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Abstract

This paper analyzes stabilization of a nonholonomic system consisting
of a unicycle with rider. It is shown that one can achieve stability of
slow steady vertical motions by imposing a feedback control force on
the rider’s limb.
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1 Introduction

Problem Setting. In this paper we study the stabilization problem for a
simplified model of a rider on a unicycle using techniques from the theory
of stability of nonholonomic dynamical systems that are given in Zenkov,
Bloch, and Marsden [1998]. In the current paper, we make use of the
Lyapunov-Malkin theorem, which is recalled below. We incorporate in our
analysis the special structure of nonholonomic mechanical systems with sym-
metry, namely the geometry of dividing the system variables into internal
(or shape) variables and momentum variables corresponding to symmetry di-
rections. However, unlike holonomic systems, symmetries need not lead via
Noether’s theorem to conservation laws; rather, the momenta correspond-
ing to symmetries obey dynamic momentum equations (see Bloch, Krish-
naprasad, Marsden, and Murray [1996]). In some cases, Zenkov, Bloch, and
Marsden [1998] were able to show that stability of motion could nonethe-
less be analyzed using a generalization of energy-momentum methods (see
e.g. Marsden [1992]). In other cases a combination of spectral and nonlin-
ear analysis was used with the assistance of the Lyapunov-Malkin theorem,
which may be viewed as a variant of stability analysis based on the center
manifold theory.

Unicycle Model and Methodology. We model the rider on a unicycle
in this paper by a pendulum suspended on a rod attached to the center
of a wheel, the rod and the pendulum representing the body and the limb
of the rider. This leads to complicated but tractable equations. We then
apply a linear feedback control to the pendulum representing the limb of
the rider, and conclude nonlinear stability of the reduced system using the
Lyapunov-Malkin theorem. The Lyapunov-Malkin theorem, which enables
one to conclude overall nonlinear stability using partial spectral information
about the system, has been particularly useful for the analysis of nonholo-
nomic systems (see Karapetyan [1981], Markeev [1992], and Zenkov, Bloch,
and Marsden [1998]). In particular, here we apply this technique to achieve
stabilization of slow vertical steady state motions of a homogeneous disk on
a horizontal plane with a hanging pendulum attached. Fast motions may
also be stabilized and are in fact easier to handle because of the stabilizing
effect of the wheel velocity. A brief announcement of some of the ideas dis-
cussed here may be found in Zenkov, Bloch, and Marsden [1999], where we
stated the results proved in the current paper. In addition, here we present
a simulation of our results and discuss the qualitative behavior of the closed
loop system. While the analysis in the present work is somewhat involved,



we intend to extend it both to more complex nonholonomic/robotic sys-
tems and to more complicated nonlinear control techniques, for example the
matching control technique discussed in Bloch, Leonard, and Marsden [1997,
1998]. In particular, the latter technique allows one to achieve a large basin
of attraction while the results here achieve, at least analytically, only local
stabilization.

2 Modeling the Unicycle with Rider

We now present the dynamical model of a homogeneous disk on a horizontal
plane with a mass and pendulum attached. The pendulum is free to move
in the plane orthogonal to the disk, while the attached mass stays in the
disk’s plane. We view this as a simplified model of a rider on a unicycle in
which only the sideways motion of the rider (such as the rider’s limbs) is
modeled, without pedaling control.

Configuration Space. The configuration space for the unicycle with rider
as described above is @ = S x S! x S! x SE(2), which we parameterize
with coordinates (0, 5,1, ¢, x,y). As in Figure 1, 0 is the tilt of the unicycle
itself, s is that of the limb, and v is the angular position of the wheel of the
unicycle. The variables (¢, x,y), regarded as a point in SE(2), represent the
angular orientation and position of the point of contact of the wheel with
the ground.

Figure 1: The configuration variables for the unicycle with rider.

The Symmetry Group. This mechanical system is SO(2) x SE(2)-
invariant; the group SO(2) represents the symmetry of the wheel, that is,



the symmetry in the ¢ variable, while the group SFE(2) represents the Eu-
clidean symmetry of the overall system. The action by the group element
(av, B,a,b) on the configuration space is given by

(07%7¢7¢7x7y) —
(0,5, +a,p+ B,xcosf—ysin B+ a,xsinf+ycos B +b).

System Parameters. We will use the following notations:

M = the mass of the disk,
R = the radius of the disk,
A, B = the principal moments of inertia of the disk,

m = the rider mass,
r = the rod length,
[ = the distance from the center of the disk to the mass m,
1 = the limb mass,

p = the limb length.

Lagrangian. The Lagrangian of this system has the standard form of
kinetic minus potential energy:

m
L = Kgisk + 5117271 + gvi -U,

where,
Kaisk = % [A(6% + ¢? cos? ) + B(hsin 6 + 1)?]

+ % [R292 + 2R(y cos ¢ — & sin ¢)9cos€
+ (& — Rosin 6 cos ¢)? + (§ — R¢sin 0 sin ¢)2],

v2, = (R4 1)%6% + 2(R + 1)(y cos ¢ — i sin ¢)f cos 0
+[¢— (R+ l)(;.Ssin@coqu)]2 + [y - (R+l)¢'>sin051nqb]2,

vi = (R+7)%0% 4 p?(5r — 0)® + 2p(R + 1) (5 — 0)6 cos »
+2[(R+ )0 cos® + p(sz— ) cos( — 0)] [y cos ¢ — @ sin @]
+ [& - ¢ cos ¢((R+r)sind + psin(s — 9))]2
+ [y - ¢ sin ¢((R+7)sinf + psin(s — 0))]2,



and

U= MgRcost+mg(R+1)cos + pug [(R+r)cos — pcos(s — 0)].

Constraints. The constraints are given by the standard conditions of
rolling without slipping:

i = —1)R cos ¢, § = —Rsin ¢.

Lagrange-d’Alembert Equations. The equations of motion with a con-
trol torque w on the pendulum are those derived in the standard way from
the Lagrange-d’Alembert principle (see, for example, Bloch, Krishnaprasad,
Marsden, and Murray [1996] and references therein):

4oL, _ oL,

dt o 00"’

d 9L, _ OLc N

it 0% 0w "

d 0L, B .. ) .o
7 99 = Acos 0y + Bcos(s — 0) (52 — 0)1),
d L, . S
7 5% —Acos00¢p — Bceos(s —0)(5x—0)p,

where Le(0, 5,0, 52,1, ¢) = L(0, 3, ¢, 0, 52,1), ¢, —) R cos ¢, —p Rsin ¢) is the
reduced Lagrangian, and

A=MR*+mR(R+1)+pR(R+7), B=puRp.

These equations are supplemented, of course, with the constraints so that
one has a well posed initial value problem.

Nonholonomic Momenta and Routhian. Following Bloch, Krishna-
prasad, Marsden, and Murray [1996] and Zenkov, Bloch, and Marsden [1998],
we introduce the nonholonomic momentum and the constrained Routhian
by
oL . . OL . .
p1= 8(2)6 = I1¢ + Lo, p2 = 81; = I210 + I227),

and

1 . . ) 1
R = 5(91192 + 291205 + 922%2) — §Iabpapb —U(8, »),



respectively. Here I® are the components of the inverse inertia tensor,
and g;; represents the internal kinetic energy metric. In the setting here
the quantities g;; and the inertia tensor components I, are given by the
formulae

g1 = MR* +m(R+1)?+ u [(R+ )2 — 2(R + 1) pcos s + ,02] + A,
g12 = p[(R+7)pcos s — p?],
922 = pp’,
Iy = MR?sin?0 + m(R +1)*sin” 0
+ u[(R+7)sinf + psin(s — 0)]* + Acos? 0 + Bsin? 0,
Lz = MR*sinf + mR(R +1)sin
+ pR[(R+ r)sinf + psin(s — 0)] + Bsin 6,
Iyo = MR?> + mR? + uR* + B.

Reduced Equations. Using the symmetry of the system, the variables
(z,y,¢,1) can be eliminated by taking the quotient by the action of the
group SO(2) x SE(2). Carrying this out, the resulting reduced equations of
motion may be written in terms of the Routhian as

d OR

o5 = VR, (2.1)

d IR

e = V.R+u, (2:2)
% - [[21]91 + 122p2] [.Acos@é + Bcos(3 — 0) (5 — 9)], (2.3)
% = —[I"'p1 + I'po] [Acos 00 + Beos(s — 0) (52 — 0)]. (2.4)

The first two of these equations describe the tilting motion of the disk-
pendulum system, while the second two model the (coupled) wheel dynam-
ics. The covariant derivatives in equations (2.1) and (2.2) are defined by

0
Vo = 20 + [Acos@ — Bcos(s — 0)}

0 0

I21 I22 v Ill ]—12 v
X [( p1+ I%py) o0 (IMpr + 1"py) opa |

V.= 24 Boos(e— ) | (1P + o) 2 — (Vg + T'2pg) 2
T O op 2 Opa |-



The full dynamics is governed by equations (2.1)—(2.4) coupled with the
reconstruction equation for the group variables (x,y, ¢, ). This reconstruc-
tion equation is not needed here as it does not affect the evolution of the
shape variables (6, ) describing the internal configuration of the system,
and the momentum variables (p1,p2). The reconstruction equation is thus
not used in our stabilization analysis. This is because our stabilization is
done modulo the group action, which is natural for the problem. See Zenkov,
Bloch, and Marsden [1998] for additional information about the formalism
we are using here.

3 Feedback Stabilization

In this section we provide a feedback law for the control torque w that
stabilizes slow vertical steady state motions of the unicycle with rider moving
along a straight line. To put this in context, it is useful to recall that fast
steady state motions of the unicycle without rider are already stable, so do
not require stabilization (Zenkov, Bloch, and Marsden [1998]). It is this fact
that makes fast motions of the unicycle with rider easier to stabilize than
slow motions.

We introduce a single control into the pendulum. One can think of
this as a controlled limb of the rider. Of course one can introduce a forward
motion or steering control for the unicycle, but this is not key to the stability
analysis here. Such controls for the wheel are discussed for example in Bloch,
Reyhanoglu, and McClamroch [1992], Bloch, Krishnaprasad, Murray, and
Marsden [1996] and references therein.

Lyapunov-Malkin Theorem. Our stability analysis is based on the fol-
lowing theorem (see Lyapunov [1992] and Malkin [1938]):

Theorem 3.1 (Lyapunov-Malkin) Consider the system of differential
equations

7= Ar + R(r, s), $=S8(r,s), (3.1)

where r € R™, s € R", A is an m x m-matriz, and R(r,s), S(r,s) represent
higher order nonlinear terms. If all eigenvalues of the matriz A have negative
real parts, and R(r,s), S(r,s) vanish when r = 0, then the solution r = 0,
s = 0 of this system is stable with respect to (r,s), and asymptotically stable
with respect to r. If a solution (r(t),s(t)) is close enough to the solution



r =0, s =0, then there is a constant n-vector ¢ (depending on the initial
conditions) such that
lim r(t) =0, lim s(t) = c. (3.2)
t—o00 t—o00
This theorem was used by a number of authors in analyzing stability of
nonholonomic systems. See Karapetyan [1981], Markeev [1992], Zenkov,
Bloch, and Marsden [1998] and references therein. In particular, we stress
that the conditions R(0,s) = 0 and S(0,s) = 0 are fulfilled for the systems

considered in Bloch, Krishnaprasad, Marsden, and Murray [1996] and in
Zenkov, Bloch, and Marsden [1998].

Preliminaries on Transforming the Equations into Lyapunov-Mal-
kin Form. We next make some transformations of variables and substitu-
tions that transform equations (2.1)—(2.4) into equations of the form (3.1).
Consider an upright steady state motion of the unicycle along a straight line
represented by the relative equilibrium

6 =0, x=0, p1=0  py=7p). (3.3)
Define new variables z = (21, z2) by a linear substitution
p1 =21+ I3[ A0 + B(> — 0)],  po=p3 + 2.
In the new coordinates, equilibrium (3.3) becomes
6 =0, x =0, z1 =0, 20 = 0.

Moreover, this substitution eliminates linear terms in equations (2.3) and
(2.4). Here and below all tensors and derivatives are evaluated at the relative
equilibrium (3.3). Equations (2.1)—(2.4) become
010+ g% 5e = VgVgR O + V,.VoR 5 — dpI*?p) 21 + {nonlinear terms},
G%0 + g% = VgV, RO + V,.V,,R 3 — 8, 1'% 21 + u + {nonlinear terms},
21 = Z1(19, >, 19, }'t, 21, 22),
22 — Zg(ﬁ, >, ?9, J'f, 21, 22),
where Z; and Z5 are expressions derived from the momentum equations for
p1 and po that have been rewritten in terms of z; and zo. We do not require

the explicit expressions for Z; and Zo, but we do need to note that Z; and
Z9 vanish when 6 = 2 = 0.



Feedback Law. Now we introduce the following form of the linear feed-
back control .
U = kle + k2%+ k3(9 + k4f4.

The shape equations (the first two of equations (2.1)-(2.4)), after being
solved for 6 and 3z, take the form

ij:y7 y:Bkv+Cky+DkZ+W(v7yaz)a

where v = (0, ), y = (6, 5), B, Cy and Dy, are k-dependent matrices, and
W (v, y, z) represents the nonlinear terms. Next, we show the existence of a
linear control law that forces all eigenvalues of the matrix

( E?k CIk> (3.4)

to belong to the left half plane. Notice that the coefficients of the char-
acteristic polynomial A* + a;\® + a2)\? + az\ + a4 of the matrix (3.4) are
affine functions in the gain parameters k = (k1, k2, k3, k4). That is, there is
a matrix L and a vector M such that a = (a1, as,as, aq) is given by

a=Lk+ M. (3.5)
Direct computation shows that
det L = — (C(p)? + D) (3.6)
where
o B[R+r - p|[MR*+ mR(R+1)+ uR(R+r — p) + B]
App3[MR? + m(R+1)% + A]*[(M +m + p)R? + B]*
Do gl(l+p—r)(MR+mR+ml) — MRl + A]
pp? [MR? 4+ m(R+1)? + A}g

from which one can see that det L # 0 generically. Using formulae (3.5) and
(3.6), one finds that the Routh-Hurwitz conditions

9

a] > 0, ajas —as > 0, (a1a2 — a3)a3 — (a1)2a4 > 0, ag >0 (3.7)

for the spectrum of matrix (3.4) to be in the left half plane can be satisfied
by an appropriate choice of the gain parameters.

Final Transformation into Lyapunov-Malkin Form. When (3.7) is
satisfied, det By # 0, and so, by the implicit function theorem, there is a
unique solution v = x(z) of the equation

Byv + Dyz + W (v,0, z) = 0.



Introduce new variables x by
v=u1u+ x(z). (3.8)
Written in the new variables (z,y, ), equations (2.1)—(2.4) become

i"‘ = y+X(:I/‘7y’ Z)’
y = Bkl‘ + Oky+Y(m)y7 2)7
2=27Z(x,y,2),

where

0
X(xvyvz) = 78_§Z(x7y72)7

Y(z,y,2) = Bpx(2) + Drz + W(x + x(2),y, 2),
Z(x,y,2) = Z(x+ x(2),y, 2).

Observe that the nonlinear terms X (x,v, z), Y(x,y, ), and Z(z,y, z) van-
ish when x = 0 and y = 0, because Z(z,0,z) = 0 and Byx(z) + Drz +
W(x(z),0,z) = 0. The equations of motion are thus transformed into the
Lyapunov-Malkin form (3.1) with » = (z,y) and s = z.

The Main Result. Applying the Lyapunov-Malkin theorem to the setup
just described, we find that the equilibrium (3.3) is stable. Summarizing,
we have:

Theorem 3.2 The conditions (3.7) define an open non-empty region S in
the space of gain parameters k = (ki, ko, ks, kq). This is the stability region
for the problem in the sense that for any (ki,ko, ks, ks) € S, the spectrum
of (3.4) belongs to the left half plane and therefore by the Lyapunov-Malkin
theorem the steady state motion (3.8) is stable, and asymptotically stable
with respect to coordinates (x,y).

It follows from (3.8) that
(0,5¢) =z + (79, 7s)z1 + {nonlinear terms},

where (7p,7,) is given by
Y\ _ 0 VoVeR V.VeR \ ' [0pI2
V) TP2\VyV R+ k1 VoVR+ky) \0.I2

10



and all derivatives are evaluated at the relative equilibrium (3.3). According
to (3.2), this results in

0 — cyp, M = Cyyy 0 — 0, % —0 as t— 00

for the stabilized perturbed motions of the unicycle. This means that the
unicycle generically approaches a tilted circular steady state motion. Some
simulation results will be presented in the next section. As in Bloch, Rey-
hanoglu, and McClamroch [1992] for example, one needs a discontinuous
feedback controller for the system to be asymptotically stabilized about the
straight steady state motion (6 = 0).

Figure 2: The section of stability region S for k4 = —100 and pJ = 6.

Figure 2 illustrates a typical section of the 4-dimensional stability region
S by a hyperplane k4 = const. The stability region is bounded by the surface
and the plane shown on this figure. Here and below we choose the following
(dimensionless) parameter values: M =1, m =3, u =5 R=1,r =717,
l=6,p=6 A= MR?/4 B= MR?/2, and g = 1. For slower motions
these sections become flat in the ko-direction, i.e. the system becomes more
ko-sensitive.

4 Simulations

The following two graphs of 6 as a function of ¢ illustrate the controlled
unicycle dynamics. The unicycle starts from

(6(0),6(0), 2(0), 52(0), p1(0), p2(0)) = (6o,0,0,0,0,0.1).

11



For the first graph we choose 6y = 0.1 radians and k1 = —300, ko = —200,
ks = —300, and k4 = —150. The eigenvalues of the linearized equations in
this case are complex conjugate pairs with negative real parts. The second
graph shows that our controller is capable of stabilizing the unicycle from
a larger initial displacement (fy = 0.2 radians) if the gain parameters are
sufficiently large (k1 = —3000, ko = —2000, k3 = —6000, and ks = —3000).
All eigenvalues of the linearization for these values of the gain parameters
are real and negative. Nevertheless, we observe a few oscillations before 6
stabilizes. These oscillations reflect the nonlinearity of our coupled system.
We remark that in this simulation cg is close to zero, but this will not be
the case in general (see theorem 3.2).

0.2 0-3’§
02-
0.1 o1
0 0-
0 50 100 B0 20 40
(a) 6o = 0.1 (b) 6o = 0.2

Figure 3: Evolution of 8 for various initial conditions.

5 Conclusions

This paper has shown that the Lyapunov-Malkin theorem can be used for
nonlinear feedback stabilization of a simplified model of the unicycle with
a rider. The methodology makes use of a spectral stability condition and
leads to a nonlinear stability result. While the system considered here is not
feedback linearizable, we expect that the basin of attraction can be expanded
by an appropriate choice of nonlinear control terms. We intend to address
this issue in a future publication.
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