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Abstract

Recent theoretical work has developed the Hamilton’s-principle analog of
Lie-Poisson Hamiltonian systems defined on semidirect products. The main
theoretical results are twofold:

1. Euler–Poincaré equations (the Lagrangian analog of Lie-Poisson Hamil-
tonian equations) are derived for a parameter dependent Lagrangian
from a general variational principle of Lagrange d’Alembert type in
which variations are constrained;

2. an abstract Kelvin–Noether theorem is derived for such systems.

By imposing suitable constraints on the variations and by using invariance
properties of the Lagrangian, as one does for the Euler equations for the rigid
body and ideal fluids, we cast several standard Eulerian models of geophysical
fluid dynamics (GFD) at various levels of approximation into Euler-Poincaré
form and discuss their corresponding Kelvin–Noether theorems and potential
vorticity conservation laws. The various levels of GFD approximation are re-
lated by substituting a sequence of velocity decompositions and asymptotic
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expansions into Hamilton’s principle for the Euler equations of a rotating
stratified ideal incompressible fluid. We emphasize that the shared proper-
ties of this sequence of approximate ideal GFD models follow directly from
their Euler-Poincaré formulations. New modifications of the Euler-Boussinesq
equations and primitive equations are also proposed in which nonlinear dis-
persion adaptively filters high wavenumbers and thereby enhances stability
and regularity without compromising either low wavenumber behavior or geo-
physical balances.
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1 Introduction

The Eulerian formulation of the action principle for an ideal fluid casts it
into a form that is amenable to asymptotic expansions and thereby facilitates
the creation of approximate theories. This Eulerian action principle is part
of the general procedure of the reduction theory of Lagrangian systems, in-
cluding the theory of the Euler–Poincaré equations (the Lagrangian analog
of Lie-Poisson Hamiltonian equations). This setting provides a shared struc-
ture for many problems in GFD, with several benefits, both immediate (such
as a systematic approach to hierarchical modeling and versions of Kelvin’s
theorem for these models) and longer term (e.g., structured multisymplectic
integration algorithms).

This paper will be concerned with Euler–Poincaré equations arising from a
family of action principles for a sequence of standard GFD models in purely
Eulerian variables at various levels of approximation. We use the method
of Hamilton’s principle asymptotics in this setting. In particular, the ac-
tion principles of these models are related by different levels of truncation
of asymptotic expansions and velocity-pressure decompositions in Hamilton’s
principle for the unapproximated Euler equations of rotating stratified ideal
incompressible fluid dynamics. This sequence of GFD models includes the
Euler equations themselves, followed by their approximations, namely: Euler-
Boussinesq equations (EB), primitive equations (PE), Hamiltonian balance
equations (HBE), and generalized Lagrangian mean (GLM) equations. We
also relate our approach to the rotating shallow water equations (RSW),
semigeostrophic equations (SG), and quasigeostrophic equations (QG). Thus,
asymptotic expansions and velocity-pressure decompositions of Hamilton’s
principle for the Euler equations describing the motion of a rotating strat-
ified ideal incompressible fluid will be used to cast the standard EB, PE,
HBE and GLM models of GFD into Euler-Poincaré form and thereby unify
these descriptions and their properties at various levels of approximation. See
Tables 4.1 and 4.2 for summaries.

These GFD models have a long history dating back at least to Rossby
[1940], Charney [1948] and Eliassen [1949], who used them, in their sim-
plest forms (particularly the quasigeostrophic and semigeostrophic approxi-
mations), to study structure formation on oceanic and atmospheric mesoscales.
The history of the efforts to establish the proper equations for synoptic mo-
tions is summarized by Pedlosky [1987] and Cushman-Roisin [1994]; see also
Phillips [1963]. One may consult, for example, Salmon [1983, 1985, 1988],
Holm, Marsden, Ratiu and Weinstein [1985], Abarbanel, Holm, Marsden,
and Ratiu [1986], and Holm [1996] for recent applications of the approach of
Hamilton’s principle asymptotics to derive approximate equations in GFD.

Well before Rossby, Charney, and Eliassen, at the end of the 19th century,
Poincaré [1901] investigated the formulation of the Euler equations for the
dynamics of a rigid body in Lie algebraic form. Poincaré’s formulation of
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the Euler equations for a rigid body carries over naturally to the dynamics of
ideal continua, as shown by Holm, Marsden and Ratiu [1998a], and Poincaré’s
ideas will form the basis of the present study. Some of Poincaré’s other key
papers in this area are listed in the bibliography.

Starting from the action principle for the Euler equations, the present
work first expresses the various GFD equations in the Euler-Poincaré form for
continua due to Holm, Marsden and Ratiu [1998a] and discusses the properties
acquired by casting the GFD equations into this form. The main property so
obtained is the Kelvin–Noether theorem for the theory. This, in turn, leads to
conservation of potential vorticity on fluid parcels. Domain-integrated energy
is also conserved and the relation of the Euler–Poincaré equations to the
Lie-Poisson Hamiltonian formulation of the dynamics is given by a Legendre
transformation at the level of the Lie algebra of divergenceless vector fields.

The methods of this paper are based on reduction of variational principles;
that is, on Lagrangian reduction (see Cendra et al. [1986, 1987] and Marsden
and Scheurle [1993a,b]), which is also useful for systems with nonholonomic
constraints. This has been demonstrated in the work of Bloch, Krishnaprasad,
Marsden and Murray [1996], who derived the reduced Lagrange d’Alembert
equations for such nonholonomic systems. Coupled with the methods of the
present paper, these techniques for handling nonholonomic constraints should
also be useful for continuum systems. In addition, it seems likely that the tech-
niques of multisymplectic geometry, associated variational integrators, and
the multisymplectic reduction will be exciting developments for the present
setting; see Marsden, Patrick and Shkoller [1997] for the beginnings of such
a theory.

Organization of the Paper. In §2 we recall from Holm, Marsden and
Ratiu [1998a] the abstract Euler-Poincaré theorem for Lagrangians depend-
ing on parameters along with the associated Kelvin–Noether theorem. These
theorems play a key role in the rest of our analysis. In §3 we discuss their
implications for continuum mechanics and then in §4 we apply them to a se-
quence of models in geophysical fluid dynamics. We begin in §4.1 and §4.2 by
recalling the action principles in the Eulerian description for the Euler equa-
tions and their Euler-Boussinesq approximation, respectively. Then we show
how these standard GFD models satisfy the Euler-Poincaré theorem. These
sections also introduce the scaling regime and small parameters we use in
making asymptotic expansions and velocity-pressure decompositions that are
used in the remaining sections. Next, §4.3 introduces the hydrostatic approxi-
mation into the Euler-Poincaré formulation of the Euler-Boussinesq equations
to yield the corresponding formulation of the primitive equations. Later sec-
tions cast further approximations of the Euler-Boussinesq equations into the
Euler-Poincaré formulation, starting in §4.4 with the Hamiltonian balance
equations and proceeding to the generalized Lagrangian mean (GLM) the-
ory for wave, mean flow interaction (WMFI), due to Andrews and McIntyre
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[1978a,b] in §5. In §6 we use the Euler–Poincaré theorem, including advected
parameters, to formulate a new model of ideal GFD called the EBα model
that includes nonlinear dispersion along with stratification and rotation. The
EBα equations modify the usual Euler-Boussinesq equations by introducing
a length scale, α. The length scale α is interpreted physically in the GLM
setting as the amplitude of the rapidly fluctuating component of the flow. We
derive the Euler–Poincaré equations for the EBα model by making an asymp-
totic expansion of the GLM Lagrangian for WMFI in powers of α and the
Rossby number. Thus, the EBα model is a WMFI turbulence closure model
for a rotating stratified incompressible fluid. In this model, nonlinear disper-
sion (parameterized by α) acts to filter the high wavenumbers (k > 1/α)
and thereby enhances solution stability and regularity without compromising
either low wavenumber behavior (k < 1/α), or geophysical balances. We also
present the corresponding nonlinear dispersive modification of the primitive
equations, called the PEα model. The nonlinear dispersive filtering of high
wavenumber activity in the EBα and PEα models regularizes these equations
and thereby makes them good candidates for long term numerical integration.

2 The Euler–Poincaré Equations, Semidirect

Products, and Kelvin’s Theorem

Here we recall from Holm, Marsden and Ratiu [1998a] the statements of the
Euler–Poincaré equations and their associated Kelvin–Noether theorem. In
the next section, we will discuss these statements in the context of contin-
uum mechanics and then in the following section apply them to a sequence of
models in geophysical fluid dynamics. Although there are several possible per-
mutations of the conventions, we shall state the Euler–Poincaré theorem for
the case of right actions and right invariant Lagrangians, which is appropriate
for fluids and, in particular, for the GFD situation.

2.1 The Euler–Poincaré Equations and Semidirect Prod-
ucts

Assumptions and Notation. We shall begin with the abstract framework
which will be a convenient setting for the several special cases of GFD to
follow.

• Let G be a Lie group and let be its Lie algebra. We consider a vector
space V and assume we have a right representation of G on V . The
group G then acts in a natural way on the right on the dual space V ∗

(the action by g ∈ G on V ∗ is the dual of the action by g−1 on V ). We
denote the action of g on an element v ∈ V by vg and on an element
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a ∈ V ∗ by ag. In general we use this concatenation notation for group
actions. Then G also acts by right translation on TG and hence it acts
on TG × V ∗. We denote the action of a group element g on a point
(vh, a) by (vg, a)g = (vhg, ag).

• Assume we have a Lagrangian L : TG × V ∗ → that is right G–
invariant.

• For each a0 ∈ V ∗, define the Lagrangian La0 : TG → by La0(vg) =
L(vg, a0). Then La0 is right invariant under the lift to TG of the right
action of Ga0 on G, where Ga0 is the isotropy group of a0 (that is, the
subgroup of elements of G that leave the element a0 ∈ V ∗ invariant).

• Right G–invariance of L permits us to define the reduced Lagrangian
through the equation l : × V ∗ → by

l(vgg
−1, ag−1) = L(vg, a).

Conversely, this relation defines for any l : × V ∗ → a right G–
invariant function L : TG× V ∗ → .

• For a curve g(t) ∈ G, let ξ(t) := ġ(t)g(t)−1 and define the curve a(t) =
a0g(t)−1, which is the unique solution of the linear differential equation
with time dependent coefficients ȧ(t) = −a(t)ξ(t) with initial condition
a(0) = a0.

• Let adξ : → be the infinitesimal adjoint operator; that is, the linear
map given by the Lie algebra bracket: adξ(η) = [ξ, η]. Let ad∗ξ : ∗ → ∗

be the dual of the linear transformation adξ.

Theorem 2.1 (Euler–Poincaré reduction.) The following are equivalent:

i Hamilton’s variational principle

δ

∫ t2

t1

La0(g(t), ġ(t))dt = 0 (2.1)

holds, for variations δg(t) of g(t) vanishing at the endpoints.

ii g(t) satisfies the Euler–Lagrange equations for La0 on G.

iii The constrained variational principle

δ

∫ t2

t1

l(ξ(t), a(t))dt = 0 (2.2)

holds on × V ∗, using variations of the form

δξ = η̇ − adξη = η̇ − [ξ, η], δa = −aη, (2.3)

where η(t) ∈ vanishes at the endpoints.
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iv The Euler–Poincaré equations hold on × V ∗

d

dt

δl

δξ
= −ad∗ξ

δl

δξ
+
δl

δa
¦ a. (2.4)

We refer to Holm, Marsden and Ratiu [1998a] for the proof of this in the
abstract setting. We shall see some of the features of this result in the concrete
setting of continuum mechanics shortly.

Important Notation. Following the notational conventions of Holm, Mars-
den and Ratiu [1998a], we let ρv : → V be the linear map given by
ρv(ξ) = vξ (the right action of ξ on v ∈ V ), and let ρ∗v : V ∗ → ∗ be its
dual. For a ∈ V ∗, we write

ρ∗va = v ¦ a ∈ ∗ ,

which is a bilinear operation in v and a. Continuing to use the concatenation
notation for Lie algebra actions, the –action on ∗ and V ∗ is defined to be
minus the dual map of the –action on and V respectively and is denoted
by µξ and aξ for ξ ∈ , µ ∈ ∗, and a ∈ V ∗. The following is a useful way to
write the definition of v ¦ a ∈ ∗: for all v ∈ V , a ∈ V ∗ and ξ ∈ , we have
(note minus sign)

〈v ¦ a , ξ〉 = 〈a , vξ〉 = − 〈aξ, v〉 . (2.5)

The Legendre Transformation. As explained in Marsden and Ratiu
[1994], one normally thinks of passing from Euler–Poincaré equations on a
Lie algebra to Lie–Poisson equations on the dual ∗ by means of the Leg-
endre transformation. In our case, we start with a Lagrangian on × V ∗ and
perform a partial Legendre transformation in the variable ξ only, by writing

µ =
δl

δξ
, h(µ, a) = 〈µ, ξ〉 − l(ξ, a). (2.6)

Therefore, we have the formulae

δh

δµ
= ξ +

〈
µ,
δξ

δµ

〉
−
〈
δl

δξ
,
δξ

δµ

〉
= ξ and

δh

δa
= − δl

δa
. (2.7)

One of the points is that, consistent with the examples, we do not attempt
to use the full Legendre transformation to make Euler–Poincaré equations
on × V correspond to Lie–Poisson equations on the dual space ∗ × V ∗.
In fact, such attempts will fail because in most interesting examples, the full
Legendre transform will be degenerate (the heavy top, compressible fluids,
etc). It is for this reason that we take a partial Legendre transformation. In
this case, our Euler–Poincaré equations on ×V ∗ will correspond to the Lie–
Poisson equations on ∗ × V ∗. We next briefly recall the Hamiltonian setting
on ∗ × V ∗.
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Lie–Poisson Systems on Semidirect Products. Let S = G V be the
semidirect product Lie group for right actions. Explicitly, the conventions for
S are the following: the multiplication has the expression

(g1, v1)(g2, v2) = (g1g2, v2 + v1g2), (2.8)

the identity element is (e, 0), and the inverse is given by (g, v)−1 = (g−1,−vg−1).
The Lie algebra of S is denoted = V and it has the bracket operation
given by

[(ξ1, v1), (ξ2, v2)] = ([ξ1, ξ2], v1ξ2 − v2ξ1). (2.9)

Let ∗ denote the dual of . For a right representation of G on V the (+)
Lie-Poisson bracket of two functions f, k : ∗ → has the expression

{f, k}+(µ, a) =

〈
µ,

[
δf

δµ
,
δk

δµ

]〉
−
〈
a,
δk

δa

δf

δµ
− δf

δa

δk

δµ

〉
, (2.10)

where δf/δµ ∈ , and δf/δa ∈ V are the functional derivatives of f . Using
the diamond notation (2.5), the corresponding Hamiltonian vector field for
h : ∗ → is easily seen to have the expression

Xh(µ, a) = −
(

ad∗δh/δµµ+
δh

δa
¦ a, a δh

δµ

)
. (2.11)

Thus, Hamilton’s equations on the dual of a semidirect product are given by

µ̇ = {µ, h} = − ad∗δh/δµµ−
δh

δa
¦ a , (2.12)

ȧ = {a, h} = − a δh
δµ

. (2.13)

where overdot denotes time derivative. Thus, the partial Legendre transforma-
tion (2.6) maps the Euler–Poincaré equations (2.4), together with the equa-
tions ȧ = −a(t)ξ(t) for a to the Lie–Poisson equations (2.12) and (2.13).

Cautionary Remark. If the vector space V is absent and one has just the
equations

d

dt

δl

δξ
= −ad∗ξ

δl

δξ
(2.14)

for ξ ∈ on a Lie algebra, one speaks of them as the basic Euler–Poincaré
equations. As explained in Holm, Marsden and Ratiu [1998a], the Euler–
Poincaré equations (2.4) are not the basic Euler–Poincaré equations on the
larger semidirect product Lie algebra V ∗. This is a critical difference be-
tween the Lie–Poisson and the Euler–Poincaré cases.
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Advected Parameters. As we shall see in the examples, and as indicated
by the above Euler–Poincaré reduction theorem, the parameters a ∈ V ∗ ac-
quire dynamical meaning under Lagrangian reduction. For the heavy top,
the parameter is the unit vector in the direction of gravity, which becomes a
dynamical variable in the body representation. For stratified incompressible
fluids, the parameters are the buoyancy b and volume D of a fluid element
in the reference configuration, which in the spatial representation become
dynamical variables satisfying the passive scalar advection equation and con-
tinuity equation, respectively.

2.2 The Kelvin–Noether Theorem

In this section, we explain a version of the Noether theorem that holds for
solutions of the Euler–Poincaré equations. Our formulation is motivated and
designed for continuum theories (and hence the name Kelvin–Noether), but
it may be also of interest for finite dimensional mechanical systems. Of course
it is well known that the Kelvin circulation theorem for ideal flow is closely
related to the Noether theorem applied to continua using the particle rela-
belling symmetry group (see, for example, Arnold [1966]).

The Kelvin–Noether Quantity. We start with a Lagrangian La0 depend-
ing on a parameter a0 ∈ V ∗ as above. We introduce a manifold C on which
G acts (on the right, as above) and suppose we have an equivariant map
K : C × V ∗ → ∗∗.

In the case of continuum theories, the space C will be a loop space and
〈K(c, a), µ〉 for c ∈ C and µ ∈ ∗ will be a circulation. This class of examples
also shows why we do not want to identify the double dual ∗∗ with .

Define the Kelvin–Noether quantity I : C × × V ∗ → by

I(c, ξ, a) =

〈
K(c, a),

δl

δξ
(ξ, a)

〉
. (2.15)

Theorem 2.2 (Kelvin–Noether) Fixing c0 ∈ C, let ξ(t), a(t) satisfy the
Euler–Poincaré equations and define g(t) to be the solution of ġ(t) = ξ(t)g(t)
and, say, g(0) = e. Let c(t) = c0g(t)−1 and I(t) = I(c(t), ξ(t), a(t)). Then

d

dt
I(t) =

〈
K(c(t), a(t)),

δl

δa
¦ a
〉
. (2.16)

Proof. First of all, write a(t) = a0g(t)−1 and use equivariance to write I(t)
as follows:

〈
K(c(t), a(t)),

δl

δξ
(ξ(t), a(t))

〉
=

〈
K(c0, a0),

[
δl

δξ
(ξ(t), a(t))

]
g(t)

〉
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The g−1 pulls over to the right side as g (and not g−1) because of our con-
ventions of always using right representations. We now differentiate the right
hand side of this equation. To do so, we use the following well known formula
for differentiating the coadjoint action (see Marsden and Ratiu [1994], §9.3):

d

dt
[µ(t)g(t)] =

[
ad∗ξ(t)µ(t) +

d

dt
µ(t)

]
g(t),

where µ ∈ ∗, and ξ ∈ is given by

ξ(t) = ġ(t)g(t)−1.

Using this and the Euler–Poincaré equations, we get

d

dt
I =

d

dt

〈
K(c0, a0),

[
δl

δξ
(ξ(t), a(t))

]
g(t)

〉

=

〈
K(c0, a0),

d

dt

{[
δl

δξ
(ξ(t), a(t))

]
g(t)

}〉

=

〈
K(c0, a0),

[
ad∗ξ

δl

δξ
− ad∗ξ

δl

δξ
+
δl

δa
¦ a
]
g(t)

〉

=

〈
K(c0, a0),

[
δl

δa
¦ a
]
g(t)

〉

=

〈
K(c0, a0)g(t)−1,

[
δl

δa
¦ a
]〉

=

〈
K(c(t), a(t)),

[
δl

δa
¦ a
]〉

where, in the last steps we used the definitions of the coadjoint action, the
Euler–Poincaré equation (2.4) and the equivariance of the map K.

Because the advected terms are absent for the basic Euler–Poincaré equa-
tions, we obtain the following.

Corollary 2.3 For the basic Euler–Poincaré equations, the Kelvin quantity
I(t), defined the same way as above but with I : C × → , is conserved.

3 The Euler–Poincaré Equations in Contin-

uum Mechanics

In this section we will apply the Euler–Poincaré equations to the case of
continuum mechanical systems.
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Vector Fields and Densities. Let D be a bounded domain in n with
smooth boundary ∂D (or, more generally, a smooth compact manifold with
boundary and given volume form or density). We let Diff(D) denote the dif-
feomorphism group of D of an appropriate Sobolev class (for example, as in
Ebin and Marsden [1970]). If the domain D is not compact, then various de-
cay hypotheses at infinity need to be imposed. Under such conditions, Diff(D)
is a smooth infinite dimensional manifold and a topological group relative to
the induced manifold topology. Right translation is smooth but left transla-
tion and inversion are only continuous. Thus, Diff(D) is not literally a Lie
group in the naive sense and so the previous theory must be applied with
care. Nevertheless, if one uses right translations and right representations,
the Euler–Poincaré equations of Theorem 2.1 do make sense, as a direct veri-
fication shows. We shall illustrate such computations, by verifying several key
facts in the proof as we proceed.

Let (D) denote the space of vector fields on D of the same differentiability
class as Diff(D). Formally, this is the right Lie algebra of Diff(D), that is, its
standard left Lie algebra bracket is minus the usual Lie bracket for vector
fields. To distinguish between these brackets, we shall reserve in what follows
the notation [u, w] for the standard Jacobi-Lie bracket of the vector fields
u, w ∈ (D) whereas the notation aduw := −[u, w] denotes the adjoint
action of the left Lie algebra on itself. (The sign conventions will also be clear
in the coordinate expressions.)

We also let (D)∗ denote the geometric dual space of (D), that is,
(D)∗ := Ω1(D)⊗Den(D), the space of one–form densities on D. If α⊗m ∈

Ω1(D)⊗Den(D), the pairing of α⊗m with w ∈ (D) is given by

〈α⊗m,w〉 =

∫

D
α ·wm (3.1)

where α · w denotes the contraction of a one–form with a vector field. For
w ∈ (D) and α ⊗ m ∈ (D)∗, the dual of the adjoint representation is
defined by (note the minus sign)

〈ad∗w(α⊗m),u〉 = −
∫

D
α · [w,u] m

and its expression is

ad∗w(α⊗m) = (£wα + (divmw)α)⊗m = £w(α⊗m) , (3.2)

where divmw is the divergence of w relative to the measure m,, which is
related to the Lie derivative by £wm = (divmw)m. Hence, if w = wi∂/∂xi,
and α = αidx

i, the one–form factor in the preceding formula for ad∗w(α⊗m)
has the coordinate expression

(
wj
∂αi
∂xj

+ αj
∂wj

∂xi
+ (divmw)αi

)
dxi =

(
∂

∂xj
(wjαi) + αj

∂wj

∂xi

)
dxi ,
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the last equality assuming that the divergence is taken relative to the standard
measure m = dnx in n.

Configurations, Motions and Material Velocities. Throughout the
rest of the paper we shall use the following conventions and terminology for
the standard quantities in continuum mechanics. Elements of D represent-
ing the material particles of the system are denoted by X; their coordinates
XA, A = 1, ..., n may thus be regarded as the particle labels. A configura-
tion, which we typically denote by η, is an element of Diff(D). A motion ηt
is a path in Diff(D). The Lagrangian or material velocity U(X, t) of the
continuum along the motion ηt is defined by taking the time derivative of the
motion keeping the particle labels (the reference particles) X fixed:

U(X, t) :=
dηt(X)

dt
:=

∂

∂t

∣∣∣∣
X

ηt(X),

the second equality being a convenient shorthand notation of the time deriva-
tive holding X fixed.

Consistent with this definition of velocity, the tangent space to Diff(D) at
η ∈ Diff(D) is given by

TηDiff(D) = {Uη : D → TD | Uη(X) ∈ Tη(X)D}.

Elements of TηDiff(D) are usually thought of as vector fields on D covering
η. The tangent lift of right and left translations on TDiff(D) by ϕ ∈ Diff(D)
have the expressions

Uηϕ := TηRϕ(Uη) = Uη ◦ ϕ and ϕUη := TηLϕ(Uη) = Tϕ ◦Uη .

Eulerian Velocities. During a motion ηt, the particle labeled by X de-
scribes a path in D whose points x(X, t) := ηt(X) are called the Eulerian
or spatial points of this path. The derivative u(x, t) of this path, keeping
the Eulerian point x fixed, is called the Eulerian or spatial velocity of the
system:

u(x, t) := U(X, t) :=
∂

∂t

∣∣∣∣
x

ηt(X).

Thus, the Eulerian velocity u is a time dependent vector field on D: ut ∈
(D), where ut(x) := u(x, t). We also have the fundamental relationship

Ut = ut ◦ ηt ,

where Ut(X) := U(X, t).

The representation space V ∗ of Diff(D) in continuum mechanics is often
some subspace of (D) ⊗ Den(D), the tensor field densities on D and the
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representation is given by pull back. It is thus a right representation of Diff(D)
on (D)⊗ Den(D). The right action of the Lie algebra (D) on V ∗ is given
by au := £ua, the Lie derivative of the tensor field density a along the vector
field u.

The Lagrangian. The Lagrangian of a continuum mechanical system is a
function L : TDiff(D)×V ∗ → which is right invariant relative to the tangent
lift of right translation of Diff(D) on itself and pull back on the tensor field
densities.

Thus, the Lagrangian L induces a reduced Lagrangian l : (D)× V ∗ →
defined by

l(u, a) = L(u ◦ η, η∗a),

where u ∈ (D) and a ∈ V ∗ ⊂ (D) ⊗ Den(D), and where η∗a denotes the
pull back of a by the diffeomorphism η and u is the Eulerian velocity. The
evolution of a is given by solving the equation

ȧ = −£u a.

The solution of this equation, given the initial condition a0, is a(t) = ϕt∗a0,
where the lower star denotes the push forward operation and ϕt is the flow
of u.

Advected Eulerian Quantities. These are defined in continuum mechan-
ics to be those variables which are Lie transported by the flow of the Eulerian
velocity field. Using this standard terminology, the above equation states that
the tensor field density a (which may include mass density and other Eulerian
quantities) is advected.

As we have discussed, in many examples, V ∗ ⊂ (D) ⊗ Den(D). On a
general manifold, tensors of a given type have natural duals. For example,
symmetric covariant tensors are dual to symmetric contravariant tensor den-
sities, the pairing being given by the integration of the natural contraction
of these tensors. Likewise, k–forms are naturally dual to (n − k)–forms, the
pairing being given by taking the integral of their wedge product.

The operation ¦ between elements of V and V ∗ producing an element of
(D)∗ introduced in equation (2.5) becomes

〈v ¦ a,w〉 =

∫

D
a ·£w v = −

∫

D
v ·£w a , (3.3)

where v · £w a denotes the contraction, as described above, of elements of
V and elements of V ∗. (These operations do not depend on a Riemannian
structure.)
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For a path ηt ∈ Diff(D) let u(x, t) be its Eulerian velocity and consider,
as in the hypotheses of Theorem 2.1 the curve a(t) with initial condition a0

given by the equation

ȧ+ £ua = 0. (3.4)

Let La0(U) := L(U, a0). We can now state Theorem 2.1 in this particular,
but very useful, setting.

Theorem 3.1 (Euler–Poincaré reduction for continua.) For a path ηt
in Diff(D) with Lagrangian velocity U and Eulerian velocity u, the following
are equivalent:

i Hamilton’s variational principle

δ

∫ t2

t1

L (X,Ut(X), a0(X)) dt = 0 (3.5)

holds, for variations δηt vanishing at the endpoints.

ii ηt satisfies the Euler–Lagrange equations for La0 on Diff(D).

iii The constrained variational principle in Eulerian coordinates

δ

∫ t2

t1

l(u, a) dt = 0 (3.6)

holds on (D)× V ∗, using variations of the form

δu =
∂w

∂t
− aduw =

∂w

∂t
+ [u,w], δa = −£w a, (3.7)

where wt = δηt ◦ η−1
t vanishes at the endpoints.

iv The Euler–Poincaré equations for continua

∂

∂t

δl

δu
= − ad∗u

δl

δu
+
δl

δa
¦ a = −£u

δl

δu
+
δl

δa
¦ a , (3.8)

hold, where the ¦ operation given by (3.2) needs to be determined on a
case by case basis, depending on the nature of the tensor a. (Remember
that δl/δu is a one–form density.)
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Remarks.

1. The following string of equalities shows directly that iii is equivalent to
iv:

0 = δ

∫ t2

t1

l(u, a)dt =

∫ t2

t1

(
δl

δu
· δu +

δl

δa
· δa
)
dt

=

∫ t2

t1

[
δl

δu
·
(
∂w

∂t
− adu w

)
− δl

δa
·£w a

]
dt

=

∫ t2

t1

w ·
[
− ∂

∂t

δl

δu
− ad∗u

δl

δu
+
δl

δa
¦ a
]
dt . (3.9)

2. Similarly, one can deduce the form (3.7) of the variations in the con-
strained variational principle (3.6) by a direct calculation, as follows.
One writes the basic relation between the spatial and material velocities,
namely u(x, t) = η̇(η−1

t (x), t). One then takes the variation of this equa-
tion with respect to η and uses the definition w(x, t) = δη((η−1

t (x), t)
together with a calculation of its time derivative. Of course, one can
also do this calculation using the inverse map η−1

t instead of η as the
basic variable, see Holm, Marsden, and Ratiu [1986], Holm [1996].

3. The preceding sort of calculation for δu in fluid mechanics and the
interpretation of this restriction on the form of the variations as the
so-called Lin constraints is due to Bretherton [1970]. The variational
form (3.7) for the ‘basic’ Euler–Poincaré equations (i.e., without the
advected parameters a) is due to Marsden and Scheurle [1993a] and
Bloch, Krishnaprasad, Marsden and Ratiu [1996]. For the full Euler–
Poincaré case, this form is due to Holm, Marsden and Ratiu [1998a] and
for the general Lagrangian reduction case, to Cendra, Holm, Marsden
and Ratiu [1997] and Cendra, Marsden and Ratiu [1997]. These ideas
were used for Maxwell-Vlasov plasmas by Cendra, Holm, Hoyle and
Marsden [1997].

4. The coordinate expressions for (δl/δa) ¦ a required to complete the
equations of motion for GFD models are given in the next section for
a0(X) in three dimensions.

5. As with the general theory, variations of the action in the advected ten-
sor quantities contribute to the equations of motion which follow from
Hamilton’s principle. At the level of the action l for the Euler-Poincaré
equations, the Legendre transform in the variable u alone is often non-
singular, and when it is, it produces the Hamiltonian formulation of
Eulerian fluid motions with a Lie-Poisson bracket defined on the dual
of the semidirect product algebra of vector fields acting amongst them-
selves by Lie bracket and on tensor fields and differential forms by the
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Lie derivative. This is a special instance of the more general facts for
Lie algebras that was discussed earlier.

The Inverse Map and the Tensor Fields a for Fluids. In the case of
fluids in the Lagrangian picture, the flow of the fluid is a diffeomorphism which
takes a fluid parcel along a path from its initial position X, in a “reference
configuration” to its current position x in the “container”, i.e., in the Eulerian
domain of flow. As we have described, this forward map is denoted by
η : X 7→ x. The inverse map η−1 : x 7→ X provides the map assigning
the Lagrangian labels to a given spatial point. Interpreted as passive scalars,
these Lagrangian labels are simply advected with the fluid flow, Ẋ = 0.
In the Lagrangian picture, a tensor density in the reference configuration
a0(X) (satisfying ȧ0(X) = 0) consists of invariant tensor functions of the
initial reference positions and their differentials. These tensor functions are
parameters of the initial fluid reference configuration (e.g., the initial density
distribution, which is an invariant n-form).

When viewed in the Eulerian picture as

at(x) := (ηt∗a0)(x) = (η−1∗
t a0)(x),

i.e.,

a0(X) := (η∗t at)(X) = (η−1
t∗ a0)(X),

the time invariant tensor density a0(X) in the reference configuration acquires
advective dynamics in the Eulerian picture, namely

ȧ0(X) =

(
∂

∂t
+ £u

)
a(x, t) = 0,

where £u denotes Lie derivative with respect to the Eulerian velocity field
u(x, t). This relation results directly from the well known Lie derivative
formula for tensor fields. (See, for example, Abraham, Marsden and Ratiu
[1988].)

Mapping the time invariant quantity a0 (a tensor density function of X)
to the time varying quantity at (a tensor density function of x) as explained
above is a special case of the way we advect quantities in V ∗ in the general
theory. Specifically, we can view this advection of at as being the fluid ana-
logue of the advection of the unit vector along the direction of gravity (a
spatially fixed quantity) by means of the body rotation vector in the heavy
top example.

Consistent with the fact that the heavy top is a left invariant system while
continuum theories are right invariant, the advected tensor density at is a
spatial quantity, while the advected direction of gravity is a body quantity. If
we were to take the inverse map η−1 as the basic group variable, rather than
the map η, then continuum theories would also become left invariant.
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The Continuity Equation for the Mass Density. We will need to make
an additional assumption on our continuum theory. Namely, we assume that
amongst the tensor densities being advected, there is a special one, namely the
mass density. This of course is a tensor density that occurs in all continuum
theories. We denote this density by ρdnx and it is advected according to the
standard principles discussed above. Thus, ρ satisfies the usual continuity
equation:

∂

∂t
ρ+ div(ρu) = 0.

In the Lagrangian picture we have ρdnx = ρ0(X)dnX, where ρ0(X) is the
mass density in the reference configuration. It will also be convenient in the
continuum examples below to define Lagrangian mass coordinates `(X) sat-
isfying ρdnx = dn` with ˙̀ = 0. (When using Lagrangian mass coordinates,
we shall denote the density ρ as D.)

The Kelvin–Noether Theorem. Let

C :=
{
γ : S1 → D

∣∣ γ continuous
}

be the space of continuous loops in D and let the group Diff(D) act on C on
the left by (η, γ) ∈ Diff(D)× C 7→ ηγ ∈ C, where ηγ = η ◦ γ.

Next we shall define the circulation map K : C × V ∗ → (D)∗∗. Given
a one form density α ∈ ∗ we can form a one form (no longer a density) by
dividing it by the mass density ρ; we denote the result just by α/ρ. We let K
then be defined by

〈K(γ, a), α〉 =

∮

γ

α

ρ
. (3.10)

The expression in this definition is called the circulation of the one–form
α/ρ around the loop γ.

This map is equivariant in the sense that

〈K(η ◦ γ, η∗a), η∗α〉 = 〈K(γ, a), α〉

for any η ∈ Diff(D). This is proved using the definitions and the change of
variables formula.

Given the Lagrangian l : (D)× V ∗ → , the Kelvin–Noether quantity is
given by (2.15) which in this case becomes

I(γt,u, a) =

∮

γt

1

ρ

δl

δu
. (3.11)

With these definitions of K and I, the statement of Theorem 2.2 becomes the
classical Kelvin circulation theorem.
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Theorem 3.2 (Kelvin Circulation Theorem.) Assume that u(x, t) sat-
isfies the Euler–Poincaré equations for continua (3.8):

∂

∂t

(
δl

δu

)
= −£u

(
δl

δu

)
+
δl

δa
¦ a

and a satisfies

∂a

∂t
+ £ua = 0.

Let ηt be the flow of the Eulerian velocity field u, that is, ut = (dηt/dt) ◦ η−1
t .

Define γt := ηt ◦ γ0 and I(t) := I(γt,ut, at). Then

d

dt
I(t) =

∮

γt

1

ρ

δl

δa
¦ a . (3.12)

In this statement, we use a subscript t to emphasise that the operations are
done at a particular t and to avoid having to write the other arguments, as in
at(x) = a(x, t); we omit the arguments from the notation when convenient.
Due to the importance of this theorem we shall give here a separate proof
tailored for the case of continuum mechanical systems.

Proof. First we change variables in the expression for I(t):

I(t) =

∮

γt

1

ρt

δl

δu
=

∮

γ0

η∗t

[
1

ρt

δl

δu

]
=

∮

γ0

1

ρ0

η∗t

[
δl

δu

]
.

Next, we use the Lie derivative formula, namely

d

dt
(η∗tαt) = η∗t

(
∂

∂t
αt + £uαt

)
,

applied to a one–form density αt. This formula gives

d

dt
I(t) =

d

dt

∮

γ0

1

ρ0

η∗t

[
δl

δu

]

=

∮

γ0

1

ρ0

d

dt

(
η∗t

[
δl

δu

])

=

∮

γ0

1

ρ0

η∗t

[
∂

∂t

(
δl

δu

)
+ £u

(
δl

δu

)]
.

By the Euler–Poincaré equations (3.8), this becomes

d

dt
I(t) =

∮

γ0

1

ρ0

η∗t

[
δl

δa
¦ a
]

=

∮

γt

1

ρt

[
δl

δa
¦ a
]
,

again by the change of variables formula.

Corollary 3.3 Since the last expression holds for every loop γt, we may write
it as (

∂

∂t
+ £u

)
1

ρ

δl

δu
=

1

ρ

δl

δa
¦ a . (3.13)
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4 Applications of the Euler–Poincaré Theo-

rem in GFD

Variational Formulae in Three Dimensions. We compute explicit for-
mulae for the variations δa in the cases that the set of tensors a is drawn from
a set of scalar fields and densities on 3. We shall denote this symbolically
by writing

a ∈ {b,D d3x} . (4.1)

We have seen that invariance of the set a in the Lagrangian picture under the
dynamics of u implies in the Eulerian picture that

(
∂

∂t
+ £u

)
a = 0 ,

where £u denotes Lie derivative with respect to the velocity vector field u.
Hence, for a fluid dynamical action =

∫
dt l(u; b,D), the advected variables

{b,D} satisfy the following Lie-derivative relations,
(
∂

∂t
+ £u

)
b = 0, or

∂b

∂t
= − u · ∇ b , (4.2)

(
∂

∂t
+ £u

)
Dd3x = 0, or

∂D

∂t
= − ∇ · (Du) . (4.3)

In fluid dynamical applications, the advected Eulerian variables b and D
represent the buoyancy b (or specific entropy, for the compressible case) and
volume element (or mass density) D, respectively. According to Theorem 3.1,
equation (3.6), the variations of the tensor functions a at fixed x and t are
also given by Lie derivatives, namely δa = −£w a, or

δb = −£w b = −w · ∇ b ,
δD d3x = −£w (Dd3x) = −∇ · (Dw) d3x . (4.4)

Hence, Hamilton’s principle with this dependence yields

0 = δ

∫
dt l(u; b,D)

=

∫
dt

[
δl

δu
· δu +

δl

δb
δb+

δl

δD
δD

]

=

∫
dt

[
δl

δu
·
(∂w

∂t
− adu w

)
− δl

δb
w · ∇ b− δl

δD

(
∇ · (Dw)

)]

=

∫
dt w ·

[
− ∂

∂t

δl

δu
− ad∗u

δl

δu
− δl

δb
∇ b+D ∇ δl

δD

]

= −
∫
dt w ·

[( ∂
∂t

+ £u

) δl
δu

+
δl

δb
∇ b−D ∇ δl

δD

]
, (4.5)
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where we have consistently dropped boundary terms arising from integrations
by parts, by invoking natural boundary conditions. Specifically, we impose
n̂ ·w = 0 on the boundary, where n̂ is the boundary’s outward unit normal
vector.

The Euler–Poincaré equations for continua (3.8) may now be summarized
for advected Eulerian variables a in the set (4.1). We adopt the notational
convention of the circulation map K in equation (3.10) that a one form density
can be made into a one form (no longer a density) by dividing it by the
mass density D and use the Lie-derivative relation for the continuity equation
(∂/∂t+£u)Dd3x = 0. Then, the Euclidean components of the Euler–Poincaré
equations for continua in equation (4.5) are expressed in Kelvin theorem form
(3.13) with a slight abuse of notation as

( ∂
∂t

+ £u

)( 1

D

δl

δu
· dx

)
+

1

D

δl

δb
∇b · dx − ∇

( δl
δD

)
· dx = 0 , (4.6)

in which the variational derivatives of the Lagrangian l are to be computed ac-
cording to the usual physical conventions, i.e., as Fréchet derivatives. Formula
(4.6) is the Kelvin–Noether form of the equation of motion for ideal continua.
Hence, we have the explicit Kelvin theorem expression, cf. equations (3.11)
and (3.12),

d

dt

∮

γt(u)

1

D

δl

δu
· dx = −

∮

γt(u)

1

D

δl

δb
∇b · dx , (4.7)

where the curve γt(u) moves with the fluid velocity u. Then, by Stokes’ the-
orem, the Euler equations generate circulation of ( 1

D
δl
δu

) whenever ∇b and
∇( 1

D
δl
δb

) are not collinear. The corresponding conservation of potential vortic-
ity q on fluid parcels is given by

∂q

∂t
+ u · ∇q = 0 , where q =

1

D
∇b · curl

(
1

D

δl

δu

)
. (4.8)

Remark on Lagrangian Mass Coordinates. An alternative way to treat
Hamilton’s principle for an action =

∫
dt l(u; b,D) is to perform variations

at fixed x and t of the inverse maps x→ `, described by the Lagrangian mass
coordinate functions `A(x, t), A = 1, 2, . . . , n, which determine u, b and D by
the formulae (in which one sums on repeated indices)

∂`A

∂t
= −uiDA

i , b = b(`A) , DA
i =

∂`A

∂xi
, D = det(DA

i ) . (4.9)

As discussed above, the relation of mass coordinates ` to the usual Lagrangian
coordinates X is given by a simple change of variables in the fluid reference
configuration to make ρ0(X)dnX = dn`. Variation of an action of the form
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=
∫
dt l(u, b, D) with respect to `A with p imposing volume preservation

then yields (Holm, Marsden, and Ratiu [1986], Holm [1996]),

δ =

∫
dt

∫
dnx

{
D(D−1)iAδ`

A
[ d
dt

1

D

δl

δui
+

1

D

δl

δuj
uj,i

+
1

D

δl

δb
b,i −

( δl
δD

)
,i

]
− δp(D − 1)

}
, (4.10)

where d/dt = ∂/∂t + u · ∇ is the material derivative and we again invoke
natural boundary conditions (n̂ · u = 0 on the boundary) when integrat-
ing by parts. Hence, the vanishing of the coefficient of δ`A in the variational
formula (4.10) recovers the Euler–Poincaré equations for continua (3.8) ex-
pressed in Kelvin theorem form (3.13) or (4.7), by stationarity of the action

=
∫
dt l(u; b,D) with respect to variations of the Lagrangian mass coor-

dinates `A(x, t). In vector notation, these equations are

d

dt

1

D

δl

δu
+

1

D

δl

δuj
∇uj +

1

D

δl

δb
∇b−∇ δl

δD
= 0, (4.11)

or, in three dimensions,

∂

∂t

( 1

D

δl

δu

)
− u× curl

( 1

D

δl

δu

)
+ ∇

(
u · 1

D

δl

δu
− δl

δD

)
+

1

D

δl

δb
∇b = 0 .

(4.12)

In writing the last equation, we have used the fundamental vector identity of
fluid dynamics,

(b · ∇)a + aj∇bj = − b× (∇× a) +∇(b · a) , (4.13)

for any three dimensional vectors a and b with, in this case, a = ( 1
D
δl
δu

) and
b = u. Taking the curl of equation (4.12) and using advection of the buoy-
ancy b yields conservation of potential vorticity on fluid parcels as given in
equation (4.8). For incompressible flows D = 1 in equation (4.8). The Eu-
clidean component formulae (4.11), (4.12) and (4.8) are especially convenient
for direct calculations of motion equations in geophysical fluid dynamics, to
which we turn our attention next.

4.1 Euler’s Equations for a Rotating Stratified Ideal
Incompressible Fluid

The Lagrangian. In the Eulerian velocity representation, we consider Hamil-
ton’s principle for fluid motion in an three dimensional domain with action
functional =

∫
dt l and Lagrangian l(u, b, D) given by

l =

∫
d 3x ρ0D(1 + b)

(1

2
|u|2 + u ·R(x)− gz

)
− p(D − 1) , (4.14)
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where ρtot = ρ0D(1 + b) is the total mass density, ρ0 is a dimensional con-
stant and R is a given function of x. This Lagrangian produces the following
variations at fixed x and t

1

D

δl

δu
= ρ0(1 + b)(u + R) ,

δl

δb
= ρ0D

(1

2
|u|2 + u ·R− gz

)
,

δl

δD
= ρ0(1 + b)

(1

2
|u|2 + u ·R− gz

)
− p , δl

δp
= − (D − 1) . (4.15)

Hence, from the Euclidean component formula (4.11) for Hamilton principles
of this type and the fundamental vector identity (4.13), we find the motion
equation for an Euler fluid in three dimensions,

du

dt
− u× curl R + gẑ +

1

ρ0(1 + b)
∇p = 0 , (4.16)

where curl R = 2Ω(x) is the Coriolis parameter (i.e., twice the local angu-
lar rotation frequency). In writing this equation, we have used advection of
buoyancy,

∂b

∂t
+ u · ∇b = 0,

from equation (4.2).

The Kelvin–Noether Theorem. From equation (4.7), the Kelvin–Noether
circulation theorem corresponding to the motion equation (4.16) for an ideal
incompressible stratified fluid in three dimensions is,

d

dt

∮

γt(u)

(u + R) · dx = −
∮

γt(u)

1

ρ0(1 + b)
∇p · dx , (4.17)

where the curve γt(u) moves with the fluid velocity u. By Stokes’ theorem,
the Euler equations generate circulation of (u + R) around γt(u) whenever
the gradients of bouyancy and pressure are not collinear. Using advection of
buoyancy b, one finds conservation of potential vorticity qEul on fluid parcels,
cf. equation (4.8),

∂qEul

∂t
+ u · ∇qEul = 0 , where qEul = ∇b · curl (u + R) . (4.18)

The constraint D = 1 (volume preservation) is imposed by varying p in
Hamilton’s principle, according to equation (4.15). Incompressibility then fol-
lows from substituting D = 1 into the Lie-derivative relation (4.3) for D,
which gives ∇ · u = 0. Upon taking the divergence of the motion equation
(4.16) and requiring incompressibility to be preserved in time, one finds an
elliptic equation for the pressure p with a Neumann boundary condition ob-
tained from the normal component of the motion equation (4.16) evaluated
on the boundary.
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4.2 Euler-Boussinesq Equations

The Lagrangian. The Lagrangian (4.14) for the Euler fluid motion nondi-
mensionalizes as follows, in terms of units of L for horizontal distance, B0 for
vertical depth, U0 for horizontal velocity, B0U0/L for vertical velocity, f0 for
Coriolis parameter, ρ0 for density and ρ0f0LU0 for pressure:

l =

∫
d 3x D(1 + b)

( ε
2
u3 · v3 + u ·R(x)− z

εF
)
− p(D − 1) . (4.19)

Here we take R(x) to be horizontal and independent of the vertical coordinate,
so curl R = f(x)ẑ. In this nondimensional notation, three-dimensional vectors
and gradient operators have subscript 3, while horizontal vectors and gradient
operators are left unadorned. Thus, we denote, in three dimensional Euclidean
space,

x3 = (x, y, z), x = (x, y, 0),

u3 = (u, v, w), u = (u, v, 0),

∇3 =

(
∂

∂x
,
∂

∂y
,
∂

∂z

)
, ∇ =

(
∂

∂x
,
∂

∂y
, 0

)
,

d

dt
=

∂

∂t
+ u3 · ∇3 =

∂

∂t
+ u · ∇+ w

∂

∂z
, (4.20)

and ẑ is the unit vector in the vertical z direction. For notational convenience,
also we define two nondimensional velocities

u3 = (u, v, w), and v3 = (u, v, σ2w) , (4.21)

as well as three nondimensional parameters,

ε =
U0

f0L
, σ =

B0

L
, F =

f 2
0L

2

gB0

, (4.22)

corresponding respectively to Rossby number, aspect ratio and (squared)
rotational Froude number. Typically, the Rossby number and the aspect
ratio are small, ε, σ ¿ 1, while the rotational Froude number is of order unity
in atmospheric and oceanic dynamics for L at synoptic scales and larger. The
nondimensional Euler fluid equations corresponding to the Lagrangian
l in equation (4.19) are obtained from the Euler–Poincaré equations (4.11) or
(4.12) with u→ u3 and ∇ → ∇3. Namely,

ε
dv3

dt
− u× curl R +

1

εF ẑ +
1

(1 + b)
∇3 p = 0 . (4.23)

Clearly, the leading order balances in these equations are hydrostatic in the
vertical and geostrophic in the horizontal direction. In this notation, the
Kelvin–Noether circulation theorem (4.7) for the Euler fluid becomes

d

dt

∮

γt(u3)

(εv3 + R) · dx3 = −
∮

γt(u3)

1

ρ0(1 + b)
∇3p · dx3 , (4.24)
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Likewise, conservation of nondimensional potential vorticity qEul on fluid
parcels is given by, cf. equation (4.18),

∂qEul

∂t
+ u3 · ∇3qEul = 0 , where qEul = ∇3b · ∇3 × (εv3 + R) . (4.25)

Hamilton’s Principle Asymptotics. For sufficiently small buoyancy, b =
o(ε), we define

p ′ = p+
z

εF and b ′ =
b

εF ,

and expand the Lagrangian (4.19) in powers of ε as

lEB =

∫
dt

∫
d 3x D

( ε
2
u3 · v3 + u ·R(x)− b ′z

)
− p′(D − 1) + o(ε) . (4.26)

Upon dropping the order o(ε) term in the Lagrangian lEB the corresponding
Euler–Poincaré equation gives the Euler-Boussinesq equation for fluid
motion in three dimensions, namely,

ε
dv3

dt
− u× curl R + b ′ẑ +∇3 p

′ = 0 , (4.27)

or, in horizontal and vertical components, with curl R = f(x)ẑ,

ε
du

dt
+ f ẑ × u +∇ p ′ = 0 , ε σ2 dw

dt
+ b ′ +

∂p ′

∂z
= 0 , (4.28)

where

db ′

dt
= 0 and ∇3 · u3 = ∇ · u +

∂w

∂z
= 0 .

Even for order O(ε) buoyancy, the leading order balances are still hydrostatic
in the vertical, and geostrophic in the horizontal. Equations (4.28) describe
the motion of an ideal incompressible stratified fluid relative to a stable hy-
drostatic equlibrium in which the density is taken to be constant except in
the buoyant force. See, for example, Phillips [1969] for a derivation of this
approximate system via direct asymptotic expansions of the Euler equations.

The Kelvin–Noether Theorem. The Kelvin–Noether circulation theo-
rem (4.7) for the Euler-Boussinesq motion equation (4.27) for an ideal incom-
pressible stratified fluid in three dimensions is,

d

dt

∮

γt(u3)

(εv3 + R) · dx = −
∮

γt(u3)

b ′dz , (4.29)

where the curve γt(u3) moves with the fluid velocity u3. (The two Kelvin
theorems in equations (4.24) and (4.29) differ in their right hand sides.)
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By Stokes’ theorem, the Euler-Boussinesq equations generate circulation of
εv3+R around γt(u3) whenever the gradient of bouyancy is not vertical. Con-
servation of potential vorticity qEB on fluid parcels for the Euler-Boussinesq
equations is given by

∂qEB

∂t
+ u3 · ∇3 qEB = 0 , where qEB = ∇3b

′ · ∇3 × (εv3 + R) . (4.30)

4.3 Primitive Equations

The Lagrangian. The primitive equations (PE) arise from the Euler Boussi-
nesq equations, upon imposing the approximation of hydrostatic pressure bal-
ance. Setting the aspect ratio parameter σ to zero in the Lagrangian lEB in
equation (4.26) (see equations (4.21) and (4.22)), provides the Lagrangian for
the nondimensional primitive equations (PE),

lPE =

∫
dt

∫
d3x

[ ε
2
D|u|2 +Du ·R(x)−Db ′z − p ′(D − 1)

]
. (4.31)

The Euler–Poincaré equations for lPE now produce the PE; namely, equations
(4.28) with σ = 0,

ε
du

dt
+ f ẑ × u +∇ p ′ = 0 , b ′ +

∂p ′

∂z
= 0 , (4.32)

where

db ′

dt
= 0 and ∇3 · u3 = ∇ · u +

∂w

∂z
= 0 .

Thus, from the viewpoint of Hamilton’s principle, imposition of hydrostatic
balance corresponds to ignoring the kinetic energy of vertical motion by set-
ting σ = 0 in the nondimensional EB Lagrangian (4.26).

The Kelvin–Noether Theorem. The Kelvin–Noether circulation theo-
rem for the primitive equations is obtained from equation (4.29) for the Euler-
Boussinesq equations simply by setting σ = 0. Namely,

d

dt

∮

γt(u3)

(εu + R) · dx = −
∮

γt(u3)

b ′dz , (4.33)

where the curve γt(u3) moves with the fluid velocity u3. By Stokes’ theorem,
the primitive equations generate circulation of εu + R around γt(u3) when-
ever the gradient of bouyancy is not vertical. The conservation of potential
vorticity on fluid parcels for the primitive equations is given by, cf. equation
(4.8),

∂qPE

∂t
+ u3 · ∇3 qPE = 0 , where qPE = ∇3b

′ · ∇3 × (εu + R) . (4.34)
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Remark. In the limit, ε→ 0, Hamilton’s principle for either lEB, or lPE gives,

f ẑ × u + b ′ ẑ +∇3 p
′ = 0, (4.35)

which encodes the leading order hydrostatic and geostrophic equilibrium bal-
ances. These balances form the basis for further approximations for near-
geostrophic, hydrostatic flow.

4.4 Hamiltonian Balance Equations

Balanced Fluid Motions. A fluid motion equation is said to be balanced,
if specification of the fluid’s stratified buoyancy and divergenceless velocity
determines its pressure through the solution of an equation which does not
contain partial time-derivatives among its highest derivatives. This definition
of balance makes pressure a diagnostic variable (as opposed to the dynamic, or
prognostic variables such as the horizontal velocity components). The Euler
equations (4.23) and the Euler-Boussinesq equations (4.27) for the incom-
pressible motion of a rotating continuously stratified fluid are balanced in
this sense, because the pressure in these cases is determined diagnostically
from the buoyancy and velocity of the fluid by solving a Neumann problem.
However, the hydrostatic approximation of this motion by the primitive equa-
tions (PE) is not balanced, because the Poisson equation for the pressure in
PE involves the time-derivative of the horizontal velocity divergence, which
alters the character of the Euler system from which PE is derived and may
lead to rapid time dependence, as discussed in Browning et al. [1990]. Bal-
anced approximations which eliminate this potentially rapid time dependence
have been sought and found, usually by using asymptotic expansions of the
solutions of the PE in powers of the small Rossby number, ε ¿ 1, after de-
composing the horizontal velocity u into order O(1) rotational and order O(ε)
divergent components, as u = ẑ ×∇ψ + ε∇χ, where ψ and χ are the stream
function and velocity potential, respectively, for the horizontal motion. (This
is just the Helmholtz decomposition with relative weight ε.)

Balance equations (BE) are reviewed in the classic paper of McWilliams
and Gent [1980]. Succeeding investigations have concerned the well-posedness
and other features of various BE models describing continuously stratified
oceanic and atmospheric motions. For example, consistent initial boundary
value problems and regimes of validity for BE are determined in Gent and
McWilliams [1983a,b]. In other papers by these authors and their collabora-
tors listed in the bibliography, balanced models in isentropic coordinates are
derived, methods for the numerical solution of BE are developed, and the ap-
plications of BE to problems of vortex motion on a β-plane and wind-driven
ocean circulation are discussed. In studies of continuously stratified incom-
pressible fluids, solutions of balance equations that retain terms of order O(1)
and order O(ε) in a Rossby number expansion of the PE solutions have been
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found to compare remarkably well with numerical simulations of the PE; see
Allen, Barth, and Newberger [1990a,b] and Barth et al. [1990]. Discussions
of the relation between BE and semigeostrophy have also recently appeared,
see, e.g., Gent, McWilliams and Snyder [1994] and Xu [1994].

Conservation of Energy and Potential Vorticity. One recurring issue
in the literature is that, when truncated at order O(ε) in the Rossby number
expansion, the BE for continuously stratified fluids conserve energy (Lorenz
[1960]), but do not conserve potential vorticity on fluid parcels. Recently,
Allen [1991] found a set of BE for continuously stratified fluids that retains
additional terms of order O(ε2) and does conserve potential vorticity on fluid
parcels. Allen calls these balance equations “BEM equations”, because they
are based on momentum equations, rather than on the equation for vertical
vorticity, as for the standard BE. An advantage of the momentum formulation
of BEM over the vorticity formulation of the original BE is that boundary
conditions are more naturally imposed on the fluid’s velocity than on its vor-
ticity. Holm [1996] derives Hamiltonian balance equations (HBE) in the mo-
mentum formulation by using the ε-weighted Helmholtz decomposition for u
and expanding Hamilton’s principle (HP) for the PE in powers of the Rossby
number, ε¿ 1. This expansion is truncated at order O(ε), then all terms are
retained that result from taking variations. As we have seen, an asymptotic
expansion of HP for the Euler-Boussinesq (EB) equations which govern ro-
tating stratified incompressible inviscid fluid flow has two small dimensionless
parameters: the aspect ratio of the shallow domain, σ, and the Rossby num-
ber, ε. Setting σ equal to zero in this expansion yields HP for PE. Setting ε
also equal to zero yields HP for equilibrium solutions in both geostrophic and
hydrostatic balance. Setting σ = 0, substituting the ε-weighted Helmholtz
decomposition for u and truncating the resulting asymptotic expansion in ε
of the HP for the EB equations, yields HP for a set of nearly-geostrophic
Hamiltonian balance equations (HBE). The resulting HBE are equivalent to
the BEM equations in Allen [1991].

The Lagrangian. The Lagrangian for the HBE model is given in Holm
[1996], cf. equation (4.31) for the PE action,

HBE =

∫
dt

∫
d3x

[
Du ·R(x)−Dbz − p(D − 1) + ε

D

2
|u− εuD|2

]
,

(4.36)

where the horizontal fluid velocity is taken in balance equation form as u =
uR+ εuD = ẑ×∇ψ+ ε∇χ. The corresponding Euler–Poincaré equations give
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the dynamics of the HBE model

ε
d

dt
uR + ε2uRj∇ujD + f ẑ × u +∇p = 0,

b+
∂p

∂z
+ ε2uR ·

∂uD
∂z

= 0,

with
db

dt
=

∂

∂t
b+ u · ∇b+ ε w

∂b

∂z
= 0,

and ∇ · u + ε
∂w

∂z
= 0. (4.37)

Here the notation is the same as for the PE, except that w → ε w for HBE.

Dropping all terms of order O(ε2) from the HBE model equations (4.37)
recovers the BE discussed in Gent and McWilliams [1983a,b]. Retaining these
order O(ε2) terms restores the conservation laws due to symmetries of HP at
the truncation order O(ε). As explained in Holm [1996], the resulting HBE
model has the same order O(ε) accuracy as the BE, since not all of the
possible order O(ε2) terms are retained. Since the HBE model shares the
same conservation laws and Euler–Poincaré structure as EB and PE, and
differs from them only at order O(ε2), it may be a valid approximation for
times longer than the expected order O(1/ε) for BE.

The Kelvin-Noether Theorem. The HBE model (4.37) possesses the
following Kelvin–Noether circulation theorem,

d

dt

∮

γt(u3)

(R + εuR) · dx3 = −
∮

γt(u3)

bdz, (4.38)

for any closed curve γt(u3) moving with the fluid velocity u3. We compare
this result with the Kelvin–Noether circulation theorem for PE in equation
(4.33), rewritten as

d

dt

∮

γt(u3)

(R + εu)︸ ︷︷ ︸
PE

·dx3 =
d

dt

∮

γt(u3)

(R + εuR︸ ︷︷ ︸
HBE

+ ε2uD) · dx3︸ ︷︷ ︸
ZERO

= −
∮

γt(u3)

bdz.

(4.39)

Because ∮
uD · dx3 =

∮
dχ = 0,

the ε2 term vanishes, and so the HBE circulation integral differs from that of
PE only through the differences in buoyancy between the two theories.

The conservation of potential vorticity on fluid parcels for the HBE model
is given by, cf. equation (4.8),

∂qHBE

∂t
+ u3 · ∇3 qHBE = 0 , where qHBE = ∇3 b · ∇3 × (εuR + R) . (4.40)
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Combining this with advection of b and the tangential boundary coundition
on u3 yields an infinity of conserved quantities,

CΦ =

∫
d3x Φ(qHBE, b), (4.41)

for any function Φ. These are the Casimir functions for the Lie-Poisson Hamil-
tonian formulation of the HBE given in Holm [1996].

HBE Discussion. By their construction as Euler–Poincaré equations from
a Lagrangian which possesses the classic fluid symmetries, the HBE conserve
integrated energy and conserve potential vorticity on fluid parcels. Their Lie-
Poisson Hamiltonian structure endows the HBE with the same type of self-
consistency that the PE possess (for the same Hamiltonian reason). After all,
the conservation laws in both HBE and PE are not accidental. They corre-
spond to symmetries of the Hamiltonian or Lagrangian for the fluid motion
under continuous group transformations, in accordance with Noether’s the-
orem. In particular, energy is conserved because the Hamiltonian in both
theories does not depend on time explicitly, and potential vorticity is con-
served on fluid parcels because the corresponding Hamiltonian or Lagrangian
is right invariant under the infinite set of transformations that relabel the
fluid parcels without changing the Eulerian velocity and buoyancy. See, e.g.,
Salmon [1988] for a review of these ideas in the GFD context, as well as Holm,
Marsden and Ratiu [1998a,b] and the earlier sections of the present paper for
the general context for such results.

The vector fields which generate these relabeling transformations turn out
to be the steady flows of the HBE and PE models. By definition, these steady
flows leave invariant the Eulerian velocity and buoyancy as they move the
Lagrangian fluid parcels along the flow lines. Hence, as a direct consequence
of their shared Hamiltonian structure, the steady flows of both HBE and PE
are relative equilibria. That is, steady HBE and PE flows are critical points of
a sum of conserved quantities, including the (constrained) Hamiltonian. This
shared critical-point property enables one, for example, to use the Lyapunov
method to investigate stability of relative equilibrium solutions of HBE and
PE. See Holm and Long [1989] for an application of the Lyapunov method in
the Hamiltonian framework to the stability of PE relative equilibria. Accord-
ing to the Lyapunov method, convexity of the constrained Hamiltonian at its
critical point (the relative equilibrium) is sufficient to provide a norm that
limits the departure of the solution from equilibrium under perturbations.
See, e.g., Abarbanel et al. [1986] for applications of this method to the Euler
equations for incompressible fluid dynamics and Holm et al. [1985] for a range
of other applications in fluid and plasma theories.

Thus, the HBE arise as Euler–Poincaré equations and possess the same Lie-
Poisson Hamiltonian structure as EB and PE, and differ in their Hamiltonian
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and conservation laws by small terms of order O(ε2). Moreover, the HBE
conservation laws are fundamentally of the same nature as those of the EB
equations and the PE from which they descend. These conserved quantities
— particularly the quadratic conserved quantities — may eventually be useful
measures of the deviations of the HBE solutions from EB and PE solutions
under time evolution starting from identical initial conditions.

4.5 Remarks on Two-dimensional Fluid Models in GFD

The search for simpler dynamics than those of the primitive equations nat-
ually leads to considerations of two-dimensional fluid models. This certainly
holds for applications in GFD, because the aspect ratio of the domain (σ)
and the Rossby number (ε) of the rotating flow are often small in these appli-
cations. Many treatments of two-dimensional GFD models have been given
using asymptotic expansion methods in Hamilton’s principle, see, e.g., Salmon
[1983, 1985, 1988]. These treatments tend to focus especially on the rotating
shallow water (RSW) equations, their quasigeostrophic (QG) approximation,
and certain intermediate approximations, such as the semigeostrophic (SG)
equations (Eliassen [1949], Hoskins [1975], Cullen and Purser [1989], Holm,
Lifschitz and Norbury [1998]) and the Salmon [1985] L1 model. A unified
derivation of the RSW, L1, QG and SG equations using Hamilton’s principle
asymptotics is given in Allen and Holm [1996]. This paper also derives as
Euler–Poincaré equations a new class of “extended geostrophic” (EG) mod-
els. The EG models include nonlocal corrections to the ageostrophic velocity
which could produce more accurate models than the L1, QG and SG approx-
imations of the RSW equations.

There are also three dimensional versions of the QG and SG equations, and
recently a continuously stratified L1 model was derived in Allen, Holm and
Newberger [1998] through the use of Hamilton’s principle asymptotics and
the Euler–Poincaré theory. For the suite of idealized, oceanographic, mod-
erate Rossby number, mesoscale flow test problems in Allen and Newberger
[1993], this continuously stratified L1 model produces generally accurate ap-
proximate solutions. These solutions are not quite as accurate as those from
the BEM/HBE or BE models, but are substantially more accurate than those
from three dimensional SG or QG.

Due to their wide applicability in GFD, the properties of the two dimen-
sional QG equations have been studied extensively. Weinstein [1983] wrote
down a Lie-Poisson bracket for them in preparation for studying stability of
quasigeostrophic equilibria. The Hamiltonian structure and nonlinear stabil-
ity of the equilibrium solutions for the QG system and its variants has been
thoroughly explored. For references, see Marsden and Weinstein [1982], Wein-
stein [1983] and Holm et al. [1985]. See also the introduction and bibliography
of Marsden et al. [1983] for a guide to some of the history and literature of this
subject. A discussion of the geodesic properties of the QG equations in the
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framework of Euler–Poincaré theory is given in Holm, Marsden and Ratiu
[1998a,b]. A related discussion of QG in both two and three dimensions is
given from the viewpoint of Hamilton’s principle asymptotics in Holm and
Zeitlin [1997].

Formulae showing the asymptotic expansion relationships among the La-
grangians for the various GFD models are summarized in Tables (4.1) and
(4.2). In the next two sections, we turn our attention to dealing with the
mean effects of rapid fluctuations in GFD.
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Table 1. Successive GFD approximations in Hamilton’s
principle.

lEuler =

∫
d 3x

[
D(1 + b)

(
R(x) · u︸ ︷︷ ︸
Rotation

+
ε

2
|u|2 +

ε

2
σ2w2

︸ ︷︷ ︸
Kinetic Energy

)

− D(1 + b)

(
z

εF

)

︸ ︷︷ ︸
Potential Energy

− p(D − 1)︸ ︷︷ ︸
Constraint

]

• lEuler → lEB, for small buoyancy, b = O(ε).

• lEB → lPE, for small aspect ratio, σ2 = O(ε).

• lPE → l HBE
BEM

, for horizontal velocity decomposition, u = ẑ×∇ψ+ε∇χ =

uR + εuD, and |u|2 → |uR|2 in lPE.

• l HBE
BEM
→ lEG, upon rearranging KE in l HBE

BEM
and decomposing horizontal

velocity as u = u1 + εu2, where u1 = ẑ ×∇φ̃ with

φ̃(x3, t) = φS(x, y, t) +

∫ 0

z

dz′ b ,

i.e., ∂φ̃/∂z = − b and where u2 is the prescribed function,

u2 = τ(u1 · ∇)ẑ × u1 − α̃τ∇
(

(F −∇2)−1J(φ̃, ψ)
)
− βτf1u1,

with ψ = f1−b1+∇2φ̃. The constants τ , α̃, β, and γ are free parameters
and the functions f1 and b1 denote prescribed order O(ε) Coriolis and
topography variations.

• lEG → l1, for horizontal velocity decomposition, u = u1 = ẑ ×∇φ̃ and
dropping terms of order O(ε2) in lEG.

• l1 → lQG, on dropping terms of order O(ε2) in the Euler–Poincaré equa-
tions for l1.
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Table 2. Nondimensional Euler–Poincaré Lagrangians at
successive levels of approximation via asymptotic expan-
sions.

lEuler =

∫
d 3x

[
D(1 + b)

(
R(x) · u +

ε

2
|u|2 +

ε

2
σ2w2 − z

εF

)
− p(D − 1)

]

lEB =

∫
d 3x

[
D

(
R · u +

ε

2
|u|2 +

ε

2
σ2w2 − bz

)
− p(D − 1)

]

lPE =

∫
d 3x

[
D

(
R · u +

ε

2
|u|2 − bz

)
− p(D − 1)

]

l HBE
BEM

=

∫
d 3x

[
D

(
R · u +

ε

2
|u− εuD|2 − bz

)
− p(D − 1)

]

lEG =

∫
d 3x

[
D

(
(R + εu1 + ε2u2) · u− ε

2
|u1 + γεu2|2 − bz

)
− p(D − 1)

]

l1 =

∫
d 3x

[
D

(
(R + εu1) · u− ε

2
|u1|2 − bz

)
− p(D − 1)

]

lQG/AW =

∫

D
d 2x

∫ z1

z0

dz

[
D

(
R · u +

ε

2
u · (1− L(z)∆−1)u

)
− p(D − 1)

]
,

where

L(z) =
( ∂
∂z

+B
) 1

S(z)

( ∂
∂z
− B

)
−F

and B = 0 for QG.
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5 Generalized Lagrangian Mean (GLM) Equa-

tions

The GLM theory of Andrews and McIntyre [1978a] is a hybrid Eulerian-
Lagrangian description in which Langrangian-mean flow quantities satisfy
equations expressed in Eulerian form. A related set of equations was intro-
duced by Craik and Leibovich [1976] in their study of Langmuir vortices
driven by a prescribed surface wave field. The GLM equations are extended
from prescribed fluctuation properties to a theory of self-consistent Hamilto-
nian dynamics of wave, mean-flow interaction for a rotating stratified incom-
pressible fluid in Gjaja and Holm [1996].

GLM Approximations. In GLM theory, one decomposes the fluid trajec-
tory at fixed Lagrangian label `A, A = 1, 2, 3, as follows,

xξ(`A, t) = x(ε`A, εt) + αξ(x, t), with ξ = 0 and x · ξ = 0 , (5.1)

where scaling with ε denotes slow Lagrangian space and time dependence,
and an overbar denotes an appropriate time average at fixed Eulerian posi-
tion. For example, overbar may denote the average over the rapid oscillation
phase of a single-frequency wave displacement ξ of amplitude α relative to
its wavelength. Thus, the displacement ξ(x, t) associated with such waves
has zero Eulerian mean, ξ(x, t) = 0. Superscript ξ on a function denotes its
evaluation at the displaced Eulerian position associated with the rapidly fluc-
tuating component of the fluid parcel displacement. Thus, e.g., xξ = x + αξ
and uξ(x) = u(xξ), for a function u.

The GLM operator ( )
L

averages over parcels at the displaced positions
xξ = x + αξ and produces slow Eulerian space and time dependence. This
defines the Lagrangian mean velocity:

uL(εx, εt) ≡ u(x, t)
L

= uξ(x, t) = u(xξ, t) , (5.2)

where unadorned overbar denotes the Eulerian average and scaling with ε de-
notes slow dependence. Thus, the GLM description associates to an instan-
taneous Eulerian velocity field u(xξ, t) a unique Lagrangian mean velocity,
written (with a slight abuse of notation) as uL(εx, εt), such that when a fluid
parcel at xξ = x + αξ moves at its velocity u(xξ, t), a fictional parcel at x is
moving at velocity uL(εx, εt). Hence,

u(x + αξ, t) =
( ∂
∂t

∣∣∣∣
x

+ uL ·∇
)[

x + αξ(x, t)
]

= uL + αD
L
ξ , (5.3)

where D
L ≡ ∂/∂t|x + uL ·∇ is the material derivative with respect to the

slowly varying Lagrangian mean velocity, uL(εx, εt).
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In GLM theory one finds the following basic Eulerian relations and defini-
tions,

uξ(x, t) ≡ u(xξ, t) = uL(εx, εt) + αul(x, t),

uL(εx, εt) ≡ u(x + αξ, t),

ul ≡ D
L
ξ , D

L ≡ ∂

∂t

∣∣∣∣
x

+ uL ·∇ , (5.4)

Rξ(x) ≡ R(xξ) = R
L
(εx) + αRl(ξ) ,

R
L
(εx) ≡ R(x + αξ),

ul = 0 = Rl ,

where R denotes the vector potential for the Coriolis parameter, as before.
The basic identity used in deriving these formulae is

( ∂
∂t

∣∣∣∣
xξ

+ uξ · ∂

∂xξ

)
f(xξ, t) =

( ∂
∂t

∣∣∣∣
x

+ uL · ∂
∂x

)
f(x + αξ, t), (5.5)

which holds for any differentiable function f . This identity may be shown by
taking the partial time derivative at constant `A of the decomposition (5.1)
and using the chain rule, cf. Andrews and McIntyre [1978a].

The Lagrangian. We return to Hamilton’s principle with Lagrangian (4.26)
for the Euler-Boussinesq equations. This is expressed in terms of unscaled
(i.e., dimensional) Eulerian instantaneous quantities in the GLM notation as

EB =

∫
dt

∫
d3x

{
Dξ

[
1

2
|uξ(x, t)|2 − bξgz + uξ(x, t) ·Rξ(x)

]

−pξ
(
Dξ − 1

)
}
, (5.6)

where g is the constant acceleration of gravity and

Dξ(x, t) = D(x + αξ, t) = det
(
δij + α

∂ξi

∂xj

)
, (5.7)

which is a cubic expression in α. We denote the corresponding pressure de-
composition as,

pξ(x, t) = p(x + αξ, t) = pL(εx, εt) +
3∑

j=1

αjhj(εx, εt)pj(x, t) . (5.8)

After expanding Dξ in powers of α, Gjaja and Holm [1996] average over
the rapid space and time scales in the action (5.6) for the Euler-Boussinesq
equations while keeping the Lagrangian coordinates `A and εt fixed. (This is
the Lagrangian mean of the action.)
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Remark. Note that averaging in this setting is a formal operation asso-
ciated with the addition of a new degree of freedom describing the rapid
fluctuations. Thus, averaging in itself does not entail any approximations.
The approximations occur next, in the truncations of the expansions of the
averaged action in powers of the small parameters ε and α.

The GLM dynamics follows upon making the decompositions in (5.1)-(5.3)
and (5.7)-(5.8), averaging the action (5.6) and assuming that the rapidly
fluctuating displacement ξ is a prescribed function of x and t, which satisfies
the transversality condition given in (5.10) below.

The averaged, truncated action is (taking R(x) = Ω × x with constant
rotation frequency Ω for simplicity)

GLM =

∫
dt

∫
d3x

{
D

[
1

2
|uL|2 +

α2

2

∣∣∣∣
∂ξ

∂t
+ (uL ·∇)ξ

∣∣∣∣
2

− b
(
`A(x, t)

)
gz

+ uL · (Ω× x) + α2
(∂ξ
∂t

+ (uL ·∇)ξ
)
· (Ω× ξ)

]
(5.9)

+ pL

[
1−D +

α2

2

∂

∂xi

(
ξi
∂ξj

∂xj
− ξj ∂ξ

i

∂xj

)]
+ α2h1

(
p1
∂ξj

∂xj

)

+O(α4).

}

Note that the buoyancy b is a function of the Lagrangian labels `A which is
held fixed during the averaging.

The variation of GLM =
∫
dtLGLM in equation (5.9) with respect to h1

at fixed x and t yields the transversality condition,

(
p1
∂ξj

∂xj

)
= O(α2ε). (5.10)

When ξ and p1 are single-frequency wave oscillations, this condition implies
that the wave amplitude is transverse to the wave vector; hence the name
“transversality condition.” Gjaja and Holm [1996] show that this condition is
required for the Euler–Poincaré equations resulting from averaging in Hamil-
ton’s principle to be consistent with applying the method of averages directly
to the Euler-Boussinesq equations.

Next, the variation of GLM with respect to pL at fixed x and t gives

D = 1 +
α2

2

∂

∂xi

(
ξi
∂ξj

∂xj
− ξj ∂ξ

i

∂xj

)
, (5.11)

where the second term on the right side is order O(α2ε), and thus is negligible
at order O(α2). This follows because mean quantities only depend on slow
space and slow time, for which ∂/∂xj = ε∂/∂(εxj).
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The Euler–Poincaré Equations. The Euler–Poincaré equation for the
action GLM results in the GLM motion equation,

∂(m/D)

∂εt
− uL ×

(
∂

∂εx
× m

D

)
+

1

ε
bgẑ (5.12)

+
∂

∂εx

[
pL + |uL|2 − 1

2
uξ · uξ − uξ · (Ω× ξ)− α2p · uL

]
= 0,

where the Lagrangian mean momentum m is defined as

m ≡ δLGLM

δuL
= D

[
uL + (Ω× x)

]
− α2p, (5.13)

and (leaving α2 explicit) p is the “pseudomomentum density,” defined by, cf.
Andrews and McIntyre [1978a],

p ≡ −D (ulj +Rl
j)∇ξj and D ≡ det

(
∂`A

∂xj

)
. (5.14)

Equations (5.11) and (5.12) (and implicitly (5.10)) are the equations of the
GLM theory for incompressible flow discussed in Andrews and McIntyre
[1978a].

The Kelvin–Noether Theorem. The Kelvin–Noether circulation theo-
rem for the GLM motion equation (5.12) states that

d

dεt

∮

γ(εt)

m·dx = − g
ε

∮

γ(εt)

b dz , (5.15)

where the curve γ(εt) moves with the Lagrangian mean fluid velocity uL.
By Stokes’ theorem, the GLM equations generate circulation of m around
γ(εt) whenever the gradient of bouyancy is not vertical. The conservation of
potential vorticity on fluid parcels for the GLM equations is given by

D
L
qGLM = 0 , where qGLM =

1

D

∂b

∂εx
·
(

∂

∂εx
× m

D

)
. (5.16)

The constraint D = 1 is imposed at order O(α2) in Hamilton’s principle for
the action (5.9) by the slow component of the pressure. This condition holds
at order O(α2) when ∇εx ·uL = 0, since D satisfies ∂D/∂εt+∇εx ·DuL = 0.

Alternative Derivation of the Kelvin–Noether Circulation Theorem
for GLM. The unapproximated Euler-Boussinesq equations (4.27) for a ro-
tating stratified incompressible fluid are, in the GLM notation,

(
∂

∂t

∣∣∣∣
xξ

+ uξ · ∂

∂xξ

)
uξ − uξ × 2Ω(xξ) = − ∂pξ

∂xξ
− bξgẑξ, (5.17)

(
∂

∂t

∣∣∣∣
xξ

+ uξ · ∂

∂xξ

)
bξ = 0,

∂

∂xξ
· uξ = 0, 2Ω(xξ) =

∂

∂xξ
×R(xξ) .
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Being Euler–Poincaré, these equations admit the following Kelvin–Noether
circulation theorem, cf. equation (4.29),

d

dt

∮

γ(t)

(
u(xξ, t) + R(xξ)

)
· dxξ = − g

∮

γ(t)

b(xξ, t) dzξ, (5.18)

for a contour γ(t) which moves with the fluid.

The time average of the Kelvin circulation integral is expressed as

I(εt) =

∮

γ(t)

(
u(xξ, t) + R(xξ)

)
· dxξ

=

∮

γ(t)

(uL + R
L

+ αul + αRl) · (dx + α dξ)

=

∮

γ(εt)

[
(uL + R

L
) · dx + α2(ul + Rl) · dξ

]
, (5.19)

where the contour γ(εt) moves with velocity uL, since it follows the fluid
parcels as the average is taken. Using equations (5.13) and (5.14), we rewrite
I(εt) as

I(εt) =

∮

γ(εt)

(
uL + R

L − α2p/D
)
· dx =

∮

γ(εt)

m · dx , (5.20)

which re-introduces Lagrangian mean momentum m(εx, εt) and the pseudo-
momentum density of the rapid motion, p(εx, εt). In terms of these quantities,
we may write the Lagrangian mean of the Kelvin–Noether circulation theorem
for the Euler-Boussinesq equations as

d

dt
I(εt) = ε

d

dεt

∮

γ(εt)

m · dx = − g
∮

γ(t)

b(xξ, t) dzξ = − g
∮

γ(εt)

b dz . (5.21)

This result recovers the Kelvin–Noether circulation theorem (5.15) for the
GLM equations (5.12) which were derived above as Euler–Poincaré equations
for the averaged Lagrangian GLM in equation (5.9).

Geometry of the Stokes Mean Drift Velocity and the Pseudomo-
mentum. The quantity p in equation (5.14) is an additional slowly varying
fluid degree of freedom which emerges in the process of averaging to describe
the rectified effects of the rapidly varying component of the fluid motion act-
ing on the slowly varying component. The rectified effects of wave fluctuations
in fluids are traditionally discussed in terms of another quantity, namely, the
Stokes mean drift velocity, defined as

uS = uL − u = α2(ξ ·∇)ul +O(α4) , (5.22)
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We define the analogous Stokes mean drift quantity corresponding to the
rotation vector potential, R, as

R
S

= R
L −R = α2(ξ ·∇)Rl +O(α4) , (5.23)

The time-averaged contour integral I(εt) in equation (5.19) may be rewritten
as

I(εt) =

∮

γ(εt)

[
(u + R) · dx + (uS + R

S
) · dx− p · dx

]

=

∮

γ(εt)

[
(u + R) · dx + α2

(
ξ ·∇(ul + Rl)

)
· dx + α2(ul + Rl) · dξ

]

=

∮

γ(εt)

[
(u + R) · dx + α2

(
£ξ

(
(ul + Rl) · dx

)) ]
. (5.24)

Thus, the last two terms combine into the time-averaged Lie derivative with
respect to ξ of the total fluctuation circulation (ul + Rl) · dx. This is a re-
markable formula which shows the geometric roles of the Stokes mean drift
velocity and the pseudomomentum: The Stokes mean drift velocity derives
from transport, while the pseudomomentum is caused by line-element stretch-
ing by the fluctuations. For divergence-free fluctuations, we have ∇ · ξ = 0,
and the Stokes mean drift velocity in the rotating frame is a higher order
term. In particular,

α2ūS = α2

(
(ξ ·∇)

dξ

dt

)
= α2 ∂

∂xi

(
ξi
dξ

dt

)
= ε α2 ∂

∂εxi

(
ξi
dξ

dt

)
. (5.25)

The last step in this calculation follows because mean quantities only depend
on slow space and slow time. Thus, the Stokes mean drift velocity (i.e., the
difference between the Lagrangian and Eulerian mean velocities) is order O(ε)
smaller than the pseudomomentum, for divergence-free fluctuations.

6 Nonlinear Dispersive Modifications of the

EB Equations and PE

In generalizing earlier work by Camassa and Holm [1993] from one dimension
to n dimensions, Holm, Marsden and Ratiu [1998a,b] used the Euler–Poincaré
framework to formulate a modified set of Euler equations for ideal homoge-
neous incompressible fluids. This modification introduces nonlinear dispersion
into Euler’s equations, which is designed physically to model nondissipative
unresolved rapid fluctuations. This nonlinear dispersion is founded mathemat-
ically on the geometrical property that solutions of the basic Euler–Poincaré
equations are geodesics on an underlying group when their Lagrangian is a
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metric. Here we use the Euler–Poincaré reduction theorems (2.1) and (3.1)
including advected parameters and Hamilton’s principle asymptotics in the
EB Lagrangian in GLM notation (5.6) to formulate a modified set of Euler-
Boussinesq equations that includes nonlinear dispersion along with stratifi-
cation and rotation. In this new modification of the Euler-Boussinesq equa-
tions, nonlinear dispersion adaptively filters high wavenumbers and thereby
enhances stability and regularity without compromising either low wavenum-
ber behavior, or geophysical balances. Here, ‘high’ and ‘low’ refer respectively
to wavenumbers greater, or less than the inverse of a fundamental length
scale α, which parameterizes the nonlinearly dispersion in the model. We also
present the corresponding nonlinear dispersive modification of the primitive
equations. We leave it as an open question, whether our nonlinearly disper-
sive primitive equation model will have a slow manifold when dissipation and
forcing are included.

6.1 Higher Dimensional Camassa–Holm Equation.

The Lagrangian and Action Functionals. As shown in Holm, Mars-
den and Ratiu [1998a,b], the Camassa-Holm (CH) equation (Camassa and
Holm [1993]) in n dimensions describes geodesic motion on the diffeomor-
phism group of n with respect to the metric given by the H1 norm of the
Eulerian fluid velocity. This Euler–Poincaré equation follows from the La-
grangian lCH given by the H1 norm of the fluid velocity u in n dimensions,
subject to volume preservation (for n 6= 1), namely,

CH =

∫
dt lCH =

∫
dt

∫

M
dnx

{
D

2

(
|u|2 + α2|∇u|2

)
− p(D − 1)

}
,

(6.1)

in which the parameter α has dimensions of length. We denote (∇u)ij = ui,j ≡
∂ui/∂xj, |∇u|2 ≡ ui,ju

,j
i = tr(∇u ·∇uT ), tr is the trace operation for matrices

and the superscript (·)T denotes transpose.

The action CH in (6.1) is the order O(α2) expression for the mean of
the EB action in equation (5.6) in the absence of stratification and rotation,
namely

CH ≈
∫
dt

∫
dnx

{
D

1

2
|uξ(x, t)|2 − p (D − 1)

}
, (6.2)

in which we neglect the order O(α2ε) pressure and density corrections dis-
cussed in Gjaja and Holm [1996] and approximate the mean kinetic energy
in a Taylor expansion as follows,

1

2
|uξ(x, t)|2 =

1

2
|u(x + αξ, t)|2 =

1

2
|u(x, t) + αξ ·∇u|2 +O(α4)

=
1

2
|u|2 +

α2

2
|ξ ·∇u|2 +O(α4) ≈ 1

2
|u|2 +

α2

2
|∇u|2 . (6.3)
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In the last step, we have also dropped terms of order O(α4) and assumed
isotropy of the rapid fluctuations, so that ξiξj ≈ δij. As in GLM theory, the
length-scale parameter α represents the amplitude of the rapidly fluctuating
component of the fluid parcel trajectory (or its amplitude to length-scale ratio
in a nondimensional formulation).

The Euler–Poincaré Equations. Varying the action CH in (6.1) at fixed
x and t gives

δ CH =

∫
dt

∫

M
dnx

[(1

2
|u|2 +

α2

2
|∇u|2 − p

)
δD

+
(
Du− α2(divDgrad)u

)
· δu− (D − 1)δp

]

+ α2

∫
dt

∮

∂M
dn−1x (Dn̂ · ∇u · δu) , (6.4)

whose natural boundary conditions on ∂M are

u · n̂ = 0 and (n̂ · ∇)u ‖ n̂, (6.5)

where ‖ denotes “parallel to” in the second boundary condition, which of
course is not imposed when α2 is absent. (Recall that δu in equation (6.4) is
arbitrary except for being tangent on the boundary. This tangency, along with
the second condition in equation (6.5) is sufficient for the boundary integral
in equation (6.4) to vanish.) By equation (4.11), the Euler–Poincaré equation
for the action CH in equation (6.1) is

(
∂

∂t
+ u · ∇

)
v + vj∇uj +∇

(
p− 1

2
|u|2 − α2

2
|∇u|2

)
= 0 , (6.6)

where

v ≡ u− α2∆u =
1

D

δlCH

δu

∣∣∣∣∣
D=1

.

In writing this equation, we have substituted the constraint D = 1, which as
before implies incompressibility via the continuity equation for D. Requiring
the motion equation (6.6) to preserve div u = 0 = div v implies a Poisson
equation for the pressure p with a Neumann boundary condition, which is
obtained just as usual in the case of incompressible ideal fluid dynamics,
by taking the normal component of the motion equation evaluated at the
boundary. Of course, the n-dimensional extension of the CH equation (6.6)
reduces to Euler’s equation when we set α = 0. The properties of the n-
dimensional CH equation (6.6) are summarized in Holm, Marsden and Ratiu
[1998a,b] and Holm, Kouranbaeva, Marsden, Ratiu, and Shkoller [1998] for
the ideal case. In particular, equation (6.6) is shown to be the geodesic spray
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equation for geodesic motion on the group Diff(D) with respect to the metric
given by the H1 norm of the fluid velocity u in n dimensions. See also Chen,
Foias, Holm, Olson, Titi and Wynne [1998] and Foias, Holm and Titi [1998]
for discussions of the corresponding viscous, forced case and its connection to
mean turbulence closure models.

Discussion of the CH Equation. The essential idea of the CH equation
is that its specific momentum (i.e., its momentum per unit mass) is trans-
ported by a velocity which is smoothed by inverting the elliptic Helmholtz
operator (1 − α2∆), where α corresponds to the length scale at which this
smoothing becomes important, i.e., when it becomes of order O(1). When the
smoothing operator (1−α2∆)−1 is applied to the transport velocity in Euler’s
equation to produce the CH equation, its effect on length scales smaller than
α is that steep gradients of the specific momentum v tend not to steepen
much further, and thin vortex tubes tend not to get much thinner as they are
transported. And, its effect on length scales that are considerably larger than
α is negligible. Hence, the transport of vorticity in the CH equation is inter-
mediate between that for the Euler equations in two and three dimensions.
As for Euler vorticity, the curl of the CH specific momentum is convected as
an active two form, but its transport velocity is the smoothed, or filtered CH
specific momentum.

The effects of this smoothing or filtering of the transport velocity in the
CH equation can be seen quite clearly from its Fourier spectral representation
in the periodic case. In this case, we define vk as the k-th Fourier mode
of the specific momentum v ≡ (1 − α2∆)u for the CH equation; so that
vk ≡ (1 + α2|k|2)uk. Then the Fourier spectral representation of the CH
equation for a periodic three-dimensional domain is expressed as

Π

(
d

dt
vk − i

∑

p+n=k

vp

1 + α2|p|2 × (n× vn)

)
= 0, (6.7)

where Π is the Leray projection onto Fourier modes transverse to k. (As
usual, the Leray projection ensures incompressibility.) In this Fourier spectral
representation of the CH equation, one sees that the coupling to high modes
is suppressed by the denominator when 1 + α2|p|2 À 1. Consequently, when
|p| ≥ O(1/α), the smoothing of the transport velocity suppresses the Fourier-
mode interaction coefficients. In fact, the CH smoothing of the transport
velocity suppresses both the forward and backward cascades for wave numbers
|p| ≥ O(1/α), but leaves the Euler dynamics essentially unchanged for smaller
wave numbers. The result is that the vortex stretching term in the dynamics
of q = curl v is mollified in the CH model and so the vortices at high wave
numbers will tend to be “shorter and fatter” than in the corresponding Euler
case for the same initial conditions.
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The Kelvin–Noether Theorem. Since the n-dimensional CH equation
(6.6) is Euler–Poincaré, it also has a corresponding Kelvin–Noether cir-
culation theorem. Namely,

dI

dt
= 0 where I(t) =

∮

γt

(u− α2∆u) · dx =

∮

γt

v · dx , (6.8)

for any closed curve γt that moves with the fluid velocity u. This expres-
sion for the Kelvin–Noether circulation of the CH equation in three dimen-
sions is reminiscent of the corresponding expression (5.20) in GLM theory
involving the pseudomomentum for wave, mean-flow interaction theory. This
correspondence confirms the physical interpretation of the α2 term in the
Kelvin–Noether circulation integral as a Lagrangian mean closure relation for
the pseudomomentum of the high frequency (i.e., rapidly fluctuating, turbu-
lent) components of the flow. In this interpretation, α for the CH equation
corresponds to both the amplitude of these high frequency components and
the length scale at which they become important.

Energy Conservation for the CH Equation. Legendre transforming
the action (6.1) gives the following conserved Hamiltonian (still expressed
in terms of the velocity, instead of the momentum density m = δl/δu),

H =

∫

M
dnx

[ D
2

(
|u|2 + α2|∇u|2

)
+ p(D − 1)

]
. (6.9)

Thus, when evaluated on the constraint manifold D = 1, the Lagrangian
and the Hamiltonian for the CH equation coincide in n dimensions. (This,
of course, is not unexpected for a stationary principle giving rise to geodesic
motion.)

The curl of the 3D Camassa-Holm motion equation (6.6) yields

∂

∂t
q = q · ∇u− u · ∇q ≡ [u,q ], where q ≡ curl(u− α2∆u) , (6.10)

and we have used incompressibility and commutativity of the divergence and
Laplacian operators. Thus, u is the transport velocity for the generalized vor-
ticity q and the “vortex stretching” term q ·∇u involves ∇u, whose L2 norm
is controlled by the conservation of energy in equation (6.9). Boundedness of
this norm will be useful in future analytical studies of the 3D Camassa-Holm
equation; for example, in the investigation of the Liapunov stability properties
of its equilibrium solutions.

The Riemannian CH Equation. One can formulate the CH equation on
a general Riemannian manifold, possibly with boundary. Although this for-
mulation will be the subject of future papers, we comment on it here because
of the importance of spherical geometry, in particular, for GFD models.



            

44 Holm, Marsden & Ratiu

6.2 The Euler-Boussinesq α Model (EBα)

We introduce nonlinear dispersion into the Euler-Boussinesq equations using
the Euler–Poincaré framework and following the example of the CH equations.

The Lagrangian. To carry this out, we modify the EB Lagrangian (4.26)
by simply adding the α2 term (while dropping other scale factors ε, σ, as well
as primes and subscripts)

EBα =

∫
dt lEBα (6.11)

=

∫
dt

∫

M
dnx

[
D
(1

2
|u|2 +

α2

2
|∇u|2 + u ·R(x)− gbz

)
− p(D − 1)

]
,

This action is the order O(α2) approximation of the mean of the EB ac-
tion in equation (5.6), using the Taylor expansion (6.3) and neglecting or-
der O(α2ε) pressure and density corrections. (An order O(α2) term involving
(ξ · ∇u)(ξ · ∇R) is also dropped, since it makes only a negligible contribution
in the resulting motion equation.)

The Euler–Poincaré Equations. Varying this action at fixed x and t
gives

δ EBα =

∫
dt

∫

M
dnx

[(1

2
|u|2 +

α2

2
|∇u|2 + u ·R(x)− gbz − p

)
δD

−Dgzδb− (D − 1)δp+
(
Du− α2(divDgrad)u

)
· δu

]

+ α2

∫
dt

∮

∂M
dn−1x (Dn̂ · ∇u · δu) , (6.12)

where the natural boundary conditions are again given in (6.5). The cor-
responding Euler–Poincaré equation for the action EBα in equation (6.11)
is,

(
∂

∂t
+ u · ∇

)
v − u× curlR + vj∇uj + gbẑ

+∇
(
p− 1

2
|u|2 − α2

2
|∇u|2

)
= 0 , (6.13)

where

v ≡ u− α2∆u, ∇ · u = 0,

db

dt
= 0,

d

dt
=

(
∂

∂t
+ u · ∇

)
. (6.14)

Again, we have substituted the constraint D = 1, which implies incompress-
ibility via the continuity equation for D. Relative to the usual EB equations
(4.27), the EBα equation (6.13) has a smoothed, or filtered transport velocity,
since u = (1− α2∆)−1v.
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The Kelvin–Noether Theorem. The Kelvin–Noether circulation theo-
rem for the EBα equation (6.13) is,

d

dt

∮

γt(u)

(v + R) · dx = −
∮

γt(u)

bdz , (6.15)

where the curve γt(u) moves with the fluid velocity u. (The two Kelvin theo-
rems in equations (6.15) and (4.29) differ in their definitions of v.) By Stokes’
theorem, the EBα equations generate circulation of v+R around γt(u) when-
ever the gradient of bouyancy is not vertical. The conservation of potential
vorticity on fluid parcels for the EBα equations is given by

∂qEBα

∂t
+ u · ∇ qEBα = 0 , where qEBα = ∇b · ∇ × (v + R) . (6.16)

The curl of the EBα motion equation gives,

∂

∂t
q = −u · ∇q + q · ∇u + g∇b× ẑ, where q ≡ curl(u− α2∆u + R) .

(6.17)

This the usual expression for transport, stretching and creation of vorticity
in a buoyant flow, except that here the vortex stretching coefficient is ∇u,
which is moderated relative to the usual EB equations.

Energy Conservation. The EBα equations (6.13) conserve the following
Hamiltonian (found, e.g., by Legendre transforming the Lagrangian lEBα in
equation (6.11)). Namely,

HEBα =

∫

M
dnx

[
D
(1

2
|u|2 +

α2

2
|∇u|2

)
+Dgbz + p(D − 1)

]
. (6.18)

The corresponding conserved energy is

EEBα = HEBα

∣∣∣
D=1

=

∫

M
dnx

[1

2
|u|2 +

α2

2
|∇u|2 + gbz

]
. (6.19)

Since the (finite) value of this conserved energy for the EBα model is deter-
mined by its initial conditions and b is advected (so it has a maximum value
in L∞) there is H1 control of the velocity u. This is the effect of the “fil-
tering” of the solution produced by the nonlinear dispersion for α 6= 0. This
filtering moderates the growth of instabilities at wavenumbers |k| ≥ 1/α. So
if the EBα model is used as a large eddy simulation (LES) model, one would
choose the value of α to determine the size of the minimum resolved length
scale. The filtering by the α term also allows nonlinear Liapunov stability
conditions to be formulated for equilibrium solutions of the EBα model. This
stability result is clear from the work of Abarbanel et al. [1986], who intro-
duced the notion of “conditional” Liapunov stability for the EB model, using
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wavenumber conditions that now turn out to be satisfied for the EBα model.
The Euler fluid equations (4.23) may also be modified analogously to include
nonlinear dispersion. However, this case is ignored for now, as we proceed to
discuss the modified primitive equations.

6.3 Primitive Equation α Model (PEα)

In horizontal and vertical components, with v⊥ ≡ v − v‖ẑ, v‖ ≡ (v · ẑ) and
curl R = f(x)ẑ, the the EBα equations are expressed in nondimensional form
as, cf. equations (4.28) and (6.13),

ε
dv⊥

dt
+ ε vj∇⊥uj + f ẑ × u +∇⊥ π = 0 , ε σ2 dv

‖

dt
+ b+

∂π

∂z
= 0 , (6.20)

d

dt
≡
(
∂

∂t
+ u⊥ · ∇⊥ + u‖

∂

∂z

)
,

db

dt
= 0 , ∇ · u = ∇⊥ · u⊥ +

∂u‖

∂z
= 0 ,

where π ≡
(
p− 1

2
|u|2 − α2

2
|∇u|2

)
, v ≡ u− α2∆u .

Here, ε and σ are the Rossby number and aspect ratio, respectively, and
α has been scaled in units of horizontal length scale, L. The leading order
balances are still hydrostatic in the vertical, and geostrophic in the horizontal.
Setting σ = 0 in equation (6.20) removes the vertical acceleration and thereby
produces the primitive equation α model (PEα). We expect that the filtering
property for α 6= 0 discussed above for the CH and EBα equations should
make the PEα model much more regular than the ordinary PE, from the
viewpoint of gravity wave oscillations. The problematic asspects of gravity
waves in atmospheric and oceanic numerical simulations and data assimilation
using the PE model have often been addressed by invoking the concept of an
idealized “slow manifold” on which gravity waves are absent, see, e.g., Lorenz
[1992]. However, the existence of a slow manifold has never been proven for
the PE model. It is an open question, whether the new PEα model will have
a slow manifold when dissipation and forcing are included. We shall report
on this matter elsewhere.

Final Remarks

In this paper we have shown how asymptotic expansions in Hamilton’s princi-
ple for the Euler–Poincaré equations of geophysical fluid dynamics provide an
organizing principle for many GFD systems and produce a clear, unified un-
derstanding of their Kelvin theorems. Hamilton’s principle asymptotics in the
Euler–Poincaré setting thus explains the shared properties of these GFD mod-
els and provides a unified approach to making additional approximations and
creating new models. In this setting, we have introduced a new class of fluid
models, called α models, that possess nonlinear dispersion which smooths the
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transport velocity relative to the circulation velocity in the Euler–Poincaré
equations. The effect of this smoothing is to moderate the vortex stretching
process while preserving the Kelvin circulation theorem for these equations.
The efficacy and utility of the α models are yet to be determined, but initial
studies of them are promising. We expect that one can also perform the sort
of asymptotics done here on the group level first (to get an approximating
group) and then perform Euler–Poincaré reduction and arrive at the same
conclusions. In other words, there should be a general principle for asymp-
totics in Hamilton’s principle, which allows passage from one group and its
corresponding advected quantities to an approximating one. Moreover, this
process should commute with Lagrangian and Hamiltonian reduction.
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Gabay, Paris.
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New progress in Lagrangian averaged models

Since this paper was originally submitted in 1997, the Euler-Poincaré frame-
work has inspired considerable progress in formulating and analyzing closed
systems of Lagrangian averaged Euler (LAE) equations. The closed model
LAE equations were first obtained in Holm, Marsden and Ratiu [1998a,1998b]
by using Taylor’s hypothesis as a closure step as we did in section 6 for the
EB equations and PE. The equations including the effects of stratification
and rotation introduced in Gjaja and Holm [1996] in the Lagrangian fluid
specification by using a WKB approximation for the fluctuating vector field
ξ = xξ−x were later recognized as a self-consistent variant of the LAE closure.
See Holm [1999a,1999b,2001,2002] and Marsden and Shkoller [2001a,2001b]
for further discussions of that approach, which uses asymptotic expansions of
Hamilton’s principle for GLM to order O(|ξ|2) in combination with Taylor’s
hypothesis in developing the closure equations.

This type of closure method has recently been developed to the point of ap-
plications as the basis of a turbulence model (after properly including viscous
dissipation) in Chen et al. [1998,1999a,1999b,1999]. This LANS−α model –
the Lagrangian averaged Navier-Stokes−α equations – was compared to Large
Eddy Simulation (LES) methods in Domaradzki and Holm [2001], Mohseni et
al. [2000], Holm and Kerr [2001] and in Geurts and Holm [2001]. See Shkoller
[1998,2000], Holm [1999a,1999b], Marsden, Ratiu and Shkoller [2000], Mars-
den and Shkoller [2001a,2001b] and Foias, Holm and Titi [2001,2002] for addi-
tional studies and discussions of the mathematical properties of the LANS−α
and Euler−α equations.

Of course, the Lagrangian averaged Euler-Poincaré (LAEP) approach is
also versatile enough to derive LA equations for compressible fluid motion.
This was already shown in the original GLM theory in Andrews and McIntyre
[1978a]. For brevity now, we only remark that the LAEP approach preserves
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helicity conservation for barotropic compressible flows. It also preserves mag-
netic helicity and cross-helicity conservation when applied to magnetohydro-
dynamics (MHD). For more details in this regard, see Holm[2001,2002].
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