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Abstract

We study the dynamics of the relative motion of
satellites in the gravitational field of the Earth, in-
cluding the effects of the bulge of the Earth (the J2

effect). Using Routh reduction and dynamical sys-
tems ideas, a method is found that locates orbits
such that a cluster of satellites remains close with
very little dispersing, even with no controls.

1 Introduction

There has been considerable interest in distribut-
ing the functions of a single large satellite among
several small cooperative units. Many potential ap-
plications of this enabling technology exist, one of
which is to improve the performance of Earth ob-
servation. A cluster of satellites will be able to syn-
thesize a much larger aperture than can be achieved
with a single platform, thus providing significant in-
creases in image resolution through interferometry.

Advantages of Clusters. In addition to the main
advantage of having a long baseline, there are other
advantages of using a cluster of satellites, including
the following:

1. Individual vehicles are inexpensive, which al-
lows for redundancy of critical components.

2. Since the number of vehicles in the cluster is
arbitrary, the cluster can be expanded if new
demands arise.

3. Because the cluster can be reconfigured, it is
flexible and can be changed to perform new mis-
sion objectives.
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4. The cluster can be updated to include new sen-
sors by adding only a few satellites.

5. Should one satellite in the cluster malfunction,
the mission may continue with the remaining
satellites, and the cluster can be repaired either
through replacement of the malfunctioning ve-
hicle or reconfiguration of the cluster.

Recent Advances in Formation Flight. Sedwick,
Kong and Miller1 used the Clohessy-Wilshire equa-
tions as their starting model to find relative orbits
about a reference spacecraft. A circular reference
orbit and a spherical Earth (without J2 effect) was
assumed in their study. The equations of motion of
the other spacecraft were linearized relative to the
rotating frame of the reference spacecraft. They
used these linear equations of motion to establish
a large family of relative orbits. Their estimations
showed that only a small amount of fuel (roughly 20
meters per year per spacecraft) was required if only
the differential perturbations that tend to affect the
size and shape of the cluster were addressed. In the
Earth orbit at about 800 km altitude, the J2 effect is
much larger in comparison with other perturbations
such as atmospheric drag, solar radiation pressure
and electro-magnetic effects.

Responding to the need to take into consideration
both the nonlinearity and the J2 effect right from
the start, Schaub and Afriend2 built on the work
of Brouwer3 and found J2 invariant relative orbits.
Working with mean orbit elements, the secular drift
of the longitude of the ascending node and the sum
of the argument of perigee and mean anomaly were
set equal between two neighboring orbits. By having
both orbits drift at equal rates on the average, they
would not pull apart over time due to the J2 influ-
ence. Two first order conditions were established be-
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tween the differences in momentum elements (semi-
major axis, eccentricity and inclination angle) that
guarantee that the drift rates of two neighboring or-
bits were equal on the average. Differences in the
longitude of the ascending node, argument of perigee
and initial mean anomaly could be set at will, as long
as they were setup in mean element space.

Inspired by our joint work with the Jet Propulsion
Laboratory in applying dynamical systems theory to
space mission design near the libration points (see
Koon, Lo, Marsden and Ross4), we have developed
similar dynamical systems techniques appropriate to
the near Earth case and found a family of candidate
reference orbits whose nearby orbits support forma-
tion flight. Using Routh reduction and Poincaré sec-
tion techniques appropriate for the J2 dynamics, we
have developed a procedure for locating orbits such
that the cluster of satellites remains close for many
years, with very little dispersing, even with no con-
trols. Rather than using orbital elements, our analy-
sis is done directly in physical space which makes the
connection with physical requirements more direct.

This methodology of finding dynamically-
favorable orbits, if coupled with control and optimal
control, may provide an effective way to deal with
maintenance and reconfiguration of formation flight
of near Earth satellites, as well as providing the
mission designer with a complete picture of fuel-
efficient formations.

2 The Reduced Equations

In this section, we will use the Routh reduction tech-
nique to rewrite the equations of motion of the full
system in a simpler form. This procedure will en-
able us to study first the reduced dynamics in the
meridian plane of the satellite before dealing with
the dynamics in the longitudinal direction.

Recall that in spherical coordinates (ρ, φ, θ), the
potential energy including the J2 effect is given by

U = −µ
ρ

+
µR2

eJ2

ρ3

(
3
2

cos2 θ − 1
2

)
.

where µ is the gravitational constant of the Earth
(µ = GMe = 3.986005×1014m3/s2), Re is the radius
of the Earth (Re = 6378140m) and J2 is the second
zonal harmonic coefficient due to the oblateness of
the Earth (J2 = 0.00108263).

Following Broucke5, we use the z-axis symme-
try of the J2 problem where the longitude variable
φ is ignorable and the z component of the angu-
lar momentum is conserved to reduce the equations

of motion into two second order equations with a
Routhian function

R =
1
2

(ρ̇2 + ρ2θ̇2)− H2
z

2ρ2 sin2 θ
− U

where Hz is the z component of the angular momen-
tum.

In the rectangular coordinates (r, z) of the co-
rotating meridian plane of the satellite, the Routhian
function becomes

R =
1
2

(ṙ2 + ż2)− H2
z

2r2
− U(r, z).

where ρ2 = r2 + z2 and cos θ = z/ρ. The reduced
equations are then given by

d

dt

(
∂R

∂ṙ

)
=
∂R

∂r
,

d

dt

(
∂R

∂ż

)
=
∂R

∂z
.

Equivalently,

r̈ = H2
z

1
r3
− µ r

(r2 + z2)3/2

−3µR2
eJ2

2
r

(r2 + z2)5/2

+
15µR2

eJ2

2
rz2

(r2 + z2)7/2
;

z̈ = −µ z

(r2 + z2)3/2
− 3µR2

eJ2

2
z

(r2 + z2)5/2

+
3µR2

eJ2

2
(3z2 − 2r2)z
(r2 + z2)7/2

.

Hence, after a Routh reduction, the equations of
motion of the full system has been rewritten in a
simpler form which enables one to first study the re-
duced dynamics in the meridian plane (r, z) before
dealing with the dynamics in the longitudinal vari-
able φ. The general form of the preceding equations
is

r̈ = f(r, z), z̈ = g(r, z), φ̇ =
Hz

r2
.

Notice also that the energy E given by

E =
1
2

(ṙ2 + ż2) +
H2
z

2r2
+ U(r, z) (1)

is the other integral of motion besides Hz.

3 The Pseudo-circular Orbit and

A Cluster of Micro-satellites

After performing Routh reduction, we are ready to
use the method of Poincaré section in finding the
initial conditions for orbits that are dynamically fa-
vorable to formation flight.
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Figure 1: The plane z = 0 is the plane of the Earth’s equa-

tor. Poincaré section is made by plotting a point (r, ṙ) when-

ever the satellite crosses the equator from the south to the

north.

Poincaré Section. Since the energy E is conserved
(in the meridian variables (r, z)), the constant en-
ergy surface for the reduced system is three dimen-
sional and the hyperplane z = 0 can be used as
the transversal plane to obtain the two dimensional
Poincaré section. See Figure 1 and Figure 2. No-
tice that the plane z = 0 is the plane of the Earth’s
equator. Roughly speaking, the Poincaré section is
made by plotting a point (r, ṙ) whenever the satellite
crosses the equator from the south to the north.
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Figure 2: E = −0.45, H2
z = 0.3. Poincaré section of (r, ṙ)

at z = 0. Units of time and length have been chosen to make

the radius and the gravitational constant of the Earth equal

to 1.

As the z component (Hz) of angular momentum
(which is related to the inclination) is varied from its
maximum value (−1/2E) for to its minimum value
(zero) from equator to polar, a number of interesting

bifurcations take place, especially around the critical
inclination (see Figure 3). However, since our main
interest in this study is on formation flight, we will
refer the readers who are interested in this bifurca-
tion analysis to Broucke5. Also, in this paper, we
have concentrated our attention on the general case
which is neither polar nor near critical inclination.
But we intend to study these interesting cases in our
next paper.
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Figure 3: E = −0.45, H2
z = 0.1. Poincaré section of (r, ṙ)

at z = 0. Figure shows the bifurcation near the critical incli-

nation where the Poincaré map has 3 stable and 2 unstable

fixed points.

Notice that for any fixed values of E and Hz,
each point (r, ṙ) of the Poincaré section gives the
initial conditions (r, z, φ, ṙ, ż, φ̇) for an orbit of
the full system. This is because z = 0 and ż =
ż(r, ṙ, 0, E,Hz) (where ż > 0) and φ̇ = Hz/r

2 can be
computed from the fixed energy E and the fixed z-
component of angular momentum Hz once (r, ṙ) are
known. Also, since φ is ignorable, it can be chosen
arbitrary. For convenience sake, we can set φ = 0 at
t = 0. Hence, (r, ṙ) (or more fully, (r, 0, φ, ṙ, E,Hz))
provides all the initial conditions for an orbit of the
full system.

The Pseudo-Circular Orbit. By studying this
Poincaré section (Figure 2) and looking for the
stable fixed point, we can find the pseudo-circular
orbit (which corresponds to the fixed point in the
middle of Figure 2) whose nearby orbits can be
used for formation flight. Clearly, this fixed point
corresponds to a periodic orbit in the reduced
system. But it also gives rise to a trajectory that
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is also periodic in some sense in the full system:
modulo the precession in φ in a revolution around
the earth, this trajectory repeats itself.

As pointed out in Broucke5, this pseudo-circular
orbit whose mean eccentricity is nearly 0 is the cen-
tral backbone of a whole set of solutions (the closed
curves surrounding the fixed point in Figure 2). The
other solutions on the Poincaré section are the quasi-
periodic solutions, which are elliptic orbits with pre-
cessing perigee locations. The perigee and apogee
altitude of these elliptic orbits can be estimated by
the two intersections of the invariant curve with
the r-axis. These points being at approximately
(a(1 − e), 0) and (a(1 + e), 0) where (a, 0) is the
fixed point. Hence, the eccentricity e can also be
estimated. Roughly speaking, the set of solutions
is parameterized by the eccentricity. Think of each
closed curve surrounding the fixed point as a set of
solutions which all have the same eccentricity. As
one moves out from the fixed point, the eccentricity
gets large. Notice that our units of time and length
have been chosen in such a way that Re = 1 and
µ = 1.

In figure 4 and 5 we show two examples of or-
bits represented in the rotating meridian plane (r, z).
Figure 4 is a pseudo-circular orbit with inclination
equal to 580. This shows an analogy with the pendu-
lum problem: the motion is merely an up and down
libration about the equator. In Figure 5 we show a
precessing elliptic orbit. The precession of the

perigee and apogee are clearly visible. These fig-
ure also show the regions of allowable motion and
the zero-velocity curves.

Triangular Cluster near the Pseudo-Circular Orbit.
By using the fixed point and the points nearby
as well as making slight changes in the longitu-
dinal angle φ (and possibly in the time t), we
can construct different kinds of cluster which will
remain together after many years (corresponding to
thousands of revolutions around the Earth). For
example, if we fix E = −0.45,H2

z = 0.3, the fixed
point for the Poincaré section at z = 0 will be
(rf , 0) where rf = 1.11133496883 (about 710 km
above the Earth). The following initial conditions
will give a triangular cluster (with each side close
to 100 meters).

r − rf ṙ φ
0.0 0.0 10−5

7× 10−6 0.0 0.0
0.0 0.0 −10−5

The evolution of these three satellites in a trian-
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Figure 4: The red curve is the pseudo-circular orbit repre-

sented in the rotating meridian plane (r, z). This orbit corre-

sponds to the fixed point in Figure 2. This figure also shows

the zero-velocity (black) curve and the region of allowable

motion.

gular cluster were plotted in a frame whose origin is
at their instantaneous barycenter, with the yz-plane
orthogonal to the line of sight, the x-axis pointing
towards the center of the Earth, and the y-axis and
the z-axis pointing towards the (instantaneous) west
and north respectively. Figure 6 shows the trajecto-
ries of these three satellites projected onto the yz-
plane for 100 revolutions around the Earth (about a
week). Figure 7 shows the trajectories of the same
satellite cluster in the yz-plane for 5000 revolutions
around the Earth (about a year). Notice how small
the dispersion is during a year—it measures just a
few meters. Recall that the length units have been
chosen to make the radius of the Earth (6.4 × 106

meters) equal to 1.

4 A Short Explanation of Why

the Method Works So Well

Besides the need to form a triangular cluster orthog-
onal to the line of sight, the initial conditions of the
cluster have been chosen with three main considera-
tions in mind: (i) the three satellites have the same
energy E, (ii) they have the same z-component of
the angular momentum Hz and (iii) they are near
a pseudo-circular orbit whose mean eccentricity e is
nearly 0.

Our Poincaré map method essentially ignores
short period oscillations (within a single revolution
around the Earth) but provides a global view of the
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Figure 5: A precessing elliptic orbit represented in the ro-

tating meridian plane (r, z). Shown are three snap shoots at

three different instances that are weeks apart.

long period growth and the secure growth caused by
the J2 perturbation. Its success can be explained
by the same theory developed by Brouwer3 and was
used in Schaub and Alfriend2. Here, we will only
sketch the basic approach.

Mean Orbital Elements. In the mean orbital ele-
ment space, the energy E can be approximated to
the first order by

E = − 1
2L2

+ J2
1

4L6

(
L

G

)3(
1− 3

H2

G2

)
. (2)

Here L is the action, G is the angular momentum
and H is its z component. They are defined by the
following relations:

L =
√
a

G =
√
a(1− e2) = Lη

H = G cos i

where a is semi-major axis, e is the eccentricity, i is
the inclination and η =

√
1− e2.

The condition (ii) means δH = 0. It can be shown
that the conditions (i) and (iii) imply that δL =
o(J2δG) and δG = o(δη). Since δη is really small for
any two orbits near a pseudo-circular orbit (in the
order of 10−11 in our example), the secular drift rate
between them are essentially zero. Hence, δL, δG
and δH are nearly zero.

Recall that the mean angle rates l̇, ġ, ḣ for the
mean anomaly, the argument of perigee and the lon-
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Figure 6: The trajectories of three satellites in the yz-plane

for 100 revolutions around the Earth. Unit of length have

been chosen to make the radius of the Earth (6.4×106 meters)

equal to 1.

gitude of ascending node are given by

l̇ =
1
L3
− J2

3
4L7

(
L

G

)3(
1− 3

H2

G2

)
ġ = −J2

3
4L7

(
L

G

)4(
1− 5

H2

G2

)
ḣ = −J2

3
2L7

(
L

G

)4(
H

G

)
A straightforward computation will show that
δ̇l, δ̇g, ˙δh are nearly zero. Therefore, the cluster will
remain close together with very little dispersing un-
der the natural dynamics.

Slight Modification of Brouwer’s Theory. How-
ever, for the case of small eccentricity, the perigee
argument g and the mean anomaly l are not well-
defined. Fortunately, this difficulty is not essential
and can be solved by using new orbital elements. In
Deprit and Rom6, the author introduced three new
elements F,C and S:

F = l + g,

C = e cos g,
S = e sin g.

F is nothing but the mean distance to the ascending
node. C and S are the two components of the eccen-
tricity vector. These three new elements F,C and
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Figure 7: The trajectories of the same three satellites in the

yz-plane after 5000 revolutions around the Earth.

S, together with the longitude of ascending node h,
the polar component of angular momentum H and
the action L, form a complete set of new orbital el-
ements.

For the two most important drifts, namely, the
mean distance to the ascending node F and the lon-
gitude of ascending node h, it was shown that

Ḟ = l̇ + ġ,

and ḣ remains the same. Hence, similar computa-
tions will show that the rate of relative drifts for the
mean distance ( ˙δF ) and the longitude of ascending
node ( ˙δh) among the satellites of the cluster are also
nearly zero.

5 Conclusion

Using Routh reduction and Poincaré section tech-
niques appropriate for the J2 dynamics, we have de-
veloped a procedure for locating orbits such that the
cluster of satellites remains close for many years,
with very little dispersion, even with no controls.
This result, if coupled with optimal control tech-
niques, is expected to provide a fuel-efficient way to
deal with maintenance and reconfiguration of forma-
tion flight.

Merging with Control and Optimal Control. The
performance requirements of many formation flight
missions, with regard to both formation mainte-
nance and propellant consumption, necessitates
the use of low-thrust trajectories and continuous

control paradigms. Theoretically, one of the most
favored approaches is to use optimal control in
generating the low-thrust trajectories. There are
a number of numerical difficulties. Previously
developed numerical algorithms do not converge for
any problem that is relatively sensitive. However,
in Milam, Petit and Murray7 and Petit, Milam and
Murray8 the authors have shown that it is possible
to use the Nonlinear Trajectory Generation (NTG)
software package for maintaining and reconfiguring
a triangular cluster near orbits with low eccentricity
in real-time. We expect even better results if NTG
is coupled with the dynamical systems techniques
mentioned above. Moreover, merging this control
and dynamics method with image and Earth cover-
age analysis metrics, will enable mission designers
to design optimal observation formations.
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