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Abstract

We describe the effect of physical dissipation on stability of
equilibria which have been stabilized, in the absence of damp-
ing, using the method of controlled Lagrangians. This method
applies to a class of underactuated mechanical systems includ-
ing “balance” systems such as the pendulum on a cart. Since
the method involves modifying a system’s kinetic energy met-
ric through feedback, the effect of dissipation is obscured.
In particular, it is not generally true that damping makes a
feedback-stabilized equilibrium asymptotically stable. Damp-
ing in the unactuated directions does tend to enhance stabil-
ity, however damping in the controlled directions must be “re-
versed” through feedback. In this paper, we suggest a choice
of feedback dissipation to locally exponentially stabilize a class
of controlled Lagrangian systems.

1 Introduction

The method of controlled Lagrangians is a technique for sta-
bilizing underactuated Lagrangian mechanical systems with
symmetry [4]. The method provides a feedback control law
which preserves the Lagrangian structure but which shapes the
energy of the closed-loop system. Standard stability analysis
techniques may then be used to find conditions on control gains
for closed-loop stability. Energy methods are appealing be-
cause they provide Lyapunov functions which are useful for
estimating regions of attraction. Furthermore, for conservative
system models, energy methods give conclusive stability re-
sults where spectral techniques fail. When physical dissipation
is included, however, spectral analysis yields conditions for lo-
cal exponential stability. Exponential stability is very desirable
because of the inherent robustness to model uncertainty.

In this paper, we describe the effect of physical dissipation on
a system which, in the conservative approximation, has been

stabilized using the method of controlled Lagrangians. For the
closed-loop system (under the control law implied for the con-
servative model), damping in the unactuated directions tends
to enhance stability while damping in the actuated directions
tends to destabilize. We therefore suggest a choice of feedback
dissipation to exponentially stabilize the equilibrium.

We consider only equilibria that are fixed points for the unre-
duced equations, such as an inverted pendulum on a cart at rest.
The analysis can be generalized to include relative equilibria,
as well. In future work, we will also extend our treatment to
include relative equilibria for systems with full configuration
symmetry such as a spacecraft with internal rotors.

The idea of using feedback to shape a mechanical system’s
energy is well-established. Stabilization by potential energy
shaping is described in [7]. Because this approach does not
generally apply to underactuated systems, the idea of kinetic
energy shaping has also been considered. Stabilization by ki-
netic shaping has been studied, in the Lagrangian setting, by
Bloch et al and also in [1] and [5]. On the Hamiltonian side,
the authors of [6] extend their previous work on passivity-based
control techniques to include physical and feedback damping.
Here, we make a similar extension to consider the effect of
damping on a controlled Lagrangian system. This work relates
to previous results concerning stabilization of an underwater
vehicle subject to viscous forces and torques [8].

The paper is organized as follows. In Section 2 we briefly re-
view the method of controlled Lagrangians for a class of con-
servative mechanical systems. In Section 3, we include phys-
ical dissipation and describe the stability result. Section 4 de-
scribes an experimental application which is a variant of the
classic pendulum on a cart. We conclude in Section 5.

2 Summary of the Method

Consider a Lagrangian mechanical system defined on configu-
ration spaceQ. Suppose thatQ is subject to the free and proper
action of an abelian Lie groupG and that the LagrangianL is



invariant under this action. Suppose also that control forces en-
ter only in this symmetry (G) direction. The method of con-
trolled Lagrangians provides a choice of feedback such that
the closed-loop system derives from a new Lagrangian with a
control-parameterized kinetic energy. The method also allows
for potential shaping although, in this paper, we consider only
kinetic shaping. (See [2] for details on potential shaping for
controlled Lagrangian systems.)

To understand the approach, recall that the kinetic energy met-
ric g(·, ·) provides a natural splitting of any tangent vectorvq

into “horizontal” and “vertical” components. The vertical com-
ponent ofvq is tangent to theG-orbit throughq while the hori-
zontal component is its metric orthogonal. That is,

vq = Hor vq + Ver vq

for eachvq ∈ TqQ where

g(vq, wq) = g(Hor vq,Hor wq) + g(Ver vq, Ver wq)

for vq, wq ∈ TqQ. The tangent space at each point thus decom-
poses into a vertical space Ver and a horizontal space Hor.

The method of controlled Lagrangians involves choosing a new
horizontal space, denotedHorτ , a new metricgσ on horizontal
vectors, and a new metricgρ on vertical vectors. The param-
etersτ , σ, andρ are then chosen in such a way that, under an
appropriate feedback control law, the closed-loop equations are
Lagrangian with respect to the modified kinetic energy metric.

Let g denote the Lie algebra ofG and defineτ as a Lie algebra-
valued horizontal one-form onQ. That is, letτ : TqQ → g be
such that

τ(vq) = τ(Hor vq) ∈ g.

We denote byτ(v)Q the vector field onQ which is the infinites-
imal generator ofτ(v). One may then define the “τ -horizontal
space” atq ∈ Q as the space of all tangent vectors of the form
Horτvq = Hor vq − τ(v)Q(q). The infinitesimal generator
of τ(v) evaluated atq is a vertical vector, so the complemen-
tary space toHorτ defined byVerτvq = Ver vq + τ(v)Q(q) is
equivalent to the original vertical space.

Suppose thatτ, gσ, andgρ are given, thatg = gσ on the hor-
izontal space, and that the horizontal and vertical spaces are
orthogonal forgσ. Then the controlled Lagrangian is [4]

Lτ,σ,ρ(vq)

=
1
2

(gσ(Horτvq, Horτvq) + gρ(Verτvq, Verτvq))− V (q)

= L(vq + τ(v)Q(q)) +
1
2
gσ(τ(v)Q(q), τ(v)Q(q))

+
1
2
(gρ − g)(Verτvq, Verτvq). (1)

Under certain conditions on the parametersτ , σ, andρ and the
metricg, there is a control law for which the closed-loop equa-
tions under the prescribed control law are simply Lagrange’s
equations forLτ,σ,ρ. These conditions typically leave some

freedom in the parametersτ, σ, andρ, which then play the role
of control gains.

The system state, which corresponds to a point inQ, can be
described by an element inG and an element in the comple-
mentaryshape spaceQ/G. Define local coordinatesθa for
G andxα for Q/G. In these coordinates, the Lagrangian is
L(xα, ẋα, θ̇a) =

1
2
gαβ ẋαẋβ + gαaẋαθ̇a +

1
2
gabθ̇aθ̇b − V (xα)

wheregαβ , gαb, andgab are the local components of the kinetic
energy metricg(·, ·). The Euler-Lagrange equations are

d
dt

∂L
∂ẋα −

∂L
∂xα = 0

d
dt

∂L
∂θ̇a

= ua. (2)

The method of controlled Lagrangians provides a technique for
stabilizing an unstable equilibrium

(xα, ẋα, θ̇a)e = (xα
e , 0, 0) (3)

for equations (2). If (2) describes a balance system,xα
e is a

local maximum of the potentialV (xα). Because of limited
control authority, one cannot stabilize by shaping the poten-
tial energy to make the equilibrium a minimum. However, one
may shape the kinetic energy so that the equilibrium becomes
a maximum of the modified total energy. In the conservative
setting, at least, this is sufficient for stability.

Let τ b
α be the local representation ofτ and letσab andρab de-

note theab components ofgσ andgρ, respectively. Four condi-
tions which are sufficient for matching are [3]

Assumption GM-1. τ b
α = −σabgbα.

Assumption GM-2. σbd(σad,α + gad,α) = 2gbdgad,α.

Assumption GM-3. (ρab − gab),α = 0.

Assumption GM-4. Letting ζa
α = gacgcα,

0 = τ b
α,δ − τ b

δ,α + ρba$ac(ζc
α,δ − ζc

δ,α)

−ρbagac,δρcd$daζa
α − ρbagac,ατa

δ .

Commas in the subscripts denote partial derivatives.

Conditions GM-1 through GM-4 are referred to as the “general
matching conditions” to distinguish them from certain special
cases. These conditions impose requirements on the control
parametersτ, σ, andρ and on the unmodified kinetic energy
metricg.

Using Assumption GM-1, the coordinate expression for the
controlled Lagrangian (1) becomesLτ,σ,ρ(xα, ẋα, θ̇a) =

1
2
(gτ,σ,ρ)αβẋαẋβ +(gτ,σ,ρ)αbẋαθ̇b+

1
2
(gτ,σ,ρ)abθ̇aθ̇b−V (xα)

where

(gτ,σ,ρ)αβ =
(

gαβ − gαc(gcd − σcd)gdβ+
gαc(gcd − σcd)ρde(gef − σef )gfβ

)



(gτ,σ,ρ)αb = gαc(gcd − σcd)ρdb

(gτ,σ,ρ)ab = ρab.

Under the matching conditions, the control law prescribed by
the method of controlled Lagrangians gives the closed-loop
equations

d
dt

∂Lτ,σ,ρ

∂ẋα − ∂Lτ,σ,ρ

∂xα = 0

d
dt

∂Lτ,σ,ρ

∂θ̇a
= 0. (4)

Comparing the open-loop system (2) and the closed-loop sys-
tem (4), one may verify that the control law isua =

− d
dt

{

(ρab − gab) θ̇b +
(

ρac(gcd − σcd)gdβ − gaβ
)

ẋβ
}

.
(5)

Remark 2.1 The control law (5) involves acceleration as well
as position and velocity. One may use the equations of mo-
tion to eliminate acceleration from the control law. When dis-
sipation is included in the model, the control law (5) includes
contributions from the dissipative forces. However, the control
law obtained by using the conservative equations of motion to
eliminate acceleration does not involve these external forces.
We assume throughout that this latter control law is applied so
thatua does not depend on physical or feedback dissipation.

Note from the closed-loop equations (4) that the controlled mo-
mentum conjugate toθa is conserved. The conservation law
will no longer hold when we include physical and feedback
dissipation, however it is useful for constructing a Lyapunov
function for the conservative system. Define

J̃a =
∂Lτ,σ,ρ

∂θ̇a
= ρab

(

θ̇b + (gbc − σbc)gcαẋα
)

. (6)

Under the control law (5), the desired equilibrium (3) will be
stable provided the control-modified energy

Eτ,σ,ρ(xα, ẋα) =
1
2
Aαβ ẋαẋβ +

1
2
ρabJ̃aJ̃b + V (xα) (7)

is definite. The tensorAαβ is the coordinate form of the modi-
fied horizontal kinetic energy metricgσ,

Aαβ = gαβ − gαa(gab − σab)gbβ . (8)

The energyEτ,σ,ρ is simply the Routhian ofLτ,σ,ρ.

In analyzing stability of the conservative system, one may treat
Eτ,σ,ρ as a function ofxα andẋα, parameterized bỹJa. The
modified energy serves as a Lyapunov function candidate on
level sets ofJ̃a. Assuming thatxα

e is a maximum of the
amended potential

Vµ(xα) =
1
2
ρabJ̃aJ̃b + V (xα),

the equilibrium (3) is stable ifAαβ |e is negative definite.

Alternatively, one may treatEτ,σ,ρ as a function ofJ̃a, as well,
and use the energy-Casimir method (for example) to construct a
Lyapunov function. Such a function can be useful for studying
closed-loop stability under the influence of dissipative forces
which can destroy conservation ofJ̃a.

3 Physical and Feedback Dissipation

To determine the effect of physical and feedback dissipation
on the feedback-controlled system (4), consider the following
open-loop equations obtained by appending generalized forces
to equations (2):

d
dt

∂L
∂ẋα −

∂L
∂xα = Fα

d
dt

∂L
∂θ̇a

= ua + Fa. (9)

The generalized forcesFα andFa might represent physical dis-
sipation, additional control, etc. Let square brackets denote the
matrix form of a tensor and define the generalized inertia ma-
trices

M =
(

[gαβ ] [gαb]
[gaβ ] [gab]

)

and

M τ,σ,ρ =
(

[(gτ,σ,ρ)αβ ] [(gτ,σ,ρ)αb]
[(gτ,σ,ρ)aβ ] [(gτ,σ,ρ)ab]

)

.

Assuming thatua is chosen as described in Remark 2.1, the
equations of motion become





[

d
dt

∂Lτ,σ,ρ

∂ẋα − ∂Lτ,σ,ρ

∂xα

]

[

d
dt

∂Lτ,σ,ρ

∂θ̇a

]



 = M τ,σ,ρM−1
(

[Fα]
[Fa]

)

.

(10)

Once again, consider stability of the equilibrium (3) under the
controlled Lagrangian control law withFα = Fa = 0. Sup-
pose that a Lyapunov function has been constructed, for this
conservative setting, using the modified system energyEτ,σ,ρ

and the conserved momentum̃Ja. When damping is included,
one may use this function to search for conditions for asymp-
totic stability. This approach succeeds when there is feedback
dissipation but no physical damping [2, 4]. Unfortunately, the
approach is not so useful when there is physical dissipation;
generic damping makes the Lyapunov rate indefinite in a way
that feedback dissipation cannot compensate. However, local
analysis yields a definitive stability result.

Changing coordinates from(xα, ẋα, θ̇a) to (xα, ẋα, J̃a), we
consider the equilibrium

(xα, ẋα, J̃a)e = (xα
e , 0, 0) (11)

corresponding to (3). Before linearizing about this equilibrium,
it is convenient to define

Bαβ = gαβ − gαagabgbβ > 0

Dab = gab + σacgcαBαβgβegeb.



The linearized dynamics are

δẍα = −
(

Aαγ ∂2V
∂xγ∂xβ

)

e
δxβ +

(

Bαβ)

e δFβ

−
(

Bαβgβcgcb)

e δFb

δ ˙̃Ja =
(

ρacDcb)

e δFb −
(

ρacσcdgdγBγβ)

e δFβ

We assume thatδFα = −dαβδẋβ wheredαβ > 0 is a sym-
metric damping tensor. That is, we assume the linearized dissi-
pative force in the unactuated directions is nonzero. (Certainly
Fα may include terms which are higher order in velocity.)

We assume that any physical damping in the actuated direc-
tions can be exactly cancelled so thatδFa may be specified as
a control. Suppose that

δFa = (gab)ed̃bc
x (gcβ)eδẋβ − (Dabρbcgcd)ed̃de

J δJ̃ .

whered̃ab
x andd̃ab

J are symmetric dissipative control gain ma-
trices. Through coupling, the term̃dab

x enhances the damping
in the unactuated directions whilẽdde

J provides damping in the
controlled directions.

The complete linearized dynamics take the form






[δẋα]
[δẍα]
[

δ ˙̃Ja

]





 =





0 I 0
A B C
0 D E











[δxα]
[δẋα]
[

δJ̃a

]





 (12)

whereI is the3× 3 identity matrix and

A =
[

−Aαγ ∂2V
∂xγ∂xβ

]

e

B =
[

−Bαγ(dγβ + gγcd̃cd
x gdβ)

]

e

C =
[

BαγgγcgcdDdeρefgfhd̃hb
J

]

e

D =
[

ρac(σcdgdγBγψdψβ + Dcdgded̃ef
x gfβ)

]

e

E =
[

−gacd̃cb
J

]

e
.

One might expect thatA < 0 and thatB < 0 wheneverd̃ab
x ≥

0. (If [Aαβ ]e < 0 commutes with[V,α,β ]e < 0, thenA =
AT < 0. A similar statement applies forB.) In this case, one
can show that

(

0 I
A B

)

(13)

is Hurwitz.

Suppose that we choosẽdab
J = 0. ThenC = 0 andE = 0,

so the linearized system is neutrally stable withm zero eigen-
values, wherem = dim([δJ̃a]). The problem is to choose
d̃ab

J to drive thesem eigenvalues into the open left half plane
without driving the formerly stable eigenvalues into the right
half plane. Inspection ofE suggests choosing̃dab

J > 0. If
[d̃ab

J ] > 0 commutes with[gab]e > 0 then E = ET < 0
and thusE is Hurwitz. Unfortunately, because of the coupling

termsC andD, it is not sufficient for exponential stability that
E be Hurwitz. One must determine more explicit conditions
on d̃ab

J to conclude exponential stability. For specific problems,
techniques such as the Routh-Hurwitz method can provide such
conditions.

Remark 3.1 Damping in the uncontrolled directions actually
enhances stability. This follows by observing that the sub-
matrix (13) is Hurwitz even with̃dbc

x = 0. On the other hand,
requiring thatd̃ab

J > 0 equates to “reversing” the damping in
the controlled directions. This would imply that generic damp-
ing in these directions is detrimental to stability.

Remark 3.2 Because of symmetry, we have ignoredθa in the
analysis. Therefore, we do not expectθa to approach a spe-
cific value. By adding an appropriate symmetry-breaking po-
tential control law (i.e., a fictitious spring force), one could
presumably obtain local exponential stability to a particular
point. (See [2].)

4 Example: The Pendulum on a Rotor Arm

Figure 1: Pendulum on a rotary arm.

In this section, we consider the pendulum on a rotor arm. This
problem was treated in [3], although the model used here dif-
fers slightly to better approximate an experimental apparatus
used to test the theory. The previous model considered point
masses linked by massless rods whereas the present model in-
volves two rods with uniformly distributed mass. Figure 1 de-
picts the device and the choice of coordinates. The Lagrangian
for the uncontrolled system is

L(ψ, ψ̇, φ̇) =
1
2
gαβψ̇2 + gαβψ̇φ̇ +

1
2
gabφ̇2 −mgl(cos ψ − 1)

where, in a slight abuse of notation, we define

gαβ =
1
3
ml2,

gαb =
1
2
mlR cos ψ, and

gab =
(

1
3
M + m

)

R2 +
1
3
ml2 sin2 ψ.

A control torque is applied to the horizontal link about the ver-
tical axis. Assuming that no external forces act, other than the



control torqueu, the Euler-Lagrange equations are

d
dt

∂L
∂ψ̇

− ∂L
∂ψ

= 0

d
dt

∂L
∂φ̇

= u. (14)

In [3], the matching conditions suggested choosing

σab = gackcdgdb + gab and ρab = gab + kab,

wherekab represents a constant gain. Letkab = k for brevity.

In the conservative setting, the feedback control law

u = ucL = −kφ̈ =

−k
1
2mlR sin ψψ̇2 −ml2 sin 2ψ

(

1
3 ψ̇φ̇ + 1

4
R
l (cos ψφ̇2 + g

l )
)

( 1
3M + 1

4m
)

R2 + m
( 3

4R2 + 1
3 l2

)

sin2 ψ + k

leads to the modified Euler-Lagrange equations

d
dt

∂Lτ,σ,ρ

∂ψ̇
− ∂Lτ,σ,ρ

∂ψ
= 0

d
dt

∂Lτ,σ,ρ

∂φ̇
= 0

with controlled Lagrangian

Lτ,σ,ρ(ψ, ψ̇, φ̇) = L(ψ, ψ̇, φ̇) +
1
2
kφ̇2.

Define the controlled momentum conjugate toφ, J̃ =
((

1
3
M + m

)

R2 +
1
3
ml2 sin2 ψ + k

)

φ̇ +
1
2
mlR cosψψ̇.

The momentumJ̃ is conserved in the absence of dissipation.
The modified system energy is

Eτ,σ,ρ(ψ, ψ̇) =
1
2
Aαβψ̇2 +

J̃2

2ρab
+ mgl(cos ψ − 1)

where

Aαβ =
1
3
ml2 −

( 1
2mlR cos ψ)2

( 1
3M + m

)

R2 + 1
3ml2 sin2 ψ + k

. (15)

For the conservative system model, the equilibrium

(ψ, ψ̇, J̃)e = (0, 0, 0). (16)

is stable providedEτ,σ,ρ is definite. Define the amended po-
tential

Vµ(ψ) = mgl(cos ψ− 1)+
1
2

J̃2

(M + m)R2 + ml2 sin2 ψ + k
.

The equilibrium (16) will be stable provided

sign (Aαβ)e = sign
(

∂2Vµ

∂ψ2

)

e
. (17)

SinceVµ has a maximum at the equilibrium of interest, the
right-hand side of (17) is negative. Thereforek must be chosen
to makeAαβ negative at the equilibrium. Define a new control
parameter̃k such that

k = −
(

1
3
M + m

)

R2 +
k̃ − 1

k̃

(

3
4
mR2

)

.

Substituting̃k into (15) and simplifying gives

Aαβ =
1
3
ml2





(

(1
3ml2 − 3

4mR2
)

sin2 ψ − 1
k̃

3
4mR2

)

1
3ml2 sin2 ψ + k̃−1

k̃

( 3
4mR2

)



 .

ThenAαβ |e is negative provided̃k > 1. Whenk̃ > 1, Aαβ is
negative for allψ ∈ (−ψ̄, ψ̄) where

ψ̄ = sin−1

√

√

√

√

(

1
k̃

)

(

1 +
(

2l
3R

)2
)−1

.

Whenψ = ±ψ̄, Aαβ becomes zero and the controlucL be-
comes singular. Thus̄ψ places a physical limit on the region
of attraction of the stabilizing control law. As noted in [3], the
value ofψ̄ approachesπ2 in the limit thatk̃ → 1 andl/R → 0.

For the experimental apparatus, damping which is linear in
ψ̇ and φ̇ provides a reasonable model of friction. Including
the friction model and a dissipative feedback torqueudiss, the
open-loop equations (14) become

d
dt

∂L
∂ψ̇

− ∂L
∂ψ

= −dψψ̇

d
dt

∂L
∂φ̇

= −dφφ̇ + ucL + udiss (18)

wheredψ > 0 anddφ > 0. In the notation of Section 3, define

d̃ab
x =

d̃ψ

(gab)e
and d̃ab

J =
d̃J

(gab)e

whered̃ψ andd̃J are dissipative control gains. Let

udiss = dφφ̇ + (gαb)ed̃ψψ̇ −
(

Dab

ρab

)

e
d̃J J̃

with d̃ψ ≥ 0 and d̃J > 0. Note that the dissipative control
law attempts to exactly cancel the damping in the controlled
(azimuthal) direction. While exact cancellation is practically
impossible, local exponential stability will ensure a degree of
robustness to modeling errors.

Figure 2 shows the experimental apparatus. The system is well-
modeled by the equations developed in this section with

M = 0.259 kg, R = 0.211 m, dφ = 0.0096 Nms,
m = 0.130 kg, l = 0.332 m, dψ = 0.00015 Nms.

One can easily show that choosing the control parameters

k̃ = 2, d̃ψ = 10 s−1, d̃J = 5 s−1.



Figure 2: Experimental apparatus.

gives local exponential stability. Figure 3 shows a compari-
son of experimental and simulated results for these control pa-
rameters. The solid curve shows experimental data while the
dashed curve shows simulated data with an initial condition de-
termined from the data. At time zero, the pendulum is very near
the feedback-stabilized inverted equilibrium. At approximately
2 seconds, the pendulum is perturbed. The system undergoes a
damped oscillation, converging once again to near-equilibrium
within about 2 seconds.
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Figure 3: Comparison of experiment and simulation.

One discrepancy between the experiment and the simulation is
a slow, steady drift in theφ direction which is apparent in the
latter seconds of the experimental data shown in Figure 3. A
likely explanation for the drift is calibration error in the mea-
surement of pendulum elevationψ. Such a bias would natu-
rally induce azimuthal drift. In fact, one should expect drift
because the control law preserves the azimuthal symmetry of
the system. To eliminate drift, one might employ an additional

control torque which breaks this symmetry, as described in [2].

5 Final Remarks

The method of controlled Lagrangians provides an algorith-
mic approach for stabilizing underactuated mechanical sys-
tems. For “balance” systems, where the desired equilibrium
is a maximum of the potential energy, stabilization involves
changing the sign definiteness of theτ -horizontal kinetic en-
ergy metric. In such cases, generic physical damping in the
unactuated directions enhances stability, while generic damp-
ing in the controlled directions is detrimental. Analysis sug-
gests that local exponential stability requires feedback dissipa-
tion which “reverses” the effect of damping in the controlled
directions.

Acknowledgements

The authors thank Dong Eui Chang for his helpful comments.

References

[1] D. Auckley, L. Kapitanski, W. White. “Control of non-
linear underactuated systems”,Comm. Pure and Applied
Mathematics, 53, pp. 354–369, (2000).

[2] A. M. Bloch, D. E. Chang, N. E. Leonard, J. E. Marsden.
“Controlled Lagrangians and the stabilization of mechan-
ical systems II: Potential shaping and tracking”,IEEE
Transactions on Automatic Control(To appear.)

[3] A. M. Bloch, N. E. Leonard, J. E. Marsden. “Stabilization
of the pendulum on a rotor arm by the method of con-
trolled Lagrangians”, Proc. Int. Conf. on Robotics and
Automation, pp. 500–505, IEEE (1999).

[4] A. M. Bloch, N. E. Leonard, J. E. Marsden. “Controlled
Lagrangians and the stabilization of mechanical Systems
I: The first matching theorem”,IEEE Transactions on
Automatic Control, 45:12, pp. 2253–2270, (2000).

[5] J. Hamberg. “General matching conditions in the theory
of controlled Lagrangians”,Proc. IEEE Conf. Decision
and Control, 38pp. 2519–2523, Phoenix, AZ (December
1999).

[6] R. Ortega, A. van der Schaft, B. Maschke, G. Escobar.
“Energy-shaping of port-controlled Hamiltonian systems
by interconnection”,Proc. IEEE Conf. Decision and Con-
trol, 38pp. 1646–1651, Phoenix, AZ (December 1999).

[7] A. J. van der Schaft “Stabilization of Hamiltonian sys-
tems”, Nonlinear Analysis: Theory, Methods, and Appli-
cations, 10:10 pp. 1021–1035, (1986).

[8] C. Woolsey, N. E. Leonard. “Global asymptotic stabi-
lization of an underwater vehicle using internal rotors”,
Proc. IEEE Conf. Decision and Control, 38 pp. 2527–
2532, Phoenix, AZ (December 1999).


