy(DySa(pa) - Va)- Wa= Y By (X)-VaX)+ Y 7V (X)- Va(X)
XeX, Xed Xy

for dl variations V; which are zero on the displacement boundary. The identity
Dy (DySi(pa) - Va) - Wg = Dy(Dy Sa(¢q) - Wy) - V; holds for discrete as well
as continuous systems, and so we immediately obtain the relation

DOBYX) VX + Y (X)) Va(X)

XeXy, Xeo Xy
= D> BIX)-WaO+ D 7 (X)- Wa(X).
XEXd Xea'er

This is exactly a discrete reciprocity law, as can be seen by comparing it to the
continuous version in Section 6.3.

Theinterpretation isthe same asin the continuous case, with applied forces B
and r[}” producing the linearized response W, and similarly for V. Then measuring
V inthedirection of theforces B[‘,’V, rf}"’ givesprecisely the sameresult asmeasuring
the response W in the direction B, .

Thisisequivalent to symmetry of the stiffness matrix, which, asiswell known,
results automatically from avariational discretization.

Discrete Time Symplecticity. We now turn to considering an initial boundary
value problem such as that specified by (99) for the conditions (100) with ¢ = 0,
and we restrict ourselves to vertical variations. Consider a smooth curve of initial
conditions (x;, p{) whichis (x;, p;) at ¢ = 0, and let ¢, be the corresponding
solutions for al time. Given avariation in the initial conditions of the form

sy = O e e
(6x;,dpi) = 3 (X,'api),
€ le=0
we induce a variation of the solution by
d
Vo= — £
a de £:O¢d
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We also consider a discrete flow map F;, which maps from initial conditions
(x;, p;) tofinal conditions (x¢, py) of the system. The variation (8xy, 8py) corre-
sponding to (§x;, 8p;) then satisfies

(8xr,8pr) = TFr, - (8x;, 8pi).

Now consider a second variation (8'x;, 8’ p;) which induces V; and (8'xy, 8" py).
We assume a decomposition of the boundary 9 Xy = 9; Xy U 9p Xy U 95X U 9; Xy
into the initial, final, spatial displacement boundary and spatial traction boundary
components, respectively. These sets are all digjoint, and together they cover 0 X;.
The variations V; and W, are zero on d,;X; and on 9, X; we have T = 0, so the
multisymplectic form formula becomes

Yoo > @ G aE)) - (1MVa, T Wa)
X€d; Xy E€E4(X)

+ 3 Y @EXGluE) - (jMVa, W) =0,
Xedyr Xy E€€q(X)

We now define the discrete field theoretic 2-forms

Qp Gxisp)=— Y Y. QL Ga(E)) - (jTVa, jTWa),
X€d; Xy EcEy(X)

Qf Gxpop =YY QX Ga(E) - (GMVa, Wa)
Xeand Ec&y(X)

and so using the fact that the initial and final variations are related by 7 F;, we
have

Q= (FL)"Qf . (103)

which is exactly a discretization of the continuous equivalent (87).
Note that we could also consider both vertical and time-horizontal variationsin
the derivation of the above relationship. This would then give a discrete analogue

of extended time-symplecticity, namely the preservation of the 2-form d (%) A

dp, + dEL A dr (see MarsDEN & WEsT [2001] for the details of thisin the case
of ODEs).

For AV Isequation (103) encodes ageneralized type of time-symplecticity. Note
that this does not mean that we can use standard backward error methods for
analyzing AVls, as we do not have a single symplectic form on a space with an
iterated sympl ectic map. Nonethel ess, we conjecturethat it isthe geometric property
(103) which isresponsible for the excellent energy behavior observed numerically
for AVI methods.
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8.4. Discrete Noether theorem

We now devel op adiscrete Noether theorem associated with vertical variations.
Takeagroup action ® : G x Y — Y, asin Section 6.5, which acts by diffeomor-
phisms g : Y — Y covering diffeomorphisms gx : X — X. The corresponding
infinitessimal generatorsare &y and &y, as defined previously.

We may also consider G as acting on the discrete configuration bundle by
pointwise action on Yy, so the infinitesimal generators £, and &y, are pointwise
equal to £y and &y. Given adiscrete base space configuration ¢, y, we define the
action of G on C4(X) to be pointwise action on the nodal positions X;, and we
assume that the elemental topology specified by &, is left invariant. We similarly
define the action of G on C,(Y) by the action on C;(X’) together with pointwise
action on the fibers. Here we implicitly assume that the action of G is such that
it preserves the space C;(X). That is, for any alowed base space configuration
¢4.x € Cq(X), thetransformed base space configuration g - ¢, v isalso anallowed
configuration, and thus g - ¢4 x € Cq(X).

Theaction of G on ¥, can be prolonged to the discretejet bundle J 1Y, by point-
wise action on each component, which means that the corresponding infinitesimal
generator &1y, : J1Yy — T(J1Y,) isavector

£y, (. bix | X € BY) = (E. {(xx | X € E} &x(E). {6y (+x) | X € E})

consisting of pointwise evaluations of &y. We will denote the vertical components
of thishy

1y, (B tex 1 X € E}) = (B, bxx | X € O, {gv (v | X € E}).

A group action is said to be a symmetry of the discrete Lagrangian L, if
La(E. (xx | X € E) = La(g - (E, {xx | X € E})

for al pointin J1Y; and all ¢ € G, and in such a case the discrete Lagrangian is
said to be eguivariant. This implies that the discrete Lagrangian is infinitesimally
equivariant, which is the requirement

de 'S]le =0

for all £ € g. Note that in the discrete case equivariance is the same as invariance,
asthediscrete Lagrangian is an approximation to the continuous action, rather than
the continuous Lagrangian.

While we will not consider a genera discrete momentum map for arbitrary
actions, we define the vertical component to be the discrete Lagrangian momentum
map J % : J1¥, — g* for an element E and base point X, which is

E. X : E. X
JLd (é) = Iéjvly ®Ld :
d

Wewill now seethat thisisthe appropriate definition for adiscrete Noether theorem.
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Theorem 2 (Discrete Noether theorem). Consider a discrete Lagrangian system
Lq : JY; — R which is equivariant under the prolongation of the left action
®: G x Yy — Y;. Then the system satisfies the global conservation law

oY IEXE G a(E) + DuSa(¢a) - 7 - Ec,x)(@a.x) =0 (104)
Xed Xy EcEy(X)
and the corresponding local conservation law
> I E G a(E) + DuLa($a) 1y, (i1¢a(E) =0  foral E € &

XeE
(105)

for all solutions ¢, and all ¢ € g.
Proof. Aswe have already seen, the action of G on'Y inducesan action on Y, and

on J1Y,. Thiscan then be extended to an action on the discrete configuration space
C4(Y). We use the equivariance of L, to write

Sa(@-da) =Y La(g-j'¢a(E)) = > La(j*$a(E)) = Sa(da),
Ee&y Ec&y
and so equivariance of the Lagrangian immediately implies that the action is also
equivariant. Differentiating this expression with respect to g gives
dSq(@a) - &c,(v)(¢a) = 0.

The group action thus maps solutions to solutions, and so &¢,(y) is tangent to the
space of solutions Cr,(Y). We can therefore use expression (102) to write the
left-hand side of the previous equation as

dSa(da) - Ec,n (@) = Y Y O[ (Mba(E)) - &)y (i*ha(E))

Xed Xy EcEy(X)
+ Dy Sa(pa) - T - Ecyx) (ba.x),

and so equating our two expressions for the derivative of S, in the group direc-
tion and using the definition of the discrete momentum map now gives the global
statement of the discrete Noether theorem. Taking the definition of infinitesimal
equivariance of L, and evaluating the left-hand side immediately gives the local
statement. 0O

Asinthecontinuous case, infinitesimal equivarianceissufficient for thediscrete
Noether theorem to hold.

If weinclude the effects of boundary terms, as specified by (99), and we do not
assume that the Lagrangian is equivariant (due to body forces, for example), then
for arbitrary variations we have

dSq(¢a) - Vu
= Y T(X) Vi

Xeor Xy

+ Y Y e (i ea(E)) - jVa(E) + DuSa(da) - V] -
Xed X \01Xy E€E4(X)
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If we now take the variation to be the infinitesimal symmetry action V = &c,(y),
then we obtain

Yoo > IET®Ga(E))

Xed X \01Xy E€E4(X)

= — > T(X)-&y(xx) — DuSa(¢a) - Ty - Ecucx) (a.x) (106)
Xeor Xy

—dSa(da) - Ec,(v) (Pa).

Thisdescribesthe extent to which the exact Noether conservation law isnot satisfied
due to boundary conditions and body forces, and is a discretization of (92).

Discrete Symmetries and Momentum Maps. The three symmetry actions dis-
cussedin Section 6.6 areall linear, and sothelinearity of theAV | discreteLagrangian
means that it inherits these symmetry groups as well. These then imply that linear
momentum, angular momentum and energy are preserved by the discrete system.

The calculations for linear and angular momentum for the AVl method are as
presented in Section 3.5. Here the group acts vertically on the fibers of J1Y,, and
theglobal form of Noether’stheorem (104) giveswhol e-body conservation of linear
and angular momentum.

For the time translation symmetry, the cal culation reduces to the imposition of
the horizontal Euler-Lagrange equation, as in Section 7.3. This then implies the
local infinitesimal equivariance of the discrete Lagrangian, as discussed in Section
3.4, and leads to whole-body conservation of energy.

In the case where there are traction boundary conditions or body forces, the
exact Noether theorem is not satisfied unless the tractions and body forces are zero
in the infinitesimal symmetry directions. Instead we can use (106) to calculate the
change in awhole-body conserved quantity due to the tractions.

9. Summary

We have described a class of asynchronous variational integrators (AV1) for
finite-element nonlinear dynamics. The AVIs are characterized by the following
distinguishing attributes: (i) The algorithms permit the selection of independent
time steps in each element, and the loca time steps need not bear an integral
relation to each other; (ii) the algorithms derive from a spacetime form of adiscrete
version of Hamilton’s principle. As a consequence of thisvariational structure, the
algorithms conserve local energy and momenta exactly, subject to solvability of
the local time steps. Numerical tests reveal that, even when local energy balance
is not enforced exactly, the global and local energy behavior of the AVIsis quite
remarkable, a property which can probably be traced to the multisymplectic nature
of the algorithm. Notably, AVIs alow for asynchronous time stepping yet still
preserve the basic structures of mechanicsin the algorithm.

In addition, the excellent performance exhibited by AVIs in two- and three-
dimensional elastodynamics is enhanced by the potential computational savings
for problems with localized singularities, or soft and stiff regions.



A.LEw, J. E. MARSDEN, M. ORrRTIZ & M. WEST

In closing, we point out that the AVI methodology is not restricted to finite el-
ement calculations. Indeed, AVIs are applicable to any dynamical systemin which
the Lagrangian is expressible as a sum of component sub-Lagrangians. A case
in point concerns molecular dynamics based on empirical potentials such as the
embedded atom method, for which the total energy of the system is the sum of
atom-by-atom contributions. For systems of thistype, atreatment entirely identical
to that described in this article permits updating each subsystem asynchronously
with a frequency dictated by the subsystem’s natural timescale. In this manner,
AVIs provide a theoretically sound and computationally efficient basis for mul-
tiscale analysis of general dynamical systems in the time domain. In particular,
the variational structure of the algorithms ensures proper globa balance of con-
served quantities for the entire system, as well as local detailed balance between
the subsystems.

Acknowledgements. Support from NSF/DARPA through the OPAAL grant is gratefully ac-
knowledged. J. MarspEN and M. WEsT were partially supported by NSF/KDI grant ATM-
9873133 and NSF/ITR grant ACI-0204932 as well. We are grateful to JouN BALL, STUART
ANTMAN, Tom HUGHES, STEFAN MULLER, FEHMI CIRAKI, STEVE SHKOLLER, COURO KANE,
ANNA PANDOLFI, MELVIN LEOK and RazvaN FETEcAU for helpful discussions and sugges-
tions.

References

R. ABRAHAM, J. E. MARSDEN & T. RaTiu [1988], Manifolds, Tensor Analysis, and
Applications, 2nd ed., Springer-Verlag.

S.S. ANTMAN [1995], Nonlinear Problems of Elasticity, Springer-Verlag.

J.M. Arms, J. E. MARSDEN & V. MonNcrier [1982], The structure of the space
solutions of Einstein’sequations: 11 Several Killing fields and the Einstein-Y ang-
Mills equations, Ann. Physics, 144, 81-106.

T. BELYTscHKoO [1981], Partitioned and adaptive algorithms for explicit time inte-
gration. In W. WunDERLICH, E. STEIN & K.-J. BATHE, editors, Nonlinear Finite
Element Analysisin Sructural Mechanics, 572-584. Springer-Verlag.

T. BELYTSCHKO & R. MULLEN [1976], Mesh partitions of explicit-implicit time
integrators. InK.-J. BATHE, J. T. ODEN & W. WUNDERLICH, editors, Formulations
and Computational Algorithmsin Finite Element Analysis, 673-690. MIT Press.

T.J. Bripges [1997], Multi-symplectic structures and wave propagation. Math.
Proc. Camb. Phil. Soc., 121, 147-190.

T.J. BRIDGES& S. REIcH [1999], Multi-symplectic integrators. numerical schemes
for Hamiltonian PDEs that conserve symplecticity. Phys. Lett. A, 284, 184-193.

A.E. FISCHER, J. E. MARSDEN & V. MonNcriIer [1980], The structure of the space
of solutions of Einstein’s equations, I: One Killing field, Ann. Inst. H. Poincaré,
33, 147-194.

Z. GE & J.E. MARsDEN [1988], Lie—Poisson integrators and Lie—Poisson Hamil-
ton—Jacobi theory, Phys. Lett. A, 133, 134-139.

0. GonzALEZ [1996], Time integration and discrete Hamiltonian systems, J. Non-
linear i, 6, 449-468.



Asynchronous Variational Integrators

0. GonzAaLEZ & J.C. Smmo [1996], On the stability of symplectic and energy-
momentum a gorithmsfor non-linear Hamiltonian systemswith symmetry, Com-
puter Methods In Applied Mechanics And Engineering, 134, 197-222.

M.J. GOTAY, J. ISENBERG, J. E. MARSDEN & R. MONTGOMERY [1997], Momentum
mapsand classical relativisticfields, Part |: Covariant field theory. (Unpublished.)

H. GRUBMULLER, H. HELLER, A. WINDEMUTH & K. SCHULTEN [1996], Generalized
Verlet algorithm for efficient molecular dynamics simulations with long-range
interactions, Mol. Sm., 6 (1991), 121-142.

M. GurTIN [2000], Configurational Forces as Basic Concepts in Continuum
Physics, Springer-Verlag.

E. HARER & C. LusicH [1997], The life-span of backward error analysis for nu-
merical integrators, Numerische Mathematik, 76, 441-462.

T.J.R. HugHEs & W. K. Liu [1978], Implicit-explicit finite elements in transient
analysis: Stability theory, Journal of Applied Mechanics, 78, 371-374.

T.J.R. HUGHESs, K. S. P1sTER & R.L. TayLor [1979], Implicit-explicit finite ele-
mentsin nonlinear transient analysis, Computer Methods In Applied Mechanics
And Engineering, 17/18, 159-182.

T.J.R. HuGHEs [1987] The Finite Element Method : Linear Satic and Dynamic
Finite Element Analysis. Prentice-Hall, Englewood Cliffs, N.J..

C. Jonnson [1987], Numerical Solution of Partial Differential Equations by the
Finite Element Method, Cambridge University Press, New York.

C. KaNE, J. E. MARSDEN& M. OrTIZ [1999], Symplectic energy-momentum inte-
grators, J. Math. Phys., 40, 3353-3371.

C. KANE, J. E. MARSDEN, M. OrTiZ & M. WEsT [2000], Variational integrators and
the Newmark algorithm for conservative and dissipative mechanical systems,
Int. J. Num. Math. Eng., 49, 1295-1325.

D. KnuTth [1998], The art of computer programming, Addison-Wesley.

J.E. MARsDEN & T.J. R. HuGgHES [1994], Mathematical Foundations of Elasticity.
Prentice Hall, 1983. Reprinted by Dover Publications, NY, 1994.

J.E. MARSDEN, G. W. PATRICK & S. SHKOLLER [1998], Multisymplectic geometry,
variational integrators and nonlinear PDEs, Comm. Math. Phys. 199, 351-395.

J. E.MARSDEN, S. PEKARSKY, S. SHKOLLER & M. WEsT [2001], Variational methods,
multisymplectic geometry and continuum mechanics, J. Geometry and Physics,
38, 253-284.

J.E. MARSDEN & S. SHKOLLER [1999], Multisymplectic geometry, covariant
Hamiltonians and water waves, Math. Proc. Camb. Phil. Soc. 125, 553-575.
J.E. MARSDEN & M. WEsT [2001], Discrete variational mechanics and variational

integrators, Acta Numerica, 10, 357-514.

M.O. NeaL & T. BELyTscHkO [1989], Explicit-explicit subcycling with non-
integer time step ratiosfor structural dynamic systems, Computers & Structures,
6, 871-880.

S. ReicH [1999], Backward error analysis for numerical integrators, S AM Journal
on Numerical Analysis, 36, 1549-1570.

J. C. Simo, N. TarNow & K. K. WoNG [1992], Exact energy-momentum conserving
algorithms and symplectic schemes for nonlinear dynamics, Comp. Meth. Appl.
Mech. Eng., 100, 63-116.



A.LEw, J. E. MARSDEN, M. ORrRTIZ & M. WEST

P. SMoLINSKI & Y.-S. Wu [1998], An implicit multi-time step integration method
for structural dynamics problems, Computational Mechanics, 22, 337-343.

C. TRUESDELL & W. NoLL [1965], The Non-Linear Field Theories of Mechanics,
Handbuch der Physik 111/3, Berlin, ed. S. FLUGGE, Springer-Verlag.

M. TUCKERMAN, B.J. BERNE & G.J. MARTYNA [1992], Reversible multiple time
scale molecular dynamics, J. Chem. Phys., 97, 1990-2001.

Graduate Aeronautical Laboratories 105-50
Cadlifornia Institute of Technology
Pasadena, CA 91125, USA
email: lewa@aero.caltech.edu
email: ortiz@aero.caltech.edu

and

Control and Dynamical Systems 107-81
CaliforniaInstitute of Technology
Pasadena, CA 91125, USA
email: mwest@cds.caltech.edu
email: marsden@cds.caltech.edu

(Accepted April 1, 2002)
Published online February 28, 2003 —© Springer-Verlag (2003)



