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THE EQUIVALENCE OF CONTROLLED LAGRANGIAN AND CONTROLLED
HAMILTONIAN SYSTEMS
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Abstract. The purpose of this paper is to show that the method of controlled Lagrangians and
its Hamiltonian counterpart (based on the notion of passivity) are equivalent under rather general
hypotheses. We study the particular case of simple mechanical control systems (where the underlying
Lagrangian is kinetic minus potential energy) subject to controls and external forces in some detail.
The equivalence makes use of almost Poisson structures (Poisson brackets that may fail to satisfy the
Jacobi identity) on the Hamiltonian side, which is the Hamiltonian counterpart of a class of gyroscopic
forces on the Lagrangian side.
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1. Introduction

Brief History and Background. Hamiltonian control systems were introduced by Brockett, Willems, and
van der Schaft in [?], [?], [?,?,?]. They have been considerably developed since that time; see for example [?], [?],
and [?,?], which extended the van der Schaft method to include systems with symmetry. One of the key methods
introduced in these works is that of potential shaping to stabilize mechanical systems. Potential shaping refers
to the use of feedback control to realize a modification to the potential energy of a given mechanical system,
i.e., the control law is the force that derives from the potential energy modification. The controlled dynamics
then resembles the original system dynamics, with a modification in the potential energy. The potential energy
of the controlled system can be shaped for performance within the limitations of the available control authority.
An important feature is that analysis tools for mechanical systems such as use of the energy as a Lyapunov
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function, can be applied to the controlled system since the closed-loop system dynamics describe a modified
mechanical system,.

The idea behind the method of controlled Lagrangians was introduced by Krishnaprasad, Bloch, Marsden and
Sanchez, starting with [?], and [?]. Interestingly, [?] emphasized the Hamiltonian and non-canonical Poisson
bracket approach. This was put into a systematic Lagrangian context in a series of papers of Bloch, Leonard and
Marsden, starting with [?]. These works introduced the important notion of kinetic shaping which is analogous
to potential shaping except that the control law is selected to realize a desired modification to kinetic energy,
i.e., the control law is the force that derives from the kinetic energy modification. In this case the controlled
system dynamics resemble the original dynamics but with a modified kinetic energy. In these early papers it
is shown how kinetic shaping can be applied to underactuated systems (such as a spacecraft stabilized by an
internal rotor and the inverted pendulum on a cart), for which potential shaping methods are not applicable.
Since that time, this approach has matured and developed considerably and has been applied to many systems,
such as spherical pendula and underwater vehicles, as in for example, [?,?] and references therein. The addition
of damping was studied in [?,?] and some preliminary tracking results were given in [?]. We shall refer to this
class of systems as controlled Lagrangian systems, or CL systems for short.

In tandem with the development of energy shaping methodology, possibilities for structure modification have
been investigated. For example, in the papers [?] and [?], the authors demonstrated, in the context of the
spacecraft dynamics problem, the concept of using feedback control to modify the system’s Poisson structure.
Structure-modifying control laws were designed to stabilize an underwater vehicle with internal rotors in the
works [?, ?] of Woolsey and Leonard. In the underwater vehicle work, the modified structure is almost Lie-
Poisson, i.e., the Poisson structure for the controlled system does not satisfy the Jacobi identity. The idea of
structure modification is somewhat analogous and certainly complementary to the notion of energy shaping.
In structure modification, the closed-loop system is a mechanical system but the structure (e.g., the Poisson
structure) is different from the structure of the original dynamics. Modifying both structure and energy by
means of feedback control gives the opportunity for more flexibility (i.e., a larger class of control inputs is
considered) as compared to energy shaping alone, while the advantages of providing a closed-loop system that
is equivalent to a mechanical system are retained. Recent developments on controlled Lagrangian systems with
modified structure were presented in [?].

For purposes of the present work, two important recent references on the Hamiltonian side are those of Ortega,
Spong, Gómez-Estern, Blankenstein and van der Schaft, [?] and [?]. We shall refer to the Hamiltonian versions
of systems introduced and studied in these papers as controlled Hamiltonian systems or CH systems for short.
The paper [?] develops a formulation of passivity-based control using interconnection and damping assignment,
or IDA-PBC. See [?] and [?] for additional applications of the passivity-based control approach. The idea, as
in the controlled Lagrangian approach, is that it applies to the problem of stabilizing underactuated mechanical
systems using both potential and kinetic shaping. In [?], the authors also discuss structure modification, including
modifications of the Poisson structure.

Purpose of this Paper. The main purpose of this paper is to show that the CL system method is equivalent
to the CH system method; we shall focus on simple mechanical control systems (where the Lagrangian has the
form of kinetic minus potential energy), although this is true more generally, as will be evident in the body of
the paper. One of the interesting features is that we identify the Lagrangian analog of the failure of Jacobi’s
identity on the Hamiltonian side, namely in terms of gyroscopic forces, which is a natural Lagrangian concept.
This then provides a framework on the Lagrangian as well as the Hamiltonian side for considering the problem
of general structure modification.

In addition to showing this equivalence, in a companion paper we shall extend both the Lagrangian and
Hamiltonian sides of this theory to include systems with symmetry and the relevant reduction theory (La-
grangian reduction, where one reduces variational principles and Hamiltonian reduction, where one reduces
symplectic and Poisson structures). This extension is critical for examples like spacecraft control, underwater
vehicle control, etc. In fact, this class of reduced systems was recognized early as an important one on both the
Hamiltonian and Lagrangian sides; see [?] and [?].
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Notation. We shall use fairly standard notation, as follows: the configuration manifold for the mechanical
system under consideration will be denoted Q, the Lagrangian will be denoted L : TQ → R and Hamiltonians
will be denoted H : T ∗Q → R. We will assume that Q is finite dimensional and denote the dimension by n.
The second order tangent bundle is denoted T (2)Q and consists of second derivatives of curves in Q. See [?]
and [?] for additional details. Coordinates on Q will be denoted (q1, . . . , qn). Likewise, coordinates on TQ are
denoted (q1, . . . , qn, q̇1, . . . q̇n) and coordinates on T ∗Q are denoted (q1, . . . , qn, p1, . . . , pn).

Strategy. The procedure introduced in [?] (and used in the more recent works of [?], [?] and [?] as well), can
be described in general terms, as follows. One starts with an underactuated n-degree of freedom mechanical
control system of the form

d

dt

∂L

∂q̇i
− ∂L

∂qi
= ui, i = 1, . . . , k (1)

d

dt

∂L

∂q̇i
− ∂L

∂qi
= 0, i = k + 1, . . . , n. (2)

Thus, the degrees of freedom represented by q1, . . . , qk are the actuated degrees of freedom and the remaining are
unactuated. One then seeks a new controlled Lagrangian Lc and a special class of feedback controls u1, . . . , uk

such that the system (??)-(??) is equivalent to the Euler-Lagrange equations for Lc with control uc of rank k:

d

dt

∂Lc

∂q̇
− ∂ Lc

∂q
= uc. (3)

The requirement that these two systems be equivalent leads to the problem of matching for which many specific
techniques, including potential and kinetic shaping were developed. Some important general matching tech-
niques were developed by Auckly, Kapitanski and White in [?] and by Hamberg in [?,?]; these were important
inspirations for the approach in this paper.

The matching process usually has some free parameters which can be interpreted as control gains. The
advantage of the form (??) is explained as follows: One chooses a set of appropriate parameters such that the
energy Ec corresponding to the Lagrangian Lc has a minimum at the equilibrium of interest. The control uc is
chosen to be a conrol that is a dissipative, possibly together with a gyroscopic, force. One then uses the energy
Ec as a Lyapunov function to which LaSalle’s invariance principle can be applied to demonstrate stabilization.
One often has a demonstrably large region of attraction.

In the present paper, we view this matching problem in a different way that turns out to be quite crucial. We
consider the problem of determining the equivalence of two possibly underactuated and/or externally forced CL
systems. Then the matching problem becomes one of determining when (??)-(??) and (??) are CL-equivalent.
We shall also develop the notion of CH-equivalent systems and likewise use this to deal with the matching
problem on the Hamiltonian side. While this may seem at this point to be a rather superficial reformulation of
the problem, as we shall see, it is a powerful point of view that enables us to elegantly achieve our goals.

There is another important point here; in our previous papers (see [?,?,?]), we developed methods that make
control design systematic and constructive for certain classes of mechanical systems, which avoided having to
deal with solving PDE’s for each new application. In this context, these papers also dealt with the important
issues of asymptotic stabilization and gave an indication that the methods are also useful for tracking. These
are obviously important points from the view of applications. However, fully exploiting and generalizing all of
these results is not the purpose of the present paper; rather it is to develop the general notion of equivalence
and to show that the CL method is equivalent to the CH method. We shall, however, see how the constructive
methods mentioned can be derived in the general context of the present work.

Motivating Example. Consider a model of an inverted pendulum on a cart, an example we will return to in
the next section (see Figure ??). We use it now to motivate the discussion and illustrate some of the ideas.
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Figure 1. The pendulum on a cart.

The Lagrangian L of the system is given by

L(q1, q2, q̇2, q̇2) =
1
2
(q̇1)2 + cos(q1)q̇1q̇2 + (q̇2)2 − cos(q1), (4)

where q1 is the angle of the pendulum from the vertical position and q2 is the displacement of the cart from
the origin. Here, all the parameter values (i.e., those identified in Figure ??) are taken to have unit value. The
control u is exerted along the q2 variable as shown in the figure. The equations of motion with control u is
given by

q̈1 + cos(q1)q̈2 − sin(q1) = 0, cos(q1)q̈1 + 2q̈2 − sin(q1)(q̇1)2 = u. (5)

The goal is to design a feedback control law u such that the point (q1, q2, q̇1, q̇2) = (0, 0, 0, 0) becomes an
asymptotically stable equilibrium for the dynamics (??). The energy E of the Lagrangian L is given by

E(q1, q2, q̇1, q̇2) =
1
2
(q̇1)2 + cos(q1)q̇1q̇2 + (q̇2)2 + cos(q1).

One cannot directly use the energy E as a Lyapunov function because (0, 0, 0, 0) is a saddle point of E.
The method of controlled Lagrangians leads one to the following (non-obvious and, at the moment, mysteri-

ous) form of control u:

u =
199((q̇1)2 − cos(q1)) sin(q1) + (2 − cos2(q1))

(
v − 1

500 sin(q1) − 1
100000q2

)
1 − 100 cos2(q1)

(6)

where v is to be chosen. In (??), the somewhat strange numerical parameters were chosen to get a large region
of attraction, which will be discussed later. Then, one can show either by a lengthy direct calculation, or by
use of the theory, that the dynamics of the closed-loop system, (??) + (??), is the same as the dynamics of the
Lagrangian

Lc =
20000 cos2(q1) − 100

2
(q̇1)2 + 100 cos(q1)q̇1q̇2 +

1
2
q̇2 + 100 cos(q1) − 1

200000
(q2 + 200 sin(q1))2 (7)

with the control force

uc = v

[
200 cos(q1)

1

]
(8)
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where the parameter value 1/200000 in the potential energy of Lc corresponds to a slow driving of the cart to
the origin as compared to a rapid stabilization of the pendulum to the upright position. The energy Ec of the
Lagrangian Lc is given by

Ec =
20000 cos2(q1) − 100

2
(q̇1)2 + 100 cos(q1)q̇1q̇2 +

1
2
q̇2 − 100 cos(q1) +

1
200000

(q2 + 200 sin(q1))2

and has a minimum at (0, 0, 0, 0) in the set

S := {(q1, q2, q̇1, q̇2) | 100 cos2(q1) > 1} =
(
−0.9365 × π

2
, 0.9365 × π

2

)
× R

3. (9)

The minimum value of Ec is (−100), and the kinetic energy of Ec is positive definite in the set S. We are now in
a position to use Ec as a Lyapunov function for the dynamics of the system (Lc, uc), (or, equivalently, (L, u)).
The time derivative of Ec is given by

dEc

dt
= 〈(q̇1, q̇2), uc〉 = v(200q̇1 cos(q1) + q̇2).

We choose v = −(200q̇1 cos(q1) + q̇2) so that uc becomes dissipative, i.e.,

dEc

dt
= −(200q̇1 cos(q1) + q̇2)2 ≤ 0.

Hence, (0, 0, 0, 0) becomes a Lyapunov stable equilibrium of the closed-loop system. By applying LaSalle’s
theorem (see, for example, [?]), one can also show asymptotic stability of (0, 0, 0, 0) in a region of attraction,
R := E−1

c ([−100,−11])
⋂

S. Notice that R is a large region of attraction because such points as (0, 4000, 0, 0)
and

(
0.908 × π

2 , 0, 0, 0
)

are contained in it. But it is still a conservative choice of a region of attraction and by
adjusting the parameters one can find an even larger region of attraction.

Recap of the Discussion. First, we find a Lagrangian Lc and a control uc so that the Lagrangian control
system (Lc, uc) is equivalent to the original system, (L, u). The energy Ec of Lc has a minimum at (0, 0, 0, 0),
whereas the energy E of the original L does not. Hence, we are able to use Ec for a Lyapunov function and, to
achieve asymptotic stability of (0, 0, 0, 0), we choose dissipation for uc. A large region of attraction is achievable.

Clearly, this technique depends on a good theory for the equivalence of two Euler–Lagrange systems with
control forces. In this paper we provide such a theory; in particular, we show how to find systems equivalent to
a given system. We also go beyond this to our second main point, namely a proof of the equivalence of the CL
point of view and the CH point of view.

2. Controlled Lagrangian Systems

To formally define a controlled Lagrangian system, we need to first recall a few things about the Euler-
Lagrange equations from basic geometric mechanics (see, for example, [?]).

Euler-Lagrange Equations. The Euler-Lagrange operator EL assigns to a Lagrangian L : TQ → R, a bundle
map EL(L) : T (2)Q → T ∗Q which may be written in local coordinates (and with the summation convention in
force) as

EL(L)i(q, q̇, q̈)dqi =
(

d

dt

∂L

∂q̇i
(q, q̇) − ∂L

∂qi
(q, q̇)

)
dqi

in which it is understood that one regards the first term on the right hand side as a function on the second
order tangent bundle T (2)Q by formally applying the chain rule and then replacing everywhere dq/dt by q̇ and
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dq̇/dt by q̈. Hence the Euler-Lagrange equations of a Lagrangian L may be written as

EL(L)(q, q̇, q̈) = 0.

Controlled Lagrangian Systems. The view of a controlled Lagrangian system given by (??)-(??) will now
be generalized to include external forces and also will be made intrinsic (independent of a specific coordinate
representation). This definition is fundamental to the Lagrangian side of this work.

Definition 2.1. A controlled Lagrangian (CL) system is a triple (L, F, W ) where the function L : TQ → R

is the Lagrangian, the fiber-preserving map F : TQ → T ∗Q is an external force and W ⊂ T ∗Q is a subbundle
of T ∗Q, called the control bundle, representing the actuation directions.

Sometimes, we will identify the subbundle W with the set of bundle maps from TQ to W . The fact that W
may be smaller than the whole space corresponds to the system being underactuated. The equations of motion
of the system (L, F, W ) may be written as

EL(L)(q, q̇, q̈) = F (q, q̇) + u (10)

with a control u selected from W . When we choose a specific control map u : TQ → W (so that u is a function
of (qi, q̇i)), then we call the triple (L, F, u) a closed-loop Lagrangian system. We will typically be interested
in such feedback controls in this paper.

In the special case when W is integrable (that is, its annihilator W o ⊂ TQ is integrable in the usual Frobenius
sense) and we choose coordinates appropriately, then a CL system, that is the equations (??), can be locally
written in coordinates as

d

dt

∂L

∂q̇i
− ∂L

∂qi
= Fi + ui, i = 1, . . . , k (11)

d

dt

∂L

∂q̇i
− ∂L

∂qi
= Fi, i = k + 1, . . . , n. (12)

Here the coordinates q1, . . . , qk are chosen so that dq1, . . . dqk span W , so W is k dimensional in this case. The
external forces can include gyroscopic forces, friction forces, etc.

Aside: Interconnection Structures and Graphs. If one has a collection of CL systems (Li, F i, W i), i =
1, . . . , N (as occurs in the coordinated control of a collection of N satellites or N underwater vehicles, for
example), then one can keep track of the interconnection structure by using a directed graph with the
individual CL system representing the nodes of the graph and the interconnection structure representing the
edges. If, for example, in this graph, there is a directed link from the ith subsystem (Li, F i, W i) to the jth
subsystem (Lj , F j , W j), then we would have a control link u : TQi → Wj . We intend to pursue this point
of view in future publications for purposes of coordinated control of many subsystems. For simplicity of the
exposition in the present paper, we assume that we have lumped everything together into one system.

Simple CL Systems. Now we are ready to embark on the discussion of the matching problem in the general
context of CL systems. We shall begin with the case of simple Lagrangians.

Definition 2.2. A CL system (L, F, W ) is called a simple CL system if the Lagrangian L has the form of
kinetic minus potential energy:

L(q, q̇) =
1
2
m(q)(q̇, q̇) − V (q),

where m is a non-degenerate symmetric (0, 2)-tensor (the mass matrix, or Riemannian structure).
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We will sometimes omit the q-dependence of m in the notation, but this dependence will be understood.
When L is a simple Lagrangian, then the Euler-Lagrange operator is written in a matrix form as

EL(L)(q, q̇, q̈) = mq̈ + (dm[q̇])q̇ − ∂L

∂q
(13)

where (dm[q̇])ij = d(mij)(q̇), or in coordinates,

EL(L)(q, q̇, q̈)j = mij q̈
i +

∂mij

∂qk
q̇iq̇k − 1

2
∂mik

∂qj
q̇iq̇k +

∂V

∂qj
.

See, for example, [?] for how to relate these expressions to Christoffel symbols and geodesics. We make this
assumption of a simple CL system only for the sake of simplicity and to make the exposition more concrete.
One can readily generalize the results to more general forms of Lagrangians (see Remark 1 below).

Notation. As is standard, we represent the two tensor m in coordinates with indices down: mij . This corre-
sponds to the fact that at each point q ∈ Q, m is a bilinear map mq : TqQ× TqQ → R. If m is non-degenerate,
it defines an isomorphism m�

q : TqQ → T ∗
q Q by m�

q(vq) · uq = mq(vq, uq). The matrix representation of m and
m� are the same and correspond to simply writing the mass matrix as an n×n matrix. The inverse of the linear
map m�

q is denoted m−1
q : T ∗

q Q → TqQ. Its matrix is denoted mij ; it is the inverse of the standard mass matrix
and satisfies mijm

jk = δk
i . To simplify the notation, we will let m denote both the bilinear form on TqQ and

the associated linear map of TqQ to T ∗
q Q.

The Matching Conditions and CL-Equivalence. Consider now two simple Lagrangian systems (L1, F1, W1)
and (L2, F2, W2) with

L1(q, q̇) =
1
2
m1(q̇, q̇) − V1(q) and L2(q, q̇) =

1
2
m2(q̇, q̇) − V2(q). (14)

The q̈ equation of the closed-loop system (Lα, Fα, uα) with α = 1, 2 is given in coordinates as follows.

q̈Lα
= m−1

α

[
−(dmα[q̇])q̇ +

∂Lα

∂q
+ Fα + uα

]
. (15)

Here we use matrix and vector-style notation, suppressing the indices on qi to avoid cluttering the equation
with too many indices. We can then formally define matching conditions between these two systems.

Definition 2.3. Given the two CL systems (L1, F1, W1) and (L2, F2, W2), the Euler-Lagrange matching
conditions are

ELM-1 : W1 = m1m
−1
2 (W2),

ELM-2 : Im
[
(EL(L1) − F1) − m1m

−1
2 (EL(L2) − F2)

]
⊂ W1,

where Im means the pointwise image of the map in brackets.
We say that the two simple CL Lagrangian systems (L1, F1, W1) and (L2, F2, W2) are CL-equivalent if

ELM-1 and ELM-2 hold. We use the symbol, L∼ for this equivalence relation.

One can show that CL-equivalence is indeed an equivalence relation. The reflexivity and the transitivity are
obvious. The symmetry follows if we multiply both sides of ELM-1 and ELM-2 by m2m

−1
1 .

In coordinates and in terms of concrete mass matrices, the condition ELM-1 means that the matrix product
m1m

−1
2 takes the subspace associated to the actuation directions of the second system to the subspace associated

to the actuation directions of the first system; this may of course be viewed as a linear algebra condition.
The condition ELM-2 means that the given combination of Euler-Lagrange expressions and forces lies in the
actuation direction of the first system. If (L1, F1, W1) and (L2, F2, W2) are equivalent, then for any choice of
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control u2 : TQ → W2, there is a control u1 : TQ → W1 such that such that the two closed-loop systems
(L1, F1, u1) and (L2, F2, u2) produce the same equations of motion, and vice versa. The relation between such
u1 and u2 is given by (??).

One can easily check by coordinate computation that the map

[
(EL(L1) − F1) − m1m

−1
2 (EL(L2) − F2)

]
(16)

in ELM-2 can be regarded as a map defined on TQ because the acceleration terms from the two Euler-Lagrange
expressions cancel each other.

Equations of Motion. Now we can give the main result on when two CL systems give the same equations of
motion.

Proposition 2.4. Suppose two simple controlled Lagrangian systems (L1, F1, W1) and (L2, F2, W2) with La-
grangians in (??) are CL-equivalent. Then the two closed-loop systems (L1, F1, u1) and (L2, F2, u2) produce the
same equations of motion if and only if the two feedback controls u1 : TQ → W1 and u2 : TQ → W2 satisfy

u1 = (EL(L1) − F1) − m1m
−1
2 (EL(L2) − F2) + m1m

−1
2 u2. (17)

Proof. By (??) and (??) one can compute

m1(q̈L1 − q̈L2) = u1 − m1m
−1
2 u2 −

[
(EL(L1) − F1) − m1m

−1
2 (EL(L2) − F2)

]
The conditions ELM-1 and ELM-2 imply that (??) holds if and only if q̈1 = q̈2. Also recall that the map in
(??) can be regarded as a map defined on TQ.

Coordinate Expressions. We express the Euler-Lagrange matching conditions in coordinates. Let (L1, F1, W1)
and (L2, F2, W2) be two simple CL systems with Lagrangians as in (??). Suppose that we are given a decom-
position of the forces Fi as

Fi = F v
i + F q

i

with i = 1, 2 where F q
i is independent of the velocity q̇. Then ELM-2 can be written in coordinates as

W ◦
1

[
(dm1[q̇])q̇ −

∂

∂q

(
1
2
q̇T m1q̇

)
− F v

1 (q, q̇)

− m1m
−1
2

(
(dm2[q̇])q̇ −

∂

∂q

(
1
2
q̇T m2q̇

)
− F v

2 (q, q̇)
) ]

= 0 (18)

and

W ◦
1

[
∂V1

∂q
− F q

1 − m1m
−1
2

(
∂V2

∂q
− F q

2

) ]
= 0 (19)

where W ◦
1 is a matrix whose rows span the annihilator of W1, given by

{v ∈ TQ | 〈v, α〉 = 0 for all α ∈ W1}.
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CL-Inclusion. There is a more general concept than the CL-equivalence relation. We will give this definition
for simple Lagrangian systems, but it can be readily generalized for general Lagrangian systems (see Remark 1
below).

Definition 2.5. We say that a simple CL system (L1, F1, W1) includes the simple CL system (L2, F2, W2) if
the following holds:

ELI-1 : W1 ⊃ m1m
−1
2 (W2),

ELI-2 : Im
[
(EL(L1) − F1) − m1m

−1
2 (EL(L2) − F2)

]
⊂ W1.

If (L1, F1, W1) includes (L2, F2, W2), then for any choice of control u2 : TQ → W2, there is a control
u1 : TQ → W1 satisfying (??) such that the two closed-loop systems (L1, F1, u1) and (L2, F2, u2) produce the
same equations of motion. This introduces a partial order in the class of simple controlled Lagrangian systems.
We call this partial order CL-inclusion. One can check that two simple CL systems include each other if and
only if they are CL-equivalent.

Remarks. 1. In this paper we always assume that Lagrangians are regular, i.e., det
(

∂2L
∂q̇i∂q̇j

)
	= 0. For simple

CL systems this means of course that the mass matrix is nonsingular. We can generalize the Euler-Lagrange
matching conditions for general Lagrangians which are not necessarily simple as follows. Let L : TQ → R be
a Lagrangian. It induces a globally well–defined map mL : TQ → Sym2(T ∗Q) (symmetric two-tensors with
indices down) given in tangent bundle charts as follows:

mL(q, q̇) =
∂2L(q, q̇)
∂q̇i∂q̇j

dqi ⊗ dqj .

Then the Euler-Lagrange matching conditions for general Lagrangian systems (L1, F1, W1) and (L2, F2, W2) are
given by

ELM-1′ : W1 = mL1m
−1
L2

(W2),
ELM-2′ : Im

[
(EL(L1) − F1) − mL1m

−1
L2

(EL(L2) − F2)
]
⊂ W1.

The equation in (??) is replaced by

u1 = (EL(L1) − F1) − mL1m
−1
L2

(EL(L2) − F2) − mL1m
−1
L2

u2

so that the two closed-loop systems (L1, F1, u1) and (L2, F2, u2) produce the same equations of motion.
2. One can approach the Euler-Lagrange equations using the Lagrangian two-form (see §7.3 of [?] for de-

tails). However, in this paper, we do not take this approach but rather take the variational approach since
the variational approach is more natural for many purposes, including Lagrangian reduction; we will use this
variational approach to discuss reduced CL and CH systems in a companion paper (see [?] for an overview of
the theory of Lagrangian reduction). Since §7.3 of [?] does not consider external forces, we give a formula for
the Lagrangian vector field XE for a given Lagrangian system (L, F, W ) with the energy function E defined by

E(q) = 〈FL(q, q̇), (q, q̇)〉 − L(q, q̇) . (20)

We recall that the Legendre transformation FL is defined as follows: for vq, wq ∈ TqQ

〈FL(vq), wq〉 =
d

ds

∣∣∣∣
s=0

L(vq + swq). (21)

In coordinates,

(qi, pi) = FL(q, q̇) =
(

qi,
∂L

∂q̇i

)
.
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If L(q, q̇) = 1
2m(q̇, q̇) − V (q) is simple, then

FL = m : TQ → T ∗Q

is a linear isomorphism on each fiber.
The Lagrangian vector field XE on TQ of the system (L, F, W ) and with with controls u : TQ → W is

verified (using computations similar to those in, for example [?]), to be given by

XE = Ω�
LdE + TFL−1(vliftm(F )) + TFL−1(vliftm(u)).

The notation in this equation is as follows: TFL−1 : T (T ∗Q) → T (TQ) is the tangent map of the inverse
Legendre transformation FL−1 : T ∗Q → TQ, and ΩL is the Lagrangian two form on TQ defined by ΩL =
FL∗Ωcan with Ωcan the canonical 2-form on T ∗Q. Also, the vertical lift of a vector wq ∈ TqQ along the vector
vq ∈ TqQ is the vector vliftvq

(wq) ∈ Tvq
(TQ) defined by

vliftvq
(wq) =

d

ds

∣∣∣∣
s=0

(vq + swq).

In coordinates (qi, vi, δqi, δvi) on TTQ, the lift of the vector with components wi and with base point qi along
the vector vi, also with base point qi, is the vector with base point (qi, vi) with components given by (0, wi).
Likewise, the vertical lift of a one form βq ∈ T ∗

q Q along a one form αq ∈ T ∗
q Q is the vector vliftαq

(βq) ∈ Tαq
(T ∗Q)

defined by

vliftαq (βq) =
d

ds

∣∣∣∣
s=0

(αq + sβq).

In coordinates (qi, αi, δq
i, δαi) on TT ∗Q, the lift of the one form with components βi and with base point qi

along the one form αi, also with base point qi, is the vector with base point (qi, αi) with components given
by (0, βi). For a force map F : TQ → T ∗Q, the vertical lift vliftm(F ) along m = FL is defined pointwise at
vq ∈ TqQ to be vliftm(F )(vq) = vliftm(vq) F (vq). The notation vliftm u is defined in the same way. See [?] for
additional properties of Lagrangian vector fields and [?] for more on the forced case.

3. For a given physical system, the force F in the triple (L, F, W ) is an external force. For the purpose of
controller design, the force F can also be used as a design parameter. As an example of what this means, we
consider a gyroscopic force Fgr. By definition, gyroscopic forces preserve the energy E of the system. Hence,
the following should be satisfied:

d

dt
E = 〈q̇, Fgr〉 = 0.

Specifically, this holds if Fgr can be written in the following form:

Fgr(q, q̇) = S(q, q̇)q̇

where S(q, q̇) is a linear map of TqQ to T ∗Q that satisfies S(q, q̇)T = −S(q, q̇). In the special case that S = (Sij)
depends only on q and satisfies the following integrability condition,

∂Sik(q)
∂ql

+
∂Skl(q)

∂qi
+

∂Sli(q)
∂qk

= 0,

then there are functions Ii(q) satisfying

Sik(q) =
∂Ii(q)
∂qk

− ∂Ik(q)
∂qi
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such that we can incorporate the gyroscopic force F (q, q̇) = S(q, q̇)q̇ into the Lagrangian as follows: (L, Fgr +

F, W ) L∼ (L + Ii(q)q̇i, F, W ). However, one does not have to restrict to such special S’s because the skew-
symmetry of S is the only property we need for the gyroscopic force from the energy-conservation point of view.
This is essentially the same as using almost Poisson structures by not enforcing the Jacobi-identity condition,
which will be discussed in the next section on controlled Hamiltonian systems.

4. Notice that any CL system (L, F, W ) is CL-equivalent to (−L,−F, W ). The equation (??) becomes
u1 = −u2. If an equilibrium is a minimum point of the energy of (L, F, W ), then it will be a maximum point of
the energy function of (−L,−F, W ). Therefore, it is not crucial whether the energy function has a maximum
or a minimum at the equilibrium as far as whether or not we can stabilize the equilibrium.

Control Synthesis via CL system. We now discuss how one may apply the concept of CL-equivalence to
designing control laws for mechanical system control problems.

The general idea is as follows. Suppose we are given a CL system (L1, F1, W1) and a given set of desired
performance requirements. In general, it is difficult to directly find a control law to meet these performance
requirements. Instead, the strategy is that we first find a CL-equivalent (or CL-included) system (L2, F2, W2)
for which one can more easily find a control u2 ∈ W2 such that the performance requirements are met for the
closed-loop Lagrangian system (L2, F2, u2). The control u1 can then be calculated according to (??).

For example, the problem of asymptotic stabilization of a desired equilibrium of a given system (L1, F1, W1)
can be stated as follows. Given the CL system (L1, F1, W1), find a CL-equivalent (or CL system-included)
system (L2, F2, W2) for which one can find a control u2 ∈ W2 such that the equilibrium is asymptotically
stable for the closed-loop Lagrangian system (L2, F2, u2). Then, by Proposition ??, the equilibrium is also
asymptotically stable in the closed-loop system (L1, F1, u1) with u1 given by (??).

We might also want to ask for a parameterized family of equivalent systems (L2, F2, W2) satisfying the above
so that there is room for tuning, increasing region of attraction, or otherwise improving performance.

The Inverted Pendulum on a Cart. We now apply the theory to the example of an inverted pendulum on
a cart and re-derive the result in §VI of [?] (here, we assume the inclination angle of the slope is zero). The
purpose is not to extend in any way these previous results, but rather to use this example in a pedagogical way
to illustrate the ideas that have been presented so far in the context of a known example; see Figure ??.

To conform to the notation in the present paper, we shall use q = (q1, q2) in place of (θ, s) in [?]. Let
(L1, F1 = 0, W1) be the inverted pendulum system with the Lagrangian

L1(q, q̇) =
1
2
α(q̇1)2 + β cos(q1)q̇1q̇2 +

1
2
γ(q̇2)2 − D cos(q1)

where α, β, γ, D are positive real numbers (given in terms of the notation of the figure by α = ml2, β = ml, γ =
M + m and D = mgl). Here, W1 is spanned by dq2; that is, the matrix [0 1]T . Let (L2, F2, W2) be a candidate
CL system equivalent to (L1, 0, W1), where the Lagrangian is

L2(q, q̇) =
1
2
m2(q̇, q̇) − V2(q)

with

m2(q) =
[
m11 m12

m12 m22

]

and the gyroscopic force

F2(q, q̇) =
[

0 −f1(q)q̇1 − f2(q)q̇2

f1(q)q̇1 + f2(q)q̇2 0

] [
q̇1

q̇2

]
.



12 D.E. CHANG, A.M. BLOCH, N.E. LEONARD, J.E. MARSDEN, AND C.A. WOOLSEY

It is reasonable to make the gyroscopic force F2 be quadratic in q̇ because every term containing q̇ in EL(L2)
is quadratic in q̇. Notice W ◦

1 = [1 0]. The equation (??) becomes the following:

0 = A(q)
∂m11

∂q1
+ B(q)

(
2
∂m12

∂q1
− ∂m11

∂q2
− 2f1

)
(22)

0 = A(q)
(

∂m11

∂q2
+ f1

)
+ B(q)

(
∂m22

∂q1
− f2

)
(23)

0 = A(q)
(

2
∂m12

∂q2
− ∂m22

∂q1
+ 2f2

)
+ B(q)

∂m22

∂q2
(24)

with A = (αm22 − β cos(q1)m12) and B = (β cos(q1)m11 −αm12). We can regard f1 and f2 as free parameters.
In order to reproduce the results of [?], we set f1 = f2 = 0. However, in such an example as the ball-and-beam
system, the usage of this gyroscopic force is crucial (see [?] with the main result of the current paper in mind).
One can try to directly solve PDE’s in (??)–(??) as in [?]. However, it is sometimes easier to make some
assumptions to reduce the PDE’s to a set of ODE’s as follows. We assume that m11 depends on q1 only and
m12 and m22 are of the following form just as in the original system:

m12(q1) = b cos(q1); m22 = d,

with b, d ∈ R. Then, (??) and (??) are automatically satisfied and (??) becomes

(αd − βb cos2(q1))m′
11(q

1) − (βm11(q1) − αb)2b cos(q1) sin(q1) = 0

which can be solved for m11(q1) as follows:

m11(q1) = α(ad + b/β) − abβ cos2(q1)

with a ∈ R. With this solution, the equation (??) can be written as

−D(b + adβ)
β

sin(q1) =
∂V2

∂q1
+ aβ cos(q1)

∂V2

∂q2

which can be solved for V2 as follows:

V2(q1, q2) = D(ad + b/β) cos(q1) + Vε(q2 − aβ sin(q1)),

with Vε an arbitrary function. The control subbundle W2 is computed as follows:

W2 = span{(αd − βb cos2(q1))(dq2 − aβ cos(q1)dq1)}.

For simplicity, let us choose a quadratic function for Vε such that V2 becomes

V2(q1, q2) = D(ad + b/β) cos(q1) +
1
2
ε(q2 − aβ sin(q1))2.

The total energy of the CL system (L2, F2, W2) is given by

E2 =
1
2
(α(ad + b/β) − abβ cos2(q1))(q̇1)2 + b cos(q1)q̇1q̇2 +

1
2
d(q̇2)2

+ D(ad + b/β) cos(q1) +
1
2
ε(q2 − aβ sin(q1))2.
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One can check that the energy E2 has a minimum at (0, 0, 0, 0) in the set

R := {(q1, q2, q̇1, q̇2) | αd < βb cos2(q1)} ⊂
(
−π

2
,
π

2

)
× R

3 (25)

if the following holds:

d > 0, ε > 0, a < 0, αd/β < b < −adβ.

Notice that the condition αd/β < b guarantees the constant nonzero rank of W2. One can achieve asymptotic
stabilization of the equilibrium by choosing a dissipative input u2 ∈ W2 as follows:

u2 = −c(dq2 − aβ cos(q1)dq1) ⊗ (dq2 − aβ cos(q1)dq1)

with c > 0. In coordinates,

u2(q1, q2, q̇1, q̇2) = −c(q̇2 − aβ cos(q1)q̇1)
[
−aβ cos(q1)

1

]

The asymptotic stabilization can be straightforwardly proved by the application of LaSalle’s theorem (see, for
example [?]). By choosing a, b, ε with |a|, |b| � 1, |ε| � 1, one can get a large region of attraction.1 Notice that
we can make the set R in (??) as close to

(
−π

2 , π
2

)
× R

3 as possible, with a large value of b.
By Proposition ??, the closed-loop system (L1, 0, u1) with u1 obeying (??) has the origin as an asymptotically

stable equilibrium in a large region of attraction. Explicitly, u1 is given by

u1 =
(bγ − dβ)(α(q̇1)2 − D cos(q1)) sin(q1) + (αγ − β2 cos2(q1))(c(aβ cos(q1)q̇1 − q̇2) + ε(aβ sin(q1) − q2))

dα − bβ cos2(q1)
dq2.

This control law u1 is essentially the same as the control law (48) in [?], with ψ = 0.

Simplified Matching. We review some of the results in [?] in the framework of the current paper. Let
Q = S × G be the configuration space where G is an Abelian Lie group, and let q = (x, θ) = (xα, θa) ∈ S × G
be a chosen set of coordinates.

Let (xe, θe) be the equilibrium of interest. Since we will look at the dynamics in a neighborhood of an
equilibrium, one may assume that S and G are just Euclidean spaces (a neighborhood doesn’t necessarily mean
that it is small in size).

Consider a given CL system of the form (L, 0, W ) (so there are no external forces), where L has the form

L =
1
2
gαβ(x)ẋαẋβ + gαa(x)ẋαθ̇a +

1
2
gabθ̇

aθb − V (x)

where we assume that gαβ , gαa, V depend on x only and gab is constant. Assume also that the control subbundle
is such that the control forces are in the group direction; that is, W is given by W = 0 ⊕ T ∗G ⊂ T ∗Q, i.e.,

W (q) = the subspace of T ∗
q Q spanned by the columns of

[
O
IG

]

where IG is the identity matrix of dimension dimG.

1In the motivating example in §??, we chose a = −200, b = 100, ε = 10−5, c = 1.
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Motivated by the constructive approach for this class of systems given in [?] and references therein, we consider
a second CL system (Lτ,σ,ρ,ε, 0, Wτ,σ,ρ,ε) given by

Lτ,σ,ρ,ε =
1
2

(
gαβ + ρ

(
1 − 1

σ

) (
1 − 1

σ
− 1

ρ

)
gαagabgbβ

)
ẋαẋβ

+ ρ

(
1 − 1

σ

)
gαaẋαθ̇a +

1
2
ρgabθ̇

aθ̇b − V (xα) − Vε(xα, θa),

and

Wτ,σ,ρ,ε =
〈
dθa +

(
1 − 1

σ
− 1

ρ

)
gacgcαdxα | a = 1, . . . ,dimG

〉

= the subbundle spanned by the columns of




(
1 − 1

σ
− 1

ρ

)
gαdg

da

IG


 (26)

where σ, ρ ∈ R are free parameters.
To follow the notation in §??, let (L1, 0, W1) = (Lτ,σ,ρ,ε, 0, Wτ,σ,ρ,ε) and (L2, 0, W2) = (L, 0, W ). First we

examine the condition ELM-1. One computes

m2m
−1
1

[
O
IG

]
=

[(
1 − 1

σ − 1
ρ

)
gαdg

da

IG

] [
gab −

(
1 − 1

σ

)
gaαgαβgβb

] [
ρBbe

]
(27)

where Bab is the inverse matrix of Bab := gab − gaαgαβgβb. For ELM-1 to hold, the following should hold:
ρ 	= 0 and [

gab −
(
1 − 1

σ

)
gaαgαβgβb

]
is invertible .

It is an easy linear algebra exercise to show that the matrix [gab − hgaαgαβgβb] is invertible for h ∈ R if and
only if the matrix [gαβ − hgαagabgbβ ] is invertible. In [?], we chose σ and ρ satisfying

1 − 1
σ

> max
{

λ
∣∣det[gαβ − λgαagabgbβ ]

∣∣
x=xe

= 0
}

and ρ < 0 in order to achieve stability of the closed-loop system under the assumption that the matrix [gaα(xe)]
is one to one. With this choice of σ and ρ, one can see from (??) that m2m

−1
1 (W1) = W2, i.e., ELM-1 holds.

Notice that the annihilator W ◦
1 of W1 is spanned by the row vectors of the matrix

K :=
[
IG, −

(
1 − 1

σ − 1
ρ

)
gαdg

da
]
.

In this case ELM-2 can be written as

K
[
EL(L1) − m1m

−1
2 EL(L2)

]
= O,

which holds if and only if

−
(

∂V

∂θa
+

∂Vε

∂θa

) (
1 − 1

σ
− 1

ρ

)
gadgdα +

∂Vε

∂xα
= 0

which is equation (16) in [?].
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Letting u1 = udiss times the basis vector given in (??), equation (??) can then be solved for u2, which is the
control for the originally given system (L, 0, W ). The expression for u2 derived from (??) is the same as equation
(22) in [?]. In the same paper, the energy function of the CL system (Lτ,σ,ρ,ε, 0, Wτ,σ,ρ,ε) has a maximum at
the equilibrium point and in that paper there is a detailed computation showing the asymptotic stability of the
equilibrium in the closed-loop system. Also, in [?] use is made of the integrability of W2 to choose another set
of local coordinates convenient for an asymptotic stability analysis.

3. Controlled Hamiltonian Systems

In this section we formally define a controlled Hamiltonian (CH) system analogously to a controlled La-
grangian system. First we discuss almost Poisson structures.

Almost Poisson Structure. Following [?], we define an almost Poisson tensor B on T ∗Q to be a skew-
symmetric (2, 0)-tensor on T ∗Q. Its almost Poisson bracket { , } : F(T ∗Q) × F(T ∗Q) → F(T ∗Q) (where
F(M) is the space of smooth real-valued functions on the manifold M) is defined as

{F, G} = B(dF,dG)

for F, G ∈ F(T ∗Q). Then { , } satisfies the following properties:
(i) {F, G} = −{G, F},
(ii) {F + G, H} = {F, H} + {G, H},
(iii) {FG, H} = F{G, H} + G{F, H}

for F, G, H ∈ F(T ∗Q). It is not necessary that it satisfy the Jacobi identity:

{F, {G, H}} + {G, {H, F}} + {H, {F, G}} = 0

for F, G, H ∈ F(T ∗Q). In coordinates, the almost Poisson tensor B can be written in terms of its action on the
coordinate functions:

B(q, p) =
[
{qi, qj} {qi, pj}
{pi, q

j} {pi, pj}

]
.

The induced map B� : T ∗T ∗Q → TT ∗Q is defined as

B(αz, βz) = 〈αz, B
�(z)βz〉

for αz, βz ∈ T ∗
z T ∗Q.

It is well-known that almost Poisson structures arise in nonholonomic mechanics; see, eg, [?,?] and references
therein. The geometric way of expressing the Jacobi identity of the { , } in terms of B is to use the Schouten
bracket (see Chapter 10 of [?] for more details).

Controlled Hamiltonian Systems. The Hamiltonian analog of a CL system is defined as follows.

Definition 3.1. A controlled Hamiltonian system (CH system) is a quadruple (H, B, F, W ) where H :
T ∗Q → R is the Hamiltonian function, B is an almost Poisson tensor, F : T ∗Q → T ∗Q is the (external force)
fiber-preserving map, and W ⊂ T ∗Q is the (control) subbundle.

Sometimes, W denotes the set of bundle maps from T ∗Q to W . As on the Lagrangian side, when we choose
a specific control u : T ∗Q → W , then we call the quadruple (H, B, F, u) a closed-loop Hamiltonian system.
The vector field X(H,B,F,u) of the closed-loop system (H, B, F, u) is given by

X(H,B,F,u) = B�dH + vlift(F ) + vlift(u)
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with a control u : T ∗Q → W , where the vertical lift operator vlift : T ∗Q × T ∗Q → TT ∗Q is defined as follows:
for αq, βq ∈ T ∗

q Q

TαqT
∗Q � vlift(βq, αq) =

d

ds

∣∣∣∣
s=0

(αq + sβq)

and vlift(F ) : T ∗Q → TT ∗Q is defined by

vlift(F )(αq) = vlift(F (αq), αq)

for αq ∈ T ∗
q Q and vlift(u) is defined in a similar manner. For a subbundle W of T ∗Q, define

vlift(W ) =
⋃
q∈Q

{vlift(βq, αq) | αq ∈ TqQ, βq ∈ Wq}.

See also Remark 2 in §2.

Hamiltonian Matching. Suppose we have two controlled Hamiltonian systems (Hi, Bi, Fi, Wi), i = 1, 2.

Definition 3.2. We say that these systems satisfy the Hamiltonian matching conditions if

HM-1 : W1 = W2,
HM-2 : Im[(B�

1dH1 + vlift(F1)) − (B�
2dH2 + vlift(F2))] ⊂ vlift(W1).

In addition we say that two Hamiltonian systems are CH-equivalent if HM-1 and HM-2 hold for the
systems. We use the symbol, H∼ for this equivalence relation.

Proposition 3.3. Suppose that the two CH systems (H1, B1, F1, W1) and (H2, B2, F2, W2) are CH-equivalent.
Then the two closed-loop systems (H1, B1, F1, u1) and (H2, B2, F2, u2) produce the same vector fields if and only
if the controls u1 and u2 satisfy

vlift(u2) = vlift(u1) + (B�
1dH1 + vlift(F1)) − (B�

2dH2 + vlift(F2)) (28)

Proof. Just consider the following equation:

X(H1,B1,F1,u1) = X(H2,B2,F2,u2).

One can also define a partial order, CH-inclusion in the class of CH systems on T ∗Q as follows.

Definition 3.4. A CH system (H1, B1, F1, W1) is said to include another CH system (H2, B2, F2, W2) if the
following holds:

HI-1 : W1 ⊃ W2,
HI-2 : Im[(B�

1dH1 + vlift(F1)) − (B�
2dH2 + vlift(F2))] ⊂ vlift(W1).

If (H1, B1, F1, W1) includes (H2, B2, F2, W2), then for any choice of control u2 : T ∗Q → W2, there exists a
control u1 : T ∗Q → W1 satisfying (??) such that the two closed-loop systems with these controls produce the
same equations of motion.

Simple CH Systems. The definition of a simple Hamiltonian control system is slightly more subtle than its
Lagrangian counterpart.
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Definition 3.5. A CH system (H, B, F, W ) is called simple when the Hamiltonian function has the form
kinetic plus potential energy:

H(q, p) =
1
2
〈p, m−1(q)p〉 + V (q) (29)

where m is a nondegenerate symmetric (0, 2)-tensor and the almost Poisson tensor B is nondegenerate and has
the form:

B(q, p) =
[

O K(q)T

−K(q) J(q, p)

]
(30)

in cotangent coordinates (q, p) on T ∗Q where K, J are n × n matrices with n = dimQ.

One can check that the statement that B has the form (??) is independent of the choice of cotangent bundle
coordinates for T ∗Q. We call almost Poisson tensors of form (??) with K invertible simple.

Decomposition of Simple Almost Poisson Tensors. Now, we define a decomposition of simple almost
Poisson tensors in the following way. Let B be a given simple almost Poisson tensor. The following relation

vlift(ψB) = (B�)∗ ◦ Θ (31)

defines a unique ψB ∈ Γ(Aut(T ∗Q)). Here, Γ(Aut(T ∗Q)) denotes sections of the automorphism bundle; that is,
and element of Γ(Aut(T ∗Q)) assigns to each q ∈ Q, an invertible linear transformation of T ∗

q Q to itself. Also,
Θ denotes the canonical one form on T ∗Q, and (B�)∗ : T ∗T ∗Q → TT ∗Q is the dual of B� : T ∗T ∗Q → TT ∗Q.
Suppose B is given by (??) in coordinates. Then,

B�(q, p) = Kji(q)
∂

∂pj
⊗ ∂

∂qi
− Kij(q)

∂

∂qj
⊗ ∂

∂pi
+ Jij(q, p)

∂

∂pj
⊗ ∂

∂pi
.

Since (B�)∗(q, p) = −B�(q, p), we have

(B�)∗ ◦ Θ(q, p) = −B�(q, p)(pkdqk) = Kij(q)pj
∂

∂pi

which is the vertical lift of Kij(q)pjdqi at (q, p). Hence, (??) defines a unique ψB ∈ Γ(Aut(T ∗Q)) and its local
expression is given by

ψB(q, p) = (q, K(q) p). (32)

with B given by (??) in coordinates.
Given a simple almost Poisson tensor B, we can uniquely decompose B into the two almost Poisson tensors

Br and Bgr as follows:

B = Br + Bgr

where

Br = (ψ−1
B )∗Bcan; Bgr = B − (ψ−1

B )∗Bcan (33)
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and Bcan is the canonical Poisson tensor on T ∗Q. When B is given by (??) in coordinates, we have the following
coordinate expressions:

Br(q, p) =
[

O K(q)T

−K(q) CK(q, p)

]
(34)

Bgr(q, p) =
[
O O
O J(q, p) − CK(q, p)

]
(35)

where

(CK)ij(q, p) = −
〈
K(q)−1p, [(K(q)T )i, (K(q)T )j ]

〉
(36)

=
(

∂Kis(q)
∂qr

Kjr(q) − Kir(q)
∂Kjs(q)

∂qr

)
Ksl(q)pl

where (K(q)T )i is the i-th column of the matrix K(q)T and [ , ] is the Lie bracket. The formula (??) is essentially
the same as the equation (19) in [?]. By (??), (??) and (??), we have

ψB = ψBr . (37)

Notice that the Poisson tensor Br satisfies the Jacobi-identity because it is a pull-back of the canonical Poisson
bracket.

Construction of Gyroscopic Forces. Given a simple Hamiltonian system (H, B = Br+Bgr, F, W ), the simple
(degenerate) almost Poisson tensor Bgr and the Hamiltonian H defines a gyroscopic force Fgr : T ∗Q → T ∗Q
by the following relation:

vlift(Fgr) = (Bgr)�dH. (38)

By (??), in coordinates,

(Bgr)�dH(q, p) =
(

(J − CK)ij(q, p)
∂H(q, p)

∂pj

)
∂

∂pi

which is the vertical lift of
(
(J − CK)ij(q, p)∂H(q,p)

∂pj

)
dqi at (q, p). Hence, (??) defines the unique force Fgr :

T ∗Q → T ∗Q, which is locally written as

Fgr(q, p) =
(

q, (J − CK)ij(q, p)
∂H(q, p)

∂pj

)
.

The reason we call Fgr the gyroscopic force is that it does not change the Hamiltonian H in the following sense

vlift(Fgr)[H] = dH((Bgr)�dH) = Bgr(dH, dH) = 0

by the skew-symmetry of Bgr. The dynamics with gyroscopic forces still gives conservation of energy.

CH-Equivalence for Simple Systems. This decomposition of simple almost Poisson tensors simplifies the
class of simple Hamiltonian systems under the CH-equivalence relation. Suppose that we are given a simple
Hamiltonian system (H, B = Br + Bgr, F, W ). Then (??) implies

B�dH + vlift(F ) = (Br)�dH + vlift(Fgr + F ).



THE EQUIVALENCE OF CONTROLLED LAGRANGIAN AND CONTROLLED HAMILTONIAN SYSTEMS 19

Therefore the simple Hamiltonian system (H, B = Br + Bgr, F, W ) is CH-equivalent to the simple Hamiltonian
system (H, Br, Fgr + F, W ) where Fgr is given by (??). By (??) and (??),

ψ∗
Br

Br = ψ∗
BBr = Bcan. (39)

This proves the following result.

Proposition 3.6. A given simple CH system (H, B = Br + Bgr, F, W ) is CH-equivalent to the CH system
(H, Br, Fgr + F, W ) where B = Br + Bgr is the decomposition of B into the regular part and the gyroscopic part
and Fgr : T ∗Q → T ∗Q is determined by the relation vlift(Fgr) = B�

grdH. In particular, Br satisfies (??).

A consequence is

Corollary 3.7. An arbitrary simple CH system is CH-equivalent to a simple Hamiltonian system (H, B, F, W )
with the Poisson tensor B satisfying the Jacobi identity and ψ∗

BB = Bcan. Equivalently, one can say B = φ∗Bcan

for some φ ∈ Γ(Aut(T ∗Q)). In coordinates, B is always of the form

B(q, p) =
[

O K(q)T

−K(q) CK(q, p)

]

with CK in (??) when φ (or, ψ−1
B ) is in coordinates given by φ(q, p) = (q, K(q)−1 p).

Proof. A direct consequence of Proposition ?? and (??).

We now consider the opposite direction of Proposition ??. Let us consider a simple CH system (H, B, Fgr, W )
with H = 1

2 〈p, m−1p〉 + V (q) and Fgr a gyroscopic force. By definition of the gyroscopic force, Fgr = (Fgr)idqi

satisfies

0 = vlift(Fgr)[H] = (Fgr)im
ijpj

where m−1 = (mij). Hence, (Fgr)i should be of the following form

(Fgr)i(q, p) = plS
lk(q, p)mki(q), Slk = −Skl.

Hence, we have proved the following:

Proposition 3.8. Given a simple CH system (H, B, F + Fgr, W ) with Fgr a gyroscopic force, the following
holds:

1. Fgr has the form:

Fgr(q, p) = plS
lk(q, p)mki(q)dqi, Slk = −Skl

for some functions Sij(q, p), where mij is the mass matrix of H.
2. We have

(H, B, F + Fgr, W ) H∼ (H, B + B̃, F, W ),

where

B̃(q, p) = mik(q)Skl(q, p)mlj(q)
∂

∂pi
⊗ ∂

∂pj
.

Proof. One needs to check that B + B̃ is a simple Poisson tensor, which is readily done.

Proposition ?? and Proposition ?? show that the failure of the Jacobi identity of the Poisson bracket of a
Poisson bracket of a CH system is directly related to gyroscopic forces.
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Pull-back Systems. The concept of pull-back systems will be useful in the next section in showing the equiva-
lence of the CL system method and the CH system method. This notion is a technical device that is needed for
the proofs later and can be omitted on first reading. Consider a CH system (H, B, F, W ) and φ ∈ Γ(Aut(T ∗Q)).
Then, the pull-back system φ∗(H, B, F, W ) is defined to be the associated CH system (φ∗H, φ∗B, φ∗F, φ∗W ),
where

φ∗H = H ◦ φ and (φ∗B)(z)(αz, βz) = B(w)(T ∗
w(φ−1)αz, T

∗
w(φ−1)βz)

for φ(w) = z and αz, βz ∈ T ∗
z (T ∗Q), and φ∗F = φ−1 ◦ F ◦ φ. Here, the pull-back notation in φ∗F should be

regarded as an action of Γ(Aut(T ∗Q)) on the set of fiber-preserving maps on T ∗Q. Notice also that in the
current paper, φ∗W = φ−1(W ) by definition. The notation φ∗W should not be confused with the standard
notation of pull-back bundles. When we regard W as the set {u : T ∗Q → W}, then φ∗W reads φ∗W = {φ∗u =
φ−1 ◦ u ◦ φ | u ∈ W}. Hence, we will write φ∗W as φ−1W ◦ φ to respect both interpretations. We claim

φ∗X(H,B,F,u) = Xφ∗(H,B,F,u).

It is well-known (or a straightforward computation) that (φ∗B)�d(φ∗H) = φ∗(B�dH). We have only to show
φ∗(vlift(F )) = vlift(φ∗F ) where one should be careful that pull-back notation in the left hand side is the usual
pull-back of a vector field by a diffeomorphism φ, and the pull-back notation on the right hand side should be
understood as φ−1 ◦ F ◦ φ as we mentioned before. Indeed, for w ∈ T ∗Q, we have

(φ∗(vlift(F )))(w) = Tφ(w)φ
−1 · vlift(F )(φ(w))

= Tφ(w)φ
−1 d

ds

∣∣∣∣
s=0

(φ(w) + sF ◦ φ(w))

=
d

ds

∣∣∣∣
s=0

φ−1(φ(w) + sF ◦ φ(w))

=
d

ds

∣∣∣∣
s=0

(w + s(φ∗F )(w))

= vlift(φ∗F )(w).

The same relation holds for u. One can readily show the following:

Proposition 3.9. Let φ ∈ Γ(Aut(T ∗Q)). Then the following hold:
1. The pull-back system via φ of a simple CH system is also simple.
2. Two CH systems (H1, B1, F1, W1) and (H2, B2, F2, W2) are CH-equivalent if and only if the corresponding

pull-back systems φ∗(H1, B1, F1, W1) and φ∗(H2, B2, F2, W2) are CH-equivalent.

In particular, it is useful to have a coordinate expression for φ∗B when B satisfies ψ∗
BB = Bcan for ψ ∈

Γ(Aut(T ∗Q)). The almost Poisson tensor B is written in coordinates as in (??). Consider φ ∈ Γ(Aut(T ∗Q))
with the local coordinate expression φ(q, p) = (q, D(q)−1 p). Then the pull-back tensor φ∗B is expressed in
coordinates as

(φ∗B)(q, p) =
[

O (D(q)K(q))T

−D(q)K(q) CDK

]

since

φ∗B = ((ψB)−1 ◦ φ)∗(ψB)∗B = ((ψB)−1 ◦ φ)∗Bcan. (40)

Here ψ−1
B ◦φ(q, p) = (q, (D(q)K(q))−1p) and we use the formula in Corollary ??. The equation (??) implies that

ψφ∗B = φ−1 ◦ ψB and (ψφ∗B)∗B = Bcan. This proves that a simple CH system (H, B, F, W ) with ψ∗
BB = Bcan

is pulled back by φ ∈ Γ(Aut(T ∗Q)) to the simple CH system φ∗(H, B, F, W ) satisfying (ψφ∗B)∗(φ∗B) = Bcan

and ψφ∗B = φ−1 ◦ ψB .
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4. Equivalence of CL Systems and CH Systems: Simple Mechanical Systems

The goal of this section is to show that for simple mechanical systems, the method of controlled Lagrangians
and that of controlled Hamiltonians are equivalent. A more detailed statement is contained in Theorem ?? and
Corollary ??. For this purpose, we will first review the Legendre transformations and then get to the problem
of the equivalence of the two methods of CL systems and CH systems.

Frequently, a Hamiltonian system on T ∗Q induces a Hamiltonian vector field through a canonical symplectic
structure (or, canonical Poisson structure) on T ∗Q before any reduction processes. This is because a Hamiltonian
system on T ∗Q often comes from a Lagrangian system on TQ via a Legendre transformation associated to a given
Lagrangian function. Hence if there is more than one Lagrangian function, there can be multiple transformations
between TQ and T ∗Q. We will carefully deal with this in this section, too.

Legendre Transformations. Recall that in this paper all the Lagrangians L on TQ and all the Hamiltonians
H on T ∗Q are regular, i.e., det

(
∂2L

∂q̇i∂q̇j

)
	= 0 and det

(
∂2H

∂pi∂pj

)
	= 0 for (q, q̇) ∈ TQ and (q, p) ∈ T ∗Q. This

assumption implies that the Legendre transformation FL : TQ → T ∗Q (defined in (??)) and the inverse Legendre
transformation FH : T ∗Q → TQ (defined below) are both locally invertible. In fact, we shall assume that the
systems are hyperregular; that is, these transformations are globally invertible. This is automatic for simple
systems.

It is well-known (see, for example, [?]) that a given Lagrangian system (L, FL, WL) is transformed by the
Legendre transformation FL to the Hamiltonian system (H, Bcan, FH , WH) where

H(α) = 〈α, FL−1(α)〉 − L ◦ FL−1(α) for α ∈ T ∗Q (41)

FH = FL ◦ FL−1 (42)

WH = WL ◦ FL−1 (43)

where WL ◦ FL−1 is understood as WL as a subbundle of T ∗Q and also understood as the set {u ◦ FL−1|u :
TQ → WL} when we regard WL ◦ FL−1 as a set of bundle maps from T ∗Q to W . Namely, the Euler-Lagrange
equation

EL(L) = FL + uL

with uL : TQ → WL is equivalent to CH vector field

X(H,Bcan,F H ,uH) = B�
candH + vlift(FL ◦ FL−1) + vlift(uL ◦ FL−1).

We now suppose that we are given a Hamiltonian function H on T ∗Q. Then it induces the inverse Legendre
transformation FH : T ∗Q → TQ as follows:

〈FH(αq), βq〉 =
d

ds

∣∣∣∣
s=0

H(αq + sβq) (44)

for αq, βq ∈ T ∗
q Q, where the word inverse will be justified later. It is well-known (or easy to check ) that a given

CH system (H, Bcan, FH , WH) is transformed by the inverse Legendre transformation FH to the CL system
(L, FL = FH ◦ FH−1, WL = WH ◦ FH−1) where L(v) = 〈v, FH−1(v)〉 − H ◦ FH−1(v) for v ∈ TQ. The CH
vector field X(H,Bcan,F H ,uH) = B�

candH + vlift(FH) + vlift(uH) is equivalent to the Euler-Lagrange equation
EL(L) = FL + uH ◦ FH−1.

Suppose that a given CL system (L, FL, WL) is transformed by the Legendre transformation FL to the
CH system (H, Bcan, FH , WH). Then (H, Bcan, FH , WH) is transformed back to (L, FL, WL) by the inverse
Legendre transformation FH since FH = FL−1 in this case by Proposition 7.4.2 of [?]. One can also start this
argument from the Hamiltonian system.
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m2m
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1 � T ∗Q
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�

TQ

Figure 2. Diagram of Legendre transformations

CH-Equivalence Proves CL-Equivalence. We first show that the matching conditions of simple CL systems
can be derived from those of simple CH systems; the computation involved in this direction is simpler than
that involved in showing the other way around. However, the computation carried out here will be also used
in the paragraph entitled CL-Equivalence Proves CH-Equivalence. A special case of CH-Equivalence
Proves CL-Equivalence was dealt with in [?] and [?] but without the external force F . We also improve
the foundational setting for the controlled Hamiltonian method. This improved setting will pay off when we
consider systems with symmetry and reduction.

Suppose we have two simple CL systems (L1, F
L
1 , WL

1 ) and (L2, F
L
2 , WL

2 ) with L1(q, q̇) = 1
2m1(q̇, q̇) − V1(q)

and L2(q, q̇) = 1
2m2(q̇, q̇) − V2(q). They define two Legendre transformations FL1, FL2 : TQ → T ∗Q as follows

(q, p) = FL1(q, q̇) = (q, m1(q)q̇), (45)

(q, p̃) = FL2(q, q̇) = (q, m2(q)q̇). (46)

The CL system (L1, F
L
1 , WL

1 ) is transformed via FL1 to the CH system (H1, B1 = Bcan, FH
1 = FL

1 ◦FL−1, WH
1 =

WL
1 ◦ FL−1), and the second CL system (L2, F

L
2 , WL

2 ) is transformed via FL2, to (H̃2, B̃2 = Bcan, F̃H
2 =

FL
2 ◦ FL−1

2 , W̃H
2 = WL

2 ◦ FL−1
2 ), where

H1(q, p) =
1
2
〈p, m1(q)−1p〉 + V1(q),

H̃2(q, p̃) =
1
2
〈p̃, m2(q)−1p̃〉 + V2(q).

We now would like to show that checking the CL-equivalence of (L1, F
L
1 , WL

1 ) and (L2, F
L
2 , WL

2 ) is the same
as checking the CH-equivalence of their transformed CH systems. Thereby, we show that CH-equivalence proves
CL-equivalence. Since the two Legendre transformations in (??) and (??) are not the same in general, we need
to pull-back the system (H̃2, B̃2, F̃

H
2 , W̃H

2 ) via FL2 ◦ FL−1
1 = m2 ◦m−1

1 ∈ Γ(Aut(T ∗Q)), as in the commutative
diagram in Figure ??.

Let (H2, B2, F
H
2 , WH

2 ) = (FL2 ◦ FL−1
1 )∗(H̃2, B̃2, F̃

H
2 , W̃H

2 ) where one computes

H2(q, p) =
1
2
〈p, m1(q)−1m2(q)m1(q)−1p〉 + V2(q)

B2(q, p) =
[

O (m1(q)m2(q)−1)T

−m1(q)m2(q)−1 Cm1m−1
2

(q, p)

]
WH

2 = (FL2 ◦ FL−1
1 )∗(WL

2 ◦ FL−1
2 )

= (FL2 ◦ FL−1
1 )−1(WL

2 ◦ FL−1
2 ) ◦ FL2 ◦ FL−1

1

= (FL1 ◦ FL−1
2 )(WL

2 ◦ FL−1
1 ).
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We will now show the following

(H1, B1,F
H
1 , WH

1 ) H∼ (H2, B2, F
H
2 , WH

2 ) ⇐⇒ (L1, F
L
1 , WL

1 ) L∼ (L2, F
L
2 , WL

2 ) (47)

First, HM-1 reads

WH
1 = WH

2 ⇐⇒ WL
1 ◦ FL−1

1 = m1m
−1
2 (WL

2 ◦ FL−1
1 )

⇐⇒ WL
1 = m1m

−1
2 WL

2

whose right hand side is exactly ELM-1. Hence HM-1 for (H1, B1, F
H
1 , WH

1 ) and (H2, B2, F
H
2 , WH

2 ) is equiv-
alent to ELM-1 for (L1, F

L
1 , WL

1 ) and (L2, F
L
2 , WL

2 ). Second, since uH
1 , uH

2 ∈ WH
1 = WH

2 , HM-2 can be
equivalently written in coordinates as([

q̇
ṗ

]
H1

−
[
q̇
ṗ

]
H2

)
∈ vlift(WH

1 (q)) � O ⊕ WH
1 (q) (48)

where [
q̇
ṗ

]
Hi

= X(Hi,Bi,F H
i ,uH

i ) = B�
idHi + vlift(FH

i ) + vlift(uH
i )

for each i = 1, 2 where the subscript Hi denotes the CH system (Hi, Bi, F
H
i , WH

i ) for simplicity.
Since WH

1 = WH
2 = WL

1 ◦ FL−1
1 = m1m

−1
2 WL

2 ◦ FL−1
2 under HM-1, we can write the controls uH

i ∈ WH
1 as

uH
1 = uL

1 ◦ FL−1
1

uH
2 = m1m

−1
2 uL

2 ◦ FL−1
2

for uL
i ∈ WL

i which can be considered via the Legendre transformations FL1 and FL2 as the controls for
(Li, F

L
i , WL

i ) for i = 1, 2, respectively.
Recall from (??) and (??) that p = m1(q)m2(q)−1p̃. Using this, we find that

q̇H1 − q̇H2 = m1(q)−1p − m2(q)−1p̃ = m1(q)−1p − m2(q)−1m2(q)m1(q)−1p = 0.

The equation for ṗH1 can be written in terms of (q, q̇) as follows:

ṗH1 =
d

dt

∂L1

∂q̇
=

∂L1

∂q
+ FL

1 + uL
1 .

The equation ṗH2 can be written in terms of (q, q̇) as follows:

ṗH2 =
d

dt
(m1m

−1
2 p̃)

= (d(m1m
−1
2 )[q̇])p̃ + m1m

−1
2

d

dt
p̃H̃2

= (d(m1m
−1
2 )[q̇])m2q̇ + m1m

−1
2

d

dt

∂L2

∂q̇

= (dm1[q̇])q̇ − m1m
−1
2 (dm2[q̇])q̇ + m1m

−1
2

(
∂L2

∂q
+ FL

2 + uL
2

)

= (dm1[q̇])q̇ − m1m
−1
2

(
(dm2[q̇])q̇ −

∂L2

∂q
− FL

2 − uL
2

)
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Hence,

ṗH2 − ṗH1 =
(

(dm1[q̇])q̇ −
∂L1

∂q
− FL

1 − uL
1

)
− m1m

−1
2

(
(dm2[q̇])q̇ −

∂L2

∂q
− FL

2 − uL
2

)

=
(

m1q̈ + (dm1[q̇])q̇ −
∂L1

∂q
− FL

1 − uL
1

)
− m1m

−1
2

(
m2q̈ + (dm2[q̇])q̇ −

∂L2

∂q
− FL

2 − uL
2

)
= (EL(L1) − FL

1 ) − m1m
−1
2 (EL(L2) − FL

2 ) − uL
1 + m1m

−1
2 uL

2 . (49)

Therefore, (??) holds if and only if

Im[(EL(L1) − FL
1 ) − m1m

−1
2 (EL(L2) − FL

2 )] ⊂ WL
2

since uL
1 , m1m

−1
2 uL

2 ∈ WL
1 = m1m

−1
2 WL

2 . Therefore, we have shown (??). Finally, one can show from (??) and
(??) that condition (??) on the inputs uL

i ’s is equivalent to condition (??) on the inputs uH
i ’s.

We make a remark on an alternative way of comparison of HM-2 and ELM-2. One can show by a brute-force
coordinate computation that

[(B�
2dH2+vlift(FH

2 )) − (B�
1dH1 + vlift(FH

1 ))]

� O ⊕
[
(EL(L1) − FL

1 ) − m1m
−1
2 (EL(L2) − FL

2 )
]
.

This computation is much more complicated and it does not directly lead to the equivalence of (??) and (??).
This is why we did not choose this brute-force computational method in this paper.

CL-Equivalence Proves CH-Equivalence. We now show that the Hamiltonian matching conditions of
simple CH systems can be derived from those of simple CL systems. Consider two simple CH systems
(H1, B1, F

H
1 , WH

1 ) and (H2, B2, F
H
2 , WH

2 ) with Hi(q, p) = 1
2 〈p, m−1

i (q)p〉+Vi(q) for i = 1, 2. By Proposition ??
and Proposition ??, without loss of generality, we may assume that

B1 = Bcan; ψ∗
B2

B2 = Bcan.

In coordinates, we write B2 and ψB2 as follows:

B2(q, p) =
[

O K2(q)T

−K2(q) CK2(q, p)

]

and

(q, p) = ψB2(q, p̃) = (q, K2(q)p̃).

Consider the pull-back system (H̃2, B̃2 = Bcan, F̃H
2 , W̃H

2 ) := (ψB2)
∗(H2, B2, F

H
2 , WH

2 ) with

H2(q, p̃) =
1
2
〈p̃, m̃−1

2 (q)p̃〉 + V2(q); m̃2 := ψ−1
B2

m2(ψ∗
B2

)−1 (50)

where ψ∗
B2

∈ Γ(Aut(TQ)) is the dual of ψB2 ∈ Γ(Aut(T ∗Q)).
The system (H1, B1, F

H
1 , WH

1 ) is transformed via the inverse Legendre transformation (q, q̇) = FH1(q, p) =
(q, m1(q)−1p) to the CL system (L1, F

L
1 , WL

1 ), where

L1(q, q̇) =
1
2
〈q̇, m1q̇〉 − V1(q), FL

1 = FH
1 ◦ FH−1

1 and WL
1 = WH

1 ◦ FH−1
1 .
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T ∗Q
ψ−1

B2 � T ∗Q

�
�

�
�

�
m−1

1 � ��
�

�
�

�

m̃−1
2

TQ

Figure 3. Diagram of inverse Legendre transformations

The system (H̃2, B̃2, F̃
H
2 , W̃H

2 ) is transformed via the inverse Legendre transformation (q, q̇) = FH̃2(q, p̃) =
(q, m̃−1

2 (q)p̃) to the CL system (L2, F
L
2 , WL

2 ), where

L2(q, q̇) =
1
2
〈q̇, m̃2q̇〉 − V2(q), FL

2 = F̃H
2 ◦ FH̃−1

2 and WL
2 = W̃H

2 ◦ FH̃−1
2 .

The diagram in Figure ?? commutes if and only if ψB2 = m1m̃
−1
2 , which by the definition of m̃2 in (??) is

equivalent to

ψB2 = m2m
−1
1 (51)

i.e., in a matrix form K2(q) = m2(q)m1(q)−1. We will show that

(H1, B1, F
H
1 , WH

1 ) H∼ (H2, B2, F
H
2 , WH

2 ) ⇐⇒ [(L1, F
L
1 , WL

1 ) L∼ (L2, F
L
2 , WL

2 )] + (??). (52)

Under (??), one computes

m1m̃
−1
2 WL

2 = ψB(ψ∗
B2

WH
2 ) ◦ FL2

= ψB(ψ−1
B2

WH
2 ◦ ψB2) ◦ FL2

= WH
2 ◦ m1 = WH

2 ◦ FL1.

First, under (??), ELM-1 reads

WL
1 = m1m̃

−1
2 WL

2 ⇐⇒ WH
1 = WH

2

which is HM-1 for (H1, B1, F1, W1) and (H2, B2, F2, W2). Second, since uH
1 , uH

2 ∈ WH
1 = WH

2 , HM-2 can be
equivalently written in coordinates as (??). One can compute

q̇H1 − q̇H2 = m1(q)−1p − K2(q)T m2(q)−1p.

Hence, the first half of HM-2 reads

q̇H1 − q̇H2 = 0 ⇐⇒ K2(q) = m2(q)m1(q)−1

which is the commutativity condition (??). The remaining half of HM-2 reads ṗH1 − ṗH2 ∈ WH
2 . By a similar

computation carried out in the paragraph entitled CH-equivalence Proves CL-Equivalence, one can show
that

ṗH1 − ṗH2 ∈ WH
2 ⇐⇒ ELM-2
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under (??). One can also readily show that condition (??) on the inputs uL
i ’s is equivalent to the condition (??)

on the inputs uH
i ’s. Therefore we have established (??).

The Main Theorem. We summarize the preceding discussion in the following theorem.2

Theorem 4.1. The method of controlled Lagrangians is equivalent to that of controlled Hamiltonians for simple
mechanical systems. Namely, the following holds:

1: Let (Li, F
L
i , WL

i ), i = 1, 2, be two simple CL systems, and let (Hi, Bcan, FH
i , WH

i ) be the associated simple
CH systems Legendre-transformed via FLi from the CL system (Li, F

L
i , WL

i ) for i = 1, 2, respectively.
Then,

(L1, F
L
1 , WL

1 ) L∼ (L2, F
L
2 , WL

2 ) ⇐⇒ (H1, Bcan, FH
1 , WH

1 ) H∼ (FL2 ◦ FL−1
1 )∗(H2, Bcan, FH

2 , WH
2 ),

where Bcan is the canonical Poisson tensor on T ∗Q.
2: Let (Hi, Bi, F

H
i , WH

i ), i = 1, 2, be two simple CH systems. Decompose Bi into its regular part Br,i and
its gyroscopic part Bgr,i so that

(Hi, Bi, F
H
i , WH

i ) H∼ (Hi, Br,i, F
H
i + FH

gr,i, W
H
i )

where the gyroscopic force FH
gr,i is defined by vlift(Fgr,i) = B�

gr,idHi (see Proposition ??). Then there exist
ψ1, ψ2 ∈ Γ(Aut(T ∗Q)) and two simple CH systems (Ĥi, Bcan, F̂H

i , ŴH
i ), i = 1, 2 such that

ψ∗
i (Hi, Br,i, F

H
i + FH

gr,i, W
H
i ) = (Ĥi, Bcan, F̂H

i , ŴH
i ) i = 1, 2,

and finally

(H1, B1, F
H
1 , WH

1 ) H∼ (H2, B2, F
H
2 , WH

2 ) ⇐⇒ (L1, F
L
1 , WL

1 ) L∼ (L2, F
L
2 , WL

2 )

where (Li, F
L
i , WL

i ) is the simple CL system inverse-Legendre-transformed via FĤi from the CH system
(Ĥi, Bcan, F̂H

i , ŴH
i ) for i = 1, 2, respectively.

Here is another way to state this result which is shorter and perhaps easier to digest, but gives a little less
information.

Corollary 4.2. The method of controlled Lagrangians is equivalent to that of controlled Hamiltonians for simple
mechanical systems in the following sense. For any two simple CL systems (Li, F

L
i , WL

i ), i = 1, 2, there exist
two associated simple CH systems (Hi, Bi, F

H
i , WH

i ), i = 1, 2,such that

(L1, F
L
1 , WL

1 ) L∼ (L2, F
L
2 , WL

2 ) ⇐⇒ (H1, B1, F
H
1 , WH

1 ) H∼ (H2, B2, F
H
2 , WH

2 ),

and vice-versa.

2The notation and terminology used in this theorem can be found in the body of the paper as follows. Definition ?? and

Definition ?? give the definitions of CL-equivalence,
L∼, and the CH-equivalence relation,

H∼. Definition ?? and Definition ?? give
the definitions of simple CL systems and simple CH systems. The beginning of Section ?? provides the definition of the Legendre
transformation and the construction of ψ1 and ψ2. Proposition ?? and the remarks before it discuss the definition of pull-back
systems.
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5. The Method of Collocated/Non-Collocated Partial Feedback
Linearization

Even though the controlled Lagrangian method was originally developed for stabilization of equilibria using
energy shaping and dissipation, here we show that one can put the collocated/non-collocated partial feedback lin-
earization property of underactuated mechanical systems into the controlled Lagrangian framework (see Spong’s
work [?] and references therein for more about the collocated/non-collocated partial feedback linearization).

For simplicity, take Q = R
n1 × R

n2 to be the configuration space and use q = (q1, q2) ∈ R
n1 × R

n2 as
coordinates. Let (L, F = 0, W ) be a given CL system (with no external forces) and with W (q) = 0 × R

n2 for
all q ∈ Q and

L(q, q̇) =
1
2

[
q̇1

q̇2

]T [
m11(q) m12(q)
m21(q) m22(q)

] [
q̇1

q̇2

]
− V (q).

Then the Euler-Lagrange equation of this system can be written in the following form (as in [?]):

m11q̈1 + m12q̈2 + h1(q, q̇) + φ1(q) = 0,

m21q̈1 + m22q̈2 + h2(q, q̇) + φ2(q) = τ

with control τ : TQ → W where hi includes all q̇-dependent terms and φi contains the terms from the potential
energy.

Collocated Linearization. Define the new CL system (Lc, Fc, Wc) as follows:

Lc(q, q̇) =
1
2
q̇T
1 m11q̇1 +

1
2
q̇T
2 q̇2

Fc(q, q̇) =

[
−h1 − φ1 + (dm11[q̇])q̇1 − ∂Lc

∂q1

−∂Lc

∂q2

]

Wc = 〈dqi
2 − (m12)αidqα

1 | i = 1, . . . , n2〉

= the subbundle spanned by the columns of
[
−m12(q)

In2

]

where In2 is the n2 × n2 identity matrix. If a part of Fc is a potential force, i.e., the differential of a function,
one can combine it into the Lagrangian Lc as a potential function. A control to the system (Lc, Fc, Wc) can be
written via a map uc : TQ → R

n2 as follows:[
−m12(q)

In2

]
uc(q, q̇) ∈ Wc(q). (53)

One can check that the given system (L, 0, W ) is CL-equivalent to the system (Lc, Fc, Wc) and the Euler-
Lagrange equation of (Lc, Fc, Wc) is given by

m11q̈1 + h1 + φ1 = −m12uc (54)
q̈2 = uc (55)

with uc : TQ → R
n2 . If we write the control for (Lc, Fc, Wc) in the form (??), then equation (??) is written as

τ = h2 + φ2 − m21m
−1
11 (h1 + φ1) + (m22 − m21m

−1
11 m12)uc

so that the closed-loop system (L, 0, τ) and (Lc, Fc, uc) produce the same equations of motion. This coincides
with the notion of collocated partial feedback linearization in [?].
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As already indicated at the end of Section 2, if the control bundle is integrable, it allows us to find a set of
local coordinates for the configuration space Q which is convenient for doing stability analysis (as was the case
in [3]). The integrability condition of the control bundle Wc is given by (the curvature condition)

∂Ai
α

∂qj
2

Aj
β −

∂Ai
β

∂qj
2

Aj
α +

∂Ai
α

∂qβ
1

−
∂Ai

β

∂qα
1

= 0

for 1 ≤ α, β ≤ n1 and 1 ≤ i, j ≤ n2 where Ai
α is the (i, α)-th element of the matrix m21 = mT

12 and (q1, q2) =
(qα

1 , qi
2); this is seen from the fact that Wc is spanned by the set {dqi

2 − Ai
αdqα

1 | 1 ≤ α ≤ n1, 1 ≤ i ≤ n2}.

Non-Collocated Linearization. For non-collocated linearization, [?] makes the assumption that the subma-
trix m12(q) is onto, i.e., rank (m12(q)) = l for all q ∈ Q. Then, there is a pseudo-inverse m†

12 := mT
12(m12m

T
12)

−1

such that m12m
†
12 = In1 with In1 the n1 × n1 identity matrix. For this assumption to hold, it is necessary that

n2 ≥ n1, i.e., the number of actuation degrees of freedom should be at least as big as the number of unactuated
degrees of freedom. The same property was used in [?].

Define the system (Ln, Fn, Wn) as follows:

Ln(q, q̇) =
1
2
q̇T
1 q̇1 +

1
2
q̇T
2 q̇2,

Fn(q, q̇) =
[

0
−m12(q)†(h1(q, q̇) + φ1(q))

]
Wn = 〈dqi

1 − (m†
12m11)αidqα

2 | i = 1, . . . , n1〉

= subbundle spanned by the columns of
[

In1

−m12(q)†m11(q)

]

where, as above, one can move any potential force parts of Fn into the Lagrangian Ln as a potential function.
A control for the system (Ln, Fn, Wn) can be written via a map un : TQ → R

n1 as follows:

[
In1

−m12(q)†m11(q)

]
un(q, q̇) ∈ Wn(q). (56)

Notice that dim Wn(q) ≤ dimW (q). Hence, it is appropriate to use the concept of CL-inclusion rather than
CL-equivalence. Indeed, one can easily check that the given system (L, 0, W ) includes the system (Ln, Fn, Wn)
and the Euler-Lagrange equations of (Ln, Fn, Wn) are written as

q̈1 = un

q̈2 = −m†
12m11(un + h1 + φ1)

with un : TQ → R
n2 . If we write the control for (Ln, Fn, Wn) in the form (??), then condition (??) is written

as

τ = h2 + φ2 − m22m
†
12(h1 + φ1) + (m21 − m22m

†
12m11)un

such that the two closed-loop systems (L, 0, τ) and (Ln, Fn, un) produce the same equations of motion. This
coincides with the non-collocated partial feedback linearization in [?].

Future Directions.
1. It reasonable to expect that one can apply the same techniques to nonholonomic systems, following the

work of [?] and [?,?].
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2. It would be interesting to consider the case of degenerate almost Poisson structures. This would take one
into the realm of Dirac structures; see [?,?,?,?,?].

3. Reduction theory for CL and CH systems with symmetry will be the subject of a companion paper.

Acknowledgements. We are grateful to the authors of [?] and of [?] for providing us advance copies of their
papers and for helpful correspondence.
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