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and Energy-based Design. closed-loop system (under the control law implied for the con-
servative model), damping in the unactuated directions tends
Abstract to enhance stability while damping in the actuated directions

tends to destabilize. We therefore suggest a choice of feedback
We describe the effect of physical dissipation on stability @fissipation to exponentially stabilize the equilibrium.

_equmb_rla W:'Ch he:]vedbefen Stabl'll'fjeS’ in the_abser_}_chg of dar:TWé consider only equilibria that are fixed points for the unre-
mg,lysmgt eI met ? % contro ed agrﬁng!anls,. IS mgt ced equations, such as an inverted pendulum on a cart at rest.
applies to a class ot underactuated mechanical systems 'nCH"Iqé analysis can be generalized to include relative equilibria,

'Eg balﬁngg sylstems S;_Ch as the pend,uIIL(J'm on a cart, S wvell. In future work, we will also extend our treatment to
t_ e method involves modifying a SySteT“S_ In_etlc_energy M8hclude relative equilibria for systems with full configuration
ric through feedback, the effect of dissipation is obscure ymmetry such as a spacecraft with internal rotors

In particular, it is not generally true that damping makes

feedback-stabilized equilibrium asymptotically stable. Damghe idea of using feedback to shape a mechanical system’s
ing in the unactuated directions does tend to enhance stagfiergy is well-established. Stabilization by potential energy
ity, however damping in the controlled directions must be “réhaping is described in [7]. Because this approach does not
versed” through feedback. In this paper, we suggest a choggnerally apply to underactuated systems, the idea of kinetic
of feedback dissipation to locally exponentially stabilize a clag®ergy shaping has also been considered. Stabilization by ki-
of controlled Lagrangian systems. netic shaping has been studied, in the Lagrangian setting, by
Bloch et al and also in [1] and [5]. On the Hamiltonian side,
the authors of [6] extend their previous work on passivity-based
control techniques to include physical and feedback damping.

The method of controlled Lagrangians is a technique for stdere, we make a similar extension to consider the effect of
bilizing underactuated Lagrangian mechanical systems wfgmping on a controlled Lagrangian system. This work relates
symmetry [4]. The method provides a feedback control lal@ Previous results concerning stabilization of an underwater
which preserves the Lagrangian structure but which shapes YRBicle subject to viscous forces and torques [8].

energy of the closed-loop system. Standard stability analy$ige paper is organized as follows. In Section 2 we briefly re-

techniques may then be used to find conditions on control gajgsy the method of controlled Lagrangians for a class of con-

for closed-loop stability. Energy methods are appealing bgsryative mechanical systems. In Section 3, we include phys-
cause they provide Lyapunov functions which are useful fgyry) gissipation and describe the stability result. Section 4 de-

estimating regions of attraction. Futhermore, fqr conse.ryatig@ribeS an experimental application which is a variant of the
system models, energy methods give conclusive stability (§3<sic pendulum on a cart. We conclude in Section 5.
sults where spectral techniques fail. When physical dissipation

is included, however, spectral analysis yields conditions for Ié—
cal exponential stability. Exponential stability is very desirab Summary of the Method
because of the inherent robustness to model uncertainty.

1 Introduction

Consider a Lagrangian mechanical system defined on configu-
In this paper, we describe the effect of physical dissipation sation spac€). Suppose thap is subject to the free and proper
a system which, in the conservative approximation, has bezgtion of an abelian Lie grou@' and that the Lagrangiah is



invariant under this action. Suppose also that control forces émeedom in the parameterso, andp, which then play the role
ter only in this symmetry &) direction. The method of con- of control gains.
trolled Lagrangians prowdgs a choice of feedback .such_thﬁ;ce system state, which corresponds to a poirfjrcan be
the closed-loop system derives from a new Lagrangian with,a =~ " ) )

described by an element & and an element in the comple-

control-parameterized kinetic energy. The method also allowséntaryshape space)/G. Define local coordinatese for

for potential shaping although, in this paper, we consider on@ andz® for Q/G. In these coordinates, the Lagrangian is
kinetic shaping. (See [2] for details on potential shaping f(f(xa o éa) e '

controlled Lagrangian systems.)

To understand the approach, recall that the kinetic energy met- %gaga'co‘jzﬁ + Jaad®0% + %gabéaéb —V(x*)

ric g(-,-) provides a natural splitting of any tangent vectgr o
into “horizontal” and “vertical” components. The vertical comWheregas, gas, @ndga, are the local components of the kinetic
ponent ofy, is tangent to th&-orbit throughg while the hori- €nergy metrigy(-, -). The Euler-Lagrange equations are

zontal component is its metric orthogonal. That is, d oL oL
Zioic ope 0
vg = Hor vy + Ver vy dt 0% ; 85L
doge = 2
for eachw, € T,Q where dt 9ge

The method of controlled Lagrangians provides a technique for
stabilizing an unstable equilibrium

for v, wy € TqQ..The tangent space at ea_lch point thus decom- (@®, &%, 9(1,)6 — (22,0,0) 3)
poses into a vertical space Ver and a horizontal space Hor.

The method of controlled Lagrangians involves choosing a nfc\}\; equations (2). If (2) describes a balance systefnjs a

. . . ocal maximum of the potential’(z*). Because of limited
horizontal space, denotétbr.., a new metrigy, on horizontal . . :
. . control authority, one cannot stabilize by shaping the poten-
vectors, and a new metrig, on vertical vectors. The param-

. tial energy to make the equilibrium a minimum. However, one
etersr, o, andp are then chosen in such a way that, under an S _—
: . may shape the kinetic energy so that the equilibrium becomes
appropriate feedback control law, the closed-loop equations are” ~. o :
. . o S .a maximum of the modified total energy. In the conservative
Lagrangian with respect to the modified kinetic energy metric. .. . - -
Setting, at least, this is sufficient for stability.

9(vg, wq) = g(Hor vg, Hor wg) + g(Ver vg, Ver wy)

Let g denote the Lie algebra of and definer as a Lie algebra-
valued horizontal one-form of. That is, letr : T,Q) — g be
such that

Let 7° be the local representation ofand leto,;, andp,; de-
note thezb components o, andg,, respectively. Four condi-

r(vg) = 7(Hor v,) € g. tions which are sufficient for matching are [3]

H _ b _ _ yab
We denote by (v)q the vector field o) which is the infinites- Assumption GM-1. 7, 7 oo

imal generator of (v). One may then define the*horizontal Assumption GM-2. 0*¥ (04,0 + Gad,a) = 29*Gad,a-
space” ay € @ as the space of all tangent vectors of the for
Hor,v, = Hor v, — 7(v)g(g). The infinitesimal generator
of 7(v) evaluated ag is a vertical vector, so the complemenAssumption GM-4. Letting (% = g*“gea

tary space tdlor. defined byVer,.v, = Ver v, + 7(v)g(q) is

equivalent to the original vertical sqpace. 1Tl 0 = Tas= 5o+ Pac(Cs = (o)
7pbagac,6pl:dwda<g - pbagac,a7—<§l~

r,B\ssumption GM-3. (pab — gab),a = 0.

Suppose that, g,, andg, are given, thay = g, on the hor-
izontal space, and that the horizontal and vertical spaces @@mmas in the subscripts denote partial derivatives.

orthogonal forg,. Then the controlled Lagrangian is [4] Conditions GM-1 through GM-4 are referred to as the “general

I (v,) matching conditions” to distinguish them from certain special
’1’p I cases. These conditions impose requirements on the control
= = (9o (Hor,vg, Hor;vg) + g,(Ver-vg, Verrvg)) —V(g)  parameters, o, and p and on the unmodified kinetic energy

2 metricg.
= L{vg +7(v)o(9)) + 59"(T(U)Q(q)’7(v)@(q» Using Assumption GM-1, the coordinate expression for the
1 H « 3. a —
+§(gp — g)(Ver,v,, Ver,,). ) controlled Lagrangian (1) becomés , ,(z*, “,0%)
1

. a- T .
*(gf,a,p)aﬁfaIﬁJr(gT,a,p)abea9b+§(gT,a,p)ab9a9b—V($a)
Under certain conditions on the parameters, andp and the
metricg, there is a control law for which the closed-loop equa¥here
tions under the prescribed control law are simply Lagrange’s Jop — Jac(9° — M) gap+ )

equations forL. , ,. These conditions typically leave some Groplas = (g(w(ng — 0V pae(g®) — o) gt



(Grop)ab = Gac(g°t — D pay Alternatively, one may tredk, ,, , as a function of/,, as well,
and use the energy-Casimir method (for example) to construct a
Lyapunov function. Such a function can be useful for studying

Under the matching conditions, the control law prescribed t\(}:éllosed—loop stability under the influence of dissipative forces

the method of controlled Lagrangians gives the Closed-loorp ich can destroy conservation .

(g‘r,a,p)ab = Pab-

equations ] o
3 Physical and Feedback Dissipation
dOL:s, OL;os, 0
dt 9ic 9o - To determine the effect of physical and feedback dissipation
d 0L+ 4 p on the feedback-controlled system (4), consider the following
dt 9oa = 0 (4) open-loop equations obtained by appending generalized forces
) to equations (2):
Comparing the open-loop system (2) and the closed-loop sys-
tem (4), one may verify that the control lawds = d oL oL P
d . dt 9z~ Qx> ¢
= { o= 900) 0 ol = 005 = 05) 87} Ao L E ©)
(5) dt 96

] . The generalized forces, andF, might represent physical dis-
Remark 2.1 The control law (5) involves acceleration as welkjyation, additional control, etc. Let square brackets denote the

as position and velocity. One may use the equations of Mgatriy form of a tensor and define the generalized inertia ma-
tion to eliminate acceleration from the control law. When disgices

sipation is included in the model, the control law (5) includes ~{ 1908]  [ga)
contributions from the dissipative forces. However, the control M = ( [9a8]  [gab] )
law obtained by using the conservative equations of motion to
eliminate acceleration does not involve these external forcé@.d
We assume throughout that this latter control law is applied so M,,,= < [[Eg””p))o‘ﬁ]] [[Eg””p))”‘b]} ) .
thatu,, does not depend on physical or feedback dissipation. 9r.o.0)ap 9r,0,0)ab

Assuming thatu, is chosen as described in Remark 2.1, the
Note from the closed-loop equations (4) that the controlled méquations of motion become
mentum conjugate té* is conserved. The conservation law

will no longer hold when we include physical and feedback %8%;;;" - %} s
sinafi Iy : =M, ,,M" ).
dissipation, however it is useful for constructing a Lyapunov [i 8Lm,,,} 7,0, ( [F,] )
function for the conservative system. Define dt - 96e (10)
~ L . . . - S
Jo = % = pab (9’7 + (g* — abc)gcaj:a) . (8) Once again, consider stability of the equilibrium (3) under the

controlled Lagrangian control law with, = F, = 0. Sup-
Under the control law (5), the desired equilibrium (3) will bgpose that a Lyapunov function has been constructed, for this
stable provided the control-modified energy conservative setting, using the modified system endsgy ,
and the conserved momentufy. When damping is included,
By g p(z%,i%) = lAaﬁj;O‘jjﬁ + lpabjajb +V(z*) (7) one may use this function to search for conditions for asymp-
2 2 totic stability. This approach succeeds when there is feedback
is definite. The tensad., is the coordinate form of the modi- dissipation but no physical damping [2, 4]. Unfortunately, the

fied horizontal kinetic energy metrig,, approach is not so useful when there is physical dissipation;
generic damping makes the Lyapunov rate indefinite in a way
Aap = gap — Jaa(9” — ) g (8) that feedback dissipation cannot compensate. However, local

o . analysis yields a definitive stability result.
The energy~; . , is simply the Routhian of ; .

_ o . Changing coordinates frorf:®, i, 0%) to (z®, &, J,), we
In analyzing stability of the conservative system, one may treansider the equilibrium

E. -, as afunction oft® andz®, parameterized by,. The

modified energy serves as a Lyapunov function candidate on (%, 8%, J,)e = (22,0,0) (11)
level sets ofJ,. Assuming thatz$ is a maximum of the )
amended potential corresponding to (3). Before linearizing about this equilibrium,

1 o it is convenient to define

Vi(z®) = §P"'bJan +V(z?), .
Bag = 9ap — Jaagd” ges >0

the equilibrium (3) is stable ifl,5|. is negative definite. D® = ¢ 4+ 5%g.,B*g5.9%.



The linearized dynamics are termsC andD, itis not sufficient for exponential stability that
FE be Hurwitz. One must determine more explicit conditions

St — _( ay 0%V ) 528 + (Baﬁ) 5Fg oan}b.to conclude exponential stabi!ity. For specific proplems,
0x70xP ), € techniques such as the Routh-Hurwitz method can provide such
— (B*Pg5c9®), 6Fy conditions.
6Ja = (pacD?), 6Fy — (paco®gaB?), 0Fp Remark 3.1 Damping in the uncontrolled directions actually
i ) enhances stability. This follows by observing that the sub-
We assume thatF, = —dapdi” wheredas > 0is @ Sym- matrix (13) is Hurwitz even with® = 0. On the other hand,

me_tric damp_ing tensor. That s, we assume the linearized disréiquiring thatd?® > 0 equates to “reversing” the damping in
pative force in the unactuated directions is nonzero. (Certaifhe controlled directions. This would imply that generic damp-
F, may include terms which are higher order in velocity.)  jng in these directions is detrimental to stability.

We assume that any physical damping in the actuated direc- '
tions can be exactly cancelled so thi#, may be specified as Remark 3.2 Because of symmetry, we have ignofédn the

a control. Suppose that analysis. Therefore, we do not expé€tto approach a spe-
L cific value. By adding an appropriate symmetry-breaking po-
6F, = (9ab)ed®®(gep) 0P — (Dapp®ged)edi€.J. tential control law (i.e., a fictitious spring force), one could

~ ~ presumably obtain local exponential stability to a particular
whered?® andd4® are symmetric dissipative control gain mapoint. (See [2].)

trices. Through coupling, the tertﬁ’g” enhances the damping

in the unactuated directions whil§¢ provides damping in the 4 Example: The Pendulum on a Rotor Arm
controlled directions.

The complete linearized dynamics take the form v
[62:°] 0 I 0 [62:]
5] 1= A4 B C [62:%] (12) |
(7] 0 D E [67.] e ™,
whereZ is the3 x 3 identity matrix and M, R
A~ [ g OV /S
| dx70xh | ¢
B = |-B"(dys+9:ed'905)|
r -1 Figure 1: Pendulum on a rotary arm.
Cc = Bavg’ycgcdDdepefgfhd(f;b} g y
- o “ Cde of In this section, we consider the pendulum on a rotor arm. This
D = |pac(0%9ayB" dys + D*gaed; gfﬂ)L problem was treated in [3], although the model used here dif-
“cb ) fers slightly to better approximate an experimental apparatus
E = {_gachL used to test the theory. The previous model considered point

~ masses linked by massless rods whereas the present model in-
One might expect that < 0 and thatB < 0 wheneverd?® > volves two rods with uniformly distributed mass. Figure 1 de-
0. (If [A%%], < 0 commutes withV,, s]c < 0, thenA = picts the device and the choice of coordinates. The Lagrangian
AT < 0. A similar statement applies fdB.) In this case, one for the uncontrolled system is

can show that

( 0 I ) 3) LW..9)= %gaw + gapthd + égabqﬁ — mgl(cost) — 1)
A B

. . where, in a slight abuse of notation, we define

is Hurwitz.

Suppose that we chooﬁé}’ = 0. ThenC = 0 andE = 0, JaB = %mlz,

so the linearized system is neutrally stable witlzero eigen- 1

values, wheren = dim([0.J,]). The problem is to choose Jab = imchos ¥, and

d% to drive thesen eigenvalues into the open left half plane 1 1

without driving the formerly stable eigenvalues into the right Jap = (3M + m) R? + ngQ sin? 1.

half plane. Inspection oF suggests choosing?® > 0. If
[d%] > 0 commutes with[g,,]. > 0thenE = ET < 0 A control torque is applied to the horizontal link about the ver-
and thusE is Hurwitz. Unfortunately, because of the couplingical axis. Assuming that no external forces act, other than the



control torqueu, the Euler-Lagrange equations are

dor oL
dtoy oY
d 0L

In [3], the matching conditions suggested choosing

Oab = Jack®gap + gao AN pap = gab + Kab,
wherek,;, represents a constant gain. kgt = & for brevity.
In the conservative setting, the feedback control law

U= e, = —ko =

Ll Rsin % — mi? sin 20 (%zz}q's + 1B (cospg? + §))

(AM +im) R+ m (3R + L12)sin® ¢ + k
leads to the modified Euler-Lagrange equations

d 0Ly, OLroy

it 9y oy =Y
iaLT,a,p = 0
dt  9¢ B

with controlled Lagrangian
. . 1 .
LT,U,p(w7 1/}7 ¢) = L(% 1% (b) + §k¢2
Define the controlled momentum conjugatesto/ =

<(;M + m> R+ éle sin? ¢ + k) qﬂ— %mlR cos 1/)@/}.

The momentunV is conserved in the absence of dissipatioH\.’

The modified system energy is

o1, TP
ET,U,p(waw) = §Aaﬁ1/)2 +

+ mgl(costy — 1)

2pab
where
LmiR cosq)?
As = Smi? — (3m Cf“z’) — . (15)
3 (gM—&-m)RQ—Fglesm v+ k
For the conservative system model, the equilibrium
(1,4, J)e = (0,0,0). (16)

is stable provided?; ., is definite. Define the amended po

tential
1 J?
2(M +m)R2 +ml?sin e + &k

V.(¥) = mgl(cosyp — 1) +

The equilibrium (16) will be stable provided

. . 0%V,
sign (Aap), = sign ( 31/);)@. a7

SinceV,, has a maximum at the equilibrium of interest, the
right-hand side of (17) is negative. Thereférenust be chosen
to makeA, s negative at the equilibrium. Define a new control
parametef: such that

1 k—1
k=—(=M+m R2+k~ §mR2 )
3 Eo\4

Substitutingk into (15) and simplifying gives

4 1 2 ((%le — imRQ) sin? ) — %%m}#)
af = 5M =
3 +ml? sin ¢ + kgl (3mR2)

ThenA,g|. is negative provided > 1. Whenk > 1, A, is
negative for alky € (—1, ¢) where

_ 1 20\?\

h =sin"! \J (];> <1 + (3}%) )
Wheny = 41, Aqp becomes zero and the contral;, be-
comes singular. Thug places a physical limit on the region

of attraction of the stabilizing control law. As noted in [3], the
value oft) approacheg in the limit thatk — 1 andl/R — 0.

For the experimental apparatus, damping which is linear in
1 and ¢ provides a reasonable model of friction. Including
the friction model and a dissipative feedback torgygs, the
open-loop equations (14) become

d oL 0oL

digg oy~ MY
d OL .
P 57?5 = —dg® + Ucr, + Udiss (18)

hered,, > 0 anddy > 0. In the notation of Section 3, define

J’w Jab — dJ

(gab)e and (gab)e

Jab __
b —

whered,, andd; are dissipative control gains. Let

ab

. L D, S
udiss:d¢¢+(gab)edw—< *’) dyJ

with d, > 0 andd; > 0. Note that the dissipative control
law attempts to exactly cancel the damping in the controlled
(azimuthal) direction. While exact cancellation is practically
impossible, local exponential stability will ensure a degree of
robustness to modeling errors.

Figure 2 shows the experimental apparatus. The system is well-
modeled by the equations developed in this section with

M = 0.259 kg,
m = 0.130 kg,

R=0.211m, dg=0.0096 Nms,
1=0.332m, dy = 0.00015 Nms.

One can easily show that choosing the control parameters

k=2 dy=10s"', d;=5s""



control torque which breaks this symmetry, as described in [2].

5 Final Remarks

The method of controlled Lagrangians provides an algorith-
mic approach for stabilizing underactuated mechanical sys-
tems. For “balance” systems, where the desired equilibrium
is a maximum of the potential energy, stabilization involves
changing the sign definiteness of théhorizontal kinetic en-
ergy metric. In such cases, generic physical damping in the
unactuated directions enhances stability, while generic damp-
ing in the controlled directions is detrimental. Analysis sug-
gests that local exponential stability requires feedback dissipa-
tion which “reverses” the effect of damping in the controlled
directions.
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