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This paper studies thaynamicalfluid plus rigid-body system consisting of a two-dimensional rigid
cylinder of general cross-sectional shape interacting Wigfoint vortices. We derive the equations

of motion for this system and show that, in particular, if the vortex strengths sum to zero and the
rigid-body has a circular shape, the equations are Hamiltonian with respect to a Poisson bracket
structure that is the sum of the rigid body Lie—Poisson brackese¢R)*, the dual of the Lie
algebra of the Euclidean group on the plane, and the canonical Poisson bracket for the dynamics of
N point vortices in arunboundedblane. We then use this Hamiltonian structure to study the linear
and nonlinear stability of the moving Bpl equilibrium solutions using the energy-Casimir method.

© 2002 American Institute of Physic§DOI: 10.1063/1.1445183

I. INTRODUCTION moving body on the vorticity field is usually ignored except
in acoustical and aeroelastic studies and here too one typi-
The interaction of rigid and deformable bodies with in- cally looks only at small oscillations of the body or body
compressible, vortical fluid flow fields at high Reynolds gyrface.
numbers and, in particular, the interaction with the vortices  \jathematical advances in nonlinear dynamics in the
shed by the bodies themselves due to the dynamics of thejast three decades, especially in the area of geometrical me-
thin boundary layers, has been a subject of long-standinghanics, and emerging engineering applications like the de-
interest in fluid mechanics. The classical von Karman vortexsign of remotely piloted underwater vehicleiave moti-
street behind a circular cylinder may be considered the araiad the authors to look at this subject from the point of
chetypical problem in this subject. Viscous effects are Conyje\y of geometric mechanics and develop, at least on an
fined to the thin boundary layers and it is a reasonablé apgeq) fiuid level, sophisticated nonlinear models to study the

proximation to model the interactions on an inviscid basis a%ynamicsand control of these systems. In particular, one

ang as the_ mechanism of vortex gheddmg |t-self can be COMverall goal is to study the role of vorticity and model the
sidered unimportant to the dynamics of the interaction.

. . .dynamics of the system as a whole; that is, we want to allow
The subject has, of course, been extensively explored i

i . i . X . the body and vorticity field to interact freely or in a con-
the traditional aeronautics, mechanical, and civil engineerin
. o . . frolled manner and develop coupled PDEs or ODEs for the
areas along with numerous applications. Indeed, in areas like . . .
. . : . Simultaneous evolution of the body variables and the vortic-
aeronautics, strongthough not spatially extensiyeorticity

fields are almost always in the vicinity of aircraft wings and ity field. Our specific goal in the present paper is to cary this

bodies. The highly nonlinear nature of these interactions hagu'[ for a two-dimensional2D) rigid body interacting dy-

for a long time, however, ruled out the possibility of Sophis_namic.ally with N point vortices. Interacting quid—soIid. sys-
ticated mathematical modeling. Typical and popular modeléems in such a framework have not beer_1 weII-st.ud|.ed. In-
have usually followed semi-empirical approaches wherd€ed, the authors are not aware of the existence in literature

most of the nonlinear behavior is accounted for by the forceOf even the equations of motion of the simple system we are

coefficients whose values are obtained from experimentaioSidering in this paper. We use these equations to study

data assembled in look-up tables. Moreover, the effect of th&lamiltonian structures and stability in the case of rigid bod-
ies with a circular cross section.

Our long-term goal is to understand the geometry, dy-

a . . - ¢ ! g¢
b)E'Izggg’r‘]'lg mz:'l f::;'}g”é%gg":;ggﬁ o namics, and control of a three-dimensiof@D) rigid or de-
9Electronic mail: jwb@robby.caltech.edu formqblg quy moving in the vortical f|elq of an incompress-
9Electronic mail: sdk@uiuc.edu ible, inviscid fluid. Apart from the design of underwater
1070-6631/2002/14(3)/1214/14/$19.00 1214 © 2002 American Institute of Physics
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vehicles, we expect such investigations to have relevance
and applications in several other areas in engineering and
physics: high angle-of-attack aerodynamics, the locomotion
of fish that shed vortices by flapping their t&ilgnd the
dynamics of bubbled Theoretical investigations in these ar-
eas are not new. There are several papers that derive integral 4
expressions for forces and moments on moving bodies in
vortical fields, for examplé&? but these do not consider the
dynamics of the interacting fluid—solid system. The work of
Galper and Milofi” has a dynamics perspective, however,
they extend Kirchhoff’s equations of motion to the case of a X
nonuniform potential flow field superimposed on the poten-
tial field associated with the moving rigid or deformable
body. Extension to vortical fields is not considered. Kadtke;'(;- ;fg:n'ieﬂgfi‘; r;)gi?i‘)’(ig"i‘rt]e;acilg w&a”i"sicg"%C‘fgthﬁgzz‘tf‘r’;;igﬁih
an(_j NovikoV’ conS|der_ a dynamically . Interacting vortex? origin at the center of mass CM gnd éxes ;?arallel to t)rl1e principal directions.
cylinder system but with only one point vortex and their
focus is on chaotic capture. The works that come closest to
addressing our problem are Koilfeand Kelly}® We hope to  of application mentioned above will be studied in more detail
subsequently apply to these problems the many ideas in notater.
linear stability, relative equilibria and control that have been
developed in the general geometric theory of meché&hics Il. HAMILTONIAN FORM FOR THE DYNAMICS OF A
and also introduce viscous effects such as boundary Ia§ers MOVING CIRCULAR CYLINDER OF RADIUS R,

We will focus on some first steps toward this goal: to AND N POINT VORTICES

understand the Hamiltonian structure and stability of a 2D |, this section we present the Hamiltonian equations of a
rigid cylinder that interactslynamicallywith N point vorti-  gjrcylar cylinder of radiusR interacting dynamically wittN

ces external to it. This system may be viewed, in the contexboint vortices in the plane whose strengths sum to zero. A
of geometric mechanics, as the blend of two simpler, classigchematic sketch of the configuration when the cylinder has
cal systems each with a well-known Hamiltonian structure gppjtrary shape and the vortex strengths have arbitrary sum is
One is the system of a 2D rigid cylinder moving in a field given in Fig. 1. The equations of motion for that more gen-
with zerovorticity. The equations of motion of this system, era| problem are derived in the Appendix and the equations
derived by Kirchhoff, can be shown to be Hamiltoriiavith  for the circular case follow directly from them. The general

respect to the Lie—Poisson bracket structurese(2)*, the equations(A55), (A56), (A57), and (A58) are reproduced
dual of the Lie algebra of the Euclidean group on the planeyg|ow for convenience:

The other system is that & point vortices moving exter-

nally to a closed, rigidstationaryboundary. The equations d dA
. o . —+QX|L=0, —+VXL=0,
of the vortices were shown by Lifito be Hamiltonian with dt dt
respect to the same canonical symplectic structure as that of Py
N vortices in anunboundecplane. ' . Fk(—k+ﬂ><lk+v :J(_ . k=1,.N,
We present in this paper the equations of motion of the dt dly

dynamically interacting system for a cylinder of general

cross-sectional shape and show that, at least for circular —=V+axQ,

shapes and when the vortex strengths sum to zero, the equa-

tions are Hamiltonian with respect to a Poisson bracket struowhereV is the velocity of the body center of mass referred to

ture that is simply theumof the brackets of the two, simpler the body-fixed framea is the position vector, referred to the

systems referred to above, i.€ie—Poisson plus canonical body-fixed frame, of the body center of mass from the origin

point vortex The reason we assume that the sum of the poinbf the spatially fixed frameQ) is the body rotational velocity,

vortex strengths is zero is that, in this case, as we shall show andA are the momenta of the system given by E44),

later on, the relevant momenta depend only on the positionk is the position vector of th&th point vortex in the body-

of the vortices with respect to the body and this simplifiesfixed frame, andWV is the Kirchhoff—Routh function gener-

matters considerably. We do not expect that this is a fundaalized to moving boundaries and given by E453).

mental restriction. Let the velocity of the center of mass of the circular
The equations of motion are derived from a standarccylinder beV(t) =[u(t),v(t)]. Then, with reference to Egs.

momentum balance analysis in the plane. The flow is astA49) and(A50),

sumed to be inviscid, incompressible, at rest at infinity and

satisfies the zero normal velocity condition on the body. In= > T, yg(1,,V)=R2>, Fk< ( —

the last subsection of this paper the Hamiltonian structure is e e

used to investigate the linear and nonlinear stability of the @

Foppl equilibrium*!® Stability and control issues of this where (,,6,) are polar coordinates of tHeth vortex in the

system in particular those with relevance to some of the areasody-fixed frame. Note thatg is independent of2 since the

sin 6y cosek) >
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rotation of the circular cylinder has no effect on the fluid. It can be checked after performing the necessary integrations

Conversely, the fluid also has no effect 8nsince the pres- that

sure forces act through the center of the cylinder. Therefore,

the equations of motion should giel2/dt=0 and this can

indeed be cor_lflrmed. _ _ 3§ (Uv)deZE kXT
The functionsG and g for a circular cylinder can be B

calculated wusing the classical circle theorem of

Milne-Thomson'® This gives a simple representation of the Comparing with Eq(1) it is seen that the following relation

image vorticity in terms of two point vortices—one of the holds in this problem:

same strength but opposite sign at the inverse point and the

other of the same strength and sign at the center of the

R R
_—Cosek,_—3|n0k .
i i

circle—for each point vortex outside the circle. Thus, 2 gl V)= 3€ 1% (NpX (Uy)p)ds. (6)
B
_ 1 1
9(x.YiXi,Yi) = 5—log|(x,y)| = 5—log|(x,y) The general significance of this relation is not yet understood
o 2o but it plays a simplifying role when constructing the Hamil-
— (R /i, Ry /1) |, (2)  tonian structure of this system. It is conjectured that an in-

sight into this relation may help understand the Hamiltonian
Structure for general body shapes.

The equations of motion for the circular cylinder when
the vortex strengths sum to zero can now be deduced from

wherel2=x2+yZ. Using Eqs(A48) and(1) the functionW
can then be easily calculated. For future reference we writ

W=2 gl ,V)+Wg, (3) Eqgs.(A55), (A56), (A57), and(A58). A fairly simple Hamil-
tonian structure for these equations emerges by inspection.
where The details are presented below.

For the case when the vortex strengths do not sum to

1 ) zero this structure does not hold and it is obvious, by looking
WG:kj(;>j) Dl G(hcl) + 52 Fia(lclo- at the equations, that this is related to the center of mass of

' the cylinder becoming an additional dynamical variable in
Evaluating the mass matrik shows that all off-diagonal the problem. We believe, however, that there exists a Hamil-
terms vanish and, further, the first two diagonal terms are theynian structure for this case too and will be revealed by

same and are each equal to thess plus added mas§the  jnyoking the same theories mentioned at the end of the Ap-

system. Denoting these terms byM simplifies to pendix for the problem of general body shapes.
c 0 O Proposition. The freely interacting system of a rigid cir-
v=lo ¢ o cular cylinder of radius R in an incompressible, inviscid
N ’ fluid, and N point vortices whose strengths sum to zero and
0 0 | are external to it, is governed by the following system of
wherec=m+ 7R2. Therefore, equations:
L=cV+p, A=, dL
. — =0, (7
assuming(2(0)=0. Next, calculate dt
= Tl xk+ § IX(nyX(u ds, 4 dA
p E IN] B ( b ( V)b) ( ) —+VXL=O, (8)
dt
1 1 )
w:—zz Iyl ’Ii>k_§ ﬁBI (npX(uy)p)ds. (5) diy J&H - .
- e K N, 9

In this probleml=Rn, on the body boundary. The contour

integral inp simplifies as
9 P P where

ile(nbx(uv)b)dSZ—R fﬁas(uv)bds, L(t)=L(0)

and that ins vanishes: X Yk

=cV+ D, Tl Xk+R2D, kXT\| 50—, =
V2 DR N e e

§ |2(nb>< (Uv)b)dS: 0
B and
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1 1
H(L, L) =—=WI(L,l)+ %(L,U_E(Z [ (LX) k
1 2
S22 TALG = X Tl
2 ko j(i>k)

R* I I
+7<2 iy Fk<lk,lk>>)' 19

In the preceding equatioiV(L,l,) is the KirchhoffRouth
function for the system and is given by Eq. (3) withre-
written in terms oL andl. This is a Poisson vector field on
the space P=se(2)* X (R®™(AUB))=P,XP, equipped
with the following Poisson bracket. For, 5 e C*(P), de-
fine

{F,G} = {F| Pb’G| Pb}Lie—Poissoﬁ"{Fl vaG| Pv}point vortex:

Therefore if ft)=(u(t),l(t)) e P is an integral curve of
the system, wherg(t)=(L(t),A(t)), then

dF dp
e
N
=<VMF,ad§H,0ﬂ,u)—k§l (ViF, IV (HIT ).

Proof. This is a straightforward exercise: one verifies
that the right hand side defines a vector field that is obtaine
from the given Hamiltonian and Poisson bracket.

In verifying the momentum equations, recall that the
Lie—Poisson equations ar(2)* are given by

du

ar OH/Sueg

ad&H/,s,uU«a megs,

for the HamiltonianH and where

(@,8)=(—(s,JW),~ 35).

(5w

Making the identificationu = («,s)=(A,L):

)

dH

LJa
L] oA

aL

adiyon,anion (A L) = ( <

Now if the momentum equation$7) and (8) are Lie—
Poisson, we should have

2. o

These relations are satisfied if

dH
JL

oH L.
dA

V><L=<L J

ﬁH_O
ﬁ_ ’

JH

IIV.

Hamiltonian dynamics of cylinder and point vortices 1217

g

FIG. 2. The Fppl equilibrium when the cylinder moves with constant ve-
locity V.

3

T

¥

Comments

(1) A in the definition of the phase spa&tis the set of
collision points of vortices an@ is the region occupied
by the circle.

The system reduces to the correct Hamiltonian system in
the two well-known casedi) the irrotational case, i.e.,
no point vortices in the flow andi) the stationary body
case. In casé), one obtains the equations of motion for
the body asdV/dt=0 and H=(1/2c){L,L)=(c/2)
X(V,V). Kirchhoff's equations give exactly the same
result. In casdii) V=0, and the terms within the large
parentheses in Eq10) reduce to (1/2)L,L) and one
obtainsH=—Wg;(l,). The system thus reduces to the
one investigated by Lif®

The Hamiltonian can be re-written in terms \éfand|,

as

2

©)
d

HV L) == Tirs(V, 1) —Wa(ly)

1
+ %<cv+ p,cV+p)

—% ch(E rk|k>-k+%<p,p))
s+ 5 <VV>

Using Eq.(21) and thel.?-orthogonality ofu,, andVdg

it can be checked that the above is the total kinetic en-
ergy of the system (flui¢t body) minus the infinite con-
tributions associated with the point vortex velocity field.

Ill. LINEAR AND NONLINEAR STABILITY OF THE
MOVING FOPPL EQUILIBRIUM

Consider Fppl's resultd**>1for equilibria of the sys-
tem of a circular cylinder in an ambient uniform stream of
velocity V and two counter-rotating point vortices of equal
strength behind the cylinder located symmetrically with re-
spect to the freestream direction. The same results hold in a
translating frame if the cylinder moves with velocitin a
fluid at rest at infinity, the point vortices now move with the
cylinder at the same velocity and are stationary in the body-
fixed frame, as shown in Fig. 2. We call this equilibrium the
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movingFopp! equilibrium to distinguish it from the classical (whose equilibrium we are studyinpg larger by two dimen-

case. sions due to the presence of the additional variahl@he
The loci of equilibrium positions are described by the linearized equations fdr are trivial[as can be seen from Eq.
curves (7)], however, the linearized vector field for the point vortex
locations has extra terms in it compared to the classical case.
IS— R?= =2l Yo, (11 Second, because the phase space is larger, the complete set of
equilibria defined by Eqg11) and(12) definesa curvein P.
where In other words, the equilibria ameot isolated fixed points in
phase space. Third, the eigenvalue behavior of the linearized
12=x3+Y3, system under symmetric disturbances is different from that in

the classical case, as we shall see. The main details of the
(X0,Yo) and (xq,—Yo) being the positions of the two vorti- linear stability analysis are given below.
ces in the body-fixed frame. At each equilibrium position, The linearized equations about the movingopbequi-

there is a linear relation between the vortex stredgéamdV: librium are
lg—R*
I‘=477Vy0|—4. (12) d5X1
° dt
Linear stability results of the classical "l
equilibrium**® show that the point vortices are unstable to ddy,
anti-symmetric infinitesimal perturbations and stable to sym- dt 5%,
metric ones. Numerical simulations of the perturbed trajec- d X, sy
tories for finite disturbances have been investigated in de — !
o L ) dt 5%,
Laat and Coen& An analytic investigation of the nonlinear =D- ,
stability using the second term in the Taylor expansion has doy, %Y,
been done in Tordell® dt oLy
dsl, oLy
A. Linear stability at
Analysis of the linear stability of thenovingFoppl equi-
. 4 X ) . dsL,
librium differs from the classical one in the following three at

ways. First, any perturbation of the vortex positions also in-
troduces a perturbation of the cylinder velocity because of
the coupled dynamics. The phase space of the syskem, whereD is the 6X6 stability matrix given by

9°H 9°H *H d°H 9°H 9°H
COXpdyr YT Xpdyy  dYadyy  dlydyr  dlydy,
9°H 9°H 9°H 9°H 9°H 9°H
X2 aXydY1 Xy %, dXpdy,  dxpdl,  dxpaLy
1 J°H J°H J°H 7°H J°H J°H
OZTT| iy, ayidys  axady, a3 Ly, dLydy,
J°H J°H J°H J°H J°H J°H
T X Xy dy1dXp X3 dyadx,  dXpdl,  dXpdl,
0 0 0 0 0 0
0 0 0 0 0 0

|F.e.

The & quantities denote infinitesimal perturbations and Bhis evaluated at the moving Bpl equilibrium. The Hamiltonian
for the case of a circular cylinder translating with velodityvariable and two vortices of equal and opposite strengthand
—I', located at X;,y1) and (x,,y,), respectively, is given by

1
H==Wg(l)+ 5 [{L.L)+{p.p) = 2(p.L)],

where
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L X2 yi|°] T? X5\ ? Y2\
. _ N _p2_* _p27t _ _p2_“ _p27<
1‘*2 Xo 2 Y, 2 1‘*2
+ 1,109 (Xl_ Rzrg Tlyi— Rzl—g) - Elog[(xl_xz)z_l' (Y1—Y2)°]

Ir? Ir? 2
= — g logl(13=R?)?]~ g—logl (13~ R?)2] ~ 5 —logl (x4~ Xz)+ (Y1~ ¥2)?]

1"2
+ E|og[|§| SR = 2R%(X1Xo+Y1Y2) ],

L=cV+p, vector (0Xs,dYs, 0Ly, 0Xa,0Ya,6Ly). The linear stability
matrix D assumes the following block form after the trans-

and formation of variables:
X, X
p=T|y;—y,+R? Xzz'—le' , X=X +R —21‘_—22' . 1 1(s U
HEE HF MEBM="Flo A

At the Faop! equilibrium the vortex positions are related b
PPl ed P y whereS, A andU are 3X3 matrices.

Xo=X1=Xg, Y2=—Y1=—Yp The matrixA has the following two nontrivial eigenval-
ues:

and one also has
Na= (821~ 8z9) (1ot A14) + (211~ 219)%,
#PH  *H \[#H  &°H
. J°H J°H )2
X dY1  IXq dY1)

R2

LX=CV+2FyO<1—I—2—, L,=0, (13)
0

whereV is the constant translational velocity of the cylinder
which can, without loss of generality, be taken in the direc-
tion of the positivex-axis (see Fig. 2

B. Evaluating the stability matrix and the matrixS has the following two nontrivial eigenval-

To evaluate the eigenvalues of the stability matrix, weues:
follow a procedure similar to the one in the classicapplo

2__ 2
, . =(amn+ —ap)+(ay+
case. At any poinp e P, we split the tangent spadg,P as Ns= (821t 823)(A12~ A19) ¥ (st A1),

2 2 _ 92 2
T,P=Fa(F". (14) :<g+aag 52H+ﬁag )
Here,FS is the space ofymmetriadisturbances. It is a three- IXy  IXp0Xa)\ Yy Y19Y2
dimensional subspace &f,P and is defined by the relations 9°H . 9°H )2
OX1= 0Xp=:0Xs, OY1=—dY,=:dys, 6Ly=0. IXpdY1 X1 Y1)

Note thatF® is an invariant subspace under the vector field ofThe eigenvalues are functions of the parameter

the linearized system. The complementary sp&C(is the R2
space ofanti-symmetricdisturbances and is defined by the a= .
relations 15
SX = — SXp=10%y, OY1=OYy=18Y,, OL,=0. The plots in Figs. 3 and 4 show thaf>0 for 0<a<aq

and\2<0 for 1> a> g, whereas\2>0 everywhere in the
It follows from Eq. (14) that (F°)° is also an invariant sub- domain of . The plots are of%f(a) vs @, where
space. The direct sum in E(L4) is defined as follows. Write 24

any vector §x;,8y1,0%,,0y,,6Ly,6Ly) e TP as fla)= 167 1o
S
OX1=0Xst OXa,  OY1=OYst OYa, OXp=OXs— OX,,

(1—a)’(1-a?2.

The plots may be interpreted in the following manner. Rix
0Y2==0Yst Ya, OLy=0+oly, oL,=0L,+0, and, hence, the curve of Bpl equilibrium as per Eq(11).
where (6xs,0Ys,6Ly) € F® and (6x,,dYa,0L,) € (F%)°. Then the plots give us the linear stability of the system for

The above linear change of variables helps identify thedifferent vortex locations on that curve. Alternatively, one
eigenvalue behavior of the linearized dynamics in eack®of could fix |y and varyR. The plots then give the linear stabil-
and (F%)° separately. Denote biyl the nonsingular matrix ity of the system for different vortex locations, all with the
that takes the vectordk,,dy;,0%;,68y,,6L,,6L,) to the  same value of, but lying on different Fppl curves.
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_Bigenvaiue variation (symmetro disturbances) with oyinder radius parameter This result is completely missed in the analysis of the clas-
sical equilibria where one gets linear stability for all The

1or 1 reason for this is the artificial constraint imposed on the dy-

namics by keeping the free-stream velocity constant which is

equivalent to keeping the cylinder velocity fixed in our mov-

ol ) ing system. It is possible that this instability, when properly
understood, can be harnessed for some motion planning goal
-20r- ] by a suitable control mechanism.

C. Nonlinear stability and the energy-Casimir method

-4or 1 The study of the stability of the Tppl equilibria tofinite
perturbations does not seem to have been previously under-

= | taken. A weakly nonlinear stability analysis has been done in

oo} 1 Tordella!® The Hamiltonian structure described in the last
section strongly suggests that one can carry out a complete

I S e Ty S Y AN Y S e—— nonlinear stability analysis of the moving equilibria using the

energy-Casimir methott Nonlinear stability here refers to
FIG. 3. The plot of\2f(a) vs a=R¥13 in the case of symmetric infinitesi-  the Lyapunov definition.
mal disturbances. The energy-Casimir method involves showing the exis-
tence of®(C), whereC is a Casimir function of the system,

. : I such that the first variation of the augmented Hamiltonian
In both interpretations, however, vanishing corre- function

sponds to vanishing effect of the cylinder motion on the sys-
tem. Indeed, in the limitv= 0, the moving Fppl equilibrium
becomes the equilibrium of two point vortices of equal but ~ He=H+®(C) (15

l(:)pz:[i)tg)/sllf/e(zt;e;/n?ths in an unbounded flow translating with Ve{/anishes at the Fppl equilibrium and the second variation
0 .

From Fig. 3, it is seen that one gets linear instability 1‘orc_'u_‘3“jr"jltiC f(_)r_m Is positi\_/g or negative definite. This isu@- .
small values ofx for symmetric disturbances in contrast to ficientcondition for stability, in the Lyapunov sense, to finite

the linear stability for alla of the classical Hapl equilib- disturbances. . .
fium. It follows from the linear stability results that one cannot

To summarize in the case of infinitesimainti- expect nonlinear stability of the moving ol equilibria to
symmetricdisturbar;ces one gets the same results for th rlf)itrar_y finite disturbances. However, stabjlitysﬁymmetric
moving Fopl equilibria as for the classical equilibria, that is, inite disturbances can be expected and this is what we show

the equilibria are linearlynstablefor all . However, for the belo'\A/\v. t of Casimirs for th term f point vorti d
case of infinitesimasymmetriadisturbances there is a differ- . sle 0 i adS|m|rs or k? sys e_\lm hpolln dvc_)r ices an
ence. There is a range of valuess@<e, for which the a cireufar cylinder, as can be easlly checked, 1

moving equilibria on the Hapl curve are linearlyunstable
C=ky(L,L)+ksy,

Eigenvalue variation (anti-symmetric disturbances) with cylinder radius parameter Wherekl and kz are scalar constants. Without loss of gener-
‘ ' ' ' ‘ ' ‘ ’ ' ality, one can assume =1 andk,=0. Consider now varia-
tions of the function

He=H+®(C).
For the first derivative of this to vanish at thegpb equilib-
rium,

IH+P(C))

T ke O 18
which implies

Fle oH 1 2yo(I5—R?)
d'(C)— =—— =—|I'——F———L,(0) |,
0 o1 0z 03 04 o5 06 07 o8 09 1 ( )(9L IF-e. gL IFe ¢ |% <0
17

FIG. 4. The plot ofA2f(a) vs «=R?/13 in the case of anti-symmetric
infinitesimal disturbances. and so
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2yo(15—R?)
2cL,(0) 15
and sincedC/JdA=dClix,= =dCldy,=0 the first de-

rivatives of H+®(C) with respect to these variables also
vanish.

1

Q' (Cjp.e= LX(O)) (18

Now compute the second derivatives. The only non-

trivial second derivatives ab(C) at the Fppl equilibria are

Hamiltonian dynamics of cylinder and point vortices 1221

P*D(C)

5"-32, |F.e.

aC

0 (O 2 v () ( )2
|F.e. z9L§ |F.e. (?Ly

=20 (C)ee. -

Note that at this point theb’(C)e . has been deter-
mined by the vanishing first variation condition E{.8).

#?P(C) 92C JC\2 However,®"(C) e . is undetermined and will be used as a
W‘F'ef‘b'(c)w.e. &_L)2:+CD”(C)F.9.(a_LX> handle to makeif possible the matrix of second variations
positive or negative definite.
=2<I)’(C)|F,e_+CI)”(C)(ZLX(O))Z, The matrix of second variations &f4 is given by
PHe PHe  PHe  °He  °Hg  d*Hg
IXT Xy dy1 Xy Xy X1 dYs dLydxy Ly axg
PHe  PHg  PHe  PHe  #PHg
dyi  dy1dXp dyidy, dlydyy dLydy,
#PHgy  PHe  PHg  PHg
IxX5  IXpdys dLydxy ALy dx,
W= PHy  PHe  O°H
[} (O] [}
day;  dLydy, dLydy,
PHe  PHe
oLz L,
PHo
aLZ

Denote the elements &V by w;; . Using the various rela-

y

6°Hg=(6X1,0Y1,0%7,8Y2,6Ly,0Ly)

tions between the second derivatives at the equilibria we get

'W(5X1-5\/1,5X2,W2.5LX,5Ly)T.

W1 Wiz Wiz Wiq  Wis  Wig i . . . .
Wor  —W w Wor —w Performing the change of variables as in the linear stability
22 14 24 725 15 analysis gives
Wi —Wip Wis  Wig
W= w w w
22 25 ~ Wis
52H¢=(5xs,5ys,5Lx,5xa,6ya,5Ly)
Wss O
Wes -MTWM(8Xs,0Ys, 0Ly, Xa,0Y4,6Ly)T,
The second variation quadratic form is where
2W11+ 2W13 2( _W14+ le) 2W15 0 0 2\N16
2W12_ 2W14 2( — Wyt W22) 0 0 0 0
MTW M= 2Wqg 0 Wsg 0 2Wog 0
0 0 0 2Aw;—Wig) 2(WiptWay) 0
0 0 2Wp5 2(Wip+Wag)  2(WpptWoy) —2Wis
2W16 0 0 0 - 2W15 W65
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We next check this matrix for definiteness. Since Continuing with the calculations, one finds that the
fourth order minor is given by

PM4:2(W11_W13)PM3<0,

Wiyt Wyg

(aZHq) PHg )

B ax5 Xy IXp since
1—‘2(12 Wll_Wl3>O'
=7 Hence the matrixM TWM fails to be positive or negative
4R i . . . -
definite and no sufficient condition for nonlinear stability to
(a—3)(1+2a%+a)+(1+a)’(3—a)(1l—a)? arbitrary finite disturbances emerges. This is consistent with
X (1—a)2(1+a) the result of linear instability to arbitrary infinitesimal distur-

bances.

<0

(as can be checked by plottingve check fomegativedefi- ~ACKNOWLEDGMENTS

niteness. The second order principal minor is B.N.S. would like to thank Richard Murray for the sup-

PM,=—4)\2>0, ag<a<l, port of a postdoctoral fellowship and for the encouragement

_ _ _ . to work on this problem while at CDS, Caltech.
where A4 is an eigenvalue of the linearized system under

symmetric disturbances ang, is the value at which the plot
in Fig. 3 crosses tha-axis. The third order principal minor
is

APPENDIX: EQUATIONS OF MOTION OF A 2D RIGID
CYLINDER OF ARBITRARY SHAPE IN AN
INVISCID, INCOMPRESSIBLE, VORTICAL FIELD

— 2
PM3=wssP My —8Wis(Wpo—Wpy). In this Appendix we derive the equations for tignami-

Since cal interaction of a 2D rigid body of arbitrary shape moving
in a fluid with vorticity.
PHgy  PHg
A

<0, 0<a<l, 1. Smooth vorticity fields

(Woo—Woy) = (

The equations are first derived for a smooth vorticity

we get , . . : :
d field and then specialized to a field of point vortices. A sche-
PM3< 06 Wss<[ 8W25(Wpr— W) /P M,. matic sketch in the case of point vortices is shown in Fig. 1.
Since a. Linear momentum
PHgy 1 We start by deriving an expression for the linear momen-
Wss=— 2 = E+2‘13'(C)|F.e.+q’"(C)|F.e.(2Lx(0))2, tum of the fluid. We make use of the following vector
X

identity!” (p. 65 in cited referende
we can makeavss as small as possible by a suitable choice of
D"(C)ke. - f adAzf (rxcurla)dA+ % rx(nxayds, (A1)
Recall that the symmetric subspace is an invariant sub-
space under the linearized dynamics. It is not difficult to segvherea is a divergence-free vector field on some bounded
thatfinite symmetric perturbations of the equilibria also leaddomainACR?, r is the position vector with respect to some
to symmetric motions for all time. Hence there exists a symfixed reference framen is the unitinward normal vector on
metric submanifoldof the phase spade which is invariant the boundary. Now lea=u=the velocity field of the flow.
under thefull dynamics. Indeed, using the theory of discreteLet Cg denote a fixed circular boundary of radigsentered
reductiort! one can show that this submanifold is the fixedon some arbitrary point in the domai@ encloses the body
point set under the action of the discrete grdymnd is thus and all of the vorticity (for all time). Let 9B denote the
a symplectic submanifold of the phase spBcé is invariant ~ moving boundary of the body. Then the momentum of the
under Hamiltonian vector fields dp. fluid (of constant, unit densilyin the domainAg between
Consequently the upper left>33 block of the matrix these two boundaries is
MTWM can be viewed as the matrix of second variations of
the Hamiltonian subsystem on the symmetric submanifold. f udA=| (wrxk)dA+ % rx(nxu)ds
The above calculations show that this blockegative defi- AR AR 78
nite in the rangexp<a<<1 and this is a sufficient condition
for nonlinear stability. Hence, we make the following propo- + ﬁ: rx(nxu)ds, (A2)
sition. R
Proposition. In the range of the radius paramete?R>  wherewk=curlu is the vorticity field,k being the unit vec-
where the moving Hapl equilibria are linearly stable to in- tor normal to the plane. Note that the normal in the body
finitesimal, symmetric disturbances, they are also nonlin-contour integral pointaway from the body and the normal
early Lyapunov stable to finite, symmetric disturbances in the Ci contour integral points radialljnward. Counter-
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clockwise circulation is considered positive with the associ- d

ated vorticity vector pointing out of the plane. Pr=11 § rx(nxu)ds— § u(u-n)ds— ig prNds.
Write CR R R
u=Vdg+uy, (A3)  b. Angular momentum

We use the elementary vector identityp. 55 and the

where the notation will now be explained. First of allbg comment above Eq18), p. 65 in cited referende

denotes the curl-free velocity field iR>\B (here,BCR? is
the region occupied by bodydetermined uniquely by the

1 1
R PP b2
motion of the body satisfying the boundary conditions: f rxadA=-3 f (r*curla)dA-3 % ri(nxads,

Vdgz-n=qg-n on 4B, (A4) (ALD)
wherer =||r||. Here agaim is theinward pointing unit nor-
Vdg—0, R—e, (A5)  mal. Hence the angular momentum of the fluid in the domain

whereq is the velocity of the body boundary point. Alsa, Arls
denotes the velocity field due to the vorticity satisfying the 1 ) 1 )
f r><udA=——f wf dA_E f# r<(nxu)ds
AR AR B

boundary conditions 2
uy-n=0 on JB, (AB) 1
- = % r2(nxuds. (A12)
uy—0, R—. (A7) 2 Jeq
It should be noted thai,=uy+u, , whereu, is the velocity Applying Newton's second law for angular momentum

field due to the vorticity in the absence of boundaries and idor the fluid inAg, we get
naturally defined on all oR? (u,—0 asR—, andV Xug

d
=0 in B). u, is the velocity field that is curl-free iR2B and Mg+ 3€ Prr Xnds= aJ r<xudA- fﬁ rx<u(u-n)ds,
Cr AR

is henceuniquely determined if®2\B by the boundary con- Cr (A13)
ditions
whereMg is the torque exerted by the solid on the fluid and
U-N=—Ug-n on 4B, (A8)  is equal and opposite to that exerted by the fluid on the solid.
U—0 as R, (A9) The other terms are analogous to those in the force equation.

Since —Mg=d(A,bXxXU+1Q)/dt, whereb(t) is the posi-
Now apply Newton’s second law to the fluid Az. The  tion vector in the inertial frame of the center of mass of the

following assumptions are made during the derivation: thébody, we thus get the following scalar equation from the

force of gravity on the fluid is balanced by the hydrostaticconservation of angular momentum for the system compris-

pressure, there is no other external force on the fluid, théng of a rigid body and an incompressible, inviscid fluid in

total vorticity in the fluid is constant in time, there is no the domainAg:

circulation around the body and the weight of the body is

balanced by the force of buoyancy. We further make the— (A bx U+|Q)—Ei r2(nxVg)ds
simplifying assumption that the fluid and body have con- 2.dt Joe
stant, uniform density equal to unity. Hence, 1 1d
. 2 _ - - 2 X =0.
d 2d,JARwr kdA > dt iBr (nXuy)dst+Mz=0
Fst prnds=— | udA- u(u-n)ds,
Cr dt Jag Cr (A14)

whereFyg is the force(per unit spapexerted by the solid on Here | is the principal moment of inertia tensor arfd

the fluid at the boundaryB and is equal and opposite to that =k is the angular velocity of the bodyhich can be iden-
exerted by the fluid on the soliddenoted by —Fg), tified as a scalar in this 2D cgs&he first two terms repre-
5ﬁcRpRn ds is the total contribution of the pressure forces sent the total angular momentum of the body with respect to
acting onCg, and$c_u(u-n) dsis the net flux of momen- the origin of the fixed reference frame, and

tum acrossCg. Since —Fg=A,(dU/dt), whereA, is the 1d )
cross-sectional area of the cylinder, we get the following Mr==75 3 fﬁc re(nxu)ds— i Pr(rxn)ds
vector equation for the system comprising of a rigid body R R

and an incompressible, inviscid fluid in the domaigp:

- 3§ rxu(u-n)ds. (A15)

AdU+ 3€ X(nXVd d+df XKk)dA N
L TRRE TS o (n B)dst Gt AR(wr ) The contribution of thé®; and Mg terms A straightfor-
ward computation shows that the terRg and Mg go to

el £ X (NX Uy)ds+Pg=0, (Al0) Zeroin the limitR— o, that is,
dt B 1

where Pr= O( ﬁ) ’ (A16)
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Me=0| = A17 3@ d —3§ v |u|2+f d
r=0| 5/ (A17) CRpRn s= et 2 (t)|nds.

The details of this simplification are given below, the unin-

terested reader may directly skip to the next subsection.
The far field behavior of the velocity field is given, at

any timet, by d

dt

The only O(1) contribution to the pressure integral comes
from the first term on the right. It follows that

b
3{; RnX (nxu®)ds+ — nds=0, (A26)
u=us+tu@+u®+0 CR CR

1
Uk (A18)
and one obtains EqAL16).

The evaluation oM g proceeds on similar lines. Rewrite
the first integral inMg as

wheres is the unit tangent vector o€g. The fieldu.s is
time-invariant and given by

(fARw dA)
UsS=|—5—=—|s (A19)

1
2mR > i:R(r,r}(nXu)ds

Here we have made use of the assumption that there is no net

circulation about the body and henfgw dA=0. The fields _ 1 1 3(; 2
u@ andu®, which contain the first and second moments of 2 Rk ARw dA+ 7R (nxu=)ds

Cr
the vorticity distribution, respectively, may be time-varyifig
and their far field behavior is given by +ZR2 % (nxu®)ds+0 1 (A27)
27 Je, R/’
u®=0| =/, (A20) . . . B
R On the right hand side, the first term is invariant in time and
1 it follows from Egs.(A22) and (A23) that the second and
u(3)=0($). (A21)  third terms vanish. Hence,
It follows, from the decomposition E§A18), that i 1 % _ 1
Ji2 CR(r,r)(n><u)ds 0+0 R/ (A28)
% u?®.ds=—k- ¢ nxu?ds=0, (A22)
Cr Cr The other terms iMg give
3).dg= — k. (3) dg= 1
i u'®.ds k ﬁ nxu'® ds=0. (A23) rxu(u-n)ds=0| = |,
R R Cr R

Usingsxn=k andr=—Rn, the integral in the first term in

Pr may be evaluated:
pr(rxXn)ds=— pr(RNXnN)ds=0 (A29)
Cr Cr

jg rx(nxu)ds=— % Rnx(nxu(2>)ds+o(%).
C C
" " (A24)

In the irrotational region traversed lyr, Eq.(18) can also 2. Point vortices
be written as

and one obtains EqAL7).

Now assume that the given vorticity field is a singular
1 distribution of N point vortices, as shown in Fig. 1.
E)* The vector identities Eq9A1) and (Al1l) are not di-
) ) ) S ) rectly applicable to the given fluid domain but toredified
where®, is themultiple-valuedvelocity potential, invariant - jomain in which one removes small circles centered around
in time, due to a single vortex of strengfhy » dA, and  each point vortex. It can then be shown that the same vector
where ®® is single-valued because of EA22). We use identities hold with the vorticity written as a delta distribu-
the identity Eq.(Al) and the divergence theorem to get tion, w(r))==T;8(r—r)).
Substituting Eqs(A16) and(A17) into (A10) and(A14),

u=vo=vd,+vVod@+vd®+0

jg Rnx (nxu®)ds= § RnX (nXV®?)ds the following equations in the limiR— = are then obtained:
Cr Cr
du d d
S jg d@nds. (A25) AbEJr& iBrX(nXVCI)B)der az [jryxk
Cr
The leading order term in the second integraPis easily a _
seen to beD(1/R?). Using Bernoulli's theorem in the irrota- * dt ﬁBrX(nXuV)ds— 0, (A30)
tional region traversed b€y, the pressure integral iRy is
written as and
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d 1d ) U=R(t)V, b=R(t)a, and the subscrigh denotes reference
gp AebxXU+12) =5 e (NXV®g)ds to the body-fixed frame. Since=db/dt, vectorsa andV

are related as
1d

——=> r-r?k—li r2(nxuy)ds=0. (A31) da
2 dt FI%2dt Jus v ' V=gt oxa (A37)
3. Body-fixed frame The expressions for andA can be written more elegantly

as follows. Recalf that® can be linearly decomposed us-

We now transfer EqQ9A30) and (A31), which were de- ing the Kirchhoff potentialsas

rived in aspatially fixedor inertial frame, XY in Fig. 1, to

equations in &ody-fixedframe. We choose a principal axis Op(L,V(1),Q2((1)=V(1)- d() +Q(1)€, (A38)
frame with origin at the body center of mass, shownxas
Fig. 1. For a given point in the domain the position veator =VxdxtVydy+Q¢, (A39)
in the inertial frame is related to the position vectan the  \yhere the functionss,, ¢, , and ¢ are unit potential func-
body-fixed frame by tions harmonic in the fluid domain, have vanishing gradients
r=R(t)|+b(t), at infinity and satisfy the following body boundary condi-
tions:
whereR(t) e SO(2) gives the orientation of the body-fixed
frame with respect to the inertial frame, abt) € R? is the Idy dpy &
" - T o ==N —==ny ——=nNX—Ny. (A40)
position vector of the origin of the body-fixed frame mea an on an

sured in the inertial frame. Putting(t)=0 in the above
gives the law for transforming vectors of the same norm.
Time derivatives in the inertial frame are related to time

Making use of Eqs(Al) and(Al1l) and the divergence theo-
rem one sees that

derivatives in the body-fixed frame as follows:
§ |><(nb><qu)B)dS: % CIDBnb ds, (A41)
dw dv B B
—=R(t) — +R(1)(Q2XV),
dt dt and that
wherew=R(t)v and Q is the angular velocity of the body
referred to the body-fixed frame. The following relation is > fﬁ 12(ny X V,dg)ds= % dg(nyXl)ds. (A42)
used often: 8 7B

Using these relations, and the following one obtainable from
Green’s theorem:
We also make repeated use of the following vector identity:

dg f
AX(BXC)=(A-C)B—(A-B)C. (A32) 3QC Fan 9an

R(t)v=R(t)(QxV).

ds=0, (A43)

Transferring Eqs(A30) and (A31) term by term using o/ f g harmonic in a bounded domain, the momentum vari-
the above relations one finally obtains the linear and angulatp|es can be re-written as

momentum equations as

d (L =M(V +(p , (A44)
gi T ex|L=o, (A33) A Q) A\
where
dA
ar TVXL=0 (A34) p=>, Tjl;xk+ fﬁ |><(nb><(uv)b)ds+(2 Ij|axk
where ”

and

L=Abv+§ IX (npX Vpdg)ds+ X T'jl;xk 1 1
- =33 T k=5 § X s
JB

axKk, (A35)

+ fﬁ |x(nbx(uv)b)ds+<2 I
9B ax (axk),

_%(2 r

A=1Q- % f{) 12(nyX V,dg)ds— %E Ll )k andM is a 3X 3 symmetric mass tenstirat depends only on
7B the body shape and body mass. Note that if the sum of the
point vortex strengths is zero, thgnand = depend only on
ax(axk), the positions of the vortices with respect to the body. The
contour integrals are uniquely determined from the boundary
(A36) conditions Eqs(A8) and(A9).

1 1
5 b Pmxwnds 5[ T
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4. The Kirchhoff—Routh function and the symplectic
phase space of the point vortices

We make the following claim foG’ andg’. Letr de-
note the position vector in the fixed frame anithe position
vector in the body-fixed frame as before. Then we make the

The phase space df point vortices in bounded domains : Y
following proposition.

was shown to have a symplectic structure appropriate for th
dynamics by Lint® The symplectic form is the same as in
unbounded flow,Qgm=2TdxOdy,, and the Hamil-

Proposition. The following holds:

symp Py o4\ — .
tonian vector field is G'(r;rg;t)=G(llp), (A51)
dx oW "(rirg:t):==G'(r;ro;t)—1/(2)log||r —r
kd_tk:_W1 (A45) g'(r;ro;t) (riro;t) (2m)log|| ol
“ =G(l;lo)— 1/(2m)log[1— o
Vi W A46 =g(l:l
Kdt ~ ox (A46) =g(l;lp). (A52)

Proof. We check thaG’ satisfies all the properties out-

whereW is the Kirchhoff-Routhfunction given by ) 13
lined by Lin™ for all t. Note that

W= Tibe(Xk,Yi)+ ) J_(Ek;j) Tl G (X Vi X 1Y) VG =R(HV,G, Vg =R(t)Vg,
Vipg(r,t)=R(t) Vorp(R(D) 1+ b(t),1)
=R(t) Vp(l 1),

V2g'=VZig.

1
+ 52 TR9(Xk, Yk XjY)), (A47)

with G being a Green’s function satisfying appropriate
boundary conditions and of the form

1 H 20 — U2 — I fyey - H F
GOGLY:X0,Yo) =g00LY: X0, Vo) + Elog[(x—xo)z (i) Zo?nain?bg 0. Henceg'(r;rg;t) is harmonic in the
(i)  The condition of zero circulation around the body is

+(y—Yo)?l, (A48)

and g is the stream function due to agencies other than the
point vortices. The functiog is harmonic everywhere in the
fluid domain and is the stream function of the irrotational
velocity field u;, see Eq.(A8), which annuls the nonzero
normal velocities on the body due to the external vortices.
All three functionsG, g, and g depend on the body shape.
Lin'3 derived these equations for fixed boundaria&is
an invariant of the motion i)z has no explicit time depen-
dency. The theory remains valid for moving boundaries bugiii)
W in general will no longer be an invariant. Denote it as
follows:

W (1, t)=2, rk¢g(rk,t)+k%_) I' LG/ (ry;rj3t)
') J

1
+52 TR (reiria), (A49)
where for any givert the functionsG’ and g’ satisfy the
same properties a& and g. To write W' in terms ofl,,
V(t), andQ(t), note that the term¥g(r,,t), which in this
problem is solely due to the motion of the body, can be
written in body-fixed coordinates as

lzbé(rkit): lﬂB[Ik,V(t),Q(t)],
=V(t)- (1) +Q(t)«(l). (A50)

The fields#(l) (of 2-vectors and «(l) (of 1-vecto) depend
only on the shape of the body. Their components are the
harmonic conjugates of the Kirchhoff potentials that appear
in the analogous linear decomposition of the potential func-
tion of the irrotational flow associated with the motion of the
body Eq.(A38).

and

JG’

jg ——ds= ¢ VG'-nds=0.
o8 on B

This is satisfied since

fﬁ VG'-nds=ff R(1)V,G- R(t)n, ds
JB JB

= § VbG Ny ds=0.
B

The far-field behavior o’ should be

G’(r;ro;t)=%logllr—rolHO m)

Flek 1

Ezo(nr—ronZ)’

Flek 1 1

o 2alr—r] +O(nr—ronZ)'

Since |[r—rgol|=[I—1o], and using the relations be-

tween gradients and vectors in the two frames, one
sees thatG’ does possess the above behavior. [

Thus,
W' (ry,t) =W(l,,V(1),(1))

=2 Tl V(D), Q(D)]

+ >

1
> TG+ 5 2 Tig(il),
kj(k>])

(A53)
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WA IW tive of the shape of the boglylue to the conservation of the
e R(t o (A54)  Kinetic energy and the fact that the equations form a finite
dimensional system. To find this structure and also the asso-
The equations of motion of the vortices in the body-fixedgijated Lagrangian formulation one has to invoke the full
frame can then be derived from Eq#45) and(A46) using  power of reduction theories for systems with symmé&tR?

the above results. F&=1,.....N, this gives Such a project has already been embarked upon by the au-
d IW thors and Jim Radfor¢Caltech.
FkR(t)(alk"_QXlk"—V ZJR(I)(W»
k

IN. E. Leonard, “Stability of a bottom-heavy underwater vehicle,” Auto-
IW matica33, 331(1997; see also N. E. Leonard and J. E. Marsden, “Sta-
=J| —]. bility and drift of underwater vehicle dynamics: mechanical systems with
( c?lk) rigid motion symmetry,” Physica [105 130 (1997).
. . 2M. S. Triantayfyllou and G. S. Triantayfyllou, “An efficient swimming
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0 3D. Lewis, J. Marsden, R. Montgomery, and T. Ratiu, “The Hamiltonian
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