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Abstract
This paper analyses continuous and discrete versions of the generalized rigid
body equations and the role of these equations in numerical analysis, optimal
control and integrable Hamiltonian systems. In particular, we present a
symmetric representation of the rigid body equations on the Cartesian product
SO(n) × SO(n) and study its associated symplectic structure. We describe
the relationship of these ideas with the Moser–Veselov theory of discrete
integrable systems and with the theory of variational symplectic integrators.
Preliminary work on the ideas discussed in this paper may be found in Bloch
et al (Bloch A M, Crouch P, Marsden J E and Ratiu T S 1998 Proc. IEEE Conf.
on Decision and Control 37 2249–54).

Mathematics Subject Classification: 34A05, 70E15, 70E40, 70H05

1. Introduction

This paper presents an alternative formulation of the n-dimensional rigid body equations which
we call the symmetric representation of the rigid body equations (equations (SRBn) in section 3)
and an associated set of discrete equations called the symmetric representation of the discrete
rigid body equations (equations (SDRBn) in section 4). Both the continuous and discrete
equations evolve on a Cartesian product G × G of a Lie group G rather than on its cotangent
bundle T ∗G. One interesting way to derive the continuous equations is by means of the
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(Pontryagin) maximum principle of optimal control theory. Likewise, the discrete equations
can be derived from discrete optimal control theory.

Parts of this work were motivated by the work of Moser and Veselov (1991) on in-
tegrable discrete rigid body equations (the Moser–Veselov equations are (DRBn) in sec-
tion 4) and through this, with problems in geometric numerical integration algorithms.
In fact, there has been much interest in recent years in structured algorithms (such as
variational and symplectic methods) for integrating Hamiltonian systems and, in parti-
cular, rigid body mechanics (see, e.g. Lewis and Simo (1995), McLaghlan and Scovel 1995,
Marsden and Wendlandt (1997), Marsden et al (1998, 1999), Bobenko and Suris (1999), Kane
et al (1999, 2000), Marsden and West (2001) and references therein). A particularly interest-
ing feature of the rigid body equations is that the discrete form is still integrable in a precise
sense, as shown by Moser and Veselov (1991) (see also Deift et al (1992) and Suris (2001)).

We show that the discrete rigid body equations (SDRBn) can not only be obtained as a
discretization of our continuous equations (SRBn), but may be obtained directly by a discrete
version of the maximum principle. We also establish the variational formulation of the discrete
equations and the sense in which the continuous case is obtained as the time step tends to zero.

We also discuss some links with the Manakov equations with parameter in both their
continuous and discrete setting. Recall that the Manakov equations are key to understanding
the integrability of the n-dimensional rigid body (see Manakov (1976)).

Relationship to other optimal control problems. Our formulation is related to the development
of optimal control problems on adjoint orbits of Lie groups defined using what is
usually called the normal metric and a weighted generalization of it (see Brockett (1994),
Bloch and Crouch (1996) and Bloch et al (1997)). In this work one considers the optimal
control problem for a cost function that is the energy function associated with the normal
metric. On adjoint orbits this gives rise to a set of coupled double bracket equations. We
remark that this pair of coupled double bracket equations is quite different from the double
bracket equations discussed in Brockett (1989), Bloch (1990) and Bloch et al (1990a,b, 1992).
This pair of equations is discussed below (see equation (5.10)). These equations are always
Hamiltonian and specialize to a number of integrable Hamiltonian systems of interest, such as
the geodesic flow equations on adjoint orbits and Grassmannians.

Optimization vs optimal control problems. In contrast to the coupled double bracket
equations, the double bracket equations arose historically from optimization (rather than
optimal control) problems. The double bracket equations arose in fact from a steepest descent
approach to optimization and are gradient in general (with respect to the normal metric). They
are Hamiltonian only in certain situations, e.g. they yield the tridiagonal symmetric Toda lattice
equation (see Bloch (1990) and Bloch et al (1990a)).

The coupled double bracket equations, on the other hand, arise naturally in optimal control
problems via the maximum principle, as discussed in Bloch and Crouch (1996), and provide,
in some cases, explicit solutions to these optimal control problems.

As a consequence of the maximum principle, it follows that the coupled double bracket
equations are Hamiltonian. A related paper of interest on explicitly soluble optimal control
problems is that of Faybusovich (1988), where the methods of integrable systems in optimal
control problems are discussed (see also Jurdjevic (1997)).

Structure of the symmetric representation of the rigid body equations. Our particular interest
in this paper is the development of a particular symmetric representation of the generalized
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rigid body equations on the n-dimensional proper orthogonal group SO(n) (whose Lie algebra
is denoted so(n)). We show that these equations can be put into the following symmetric form:

Q̇ = Q�, Ṗ = P�. (1.1)

The notation in these equations is as follows: the matrices Q and P are the dynamical variables,
where Q ∈ SO(n) denotes the configuration of the body. For these equations to make sense
as first-order equations on SO(n)× SO(n), one needs to specify how � = Q−1Q̇ ∈ so(n), the
body angular velocity, is a function of Q and P . This will be explained in the main text.

Setting A = PQT, skew symmetry of � shows that Ȧ = 0 and hence A = P(0)Q(0)T and
so P(t) = P(0)Q(0)TQ(t). In other words, this ‘quadrature’ shows that P may be thought of
as a function of Q. Thus, �, instead of being a function of (Q, P ), becomes a function of Q

alone. This indicates that the integrable structure of the symmetric representation of the rigid
body equations depends simply on the integrability of the reduced order system:

Q̇ = Q�(Q), (1.2)

where the right-hand side turns out to be cubic in Q. This may be viewed as a reduction process
under the group SO(n). In stark contrast, for the classical rigid body equations the same
symmetry reduction results in the standard Lax system Ṁ = [M, �] and the reconstruction
process requires the integration of the kinematic system Q̇ = Q�.

One of the key developments in this paper is the establishment of a notion of equivalence
between this usual system of rigid body equations

Q̇ = Q�, Ṁ = [M, �], (1.3)

and our symmetric representation of the rigid body equations (1.1). Indeed,
Bloch and Crouch (1996) demonstrate that on suitable domains,

P = Q(esinh−1 M/2) (1.4)

relates trajectories of (1.1) and (1.3). This equivalence, effected by a mapping �, that we
introduce in the paper, therefore demonstrates that the two-step process involved in integrating
the classical equations (1.3) (solving for M first and then Q) may be replaced simply by
integration of one system (1.2) followed by use of the identity P = AQ.

We further identify in this paper invariant sets S ⊂ SO(n) × SO(n) and SM ⊂ T ∗SO(n)

and demonstrate that S inherits a symplectic structure so that � is a symplectomorphism from
S to SM mapping trajectories of (1.1)–(1.3).

While Q has the interpretation as the configuration of the body, P is not the rigid body
angular momentum. As discussed in Bloch and Crouch (1996) and later in this paper, P is
naturally a costate variable arising from studying the n-dimensional rigid body as an optimal
control problem. One may want to consider how this result for the rigid body system may be
extended to other integrable systems such as the heavy top (see, e.g. Lewis et al (1992) and
Bobenko and Suris (1999)). While this is not clear from the work in this paper (due to the
reduced symmetry in systems such as the heavy top), the key observation here is the means by
which the variable P is identified, as a costate vector in an associated optimal control problem.
Of course, every Euler–Lagrange system, coming from Hamilton’s principle, may be thought
of as an optimal control problem. We hypothesize that by identifying optimal control problems
whose extremals yield the equations of motion of other integrable systems, further insight may
be gained into their structure as is clearly the case for the rigid body. Clearly this is not an
obvious process as the complicated relationship between the rigid body and the symmetric
representation of the rigid body demonstrates.
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Discrete representation of the symmetric rigid body equations. The discrete representation
of the symmetric rigid body equations is of the form

Qk+1 = QkUk, Pk+1 = PkUk, (1.5)

where again Qk and Pk are in SO(n) and Uk is a function of Qk and Pk . Just as (SRBn) is locally
equivalent in a precise sense to the standard rigid body equations, these equations, which we
dub the symmetric representation of the discrete rigid body equations (SDRBn), are equivalent
in a precise sense to the Moser–Veselov discrete rigid body equations and moreover define a
new algorithm for integrating the rigid body equations. We also show how these equations
arise from the discrete Pontryagin maximum principle.

Outline. The structure of this paper is as follows: in section 2 we describe the classical
generalized rigid body equations on SO(n). In section 3 we introduce the symmetric
representation of the rigid body equations and discuss their equivalence with the standard
rigid body equations. In section 4 we discuss both the discrete Moser–Veselov equations and
the discrete representation of the symmetric rigid body equations. In section 5 we discuss how
to derive the (SRBn) equations from optimal control theory and in section 6 we show how to
derive (SDRBn) from the theory of discrete optimal control. In section 7 we discuss various
relationships between (RBn) and (SRBn). Finally, in section 8, we present some conclusions
and discuss some planned extensions of this work.

2. The n-dimensional rigid body

In this section we review the classical rigid body equations in three and, more generally, in
n dimensions. We shall also compare the left and right invariant equations.

For convenience we shall use the following pairing (multiple of the Killing form) on so(n),
the Lie algebra of n × n real skew matrices regarded as the Lie algebra of the n-dimensional
proper rotation group SO(n):

〈ξ, η〉 = − 1
2 trace(ξη). (2.1)

The factor of 1
2 in (2.1) is to make this inner product agree with the usual inner product on R

3

when it is identified with so(3) in the following standard way: associate the 3 × 3 skew matrix
û to the vector u by û · v = u × v, where u × v is the usual cross product in R

3. We use
this inner product to identify the dual of the Lie algebra, namely so(n)∗, with the Lie algebra
so(n).

We recall from Manakov (1976) and Ratiu (1980) that the left invariant generalized rigid
body equations on SO(n) may be written as

Q̇ = Q�, Ṁ = [M, �], (RBn)

where Q ∈ SO(n) denotes the configuration space variable (the attitude of the body),
� = Q−1Q̇ ∈ so(n) is the body angular velocity and

M := J (�) = �� + �� ∈ so(n)

is the body angular momentum. Here J : so(n) → so(n) is the symmetric (with respect to the
inner product (2.1)), positive definite, and hence invertible, operator defined by

J (�) = �� + ��,

where � is a diagonal matrix satisfying �i +�j > 0 for all i �= j . For n = 3 the elements of �i

are related to the standard diagonal moment of inertia tensor I by I1 = �2 +�3, I2 = �3 +�1

and I3 = �1 + �2.
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The equations Ṁ = [M, �] are readily checked to be the Euler–Poincaré equations on
so(n) for the Lagrangian l(�) = 1

2 〈�, J (�)〉. This corresponds to the Lagrangian on T SO(n)

given by

L(g, ġ) = 1
2 〈g−1ġ, J (g−1ġ)〉. (2.2)

It follows from the general Euler–Poincaré theory (see, e.g. Marsden and Ratiu (1999)) that
the equations (RBn) are the geodesic equations on T SO(n), left trivialized as SO(n) × so(n),
relative to the left invariant metric whose expression at the identity is

〈〈�1, �2〉〉 = 〈�1, J (�2)〉. (2.3)

According to Mishchenko and Fomenko (1978), there is a similar formalism for any
semisimple Lie group and that in that context, one has integrability on the generic coadjoint
orbits.

Right invariant system. The system (RBn) has a right invariant counterpart. This right
invariant system is given as follows. Consider the right invariant Riemannian metric on SO(n)

whose value at the identity is given by (2.3). The geodesic equations of this metric on T SO(n),
right trivialized as SO(n) × so(n), are given by

Q̇r = �rQr, Ṁr = [�r, Mr ], (RightRBn)

where in this case �r = Q̇rQ
−1
r and Mr = J (�r) where J has the same form as above.

Relating the left and the right rigid body systems

Proposition 2.1. If (Q(t), M(t)) satisfies (RBn), then the pair (Qr(t), Mr(t)), where Qr(t) =
Q(t)T and Mr(t) = −M(t), satisfies (RightRBn). There is a similar converse statement.

The proof is a straightforward verification.
The relation between the left and right systems given in this proposition is not to be

confused with the right trivialized representation of the left invariant rigid body equations, i.e.
the left invariant system written in spatial representation. For a discussion of this distinction,
see, for example, Holm et al (1986). One can also view the right invariant system as the inverse
representation of the standard left invariant rigid body.

Remark. It is a remarkable fact that the dynamic rigid body equations on SO(n) and
indeed on any semisimple Lie group are integrable (Mishchenko and Fomenko (1976)). A key
observation in this regard, due to Manakov, was that one could write the generalized rigid body
equations as Lax equations with parameter

d

dt
(M + λ�2) = [M + λ�2, � + λ�], (2.4)

where M = J (�) = �� + ��, as in section 2. The nontrivial coefficients of λ in the
traces of the powers of M + λ�2 then yield the right number of independent integrals in
involution to prove integrability of the flow on a generic adjoint orbit of SO(n) (identified with
the corresponding coadjoint orbit). (We remark that the the SO(n) rigid body equations were
in fact written down by F Frahm in 1874 who also proved integrability for the case n = 4.
In addition, F Schottky in 1891 showed how to obtain explicit theta-function solutions in this
case. For references to this work see Bogayavlenski (1994) and Federov and Kozlov (1995).)
Moser and Veselov (1991) show that there is a corresponding formulation of the discrete
rigid body equations with parameter. We shall return to this issue in the conclusion
section.
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3. Rigid body equations: symmetric representation

In this section we introduce a Hamiltonian system that will be related to the system (RBn) and,
later, to optimal control problems. We will call this system (SRBn), standing for the symmetric
representation of the rigid body in n-dimensions.

The system (SRBn). By definition, the left invariant representation of the symmetric rigid
body system (SRBn) is given by the first-order equations:

Q̇ = Q�, Ṗ = P�, (SRBn)

where � is regarded as a function of Q and P via the equations

� := J−1(M) ∈ so(n) and M := QTP − P TQ.

It is easy to check that this system of equations on the space SO(n) × SO(n) is invariant under
the left diagonal action of SO(n).

Proposition 3.1. If (Q, P ) is a solution of (SRBn), then (Q, M), where M = J (�) and
� = Q−1Q̇, satisfies the rigid body equations (RBn).

Proof. Differentiating M = QTP − P TQ and using the equations (SRBn) gives the second
of the equations (RBn). �

It is because of this proposition that the equations (SRBn) are called the symmetric
representation of the rigid body equations on SO(n) × SO(n) in left invariant form.

Recall that the spatial angular momentum for the standard left invariant rigid body
equations (RBn) is defined to be the value of momentum map for the cotangent lifted left
action of SO(n) on T ∗SO(n)5.

Proposition 3.2. For a solution of the left invariant rigid body equations (RBn) obtained by
means of proposition 3.1, the spatial angular momentum is given by m = PQT − QP T and
hence m is conserved along the rigid body flow.

Proof. If we start with a solution (Q(t), P (t)) of the symmetric representation of the rigid
body system, and map this solution to (Q(t), M(t)) where M(t) = QTP − P TQ, then as we
have seen, M satisfies the rigid body system, and so M is the body angular momentum, i.e. it
is the value of the momentum map for the right action.

By the general Euler–Poincaré and Lie–Poisson theory, m, which is the value of the
momentum map for the left action, is obtained from M using the coadjoint action of SO(n) on
so(n)∗ ∼= so(n), namely m = QMQT = Q(QTP − P TQ)QT = PQT − QP T. From
Noether’s theorem, ṁ = 0; one can also verify this directly by differentiating m along
(SRBn). �

Note that in fact PQT and QP T are also conserved separately along the flow.

The system (RightSRBn). By definition, the symmetric representation of the rigid body
equations in right invariant form on SO(n) × SO(n) are given by the first-order equations

Q̇r = �rQr, Ṗr = �rPr, (RightSRBn)

where �r := J−1(Mr) ∈ so(n) and where Mr = PrQ
T
r − QrP

T
r .

It is easy to check that this system is right invariant on SO(n) × SO(n).

5 See, for example, Marsden and Ratiu (1999) for these basic notions.
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Proposition 3.3. If (Qr, Pr) is a solution of (RightSRBn), then (Qr, Mr), where Mr = J (�r)

and �r = Q̇rQ
−1
r , satisfies the right rigid body equations (RightRBn).

In the right invariant case it follows that mr := QT
r MrQr = QT

r Pr − P T
r Qr is conserved

along the flow of either (RightSRBn) or (RightRBn).

Relating the left and the right systems.

Proposition 3.4. If (Q(t), P (t)) satisfies (SRBn) then the pair (Qr(t), Pr(t)), where Qr(t) =
Q(t)T and Pr(t) = P(t)T, satisfies (RightSRBn) with �r = −� = �T.

This is a straightforward verification.

Local equivalence of the rigid body and the representation of the symmetric rigid body
equations. Above we saw that solutions of (SRBn) can be mapped to solutions of the rigid
body system. Now we consider the converse question. Thus, suppose we have a solution
(Q, M) of the standard left invariant rigid body equations. We seek to solve for P in the
expression

M = QTP − P TQ. (3.1)

For the following discussion, it will be convenient to make use of the operator norm on
matrices. Recall that this norm is given by ‖A‖op = sup{‖Ax‖ | ‖x‖ = 1}, where the norms
on the right-hand side are the usual Euclidean space norms.

Since elements of SO(n) have operator norms bounded by 1 and since the operator norm
satisfies‖AB‖op � ‖A‖op‖B‖op, we see that ifM satisfiesM = QTP−P TQ, then‖M‖op � 2.
Therefore, ‖M‖op � 2 is a necessary condition for solvability of (3.1) for P .

Definition 3.5. Let C denote the set of (Q, P ) that map to M with operator norm equal to 2
and let S denote the set of (Q, P ) that map to M with operator norm strictly less than 2. Also
denote by SM the set of points (Q, M) ∈ T ∗SO(n) with ‖M‖op < 2. For the left invariant
system we trivialize T ∗SO(n) ∼= SO(n) × so(n)∗ by means of left translation to the identity
and we identify so(n)∗ with so(n) using the Killing metric (2.1), as earlier.

Note that C contains pairs (Q, P ) with the property that QTP is both skew and orthogonal.
Recall that sinh : so(n) → so(n) is defined by sinh ξ = (eξ − e−ξ )/2. One sees that

indeed sinh takes values in so(n) by using, for example, its series expansion:

sinh ξ = ξ + 1
3!ξ

3 + 1
5!ξ

5 + · · · .
Recall from calculus that the inverse function sinh−1(u) has a convergent power series
expansion for |u| < 1 that is given by integrating the power series expansion of the function
1/

√
1 + u2 term by term. This power series expansion shows that the map sinh : so(n) → so(n)

has an inverse on the set U = {u ∈ so(n) | ‖u‖op < 1}. We shall denote this inverse, naturally,
by sinh−1, so sinh−1 : U → so(n).

Example of SO(3). As an example, let us consider so(3) which we parameterize as follows:
we write an element of so(3) as µĉ where ĉ is an element of so(3) of unit operator norm (so
c, the corresponding three-vector has vector norm one) and µ is a positive scalar. One checks
that the operator norm of ĉ is equal to the Euclidean norm of c. Hence, the set U consists of
the set of elements µĉ where c is a unit vector and µ is a real number with 0 � µ < 1. From
Rodrigues’ formula one finds that

eµĉ = I + sin(µ)ĉ + (I − ccT)(cos µ − 1). (3.2)
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Thus, one sees that sinh(µĉ) = sin(µ)ĉ. Notice that from this formula, sinh is not globally
one to one. However, it has an inverse defined on the set U explicitly given by

sinh−1(µĉ) = sin−1(µ)ĉ.

Proposition 3.6. For ‖M‖op < 2, the equation (3.1) has the solution

P = Q(esinh−1 M/2). (3.3)

Proof. Notice that M = esinh−1 M/2 − e− sinh−1 M/2. �

Similarly, in the right invariant case, we obtain the formula

Pr = (esinh−1 Mr/2)Qr. (3.4)

Example of SO(3). We now show that for SO(3) the set C is not empty, even though there
are no points Q, P such that QTP is both skew and orthogonal (because in SO(3) there are no
skew orthogonal matrices, as all three by three skew matrices are singular). Let QTP = eµĉ

where µ = π/2. Then by equation (3.2), QTP = I + ĉ and hence is not skew. Now for x such
that cTx = 0 we have

‖(QTP − P TQ)x‖ = 2‖ĉx‖ = 2‖x‖,
and thus ‖(QTP − P TQ)‖op = 2.

In fact, reversing the argument above shows that for SO(3) the set C consists entirely of
elements of form QTP = I + ĉ for some c.

Proposition 3.7. The sets C and S are invariant under the double rigid body equations.

Proof. Notice that the operator norm is invariant under conjugation, i.e. for Q ∈ SO(n) and
M ∈ so(n), we have ‖QMQ−1‖op = ‖M‖op. This is readily checked from the definition of
the operator norm. Recall that under the identification of the dual so(n)∗ with the space so(n),
the coadjoint action agrees with conjugation. Thus, the map f : so(3) → R; M �→ ‖M‖op

is a Casimir function and so is invariant under the dynamics. In particular, its level sets are
invariant and so the sets S and C are invariant. �

One can see that the operator norm is invariant under the dynamics by a direct argument
as well. This is done by writing the operator norm as ‖M‖op = √

λ, where λ is the maximum
eigenvalue of MTM (by the Rayleigh–Ritz quotient). Then one differentiates the equation
MTMv = λv along the flow of the rigid body equations, subject to the constraint ‖v‖2 = 1 to
see that λ̇ = 0.

Example of SO(3). For the rotation group, the trace norm (up to a factor of 2) and
the operator norm both agree with the standard Euclidean norm under the identification
v ∈ R

3 �→ v̂ ∈ so(3). The standard norm is indeed a Casimir function for the rotation
group and is invariant under the rigid body equations by conservation of angular momentum.

The Hamiltonian form of (SRBn). Recall that the classical rigid body equations are
Hamiltonian on T ∗SO(n) with respect to the canonical symplectic structure on the cotangent
bundle of SO(n). The following result gives the corresponding theorem for (SRBn).
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Proposition 3.8. Consider the Hamiltonian system on the symplectic vector space gl(n)×gl(n)

with the symplectic structure

�gl(n)(ξ1, η1, ξ2, η2) = 1
2 trace

(
ηT

2 ξ1 − ηT
1 ξ2

)
, (3.5)

where (ξi, ηi), i = 1, 2 are elements of gl(n) × gl(n) and Hamiltonian

H(ξ, η) = − 1
8 trace[(J−1(ξTη − ηTξ))(ξTη − ηTξ)]. (3.6)

The corresponding Hamiltonian system leaves SO(n)× SO(n) invariant and induces on it, the
flow of the symmetric representation of the rigid body system.

Proof. We first compute the Hamiltonian vector field for the given Hamiltonian. Denote it by
XH(ξ, η) = X(ξ, η), Y (ξ, η)). Now one computes that

dH(ξ, η) · (δξ, δη) = − 1
4 trace[J−1(ξTη − ηTξ)((δξ)Tη − ηTδξ)]

− 1
4 trace[J−1(ξTη − ηTξ)(ξTδη − (δη)Tξ)]. (3.7)

The condition that XH be the Hamiltonian vector field, namely,

�gl(n)((X(ξ, η), Y (ξ, η)), (δξ, δη)) = dH(ξ, η) · (δξ, δη)

gives

X(ξ, η) = ξJ−1(ξTη − ηTξ), Y (ξ, η) = ηJ−1(ξTη − ηTξ). (3.8)

Keeping in mind that J−1(ξTη − ηTξ) is an element of so(n), and that the tangent space to
SO(n) × SO(n) at the point (Q, P ) may be identified with Qso(n) × P so(n), we see that
the Hamiltonian vector field XH is tangent to SO(n) × SO(n) at each of its points (Q, P ).
Moreover, the equations

ξ̇ = ξJ−1(ξTη − ηTξ), η̇ = ηJ−1(ξTη − ηTξ) (3.9)

become, on this submanifold, the symmetric representation of the rigid body system. �
Note that the above Hamiltonian is equivalent to H = 1

4 〈J−1M, M〉, as in Ratiu (1980).

The symplectic structure on S ⊂ SO(n) × SO(n). There are two important remarks to be
made about the symplectic nature of the phase space of the symmetric representation of the
symmetric rigid body system.

In what follows, we will show that the space SO(n)×SO(n) is not a symplectic submanifold
of gl(n) × gl(n), but, on the other hand, the open subset S ⊂ SO(n) × SO(n) in definition 3.5
is symplectic.

The argument for the first statement is as follows. If SO(n) × SO(n) were symplectic,
then �gl(n), when restricted to SO(n) × SO(n), would be nondegenerate. This would mean
that for each (Q, P ) ∈ SO(n) × SO(n), and each ξ1, η1 ∈ so(n), the statement

�gl(n)((Qξ1, Pη1), (Qξ2, Pη2)) = 0,

for all ξ2, η2 ∈ so(n), would imply that ξ1 = 0 and η1 = 0. Using the definition of the
symplectic form, this condition becomes

trace((Pη2)
TQξ1 − (Pη1)

TQξ2) = 0,

for all ξ2, η2 ∈ so(n). This, in turn, is equivalent to the vanishing of each term separately,
implying that ξ1 = 0 and η1 = 0. However, the condition that trace((Pη2)

TQξ1) = 0 for all
η2 ∈ so(n) is equivalent to P TQξ1 being symmetric. To show that this does not generally
hold, take n = 3 and P to be the identity. Then the condition requires that Qξ1Q = −ξ1

imply ξ1 = 0. However, this is not true: let Q be a rotation about the z-axis through 180˚, so
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that Q is both symmetric and orthogonal. In this case, choosing ξ1 to be the element of so(3)

corresponding to the vector (1, 0, 0) we see that indeed Qξ1Q = −ξ1 holds; note that Qξ1Q

just rotates the vector (1, 0, 0) to its negative.
Even though the set SO(n) × SO(n) is not a symplectic submanifold, the open set S is, as

the next proposition shows.

Proposition 3.9. The set S ⊂ SO(n) × SO(n) ⊂ gl(n) × gl(n) is a symplectic submanifold of
gl(n) × gl(n).

Proof. Let (P, Q) ∈ S. We need to show that

�gl(n)((Qξ1, Pη1), (Qξ2, Pη2)) = 1
2 trace((Pη2)

TQξ1 − (Pη1)
TQξ2) = 0,

for all ξ2, η2 ∈ so(n) implies ξ1 = 0 and η1 = 0. This in turn is equivalent to the vanishing of
each term separately. That is, we need to show that

trace((Pη2)
TQξ1) = trace

(
ηT

2 P TQξ1
) = 0,

for all η2 ∈ so(n) implies ξ1 = 0. Since η2 is skew symmetric and arbitrary, this is equivalent
to the condition that P TQξ1 being symmetric implies ξ1 = 0. The matrix P TQξ1 is symmetric
when QTPξ1Q

TP = −ξ1, which by equation (3.3) and the fact that (Q, P ) ∈ S is the same as
esinh−1 M/2ξ1esinh−1 M/2 = −ξ1. Thus, the proof of the proposition will be complete if we prove
the following lemma. �

Lemma 3.10. For A, B ∈ so(n), if ‖A‖op < 1 and

esinh−1 ABesinh−1 A = −B, (3.10)

then B = 0.

Proof. Since A is a normal matrix with pure imaginary eigenvalues, it can be written in the
form A = Q�QT, where Q is orthogonal and � = idiag λ. Set B̃ = QTBQ and then (3.10)
implies

DB̃D = −B̃, where D = esinh−1 � = diag d.

This is equivalent to (1 + dkdl)B̃k,l = 0, k, l = 1, . . . , n. Note that dk = esinh−1 iλk = ei sin−1 λk .
Recall however that ‖A‖op < 1 which, for normal matrices, is equivalent to ρ(A) < 1. In
other words, |λk| < 1 for all k, and this implies that sinh−1(iλk) = sin−1 λk ∈ (−π/2, π/2).
Suppose now that 1 + dkdl = 0 for some k and l. Then ei(sin−1 λk+sin−1 λl) = e±iπ ; in other words
sin−1 λk +sin−1 λl = ±π . This is a contradiction, hence 1+dkdl �= 0 for all k, l = 1, 2, . . . , n.
This implies B̃ = O and, since Q is nonsingular, B = O. This is the proof 6 of
lemma 3.10. �

The pull-back symplectic structure. We now show that the pull back of the canonical
symplectic structure on T ∗SO(n) to SO(n) × SO(n) gives the symplectic structure on the
space S. More precisely, we have the following proposition.

Proposition 3.11. Let � : (Q, P ) �→ (Q, M) = (Q, QTP − P TQ) denote the map from
SO(n)×SO(n) to T ∗SO(n) ∼= SO(n)×so(n) whose restriction to S is 1–1 and onto SM . Then
the restriction of this map to S is a diffeomorphism between S and SM .

Further, let ω denote the canonical symplectic form on T ∗SO(n) and let �gl(n)|S denote
the restriction of the form (3.5) to S. Then

�∗(ω|SM
) = 2�gl(n)|S. (3.11)

6 We thank Arieh Iserles for informing us of this short proof.
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Proof. Firstly we prove that the restriction of the map � to S is a diffeomorphism between S

and SM . The 1–1 nature of the map is proved using similar arguments to lemma 3.10 and the
map is onto by construction.

Now we prove differentiability of the inverse map by the proving that the Jacobian of the
inverse map is nonsingular on SM . This map is given by (3.3) and hence the derivative of P

with respect to M is

1

2
Q(esinh−1 M/2)

(
1 +

M2

4

)−1/2

, (3.12)

where the last factor is interpreted via a power series. Recall that sinh M/2 is nonsingular on
SM by our earlier arguments (see the discussion following definition (3.5)), so esinh−1 M/2 is
defined. The first factor in (3.12), 1

2Q(esinh−1 M/2), is the product of two nonsingular factors,
so is obviously nonsingular.

I + M2/4 is nonsingular and positive on SM by similar arguments used in lemma 3.10.
Now we turn to the proof of equation (3.11). Let (Qξ1, Pη1) and (Qξ2, Pη2), ξi, ηi ∈

so(n) be tangent vectors to SO(n) × SO(n). Then by (3.5), we have

�|S((Qξ1, Pη1), (Qξ2, Pη2)) = 1
2 trace((Pη2)

TQξ1 − (Pη1)
TQξ2)

= 1
2 trace(P TQ)(−ξ1η2 + ξ2η1).

The canonical symplectic form on T ∗SO(n) left trivialized to SO(n) × so(n) is given by (see,
e.g. Abraham and Marsden (1978), proposition 4.4.2ii, p 316)

ω(Q,M)((V1, Z1)(V2, Z2)) = 〈Z2, Q
−1V1〉 − 〈Z1, Q

−1V2〉 + 〈M, [Q−1V1, Q
−1V2]〉

= − 1
2 trace(Z2Q

−1V1) + 1
2 trace(Z1Q

−1V2)

− 1
2 trace(M[Q−1V1, Q

−1V2]), (3.13)

where Vi ∈ TQSO(n) (identified with T ∗
QSO(n)) and Zi ∈ TMso(n) ≡ so(n) and where we

used the pairing (2.1).
Observing that the derivative of � is given by

T � : (Qξ, Pη) �→ (Qξ, −ξQTP + QTPη + ηP TQ − P TQξ) (3.14)

and substituting in (3.13) with Vi = Qξi and Zi = −ξiQ
TP + QTPηi + ηiP

TQ − P TQξi , we
obtain

�∗ω(Q,P )((V1, Z1), (V2, Z2)) = − 1
2 trace{(−ξ2Q

TP + QTPη2 + η2P
TQ − P TQξ2)ξ1}

+ 1
2 trace{(−ξ1Q

TP + QTPη1 + η1P
TQ − P TQξ1)ξ2}

− 1
2 trace{(QTP − P TQ)(ξ1ξ2 − ξ2ξ1)}

= trace{(P TQ)(ξ2η1 − ξ1η2)},
which gives the result. �

There are similar results in the right invariant case. Summarizing the above arguments
we have the following theorem.

Theorem 3.12. The symmetric representation of the rigid body equations (SDRBn) on the
invariant set S is equivalent to the rigid body equations (RBn) on the invariant set SM where
S and SM are defined in definition 3.5. Equivalence means that every trajectory of (SRBn)
lying in S is mapped by � onto a trajectory of (RBn) lying in SM and similarly in the reverse
direction under the map �−1. Further, � is a symplectomorphism between the symplectic
manifolds S and SM .
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Scaling. The rigid body equations are homogeneous. Precisely, if M(t), Q(t) is a solution
of the rigid body system, then so is εM(εt), Q(εt). To check this statement, one needs to
show that M̄(t) := εM(εt), Q̄(t) := Q(εt) satisfies ˙̄Q = Q̄�̄ and ˙̄M = [M̄, �̄], where
�̄ := Q̄−1 ˙̄Q ∈ so(n) and where M̄ := J (�̄) = ��̄ + �̄� ∈ so(n). Differentiating, using the
chain rule, ˙̄M(t) = ε2Ṁ(εt) and ˙̄Q(t) = εQ̇(εt). Note that

�̄(t) = Q̄(t)−1 ˙̄Q(t) = Q−1(εt)εQ̇(εt) = ε�(εt).

Substitute these in the above equation for M̄ to see it remains satisfied—each side picks up a
factor of ε2, which cancels. Similarly we verify the equation for Q̄ and the relation between
M̄ and �̄.

From the above we have the following proposition.

Proposition 3.13. Given a solution of (RBn) outside the set SM , there is an associated scaled
solution that lies in the set SM and hence can be realized as the image under the map � of a
solution of (SRBn).

The proof follows from the fact that the operator norm is dynamically invariant.

Dirac bracket. We shall now give the Poisson bracket on the open set S ⊂ SO(n) × SO(n),
which is obtained by means of the Dirac bracket formula.

Proposition 3.14. Let F, K be smooth real valued functions on gl(n) × gl(n) and F |S, K|S
be their restrictions to the open set S ⊂ SO(n)× SO(n). Then their Poisson bracket at a point
(Q, P ) ∈ S is given by

{F |S, K|S} = 〈∇2K, ∇1F 〉 − 〈∇1K, ∇2F 〉
− 1

2 〈Q(∇2K)T + (∇2K)QT, (I + R ⊗ RT)−1R(P (∇1F)T + (∇1F)P T)〉
+ 1

2 〈P(∇1K)T + (∇1K)P T, (I + R ⊗ RT)−1(Q(∇2F)T + (∇2F)QT)R〉,
(3.15)

where R = QP T and ∇1 and ∇2 are gradients on gl(n) with respect to the standard metric
with respect to the first and second factor, respectively.

This is seen by using the general Dirac bracket formula (see, e.g. Marsden and Ratiu (1999),
proposition 8.5.1). In fact, this formula may be obtained by using the constraint submersion
ψ : gl(n) × gl(n) → Sym × Sym, where Sym is the space of symmetric matrices, given by
(A, B) �→ (AAT, BBT) so that S is an open subset of O(n) × O(n) = ψ−1(Id × Id). One
then uses formula (8.5.12) of Marsden and Ratiu (1999) to do the computation.

Remark.

(a) The matrix I + R ⊗ RT has a well-defined inverse precisely on the set S of interest by the
arguments in lemma 3.10.

(b) In the Dirac bracket formula (3.15), the matrices R(P (∇1F)T+(∇1F)P T) and (Q(∇2F)T+
(∇2F)QT)R should be viewed as n2-vectors (which are multiplied on the left by n2 × n2

matrices).
(c) As with the general Dirac formula, for F chosen to be our Hamiltonian (3.6), the last two

terms of the Dirac bracket vanish since our flow is tangent to the manifold SO(n)×SO(n).

4. Moser–Veselov and the symmetric representation of the discrete rigid body

In this section we discuss some aspects of discrete aspects of our problem following
the treatment of Veselov (1988) and Moser and Veselov (1991). This general method is



Symmetric representation of the rigid body equations 1321

closely related to the development of variational integrators for the integration of mechanical
systems, as in Marsden et al (1999) and Kane et al (2000). Another approach to integrating
differential equations on manifolds is discussed in Crouch and Grossman (1993). See also
Iserles et al (1999), Budd and Iserles (1999) and Bobenko and Suris (1999).

Review of the Moser–Veselov discrete rigid body. We briefly review the Moser and Veselov
(1991) discrete rigid body equations, a system that will be called (DRBn). Discretize the
configuration matrix and let Qk ∈ SO(n) denote the rigid body configuration at time k, let
�k ∈ SO(n) denote the discrete rigid body angular velocity at time k, let I denote the diagonal
moment of inertia matrix and let Mk denote the rigid body angular momentum at time k.

These quantities are related by the Moser–Veselov equations:

�k = QT
k Qk−1 (4.1)

Mk = �T
k � − ��k (4.2)

Mk+1 = �kMk�
T
k . (4.3)

(DRBn)

These equations may be viewed as defining two different algorithms.

MV-algorithm 1. Define the step ahead map

(Qk, Qk+1) �→ (Qk+1, Qk+2) (4.4)

as follows: compute �k+1 from (4.1), compute Mk+1 from (4.2), compute Mk+2 from (4.3),
compute �k+2 from (4.2) and then compute Qk+2 from (4.1).

Remark. Given Mk , conditions under which equation (4.2) is solvable for �k are discussed
in Moser and Veselov (1991) and Cardoso and Leite (2001). We will return to this point later.

MV-algorithm 2. Define the map

(Qk, Mk) �→ (Qk+1, Mk+1) (4.5)

as follows: compute �k from (4.2), compute Mk+1 from (4.3), compute �k+1 from (4.2) and
compute Qk+1 from (4.1).

Discrete variational principle. The Moser–Veselov equations (4.1)–(4.3) can be obtained by
a discrete variational principle, as was done in Moser and Veselov (1991). This variational
principle has the general form of that in discrete mechanics described in, for example,
Marsden and Wendlandt (1997), Bobenko and Suris (1999) and Marsden and West (2001).
See also the following sections on optimal control. Namely, stationary points of the functional

S =
∑

k

trace(Qk�QT
k+1) (4.6)

on sequences of orthogonal n × n matrices give the Moser–Veselov equations.
This variational approach can be justified as in Marsden et al (1999). We shall justify

it here from the optimal control point of view in section 5. We consider the left invariant
generalized rigid body equations on SO(n).

The symmetric representation of the discrete rigid body. We now define the symmetric
representation of the discrete rigid body equations as follows:

Qk+1 = QkUk, Pk+1 = PkUk, (SDRBn)
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where Uk is defined by

Uk� − �UT
k = QT

k Pk − P T
k Qk. (4.7)

We will write this as

JDUk = QT
k Pk − P T

k Qk, (4.8)

where JD : SO(n) → so(n) (the discrete version of J ) is defined by JDU = U� − �UT.
Notice that the derivative of JD at the identity is J and hence, since J is invertible, JD is a
diffeomorphism from a neighbourhood of the identity in SO(n) to a neighbourhood of 0 in
so(n). Using these equations, we have the algorithm (Qk, Pk) �→ (Qk+1, Pk+1) defined by:
compute Uk from (4.7), compute Qk+1 and Pk+1 using (SDRBn). Note that the update map for
Q and P is done in parallel.

Proposition 4.1. The symmetric representation of the discrete rigid body equations (SDRBn)
on the invariant set S is equivalent to the Moser–Veselov equations (4.1)–(4.3) (DRBn) on the
invariant set SM where S and SM are defined in definition 3.5. Equivalence means that every
trajectory of (SDRBn) lying in S is mapped by � onto a trajectory of (DRBn) lying in SM and
similarly in the reverse direction under the map �−1. Further, � is a symplectomorphism
between the symplectic manifolds S and SM .

Proof. Suppose that we have a solution (Qk, Pk) to (SDRBn). We will now produce a solution
(Qk+1, Mk+1) of the Moser–Veselov equations. We claim that

Mk+1 = QT
k Pk − P T

k Qk (4.9)

will give us the required Mk+1 that does the job. To see this, let

�k+1 = QT
k+1Qk = UT

k . (4.10)

Now substitute (4.10) into (4.7) and use (4.9) to give (4.2) with k replaced by k + 1. Next,
substitute the equations (SDRBn) into (4.9) with k replaced by k + 1 to yield (4.3) with k

replaced by k + 1. Clearly (4.1) with k replaced by k + 1 is the same as (4.10). Thus, we have
shown that (SDRBn) imply the Moser–Veselov equations.

The following remark will be useful for what follows. Recall from MV-algorithm 2 that
Mk+1 = �kMk�

T
k , so Mk+1 is obtained from Mk by conjugation, so has the same operator

norm. Thus, MV-algorithm 2 leaves the set SM invariant, as in the continuous rigid body
equations (RBn). By the first part of this proof, it follows that the system (SDRBn) leaves the
set S invariant.

To prove the converse, assume we have a solution (Qk+1, Mk+1) ∈ SM of the Moser–
Veselov equations. Note that because (Qk+1, Mk+1) ∈ SM , we can solve equation (4.9) for Pk ,
as in the continuous case, to give

Pk = Qkesinh−1 Mk+1/2. (4.11)

This then gives us a sequence (Qk, Pk), which we claim satisfies the system (SDRBn). To see
this, we note from (4.1) that Qk+1 = Qk�

T
k+1. We need to show that �T

k+1 satisfies the defining
equation (4.7) for Uk . That is, we must show

�T
k+1� − ��k+1 = QT

k Pk − P T
k Qk. (4.12)

That is, in view of (4.2),

Mk+1 = QT
k Pk − P T

k Qk. (4.13)

But this is valid since Pk was chosen to satisfy this equation. Therefore, the first equation in
(SDRBn) holds and we have shown that �T

k+1 = Uk .
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To prove the second equation of (SDRBn), we proceed as follows. We have

Pk+1 = Qk+1esinh−1 Mk+2/2 = QkUkesinh−1 Mk+2/2 (4.14)

using the first of (SDRBn). Using (4.3), this becomes

Pk+1 = QkUk exp

(
sinh−1 UT

k Mk+1
Uk

2

)
= Qk exp

(
sinh−1 Mk+1

2

)
Uk = PkUk. (4.15)

�
Note that if we define mk+1 = PkQ

T
k − QkP

T
k , then mk+1 = QkMk+1Q

T
k . Thus mk may

be interpreted as a discrete analog of the spatial momentum and from (4.3) this is conserved
under the algorithm.

Convergence of the discrete system to the continuous system. We now show how to obtain
the representation of the symmetric rigid body equations (in left invariant form) (SRBn) from
their discrete counterpart (SDRBn). The key to doing this is the introduction of a time step h.
It is interesting that the second-order Moser–Veselov equations (4.1)–(4.3) do not explicitly
involve a time step—the time step is determined by the fact that one needs to specify initial
data at two time points: Q0 and Q1 say. Formally, the two points determine a velocity field
using a time step h, as we explained above in the discretization of ξ .

We define Uh
k by

Uh
k = J−1

D

(
h

(
QT

k Pk − P T
k Qk

))
. (4.16)

We also define

� = lim
h→0

(
Uh

k − Id

h

)
, (4.17)

where Id denotes the identity. Then we have the following theorem.

Theorem 4.2. Taking the derivative with respect to h in (SDRBn) yields (SRBn).

Proof. Using (SDRBn), we have

Qk+1 − Qk

h
= Qk

(
Uh

k − I

h

)
,

Pk+1 − Pk

h
= Pk

(
Uh

k − I

h

)
. (4.18)

Taking the limit on both sides with respect to h yields (SRBn) subject to checking that the
formula for Uh

k tends to that for �. This is a consequence of the following computation (using
(4.16)):

lim
h→0

(
Uh

k − Id
)
� − �

(
Uh

k − Id
)T

h
= lim

h→0

h
(
QT

k Pk − P T
k Qk

)
h

. (4.19)

Taking the limit we obtain

�� − ��T = QTP − P TQ, i.e. �� + �� = QTP − P TQ (4.20)

as desired. In taking this limit we write Qk = Q(kh), where kh = t and similarly for Pk . �

5. Optimal control

In this section we briefly review, from Bloch and Crouch (1996), two results which link the
above formulation of the symmetric representation of the rigid body equations with the theory
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of optimal control. The first result shows how to derive these equations directly from an
optimal control problem and the second shows how to derive them as a special case of a more
general optimal control problem. The latter problem is characterized by extremals which are
of the coupled double bracket form studied in Bloch et al (1997).

Definition 5.1. Let T > 0, Q0, QT ∈ SO(n) be given and fixed. Let the rigid body optimal
control problem be given by

min
U∈so(n)

1

4

∫ T

0
〈U, J (U)〉 dt, (5.1)

subject to the constraint on U that there be a curve Q(t) ∈ SO(n) such that

Q̇ = QU, Q(0) = Q0, Q(T ) = QT . (5.2)

Proposition 5.2. The rigid body optimal control problem (5.1) has optimal evolution equations
(SRBn) where P is the costate vector given by the maximum principle.

The optimal controls in this case are given by

U = J−1(QTP − P TQ). (5.3)

Remark. The proof (see Bloch and Crouch (1996)) simply involves writing the Hamiltonian
of the maximum principle (see e.g. Bryson and Ho (1975)) as

H = 〈P, QU〉 + 1
4 〈U, J (U)〉, (5.4)

where the costate vector P is a multiplier enforcing the dynamics, and then maximizing with
respect to U in the standard fashion (see, e.g. Brockett (1973)). While in general there are no
constraints on the costate vector P ∈ gl(n), one can consider the restriction of the extremal
flows to invariant submanifolds. This limits possible extremal trajectories that can be recovered.
For example (SRBn) restricts to a system on SO(n)×SO(n). One can make other assumptions
on the costate vector. For example, suppose we assume a costate vector B such that QTB is
skew. Then it is easy to check that the extremal evolution equations become

Q̇ = QJ−1(QTB), Ḃ = BJ−1(QTB), (5.5)

and that these equations restrict to an invariant submanifold defined by the condition that QTB is
skew symmetric. These are the McLachlan–Scovel equations (McLaghlan and Scovel 1995).
Comparing these equations with (SRBn) we see that B = P −QP TQ. There is a similar result
for the right invariant case.

Merging the left and right problems. We will now show both the symmetric representation
of the rigid body equations in both left and right invariant form arise from a rather general
optimal control problem that includes the one above as a special case. In addition, as we shall
see, this sheds light on the question of integrability of the n-dimensional rigid body.

We begin by recalling a general optimal control problem on matrices (see
Bloch and Crouch (1996)).

Definition 5.3. Let u(n) denote the Lie algebra of the unitary group U(n).
Let Q be a p × q complex matrix and let U ∈ u(p) and V ∈ u(q). Let JU and JV be

constant symmetric positive definite operators on the space of complex p×p and q×q matrices,
respectively, and let 〈·, ·〉 denote the trace inner product 〈A, B〉 = 1

2 trace(A†B), where A† is
the adjoint, i.e. the transpose conjugate.
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LetT > 0, Q0, QT be given and fixed. Define the optimal control problem overu(p)×u(q)

min
U,V

1

4

∫
{〈U, JUU〉 + 〈V, JV V 〉} dt (5.6)

subject to the constraint that there exists a curve Q(t) such that

Q̇ = UQ − QV, Q(0) = Q0, Q(T ) = QT . (5.7)

This problem was motivated by an optimal control problem on adjoint orbits of compact
Lie groups as discussed in Brockett (1994).

Theorem 5.4. The optimal control problem (5.3) has optimal controls given by

U = J−1
U (PQ† − QP †), V = J−1

V (P †Q − Q†P), (5.8)

and the optimal evolution of the states Q and costates P is given by

Q̇ = J−1
U (PQ† − QP †)Q − QJ−1

V (P †Q − Q†P),

Ṗ = J−1
U (PQ† − QP †)P − PJ−1

V (P †Q − Q†P).
(5.9)

Note also that JU and JV are in general different operators acting on different spaces.
In certain case (see the rigid body below) the spaces and the operators may be taken to be
the same.

Corollary 5.5. Equations (5.9) are given by the coupled double bracket equations

˙̂
Q = [Q̂, Ĵ−1[P̂ , Q̂]], ˙̂

P = [P̂ , Ĵ−1[P̂ , Q̂]], (5.10)

where Ĵ is the operator diag(JU , JV ),

Q̂ =
[

0 Q

−Q† 0

]
∈ u(p + q) (5.11)

is a complex p × q matrix of full rank, Q† is its adjoint, and similarly for P .

A formal limiting argument setting JV = J and JU → ∞ gives the symmetric
representation of the rigid body equation in left invariant form. Similarly to obtain the equations
in their right invariant form set JU = J and let JV → ∞. One sees in fact that equations (5.9)
are literally the sum of the symmetric representations of the rigid body equations in their left
and right invariant forms.

6. Discrete optimal control problems

One can obtain the symmetric representation of the rigid body equations as a special case of a
general class of discrete optimal control equations.

Definition 6.1. Let N be a positive integer and X0, XN ∈ R
n be given. Let f (xk, uk), g(xk, uk)

be smooth mappings from R
n × R

m into R
n and R

+, respectively. Let E denote a control
constraint set with E ⊂ R

m; specifically, assume that E is defined as the zero set of a smooth
submersion k : R

m → R
l , i.e. u ∈ E if and only if k(u) = 0. Let 〈·, ·〉 denote the pairing

between vectors in R
n.

Define the optimal control problem:

min
uk∈E

N∑
k=0

g(xk, uk) (6.1)

subject to xk+1 = f (xk, uk), with x0 = X0 and xN = XN, for uk ∈ E.
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Proposition 6.2. A solution to problem (6.1) satisfies the following extremal solution equations

pk = ∂H

∂xk

(
pk+1, xk, u

∗
k

)
, xk+1 = ∂H

∂pk+1

(
pk+1, xk, u

∗
k

)
, (6.2)

where

H(pk+1, xk, uk) = 〈pk+1, f (xk, uk)〉 − g(xk, uk). (6.3)

In these equations, u∗
k is determined as follows: let

Ĥ (pk+1, xk, uk, σ ) = H(pk+1, xk, uk) + 〈σ, k(uk)〉, (6.4)

for σ ∈ R
l , σ a Lagrange multiplier; then u∗

k and σ are solutions of the equations:

∂Ĥ

∂uk

(
pk+1, xk, u

∗
k, σ

) = 0, k
(
u∗

k

) = 0. (6.5)

The proof is an application of the discrete maximum principle (see appendix A).
We assume that both u∗

k and σ are determined uniquely by equations (6.5). Also note that
u∗

k = u∗
k(pk+1, xk), σ = σ(pk+1, xk). With this notation, we have the following consequence.

Corollary 6.3. Assume that the extremal equations (6.2) hold. Then,

dpk = ∂2Ĥ

∂x2
k

(
pk+1, xk, u

∗
k

)
dxk +

∂2Ĥ

∂pk+1∂xk

(
pk+1, xk, u

∗
k

)
dpk+1,

dxk+1 = ∂2Ĥ

∂pk+1∂xk

(
pk+1, xk, u

∗
k

)
dxk +

∂2Ĥ

∂p2
k+1

(
pk+1, xk, u

∗
k

)
dpk+1

. (6.6)

We remark that the implicit advance map � : (xk, pk) �→ (xk+1, pk+1) generated by the
extremal evolution (6.2) is symplectic, i.e.

�∗dxk+1 ∧ dpk+1 = dxk ∧ dpk. (6.7)

This is easily demonstrated by using corollary 6.3. One can also derive symplecticity directly
from Hamilton’s phase space principle (see Marsden and West (2001)).

We can then obtain the discrete rigid body (SDRBn) equations as follows.

Definition 6.4. Let � be a positive definite diagonal matrix. Let Q̄0, Q̄N ∈ SO(n) be given
and fixed. Let

V̂ =
N∑

k=1

trace(�Uk). (6.8)

Define the optimal control problem,

min
Uk

V̂ = min
Uk

N∑
k=1

trace(�Uk), (6.9)

subject to dynamics and initial and final data

Qk+1 = QkUk, Q0 = Q̄0, QN = Q̄N, (6.10)

for Qk, Uk ∈ SO(n).

Theorem 6.5. A solution of the optimal control problem (6.4) satisfies the optimal evolution
equations (SDRBn)

Qk+1 = QkUk, Pk+1 = PkUk, (6.11)

where Pk is the discrete covector in the discrete maximum principle and Uk is defined by

Uk� − �UT
k = QT

k Pk − P T
k Qk. (6.12)

Equation (6.12) can be solved for Uk under certain circumstances, as discussed in
Moser and Veselov (1991) and Cardoso and Leite (2001); we discuss this issue further below.
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Proof. Applying proposition 6.2, we get

H(Pk+1, Qk, Uk) = trace
(
P T

k+1QkUk

) − trace (�Uk) = trace
((

P T
k+1Qk − �

)
Uk

)
. (6.13)

Note that V̂ = ∑
k trace(�Uk) = ∑

k trace) = ∑
k trace(Qk�QT

k+1), the Moser–Veselov
functional, but that the functional is linear in the controls.

We need to find the critical points of H(Pk+1, Qk, Uk) where UT
k Uk = I since Uk ∈

SO(n). Thus, we need to minimize a functional of the form trace(AU), A fixed, subject to
UTU = I . Set

Ṽ = trace(AU) + 1
2 trace(�(UTU − I )),

where � = �T is a matrix of Lagrange multipliers. Then δṼ = trace(AδU + �UTδU) = 0
implies A + �UT = 0 where UTU = 0. Hence � = −AU . But since � = �T, the extrema
of our optimization problem are obtained when AU = UTAT. Applying this observation to
our case, we have ∇UH = 0 when

(
P T

k+1Qk − �
)
Uk = UT

k

(
QT

k Pk+1 − �
)
,

i.e.

UT
k � − �Uk = UT

k QT
k Pk+1 − P T

k+1QkUk

or, equivalently

Uk� − �UT
k = −QT

k Pk+1U
T
k + UkP

T
k+1Qk. (6.14)

Also,

Pk = ∇Qk
H = (

UkP
T
k+1

)T = Pk+1U
T
k . (6.15)

Hence we obtain equations (6.11). Combining (6.11) with (6.14), we get

Uk� − �UT
k = P T

k Qk − QT
k Pk. (6.16)

Changing the sign of Pk in the extremal equations yields the result. �

Corollary 6.6. The Hamiltonian for the flow (6.11) is given by

H(Qk, Pk) = trace(esinh−1 Mk/2) − trace(�(JD)−1(Mk)). (6.17)

Proof. From (6.13), we have

H(Qk, Pk+1, Uk) = trace
(
P T

k+1QkUk

) − trace(�Uk)

= trace
(
UT

k P T
k QkUk

) − trace(�Uk)

= trace
(
P T

k Qk

) − trace(�Uk),

where

Uk = (JD)−1(P T
k Qk − QT

k Pk). (6.18)

The result follows by noting that Uk = (JD)−1(Mk) and Pk = Qkesinh−1 Mk/2. �
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7. Relationships between the rigid body systems

In this section we discuss relationships between the various discrete rigid body systems as well
as their symplectic nature. For ease of analysis, we shall make use of the Moser–Veselov system
in different notation, which we refer to as the modified Moser–Veselov system (MDRBn); it
is simply obtained through an index shift. This will be done throughout this section only.
Precisely, we change the index on Qk to Qk+1. The index on Mk is unchanged. When we pass
to the symmetric representation of the discrete rigid body, there is a corresponding shift in the
index of Pk to Pk+1.

In this modified notation, the (MDRBn) equations read as follows:

JD�T
k = Mk,

Qk+1 = Qk�
T
k ,

Mk+1 = �kMk�
T
k .

(MDRBn)

We have the following commutative diagram showing the relation between various discrete
rigid body models:

We now detail each of the maps occurring in the diagram. First of all, the map

�k : (Qk, Mk) �→ (Qk+1, Mk+1)

is defined by the (MDRBn) algorithm. Second, the map �H
k is defined by

�H
k : (Qk, Pk) �→ (Qk, Q

T
k Pk − P T

k Qk = Mk).

Next, the map φH
k : (Qk, Pk) �→ (Qk+1, Pk+1) is defined by the (SDRBn) equations:

Uk = (JD)−1
(
QT

k Pk − P T
k Qk

)
,

Qk+1 = QkUk, (7.1)

Pk+1 = PkUk.

The map φL
k : (Qk−1, Qk) �→ (Qk, Qk+1), the solution of the discrete Euler–Lagrange

equations, is defined by the equations (MDRBn) as follows:

�k−1 = QT
k Qk−1,
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Mk−1 = JD(�T
k−1),

Mk = �k−1Mk−1�
T
k−1, (7.2)

�T
k = (JD)−1 (Mk),

Qk+1 = Qk�
T
k .

In other words, we have

Qk+1 = Qk(JD)−1
(
QT

k Qk−1JD(QT
k−1Qk)Q

T
k−1Qk

)
. (7.3)

Next, we turn to the map ψk : (Qk−1, Qk) �→ (Pk, Qk). We know from (SDRBn) that
Pk = Qkesinh−1 Mk/2 and from (7.2) that

Mk = QT
k Qk−1JD(QT

k−1Qk)Q
T
k−1Qk. (7.4)

Thus, Pk is determined in the mapping ψk by

Pk = Qk exp
(
sinh−1 1

2

(
QT

k Qk−1JD

(
QT

k−1Qk

)
QT

k−1Qk

))
. (7.5)

The map �L
k : (Qk−1, Qk) �→ (Qk, Mk) is defined by noting that Mk is determined in the

mapping �L
k by (7.4).

It is convenient to introduce a particular differential operator D acting on real-valued
functions defined on a Lie group G. As usual, we will denote the Lie algebra by g, and assume
that there is an Ad invariant inner product on g, denoted by 〈·, ·〉.

If φ is a smooth function on G, we set

Dφg(X) = d

dt

∣∣∣∣
t=0

φ(getX)
�= 〈(Dφg)

#, X〉,

where g ∈ G and X ∈ g. Thus, Dφ : G → g∗ and we write its value at g as Dφg ∈ g∗ and
(Dφg)

# ∈ g is the corresponding element of g determined by the inner product on g. We call
(Dφg) the ‘right’ derivative of φ at g.

We may also define a ‘left’ derivative, but for the purposes here where we deal with the
left invariant form of the rigid body equations, this is not necessary.

Note that (D(Dφ))g ∈ g∗ × g∗ with

(DDφ)g(X, Y ) = d

dt

∣∣∣∣
t=0

d

ds

∣∣∣∣
s=0

φ(gesY etX).

Clearly we have

DDφ(X, Y ) − DDφ(Y, X) = Dφ([X, Y ]). (7.6)

In our situation we are interested in a product group Ḡ = G × G, with Lie algebra ḡ = g × g.
If g = (g1, g2) ∈ Ḡ and X = X1 + X2 ∈ ḡ, then

D1φg(X1) = d

dt

∣∣∣∣
t=0

φ(g(etX1 , e)), D2φg(X2) = d

dt

∣∣∣∣
t=0

φ(g(e, etX2)),

where e is used to also represent the identity element in both G1 and G2. Thus

D1D2φg(X1, X2) = d

dt

∣∣∣∣
t=0

d

ds

∣∣∣∣
s=0

φ(g(esX1 , etX2)).

Clearly D1D2φ = D2D1φ.
Given a function L on Ḡ = G × G, we define a two-form �L on Ḡ as follows. Let

(g1ξ1, g2η1), (g1ξ2, g2η2) ∈ TgḠ
∼= Tg1G × Tg2G
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and set

�L((g1ξ1, g2η1), (g1ξ2, g2η2)) = 1

2

d

ds

∣∣∣∣
s=0

d

dt

∣∣∣∣
t=0

(L(g1etξ1 , g2esη2) − L(g1etξ2 , g2esη1))

= 1
2D2D1Lg(ξ1, η2) − 1

2D2D1Lg(ξ2, η1).

If G = SO(n) ⊂ GL(n), then we may consider the special case of the function L defined by

L(g1, g2) = trace
(
g1�gT

2

)
, (7.7)

where � is a positive definite matrix. Now

D2D1Lg(ξ1, η2) = − trace
(
g1ξ1�η2g

T
2

) = −trace
(
gT

2 g1ξ1�η2
)
,

D2D1Lg(ξ2, η1) = − trace
(
gT

2 g1ξ2�η1
)
.

Thus,

�L((g1ξ1, g2η1), (g1ξ2, g2η2)) = 1
2 trace

(
gT

2 g1(ξ2�η1 − ξ1�η2)
)
. (7.8)

In particular, when � = identity we have �L = �gl(n) as defined earlier. Locally
the two form associated with this Lagrangian L(qk, qk+1)

∼= L(Qk, Qk+1) is given by
dqk ∧ (∂2L/∂qk∂qk+1)dqk+1. We have already seen that the two-form �gl(n) is symplectic
on S ⊂ SO(n) × SO(n). We consider the issue of determining where �L is symplectic later.

The Map �L
k as the Moser–Veselov Legendre transform. The realization of �L

k as the Moser–
Veselov Legendre transform is given in the following theorem.

In the following we identify so(n)∗ with so(n) via the trace form: M �→ M∗, M∗(X) ≡
trace(MX), where M, X ∈ so(n) and M∗ ∈ so(n)∗.

Let S(g1, g2) = 2 trace(g1�gT
2 ) and set Sk = S(Qk−1, Qk). We write

D1Sk = (D1S)(Qk−1,Qk), D2Sk = (D2S)(Qk−1,Qk).

Theorem 7.1. If

Sk = 2trace
(
Qk−1�QT

k

)
, (7.9)

then

D1Sk = −Mk−1, D2Sk = Mk. (7.10)

Proof.

D1Sk(X) = 2 trace
(
Qk−1X�QT

k

) = 2 trace
(
QT

k Qk−1X�
) = 2 trace (�k−1X�)

= 2 trace(��k−1X) = −trace
((

�T
k−1� − ��k−1

)
X

) = −trace(Mk−1X).

Thus, D1Sk = −Mk−1 as required.

D2Sk(X) = −2 trace
(
Qk−1�XQT

k

) = −2 trace
(
QT

k Qk−1�X
) = −2 trace(�k−1�X)

= −trace
((

�k−1� − ��T
k−1

)
X

)
.

But from (MDRBn) we have Mk = ��T
k−1 − �k−1�, so D2Sk(X) = trace MkX, and so

D2Sk = Mk as required. �
Note. Equations (7.10) are obtained using the modified Moser–Veselov equations (MDRBn)
equations. If (DRBn) were used we would have

D1Sk = −Mk, D2Sk = Mk+1.

We now return to using only (MDRBn). From theorem 7.1 we may express �L
k in the form

�L
k : (Qk−1, Qk) �→ (Qk, D2Sk), (7.11)

where Sk is given in (7.9).
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Pull backs of two forms. We observe that all the maps in our commutative diagram are
symplectic (see appendix B). In particular one can demonstrate the following pull-back
relationships: (

�L
k

)∗
ω = 2�L, (ψk)

∗�gl(n) = �L,(
φL

k

)∗
�L = �L, (�k)

∗ω = ω.
(7.12)

Note. The proof that (�H
k )∗ω = 2�gl(n) was accomplished in proposition 3.11 in the

continuous case, since for this case the mapping in the continuous and discrete cases are
identical. The proof that (φH

k )∗�gl(n) = �gl(n) is a remark after corollary 6.3.

Domains for discrete algorithms. We now consider the domains of validity of the discrete
algorithms we have discussed. We introduce the following sets:

Uα = {A | A ∈ so(n), ‖A‖op < α},
DL = {� | � ∈ SO(n), JD(�T) ∈ U2},
SL = {(Q, Q̄) | �̄ := Q̄TQ ∈ DL}, Q, Q̄ ∈ SO(n),

EL = {(Q, Q̄) | (Q, Q̄) ∈ SL, W �→ �W�̄T + �̄W�

is invertible as a mapping ofso(n) to so(n)}.

Domain on which �L is symplectic. We know that �gl(n) is symplectic on S ⊂ SO(n) ×
SO(n), and

ψ∗
k �gl(n) = 1

2

(
�L

k

)∗
ω = �L.

It follows that �L cannot be symplectic outside the set

ψ−1
k (S) = {(Qk−1, Qk) | ψk(Qk−1, Qk) ∈ S}.

Note ψ−1
k (S) ⊂ SO(n) × SO(n) is independent of k. We characterize this set. Since

(Qk, Pk) ∈ S if and only if Mk ∈ U2 and Mk = �k−1Mk−1�
T
k−1 so

(Qk, Pk) ∈ S if and only if Mk−1 = JD

(
�T

k−1

) ∈ U2.

But �T
k−1 = QT

k−1Qk , so

(Qk−1, Qk) ∈ ψ−1
k (S) if and only if (Qk−1, Qk) ∈ SL.

Within the set SL, we need to know where �L is nondegenerate, or in other words, where the
mapping ψk : SL → S; (Qk−1, Qk) �→ (Qk, Pk) has full rank. Clearly we need only determine
where the mapping Qk−1 �→ Pk is of full rank. From the relation Pk = Qkesinh−1 Mk/2, we
know that

PkδPk = 1

2
Pk

(
1 +

(
Mk

2

)2)−1/2

δMk.

Also, from the relation Mk = �QT
k−1Qk − QT

k Qk−1�, we obtain

δMk = −�δQk−1Q
T
k−1Qk − QT

k Qk−1δQk−1�.

If W = δQk−1 ∈ so(n), we have

−2

(
1 +

(
Mk

2

)2)1/2

δPk = �W�T
k−1 + �k−1W�.

Thus ψk has full rank when W �→ �W�T
k−1 + �k−1W� is invertible as a map on so(n). Note

that we require ‖Mk‖op < 2 for invertibility of the term (1 + (Mk/2)2), but this follows from
the condition (Qk−1, Qk) ∈ SL. We have proven the following theorem.
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Theorem 7.2. �L is symplectic on EL ⊂ SL ⊂ SO(n) × SO(n).

This result can also be seen using the relation 1
2 (�L

k )∗ω = �L. Since �L
k : (Qk−1, Qk) �→

(Qk, Mk) and Mk = �QT
k−1Qk −QT

k Qk−1�, we need to check that the mapping Qk−1 �→ Mk

is of full rank, as in the analysis above. However, since �L
k = �H

k ◦ ψk , �H
k must also have

full rank. Thus, the mapping (Qk, Pk) �→ (Qk, Mk = QT
k Pk − P T

k Qk) must be of full rank.
It is sufficient that the mapping Pk �→ QT

k Pk − P T
k Qk is of full rank. Thus it is necessary that

the mapping

δPk �→ QT
k PkδPk + δPkP

T
k Qk

is of full rank, with δPk ∈ SO(n). But this is of course the condition that �gl(n) is
nondegenerate, (Qk, Pk) ∈ S, which is again equivalent to the condition that (Qk−1, Qk) ∈ SL.
We again obtain the result of theorem 7.2.

The solution of the equation JD(U) = M . Here we give explicit conditions on M and �

under which the system

JD(U) = U� − �UT = M, M ∈ SO(n), U ∈ SO(n) (7.13)

has explicit solutions for U .
In the case � = I , the solution is given by M/2 = sinh A, U = eA for ‖M‖op < 2 as was

demonstrated in section 3.
In the general case, we extract some results from Cardoso and Leite (2001).

Lemma 7.3. The expression

U =
(

M

2
+ S

)
�−1

is an orthogonal solution of (7.13) if and only if S is a symmetric solution of the Riccati
equation:

S2 + S

(
M

2

)
+

(
M

2

)T

S −
(

M2

4
+ �2

)
= 0. (7.14)

It is well known that the solution of the Riccati equation is

SDS + SA + ATS − C = 0,

where D � 0, C = CT are governed by the spectral analysis of the Hamiltonian matrix

H =
[
A D

C −AT

]
.

See Lancaster and Rodman (1980, 1995) and Kucera (1972) for details on the algebraic
Riccati equation.

In particular, by lemma 7.3, solutions of equation (7.13) are determined through the
spectral analysis of the Hamiltonian matrix

H̄ =




M

2
I

M2

4
+ �2 M

2


 .

Theorem 7.4 (Cardoso and Leite (2001)). Equation (7.13) has a unique solution U ∈ SO(n)

if and only if the spectrum of H̄ is pure imaginary, and the size of the Jordan blocks associated
to each nonzero eigenvalue is even.
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The analysis of Moser and Veselov (1991) is also recovered, corresponding to the case
where H̄ has no pure imaginary eigenvalues. Indeed, in Cardoso and Leite (2001) it is
shown that the condition that the size of the Jordan blocks associated to each nonzero
imaginary eigenvalue of H̄ is even is equivalent to existence of special orthogonal solutions of
equation (7.13). Thus if H̄ has no nonzero imaginary eigenvalues, there are multiple solutions
of (7.13).

Theorem 7.5 (Cardoso and Leite 2001). If M2/4 + �2 is positive definite, then equation
(7.14) has a unique solution S � 0 such that the eigenvalues of S + M/2 have positive
real parts and U = (S + M/2) �−1 is a special orthogonal solution of equation (7.13).

As an application of this result, we determine a condition under which all three algorithms,
�k, φ

L
k , φH

k , are well defined, i.e. the operator JD may be inverted at each step of the algorithm.
We first note that since (MDRBn) (and (DRBn) imply Mk+1 = �kMk�

T
k and M2

k+1 =
�kM

2
k �T

k . Thus, if M2
k /4 + αI > 0 for some real number α, then M2

k+1/4 + αI > 0 also.

Lemma 7.6. Assume M2
0 /4+αI > 0 for some α > 0, where �2 > αI , then for each algorithm

�k, φ
L
k , φH

k , at every step JD is invertible and M2
k /4 + �2 is positive definite for each k.

Proof. If M2
0 /4 + αI > 0, it is clear from the previous analysis that M2

k /4 + αI > 0 for each
k. But then

M2
k

4
+ �2 =

(
M2

k

4
+ αI

)
+ (�2 − αI) > 0.

Thus, by theorem 7.5, equation (7.13) with M = Mk may be solved for each k, i.e. JD is
invertible. �

Further relations between algorithms. We recall the relationship in equation (B.8):(
P T

k + �QT
k−1

)
Qk − QT

h(Pk + Qk−1�) = 0.

This states that the matrix

�k = QT
k (Pk + Qk−1�) (7.15)

is symmetric: �k = �T
k . We may rewrite equation (7.15) in the form

Pk = Qk�k − Qk−1�. (7.16)

Thus Pk is an interpolation of Qk−1 and Qk , with symmetric weights �k and �. But from
(7.15) we also have

QT
k Pk = �k − QT

k Qk−1� = �k − �k−1�.

Since QT
k Pk ∈ SO(n), we have the identity (�k − �k−1�)T(�k − �k−1�) = I , i.e.

�2
k − ��T

k−1�k − �k�k−1� + �2 − I = 0. (7.17)

Thus given the φL
k algorithm we may realize the map ψk : (Qk−1, Qk) �→ (Qk, Pk) by solving

the quadratic equation (7.17) and using the interpolation formula (7.16). This should be
compared with formula (7.5) which employs the operator sinh−1.

We have, however, proved the following result in corollary 6.6. The Hamiltonian for the
discrete Hamiltonian flow φH

k is given by

H(Qk, Pk) = trace(esinh−1 Mk/2) − trace (�Uk).
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Now we know that if Sk = esinh−1 Mk/2 we have Sk − ST
k = Mk. Thus,

Sk − ST
k = Mk = Uk� − �UT

k ,

so Sk − Uk� = ST
k − �UT

k and hence, �k
�= Sk − Uk� = �T

k . It follows that

H(Qk, Pk) = trace�k. (7.18)

Since Sk is orthogonal, we have

(�k + Uk�)T(�k + Uk�) = I,

i.e.

�2
k + �Uk�k + �kUk� + �2 − I = 0. (7.19)

Moreover, we know that Sk = QT
k Pk and Uk = QT

k Qk+1, so

�k = QT
k (Pk − Qk+1�) (7.20)

and

Pk = Qk�k + Qk+1�. (7.21)

Thus again we may recover a relationship between the sequence (Qk−1, Qk) and the sequence
(Qk, Pk) on SO(n) × SO(n), via an interpolation (7.21) by symmetric matrices, where �k

is determined from the quadratic equation (7.19). Equation (7.19) should be compared with
the similar quadratic equation (7.17). The importance of this second formulation, equations
(7.19)–(7.21), lies in their relation to the Hamiltonian of the flow given by the sum of the
eigenvalues of �k in (7.18).

8. Conclusions

In this paper we have presented the theory of the symmetric representation of the rigid body
equations on SO(n) × SO(n) in both the continuous and discrete setting and established
a concrete link with the discrete Moser–Veselov equations. In addition, we described the
relationship between the various symplectic structures on the underlying phase spaces.

We now make a few further remarks on integrability and future research plans in this area
as well as possible future research on optimal control and numerical issues.

We recall from equation (1.2) in the introduction that the reduced equations of motion for
(SRBn) are

Q̇ = Q�(Q). (8.1)

From (3.1) and the expression P = AQ where A = P(0)Q(0)T, we can rewrite this
equation as

Q̇ = QJ−1(QT(A − AT)Q). (8.2)

This is the natural SO(n) reduction of the symmetric representation of the rigid body
equations. Further, the Manakov integrals naturally pull back to this flow. Explicitly they take
the form

trace((A − AT) + λQ�2QT)k. (8.3)

Note that it is easy to see that equation (8.2) implies the Lax equation for the rigid body by
using the identity � = J−1(QT(A − AT)Q).

In a future publication we intend to analyse the complete integrability of this reduced
(SRBn) system as well as any natural Hamiltonian structure on the group SO(n). This
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Hamiltonian structure may be related to the almost Poisson structures for the unreduced system
(SRRBn) discussed in Bloch et al (2000).

We make few further remarks on this issue here. One may reformulate the Manakov
Lax pair formulation in the symmetric representation setting as follows. For an alternative
approach to the Lax pair formulation see Federov (2002).

We consider the equations with parameter:

Q̇λ = Qλ(� + λ�), Ṗλ = Pλ(� + λ�), (8.4)

where

� = J−1(Mλ − λ�2) and Mλ = Q−1
λ Pλ − P −1

λ Qλ. (8.5)

Note, however, that at this point we view Qλ and Pλ simply as elements of GL(n). There
is no implied functional dependence on Q and P appearing in the symmetric representation
of the rigid body equations.

Then we can easily show that Mλ satisfies the rigid body equations with parameter

Ṁλ = [Mλ, � + λ�], (8.6)

where � = J−1(Mλ − λ�2).
Note that the spatial momentum with parameter mλ = PλQ

−1
λ −QλP

−1
λ is conserved under

the flow. Note also that in the definition of Mλ here we use inverses rather than transpose. This
is crucial when we generalize from the pure finite-dimensional group setting.

By comparing (2.4) and (8.6) we see that Mλ = M + λ�2. However, there is no similar
relationship between Qλ, Pλ and Q, P .

We note also that the double bracket formulation discussed in section 5 turns out to be
useful for analysing the integrability of the full rigid body equations. We can obtain not only the
Manakov integrals but the spatial conserved momenta which are needed for noncommutative
integrability (we intend to return to this issue in a future paper). Consider the equation

[P̂ , Q̂] =
[
QP T − PQT 0

0 QTP − P TQ

]
. (8.7)

In the left invariant formulation, the lower right block is the body momentum while the upper
left block is (minus) the spatial momentum.

To obtain the Manakov integrals, set Ĵ = diag(0, J ) as before. The Manakov integrals
(and Casimirs) are then given by

trace([P̂ , Q̂] + λĴ )k, (8.8)

while the spatial momenta are given by trace(πU([P̂ , Q̂])A) where A runs through a basis of
spatial momenta and πU is projection onto the upper-left block. Because of this upper/lower
structure, one sees that the spatial and body integrals are in involution.

We can make some similar observation in the discrete setting. Moser and Veselov showed
that (4.2) is equivalent to the equation of isospectral deformations

Mλ
k+1 = �λ

kM
λ
k

(
�λ

k

)−1
, (8.9)

where Mλ
k = Mk + λ�2 and �λ

k = �k − λ�.
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Similarly we can define the symmetric representation of the discrete rigid body equations
with parameters

Qλ
k+1 = Qλ

k(Uk + λ�), P λ
k+1 = P λ

k (Uk + λ�), (8.10)

where Uk = (JD)−1(Mλ
k − λ�2), Mλ

k := (Qλ
k)

−1P λ
k − (P λ

k )−1Qλ
k and JD(�) = �T� − ��.

Then we have

Mλ
k+1 = (Uk + λ�)−1Mλ

k (Uk + λ�). (8.11)

Again, there is no functional dependence between Qλ
k and P λ

k implied so this is quite
formal in some sense. In a forthcoming paper we hope to discuss integrability in the discrete
case and its connection with the work of Moser and Veselov (1991) and Deift et al (1992).

In addition, we intend to consider the details of the symmetric representation of the
rigid body equations as a numerical algorithm. In a future paper we also intend to consider
generalizations of the theory here to arbitrary continuous and discrete Lagrangians on manifolds
embedded in a vector space V . We hope to use the theory of optimal control to formulate such
systems on V × V or V × V ∗.
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Appendix A. Proof of proposition 6.2

Proof. We use the discrete maximum principle. We wish to minimize
∑N

k=0 g(xk, uk) subject
to the given discrete dynamics and control constraint set E. To implement the constraints
defining E, we consider maximizing the augmented functional

V (pk+1, xk, uk) =
N∑

k=0

〈pk+1, f (xk, uk) − xk+1〉 + 〈σ, k(uk)〉 − g(xk, uk)

=
N∑

k=0

−〈pk+1, xk+1〉 + Ĥ (pk+1; xk, uk, σ )

= 〈p0, x0〉 +

( N∑
k=0

−〈pk, xk〉 + Ĥ (pk+1, xk, uk, σ )

)
,

where we set pN+1 = 0 for notational convenience since the (N + 1)th equation for xk is not
needed. Thus,

δV =
N∑

k=0

−〈pk, δxk〉 − 〈δpk, xk〉 +
∂Ĥ

∂pk+1
δpk+1 +

∂Ĥ

∂xk

δxk +
∂Ĥ

∂uk

δuk, (A.1)

where k(uk) = 0. This gives extremal equations (6.2) and (6.5) since

∂Ĥ

∂pk+1
(pk+1, xk, uk, σ ) = ∂H

∂pk+1
(pk+1, xk, uk),

∂Ĥ

∂xk

(pk+1, xk, uk, σ ) = ∂H

∂xk

(pk+1, xk, uk).

(A.2)

�
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Appendix B. Pull-back identities

Here we prove the identities in equation (7.12).

Lemma B.1.
(
�L

k

)∗
ω = 2�L.

Proof. Above, we defined the map

�L
k : SO(n) × SO(n) → T ∗SO(n) � SO(n) × so(n)∗.

Thus, the tangent is a map on the following spaces:

T �L
k : T SO(n) × T SO(n) → T SO(n) × T so(n)∗.

Since �L
k : (Qk−1, Qk) �→ (Qk, Mk = D2Sk), we find that

T �L
k : TQk−1 SO(n) × TQk

SO(n) → TQk
SO(n) × so(n)∗.

For i = 1, 2, let Vi = (Qk−1ξi, Qkηi) ∈ TQk−1 SO(n) × TQk
SO(n), then we see that

T �L
k · Vi = (Qkηi, D1D2Skξi + D2D2Skηi). (B.1)

Note that in this computation it is essential that we represent TQk−1 SO(n) × TQk
SO(n) by the

‘left’ translates of vectors (ξi, ηi) ∈ so(n)× so(n), to be compatible with the use of the ‘right’
derivative.

Write T �L
k · Vi = (Ai, Zi) ∈ TQk

SO(n) × so(n)∗ and identify so(n)∗ with so(n) using
the trace form, as above. Using the canonical structure of ω we have

ω((A1, Z1), (A2, Z2)) = 〈Z2, Q
−1
k A1〉 − 〈Z1, Q

−1
k A2〉 + 〈Mk, [Q−1

k A1, Q
−1
k A2]〉.

Substituting the expressions (B.1), we obtain

ω(T �L · V1, T �L · V2) = − 1
2 (D1D2Sk(ξ2, η1) + D2D2Sk(η2, η1))

+ 1
2 (D1D2Sk(ξ1, η2) + D2D2Sk(η1, η2)) − 1

2 trace(Mk[η1, η2]).

But by identity (7.6) and the fact that D2Sk = Mk from (7.10), we obtain

ω(T �L · V1, T �L · V2) = − 1
2 (D1D2Sk(ξ2, η1) − D1D2Sk(ξ1, η2)).

But this is simply 2�L. �

Lemma B.2. (φL
k )∗�L = �L.

Proof. Recall that φL
k : (Qk−1, Qk) �→ (Qk, Qk+1). We may express the necessary conditions

of the Moser–Veselov variational problem as D2L(Qk−1,Qk) + D1L(Qk,Qk+1) = 0. Note that this
identity is an identity in the so(n)∗ and is obtained through an operation in the same space
TQk

SO(n). We may rewrite this identity in the general form of a product group Ḡ = G × G:

D2S(g1, g2) + D1S(g2, g3) = 0. (B.2)

Let ξi, ηi ∈ g. Differentiating (B.2) we obtain

D1D2S(g1, g2)ξ1 + D2D2S(g1, g2)ξ2 + D1D1S(g2, g3)ξ2 + D2D1S(g2, g3)ξ3 = 0. (B.3)

We obtain a similar expression with ηi substituting ξi , i = 1, 2, 3.
We have

4�L(g1,g2)(((g1ξ1), (g2ξ2)), ((g1η1), (g2η2)))(=A(g1, g2))

= D2D1S(g1,g2)(ξ1, η2) − D2D1S(g1,g2)(ξ2, η1)
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and

4�L(g2,g3)(((g2ξ2), (g3ξ3)), ((g2η2), (g3η3)))(=B(g2, g3))

= D2D1S(g2,g3)(ξ2, η3) − D2D1S(g2,g3)(ξ3, η2).

But from (B.3) we obtain

D1D2S(g1, g2)(ξ1, η2) + D2D2S(g1, g2)(ξ2, η2) + D1D1S(g2, g3)(ξ2, η2)

+D2D1S(g2, g3)(ξ3, η2) = 0

and

D1D2S(g1, g2)(η1, ξ2) + D2D2S(g1, g2)(η2, ξ2) + D1D1S(g2, g3)(η2, ξ2)

+D2D1S(g2, g3)(η3, ξ2) = 0.

Subtracting the last two identities we obtain

A(g1, g2) = B(g2, g3) − D2S(g1, g2)([ξ2, η2]) − D1S(g2, g3)([ξ2, η2]).

But from (B.2) we have A(g1, g2) = B(g2, g3). If φ : Ḡ → Ḡ is given by φ(g1, g2) = (g2, g3)

where (g1, g2, g3) satisfy (B.2), we have
1
4B(g2, g3) = (φ∗�L)(((g1ξ1), (g2ξ2)), ((g1η1), (g2η2))),

1
4A(g1, g2) = �L(((g1ξ1), (g2ξ2)), ((g1η1), (g2, η2))). �

Lemma B.3. �∗
kω = ω.

Proof. Recall that �k : (Qk, Mk) −→ (Qk+1, Mk+1). We have, from (7.10)

Mk+1 = D2Sk+1 = D2S(Qk, Qk+1),

−Mk = D1Sk+1 = D1S(Qk, Qk+1).
(B.4)

Differentiating these expressions, we get, for i = 1, 2,

δiMk+1 = D1D2S(Qk1Qk+1)δiQk + D2D2S(Qk, Qk+1)δiQk+1,

−δiMk = D1D1S(Qk, Qk+1)δiQk + D2D1S(Qk, Qk+1)δiQk+1,
(B.5)

where

vδiQk, δiQk+1 ∈ so(n) and δiMk, δiMk+1 ∈ so(n)∗.

In terms of these quantities, we may write

ω̂(Qk,Mk) = −2ω((Qkδ1Qk, δ1Mk), (Qkδ2Qk, δ2Mk))

= δ2Mk(δ1Qk) − δ1Mk(δ2Qk) − Mk([δ1Qk, δ2Qk]) (B.6)

and

ω̂(Qk+1,Mk+1) = −2ω((Qk+1δ1Qk+1, δ1Mk+1), (Qk+1δ2Qk+1, δ2Mk+1))

= δ2Mk+1(δ1Qk+1) − δ1Mk+1(δ2Qk+1) − Mk+1([δ1Qk+1, δ2Qk+1]). (B.7)

We substitute Mk = −D1S(Qk, Qk+1) in (B.6) and substitute Mk+1 = D2S(Qk, Qk+1) in
(B.7). Letting Di(DjS(Qk, Qk+1)) = Di(DjSk), and substituting (B.5) into expressions (B.6)
and (B.7) yields

ω̂(Qk,Mk) = −D1D1Sk(δ1Qk, δ2Qk) − D2D1Sk(δ1Qk, δ2Qk+1)

+D1D1Sk(δ2Qk, δ1Qk) + D2D1Sk(δ2Qk, δ1Qk+1) + D1Sk([δ1Qk, δ2Qk]),

ω̂(Qk+1,Mk+1) = D1D2Sk(δ1Qk+1, δ2Qk) + D2D2Sk(δ1Qk+1, δ2Qk+1) − D1D2Sk(δ2Qk+1, δ1Qk)

−D2D2Sk(δ2Qk+1, δ1Qk+1) − D2Sk([δ1Qk+1, δ2Qk+1]).
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Again, using identity (7.6),

ω̂(Qk+1, Mk+1) = −2(�∗
kω)((Qkδ1Qk, δ1Mk), (Qkδ2Qk, δ2Mk))

= −2ω((Qkδ1Qk, δ1Mk), (Qkδ2Qk, δ2Mk))

= ω̂(Qk, Mk). �

Lemma B.4. ψ∗
k �gl(n) = �L.

Proof. From (SDRBn) and (MDRBn), we have

Mk = QT
k Pk − P T

k Qk = �k−1Mk−1�
T
k−1 = �k−1(�

T
k−1� − ��k−1)�

T
k−1

= ��T
k−1 − �k−1� = �QT

k−1Qk − QT
k Qk−1�.

Hence, (
P T

k + �QT
k−1

)
Qk − QT

k (Pk + Qk−1�) = 0. (B.8)

Take variations of (B.8) with

δQk = Qkη, δPk = Pkξ, δQk−1 = Qk−1µ

where η, ξ, µ ∈ so(n). Thus,

−ξP T
k Qk + P T

k Qkη − �µQT
k−1Qk + �QT

k−1Qkη + ηQT
k Pk − QT

k Pkξ

+ηQT
k Qk−1� − QT

k Qk−1µ� = 0. (B.9)

Write Xi = (Qkηi, Pkξi), Zi = (Qk−1µi, Qkηi). We have

�gl(n)(Qk, Pk)(X1, X2) = 1
2 trace

(
P T

k Qk(η2ξ1 − η1ξ2)
)
, (B.10)

�L(Qk−1, Qk)(Z1, Z2) = 1
2 trace

(
QT

k Qk−1(µ2�η1 − µ1�η2)
)
. (B.11)

Since ψk : (Qk−1, Qk) → (Qk, Pk), with the derivative defined implicitly by (B.9),
ψ∗

k �gl(n) = �L is equivalent to showing that expressions (B.10) and (B.11) are equal. By
evaluating (B.9) at η = η1, ξ = ξ1, µ = µ1 and taking the trace inner product with η2 yields

trace
(
P T

k Qkη2ξ1
) − trace

(
P T

k Qkη1η2
)

= −trace
(
QT

k Qk−1µ1�η2
)

+ trace
(
�QT

k−1Qkη1η2
)
,

i.e.

trace
(
P T

k Qkη2ξ1
)

+ trace
(
QT

k Qk−1µ1�η2
) = trace

((
P T

k + �QT
k−1

)
Qkη1η2

)
.

By subtracting this expression from itself, but with the indices interchanged yields

�gl(n)(Qk, Pk)(X1, X2) − �L(Qk−1, Qk)(Z1, Z2)

= 1
2 trace

((
P T

k + �QT
k−1

)
Qk(η1η2 − η2η1

)
.

However, from (B.8) (P T
k + �QT

k−1)Qk is symmetric, and η1η2 − η2η1 is skew symmetric so

�gl(n)(Qk, Pk)(X1, X2) = �L(Qk−1, Qk)(Z1, Z2). �
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