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SUMMARY

In this paper, we introduce a new method of model reduction for nonlinear control systems. Our approach is
to construct an approximately balanced realization. The method requires only standard matrix computa-
tions, and we show that when it is applied to linear systems it results in the usual balanced truncation. For
nonlinear systems, the method makes use of data from either simulation or experiment to identify the
dynamics relevant to the input}output map of the system. An important feature of this approach is that the
resulting reduced-order model is nonlinear, and has inputs and outputs suitable for control. We perform an
example reduction for a nonlinear mechanical system. Copyright � 2002 John Wiley & Sons, Ltd.

KEY WORDS: balanced truncation; model reduction; Karhunen}Loève expansion; total least-squares;
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1. INTRODUCTION

One of the di$culties in designing controllers for complex physical systems is in the problem of
modelling. Very often, we have mathematical models which are highly nonlinear partial di!eren-
tial equations, for which control design techniques are little understood.

An example is given by formation #ight; accurate models are known for the #uid dyna-
mics, and for the aircraft motion, which together can be accurately simulated. However, on
paper, the equations of motion consist of partial and ordinary di!erential equations coupled
via their boundary conditions, a formulation which o!ers little to the control designer. It is



therefore a problem of considerable interest to construct explicit low-order models; once a control
design has been performed using such a low-order model, it can be tested by simulating it in
feedback with the full high-order simulation.

In this paper, we present a new method of model reduction for nonlinear control systems. The
goal is to develop an intuitively motivated and systematic procedure for construction of low-
order models for complex high-dimensional nonlinear systems. The focus is on preserving those
features of the dynamics which are most relevant to the control design, in a similar way to that in
which standard methods for model reduction of linear systems, such as balanced truncation,
preserve the most controllable and observable states.

This is one of the main di!erences between modelling in the sense used by control systems
engineers, and modelling as used for simulation or mechanical design. In the latter case, one is
typically interested in the behaviour of an autonomous dynamical system, that is one with no
external inputs driving the system. However, in the case of controlled systems, we are concerned
with modelling the relationship between the system behaviour and the system inputs and outputs,
or actuators and sensors. ¸inear input}output systems enjoy several such input}output model
reduction techniques, including balanced truncation and optimal Hankel, H

�
and H

�
norm

methods. In general, these methods are di$cult to apply to complex high-dimensional nonlinear
systems.

The approach presented here makes use of data from either simulation or experiment to
identify those states of the system which are not a!ected by actuators, and which most a!ect the
sensors. We construct an empirical balanced realization for nonlinear systems, which coincides
with the usual balanced realization for linear systems. A Galerkin projection is then applied to the
balanced realization to construct a low-dimensional nonlinear model. This reduced-order model
may then be used for e$cient controller synthesis, design optimization, and real-time control
algorithms, where having a reduced-order model brings signi"cant computational complexity
bene"ts.

An example is given by linear-parameter-varying (LPV) control design [1], where the required
optimization for control synthesis involves solving a linear matrix inequality feasibility problem
where the number of variables grows as the square of the state-dimension of the system.
A signi"cant reduction in overall computational e!ort required is achieved by constructing
a reduced-order model via simulation of the full-order model, and then using this reduced-order
model for the control synthesis.

1.1. Prior work

Two of the most well-known methods of model reduction used in control are the Kar-
hunen}Loève decomposition and the method of balanced truncation. The approach in this paper
combines the ideas and methodology from both of these.

1.1.1. The Karhunen}Loève expansion
The Karhunen}Loève expansion is a method of least-squares approximation which goes back to
Karl Pearson [2]. The method is known in the literature by several names, including principal
component analysis, proper orthogonal decomposition (POD), factor analysis, and total-least-
squares estimation.

The use of the Karhunen}Loève expansion for model reduction was pioneered by Lumley [3],
where it was used to model complex #uid #ows. This has found wide applicability and led
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to a method of understanding the important dynamical features seen in the #uid [4}6]. The KLE
has also been used for model reduction of solids and structures [7, 8], for analysis of chaotic
systems [9] and for analysis of systems with dynamical symmetries [10, 11]. For control systems,
the KLE has also been used to design controllers for PDEs [12, 13].

1.1.2. Balanced truncation
The method of balanced truncation for model reduction of linear systems was proposed by
Moore [14] in the context of realization theory, and is now a well-developed method of model
reduction that appears in standard textbooks [15]. For linear systems, the approach requires
only matrix computations, and has been very successfully used in control design. A priori error
bounds in the induced 2-norm are known for the error between the original and the reduced
system [16, 17].

The method of balanced truncation has been extensively developed for nonlinear systems by
Scherpen [18}20], based on energy functions. A closed-loop approach is also presented in
Reference [21], and balancing methods for bilinear systems also been developed [22}24].
Computational approaches for these methods have been investigated in Reference [25], and have
been compared with the Karhunen}Loève method in Reference [26].

Another approach to balanced model reduction of nonlinear systems has been to make use of
linear parameter-varying (LPV) systems theory, where the linear fractional transformation is used
to construct uncertain multidimensional models capturing the nonlinear dynamics [27}30].

Other approaches have also been used for nonlinear model reduction; for modular intercon-
nected nonlinear systems, methods have been proposed in Reference [31], and for chemical
plants, direct optimization techniques have been used [32]. Along trajectories, time-varying
methods have been developed; see Reference [33] for details.

1.1.3. Our approach
Our approach in this paper has been to combine the features of the Karhunen}Loève expansion
and balanced truncation, thereby developing a new method of model reduction for nonlinear
systems. In particular, this approach is data-based, making use of data from simulation or
experiment in the construction of the reduced-order model. In fact, Moore also proposed using
principal components analysis for nonlinear systems [34], although this was not directly connec-
ted to the balanced truncation approach he had proposed in Reference [14].

By making use of data, we avoid some of the computational di$culties involved in computing
energy functions for exact balanced truncation of nonlinear system [18]. The method provides an
immediate computable procedure for model reduction of nonlinear input}output systems, requir-
ing only standard matrix computations. When applied to linear input}output systems, it results
in the usual balanced truncation of the system, with the accompanying a priori error bounds in
the H

�
and the Hankel norms.

Note that the method of balanced truncation is not optimal, in that in general, it does not
achieve the minimal possible error in any known norm even for linear systems. However, it is
a well-used method in control, which is both intuitively motivated by realization theory and
known to perform well in engineering practice. The motivation and intended use of the methods
in this paper is to construct deliberately approximate reduced-order models motivated by the
ideas of balanced truncation.

The philosophy in this paper is also similar to that of identi"cation, where data are used for
construction of models. In particular, the method of subspace identi"cation [35] is relevant here.
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In this sense, our approach for model reduction can alternatively be viewed as a new approach to
identi,cation, and a way of incorporating nonlinear a priori mathematical models for the physics
into the identi"cation process.

This paper is a longer version of the conference paper [36]. This approach and a variation of it
have also been used for modelling of a continuously stirred tank reactor (CSTR) in Reference
[37]. We conclude the paper with an example to illustrate the application of the method to
a nonlinear mechanical system.

2. MODEL REDUCTION FOR AUTONOMOUS SYSTEMS

In this section, we give an outline of existing techniques using the Karhunen}Loève decom-
position for model reduction of nonlinear autonomous systems. The dynamics of such a
physical system are often modelled by a high-dimensional nonlinear di!erential equation, of the
form

xR (t)"f (x(t)) (1)

This equation describes the system behaviour as the evolution of the state x(t) in a high-
dimensional state space ��. The central idea used when applying the Karhunen}Loève expansion
for model reduction is to search for a low-dimensional a$ne subspace of the state space, in which
the dynamics of interest of the original system are contained. In general, a subspace containing
the interesting state trajectories may not have low (or "nite) dimension, and the decomposition
provides a way of "nding the best approximating low-dimensional subspace.

Once such a subspace is found, a Galerkin projection can be applied to project the dynamics
onto it, so that the high-dimensional system is approximated by a small number of nonlinear
ordinary di!erential equations.

Once an appropriate measure is assigned to the space of trajectories of the system, the problem
of "nding the subspace can be formulated as a 2-norm optimization problem. This has the
advantage of requiring only linear matrix computations, despite its usefulness in application to
nonlinear systems. The optimization need not be performed analytically; instead data from
experiment or simulation can be used directly.

The method makes essential use of empirical data, taken either from experiments or from
numerical simulation, consisting of sampled measurements �x���,2, x���� of x (t). The next step is
to perform a principal component analysis of this data, to "nd how well it may be approximated
by projection onto a k-dimensional subspace of the original n-dimensional state space.

2.1. The Karhunen}Loève decomposition

The Karhunen}Loève decomposition provides a method for "nding this best approximating
subspace. We can characterize a subspace SL�� by the projection operator Q mapping �� onto
S. The order of approximation is "xed at k, and we would like to "nd Q to minimize

H(Q)"
�
�
���

�x���!Qx�����
�

(2)

the total squared perpendicular distance of the points from the k-plane. The following result is
standard.
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¹heorem 1 (Total least squares)
Let R be the correlation matrix of the data, de"ned by

R :"
�
�
���

x���x���*. (3)

and let �
�
*�

�
*2�

�
be the ordered eigenvalues of R. Then

min
�

H (Q)"
�
�

���	���

�
�

(4)

where the minimum is over all rank k projections Q.

In general, R may not have rank n, if the given data lie within a strict subspace of ��. Let
s"rankR, and let �

�
, �

�
,2, �

�
be orthonormal eigenvectors of R, corresponding to the

non-zero �
�
. Each x��� can be written as

x���"
�
�
���

a
��
�

�
(5)

where a
��
"�x���, �

�
�, and ��

�
, �

�
�"�

��
. The optimal k-dimensional subspace approximant is

given by

xL ���"
�
�
���

a
��
�

�
(6)

Denote by P the k�n matrix whose rows are �
�
,2, �

�
, so that PP*"I. The projected

approximant to x is given by P*Px3S, and y"Px is a representation in terms of the new
coordinates �

�
on S. This subspace approximant is then optimal, in the sense that the total

&energy' (2-norm) in the subspace is given by

�
�
���

�Px�����
�
"

�
�
���

�
�

(7)

and this is the maximum achievable by any k-plane.

2.2. Model reduction

The above procedure "nds the optimal subspace; to allow a$ne variation we make use of the fact
that the optimal a.ne subspace passes through the mean of the data. Hence, we construct the
correlation matrix as

R
��
"

�
�
	��

(x�	�
�

!xN
�
) (x�	�

�
!xN

�
) (8)

where xN "1/N��
���

x��� is the mean of the data. The eigenvalues of R now provide us with
information as to how close an approximation of the data is provided by a k-dimensional
subspace; the goal is to choose k such that the fraction of the total &energy' in the subspace

�
�
���

�
��

�
�
���

�
�

(9)
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is close to one, yet k is su$ciently small. Clearly, this will not always be possible, with models
which are better approximated by low-dimensional systems having relatively few large eigen-
values.

We now subtract the mean xN from the dynamic equation, de"ning e"x!xN to arrive at
eR (t)"f (e(t)#xN ). We would like to approximate e(t) in this equation by P*Pe(t)3S.

2.3. Galerkin projection

The Galerkin projection has been used extensively to construct numerical solutions to partial
di!erential equations. It can also be used to construct lower-order mathematical models of a given
dynamical system. The idea is to replace the given dynamics by an associated dynamics on
a k-dimensional subspace SL�� of the original state space, by projecting the vector "eld onto
the tangent space of S. Using the coordinates de"ned previously, the resulting reduced-order
approximation is given by

yR (t)"Pf (P*y(t)#xN ) (10)

The Karhunen}Loève method therefore projects the dynamics onto the sub-space containing
most of the &statistical energy' of the system. If we keep all of the eigenvectors corresponding to
non-zero eigenvalues, then this subspace will contain all of the dynamics seen in the experiment.
In general, we would expect that the more eigenvectors we keep, the better approximation we will
obtain.

Clearly, the subspace obtained by the Karhunen}Loève method depends upon the inner
product on the Euclidean space in which the state space is embedded; physical meaning is an
important indicator of the appropriate choice of inner product. Since the 2-norm of the states is
maximized, an inner product for which this norm corresponds to an approximation of the
physical energy in the system may be an advantage.

Computational application of this method requires only standard matrix computations,
despite its application to nonlinear systems. Also, the method has the feature that it separates the
model reduction into two parts; that of "nding a suitable subspace and that of performing the
projection. This lends physical intuition to the procedure, and allows alternative projection
schemes to be used.

We can expect such a procedure to work well for model reduction of the system within some
given region of state space, and it is within such a speci"c region that data should be collected.

For control, a severe limitation is that the input}output behaviour of the system is so far not
taken into account. In this paper, we combine the data-based approach of the Karhunen}Loève
reduction procedure with the input}output focus of balanced truncation, and we now proceed
with this.

3. MODEL REDUCTION OF CONTROLLED SYSTEMS

We now turn to the main problem addressed in this paper; that of model reducing nonlinear
input}output systems of the form

xR (t)"f (x (t), w (t))
(11)

z(t)"h(x (t))
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Here x (t)3�� is the state of the system, w (t)3�	, and z (t)3�
. The function w is regarded as an
input signal to the system, and the function z as an output signal. The goal of model reduction is to
construct another nonlinear system of di!erential equations

qR (t)"fK (q(t), w(t))
(12)

z(t)"hK (q(t))

where q (t)3��, and k(n, such that the input}output behaviour of the two systems is similar, for
states in some speci"c region of the state space. That is, for a class of inputs w, we would like the
outputs z of the two systems to be close.

In this section, we develop an approach for model reduction of systems of form (11), taking
explicit account of the input}output connection of the system, and generalizing standard methods
from linear model reduction theory.

We construct a new method, based on the approach used for autonomous systems, but taking
explicit account of the input}output connection of the system. The construction is designed to
generalize standard methods from linear model reduction theory; before proceeding further, we
need some preliminary de"nitions from the theory of linear systems.

3.1. Linear systems

For linear systems, Equations (11) become

xR (t)"Ax (t)#Bw(t)
(13)

z(t)"Cx (t)

where x (t)3��, and A, B, and C are matrices of appropriate dimension. The linear system is
called stable if the eigenvalues of A all have real part strictly negative.

Suppose the system in Equation (13) is stable. Then, for u3¸
�
(!R, 0] and denoting

u
	

(t)"u(!t), the state at time zero x(0)"x



is given by

x


"�

�




e��Bu
	

(s) ds (14)

This de"nes the controllability operator, C : ¸
�
[0, R)P�� by x



"Cu

	
. The following standard

results can be found in Reference [38].

¸emma 2
Write > :"CC*. Then > is the smallest semipositive solution to the Lyapunov equation

A>#>A*#BB*"0 (15)

The system is called controllable if Im C"��, in which case >'0 and Equation (15) has
a unique solution. The matrix > is called the controllability gramian.

As is standard, there is a similar notion for the output. Denote the future output by
y
�

3¸
�
[0, R). Then, de"ne the observability operator, O :��P¸

�
[0, R) by y

�
"Ox



, and hence

Ox


"Ce��x



.

¸emma 3
Write X :"O*O. Then X is the smallest semipositive solution to the Lyapunov equation

A*X#XA#C*C"0 (16)
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The system is said to be observable if ker O"�0�, in which case X'0 and Equation (16) has
a unique solution. The matrix X is called the observability gramian.

Both X and > are n�n matrices, and they are given by the following integral formulae:

>"�
�




e��BB*e�*� dt

(17)

X"�
�




e�*�C*Ce�� dt

3.2. Gramians and principal component analysis

The method of principal component analysis relies on the use of data to construct the correlation
matrix, with the underlying assumption that these data are collected from &typical' system
trajectories. Implicit in this analysis is that the trajectories from which data are sampled are
parametrized by x



, the initial state of the system.

Since we are now considering a controlled system with inputs, we can instead make the
assumption that the initial state of the system is zero, and parametrize the trajectories for
principal component analysis with respect to the system input u.

For theoretical purposes, we are not restricted to samples, and can simply construct the
correlation matrix using the integral

R"�
�




(x(t)!xN ) (x (t)!xN )* dt (18)

where x (t) is the state of the system at time t, and xN is the mean state.
Let T� be a set of r orthogonal n�n matrices, �¹

�
,2, ¹



�, and let M be a set of s positive

constants, �c
�
,2, c

�
�. Further de"ne

E�"�e
�
,2, e

�
; standard unit vectors in ��� (19)

Given a function u3¸
�
, de"ne the mean uN by

uN :" lim
���

1

¹ �
�




u(t) dt (20)

We make the standing assumptions that x, z3¸
�

and z3¸
�
. For given initial conditions, these

assumptions are satis"ed for exponentially stable systems.

De,nition 4
Let T	, E	 and M be given sets as described above. For system (11), de"ne the empirical
controllability gramian >K by

>K "


�
���

�
�

���

	
�
���

1

rsc�
�
�

�




����(t) dt (21)

where ����(t)3� is given by

���� (t) :"(x���(t)!xN ���) (x��� (t)!x	 ���)* (22)

and x���(t) is the state of system (11) corresponding to the impulsive input w (t)"c
�
¹
�
e
�
� (t).
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¸emma 5
For any sets T	 and M, the empirical controllability gramian >K of the stable linear system
xR (t)"Ax(t)#Bw(t) is equal to the usual controllability gramian >.

Proof. For the linear system,

����(t)"c�
�
(e��B¹

�
e
�
) (e��B¹

�
e
�
)*

(23)
"c�

�
e��B¹

�
e
�
e*
�

¹*
�
B*e�*�

hence

>K "�
�






�
���

�
�

���

	
�
���

1

rs
e��B¹

�
e
�
e*�¹*

�
B*e�/� dt

(24)

"�
�




�
�

���

1

s
e��BB*e�*� dt">

which is the desired result. �

A variant of this construction was shown by Moore [14]; for impulsive inputs distributed in the
above sense on the unit ball in �	, the Karhunen}Loève decomposition of the states leads to
a construction of the controllability gramian for linear systems.

The empirical controllability gramian is a computable generalization of this to nonlinear
systems; it has the property that the eigenvectors of >K corresponding to non-zero eigenvalues
span a subspace OL�� which contains the set of states reachable using the chosen initial
impulsive inputs.

We are therefore led to a methodology for model reduction motivated by a standard idea from
realization theory; truncate those states corresponding to small eigenvalues of>K . In the context of
nonlinear systems, one might perform a Galerkin projection onto the subspace spanned by the
eigenvectors corresponding to the largest eigenvalues.

However, for the controlled systems, simply studying the input-state behaviour is not enough.
The next de"nition is the analogue of the previous one for the output behaviour.

De,nition 6
Let T�, E�, and M be given sets as described above. For system (11), de"ne the empirical
observability gramian XK by

XK "


�
���

�
�

���

1

rsc�
�
�

�




¹
�

��(t)¹*

�
dt (25)

where 
��(t)3���� is given by


��
��

(t) :"(z���(t)!zN ���)*(z���(t)!zN ���) (26)

and z��� (t) is the output of system (11) corresponding to the initial condition x


"c

�
¹
�
e
�
with

input w"0.

¸emma 7
For any non-empty sets T � and M, the empirical observability gramian XK of the stable linear
system xR (t)"Ax (t)#Bw(t), z(t)"Cx(t) is equal to the usual observability gramian X.
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Proof. For the linear system,


��
��

(t)"c�
�
(Ce��¹

�
e
�
)* (Ce��¹

�
e
�
)

(27)
"c�

�
e*
�

¹*
�
e�*�C*Ce�*�¹

�
e
�

hence


��(t)"c�
�
¹*

�
e�*�C*Ce��¹

�
(28)

and

XK "
�
�

���

1

s �
�




e�*�C*Ce�� dt"X (29)

which is the desired result. �

We now have the tools we need for empirical analysis of the input}output behaviour of the
nonlinear system. Rather than searching for exact controllability and observability submanifolds
within the state space, our approach is to search for subspaces which approximate these
manifolds. The advantage of this approach lies in the computation; all that is required is the
solution of standard linear matrix eigenvalue problems.

Unlike in the autonomous case, we now have two important subspaces of the state space, and
their corresponding eigenvalues. We can proceed in the same manner as for linear systems, and
make use of the ideas of balanced realization theory to decide on which subspace to project. We
therefore return to a description of linear systems theory.

Corresponding to a linear system there is an associated Hankel operator � which maps past
inputs to future outputs. The singular values of the Hankel operator are the eigenvalues of
OCC*O*, which are the same as those of the n�n matrix O*OCC*"X>. The balanced
realization gives a way to "nd which particular states correspond to which Hankel singular value.
We may change state co-ordinates via any non-singular linear transformation ¹ without a!ecting
the input}output behaviour, in which case the above Lyapunov Equations (15) and (16) imply
that the gramians transform correspondingly according to >P¹>¹* and XP¹	�*X¹	�.
For linear systems, the choice of ¹ does not a!ect the Hankel singular values. A realization
(A, B, C) is called balanced if the controllability gramian > and the observability gramian X are
equal and diagonal. The Hankel singular values correspond to states through which the input is
transmitted to the output. The balanced realization gives a way to "nd which particular states
correspond to which Hankel singular value.

The Hankel singular values �
�
then indicate the importance of the corresponding state in the

balanced realization in the transfer of energy from past inputs to future outputs. This leads to
a method of model reduction known as balanced truncation, introduced by Moore [14] in the
context of realization theory. The procedure is to truncate those states from the balanced
realization corresponding to small Hankel singular values �

�
. If the states are ordered according

to decreasing singular value, this is equivalent to applying a Galerkin projection to the balanced
realization, where P"[I 0].

3.3. Empirical balanced truncation

The empirical gramians give a quantitative method for deciding upon the importance of
particular subspaces of the state space, with respect to the inputs and outputs of the system. We
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propose to use these for model reduction of nonlinear systems in the same way as for linear
systems; "nd a linear change of coordinates such that the empirical gramians are balanced, and
perform a Galerkin projection onto the states corresponding to the largest eigenvalues of XK >K .

Since for linear systems, the empirical gramians are exactly the usual gramians, this method is
exactly balanced truncation when it is applied to a linear system. When applied to a nonlinear
system, it requires only matrix computations, and results in a new nonlinear model.

Let ¹ be the change of co-ordinates such that the system is balanced; that is
¹>¹*"¹	�*X¹	�"
, and let P"[I 0] be the k�n projection matrix. Applying the
previous analysis leads to a reduced-order model given by

yR (t)"P¹f (¹	�P*y(t), w (t))
(30)

z(t)"h (¹	�P*y(t))

This is the "nal reduced-order model. This empirical balanced truncation gives a reduced-order
model which takes into account the input}output behaviour and is directly computable from
data.

For linear systems, the Hankel singular values are una!ected by co-ordinate changes, even
though the Gramian matrices themselves are not coordinate invariant. For nonlinear systems,
this property no longer holds.

4. COMPUTATION

We can directly apply De"nitions 4 and 6 to nonlinear systems for construction of the empirical
gramians from data. The data may be taken either from simulation or from experiment. All that is
needed is numerical approximation of the above integrals, using sampled-data from both x (t) and
z(t). It is also possible to take advantage of knowledge of f to calculate xR (t) in this computation to
achieve higher-order accuracy, and increase the allowable sample time.

To perform the required experiments, it is necessary to be able to set the initial state of the
system, to measure the state at all times, and to apply approximately impulsive inputs. These
conditions may be satis"ed for certain mechanical systems, although in the case of #uid dynamics,
for example, it may be di$cult to obtain the required state measurements and we may be forced
to rely on data from simulation.

We also need to choose the sets T and M. A reasonable simple choice is T"�I,!I�, since
this corresponds to using both positive and negative inputs (or initial states) on each input
separately. For distributed actuators, larger sets may be justi"ed. The sets M specify the size of
inputs and states we are interested in. The choice is motivated by the magnitudes of the inputs and
states actually seen in experiments, with the goal that during computation of the empirical
Gramians, the dynamics should evolve in a region of state-space close to that in which the
closed-loop system will be operating. It is not necessary to use the same M for the controllability
and observability experiments.

As for the Karhunen}Loève reduction of autonomous systems, a crucial feature of this
procedure is that, in general, we should expect it to work well only in limited regions of state-space.
We do not expect to be able to approximate global behaviour of the system well using a linear
projection; however, it is perhaps more reasonable to expect to be able to construct low-order
models for systems within some given operating region. For some systems, one may prefer not to
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Figure 1. Example mechanical system.

use impulsive inputs, and in particular it is known that the e!ects of persistent excitation are often
important for nonlinear systems. In this case, the procedure for computation of the empirical
controllability gramian may need modi"cation, and similar results may be derived for other
classes of input signals.

A simple numerical technique for balancing the empirical gramians XK and>K is as follows. First,
apply the Cholesky factorization [39] to >K so that >K "ZZ*, with Z lower triangular with
non-negative diagonal entries. Let ;
�;* be a singular value decomposition of Z*XK Z, and let
¹"
���;*Z	�. Then ¹>K ¹*"
, and ¹	�*XK ¹	�"
, as desired.

We can now change state co-ordinates of the nonlinear system, and truncate using the Galerkin
projection. The rows of ¹ may be thought of as giving the &modes' of the system associated with
the Hankel singular values.

5. MECHANICAL LINKS EXAMPLE

Not only are high-order systems hard to control, but it is di$cult to develop intuition as to their
behaviour. One of the advantages of the procedure developed here is that it can be viewed as
a selection of appropriate mode shapes on which to project the nonlinear dynamics. These mode
shapes often are physically meaningful, and in this section we give examples for a simple, mildly
nonlinear mechanical system.

The system is shown in Figure 1. It consists of "ve uniform rigid rods in two-dimensions,
connected via torsional springs and dampers. The lowest rod is pinned to ground with a torsional
spring, so that the system has a stable equilibrium in the upright vertical position. There is no
gravity. The system has a single input, a torque about the lowest pin joint, and a single output, the
horizontal displacement of the end of the last rod from the vertical symmetry axis. The potential
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energy < of this system is

<"
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k (��)�#

1

2
k

�
�
���

(��!��	�)� (31)

and the kinetic energy ¹ is
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1

2

�
�
���
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(�Q �)�#

1

2

�
�
���

m((xR �)�#(yR �)�) (32)

where x�, y� are the Cartesian coordinates of the centre of mass of the ith rod, given by

x
�
"�

!l sin �� if i"1,

!l sin ��!2l
�	�
�
	��

sin �	 if i"2,2, n

(33)

y
�
"�

l cos �� if i"1,

l cos ��#2l
�	�
�
	��

cos �	 if i"2,2, n

(34)

The Lagrangian ¸"¹!<, and the equations of motion are then

d

dt

�¸

��Q �
!

�¸

���
"F

�
(35)

where F is the forcing term containing dissipative forces and the external force term w,

F
�
"�

!b�Q �#w

!b (�Q �!�Q �	�)

if i"1,

if i"2,2, n
(36)

The measurement equation is

z"h (�, �Q ) :"!2l
�
�
���

sin �� (37)

The constants are given by b"0.5, k"3, m"1, l"1, and n"5.

5.1. Linearized model

We "rst analyse the linearization of the system about its stable equilibrium; Figure 2 shows the
con"guration part of the "rst four of the ten mode shapes and the corresponding singular values
of the balanced realization. The singular values have been normalized so that they sum to one.

5.2. Empirical balancing

Application of the above empirical model reduction procedure to the nonlinear Lagrangian
model of this system leads to a set of corresponding modes. We choose M"�0.4� and T"�I�
for both controllability and observability gramians. In this case, Figure 3 shows these modes; we
can see that the "rst two mode shapes have split into three.
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Figure 2. The balanced modes of the linearization, with the corresponding singular value of each mode.

Figure 3. The empirical balanced modes of the nonlinear model, for c
�
"0.4.

Figure 4 shows the mode shapes using M"�1� and T"�I� for both controllability and
observability gramians, so we are concentrating on the dynamics resulting from the larger force
inputs. Here, the mode shapes become signi"cantly di!erent from those of the linearization.

Since this system is mechanical, the dynamics have a Lagrangian structure. In the absence of
forcing and dissipation, Lagrangian systems conserve energy as well as quantities associated with
the symmetries of the system. The dynamics of a mechanical system also satisfy a variational
principle, and the evolution maps are symplectic transformations. All of these properties can be
viewed as fundamental to a model of a mechanical system. Methods for model reduction, which
take account of this underlying geometry and preserve it, are developed in References [7, 40]. The
importance of this is evidenced in Figure 2, where each mode shape appears twice; this is
a consequence of the underlying correspondence between con"guration variables and their
generalized momenta. These repeated structures are captured by the linearized method, and the
method in this paper should be improved to take account of this repeated structure. One way to
achieve this would be by combining the techniques in this paper with those of [7, 40] and
constructing the empirical gramians on the con"guration space rather than the phase space. In
this way, the underlying geometric structure is preserved by the reduction, and the resulting
reduced-order system is itself a Lagrangian system. Similarly, taking account of symmetry
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Figure 4. The empirical balanced modes of the nonlinear model, for c
�
"1.

[10, 11] and other special structure present in the original system can be of great use, leading to
reduced computational requirements and producing more accurate reduced-order models.

6. CONCLUSIONS

In this paper, we have presented new methods for model reduction of nonlinear systems. These
methods combine the physical intuition of Karhunen}Loève techniques, as they have been
applied to analysis of complex #ows, with the control engineering methodology of balanced
truncation.

The resulting method of model reduction is based on data. It requires only simple matrix
computations, and may be applied directly to nonlinear systems. When applied to linear systems,
the reduced-order model constructed is exactly the usual balanced truncation of the system.

The choice of impulsive inputs, and initial states distributed uniformly on the unit sphere, are
perhaps somewhat arbitrary methods of parametrizing trajectories for nonlinear systems. Many
other methods might be suggested, and for control a very reasonable strategy would be to apply
a Karhunen}Loève decomposition of the states seen during simulation of closed-loop behaviour.
There are several other possibilities that might be suggested, such as subspace-identi"cation
procedures to compute both empirical gramians simultaneously; our focus here has been the
construction of a computable extension of balanced truncation for nonlinear systems.

Qualitatively, the method preserves those states of the dynamics which are reachable using
small input energy, and those states which result in large output energy, where by energy we mean
the usual 2-norm. The empirical Gramian matrices are used numerically to measure these e!ects
and it is the energy transfer, that is the product of these quantities, which is used to determine
which states to keep and which to reduce.

The e!ectiveness of this procedure is determined by its usefulness in control applications, and
to evaluate this is necessary to design a controller for the reduced-order nonlinear system and
check its performance and stability, both in simulation with the full-order model and with the real
system. One feature of the empirical procedure described in this paper is that often
the simulation itself has been implemented using known heuristics; for example vortex methods
are often used to simulate incompressible #ow. Using data from such a simulation for model
reduction, these heuristics can be incorporated into the control design process.
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