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Abstract: An extension of the algebraic-geometric method for nonlinear integrable
PDE’s is shown to lead to new piecewise smooth weak solutions of a clads of
component systems of nonlinear evolution equations. This class includes, among others,
equations from the Dym and shallow water equation hierarchies. The main goal of the pa-
per is to give explicit theta-functional expressions for piecewise smooth weak solutions
of these nonlinear PDE'’s, which are associated to nonlinear subvarieties of hyperelliptic
Jacobians.

The main results of the present paper are twofold. First, we exhibit some of the
special features of integrable PDE’s that admit piecewise smooth weak solutions, which
make them different from equations whose solutions are globally meromorphic, such
as the KdV equation. Second, we blend the techniques of algebraic geometry and weak
solutions of PDE’s to gain further insight into, and explicit formulas for, piecewise-
smooth finite-gap solutions.

The basic technique used to achieve these aims is rather different from earlier papers
dealing with peaked solutions. First, profiles of the finite-gap piecewise smooth solu-
tions are linked to certain finite dimensional billiard dynamical systems and ellipsoidal
billiards. Second, after reducing the solution of certain finite dimensional Hamiltonian
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systems on Riemann surfaces to the solution of a nonstandard Jacobi inversion problem,
this is resolved by introducing new parametrizations.

Amongst other natural consequences of the algebraic-geometric approach, we find
finite dimensional integrable Hamiltonian dynamical systems describing the motion of
peaks in the finite-gap as well as the limiting (soliton) cases, and solve them exactly.
The dynamics of the peaks is also obtained by using Jacobi inversion problems. Finally,
we relate our method to the shock wave approach for weak solutions of wave equations
by determining jump conditions at the peak location.
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1. Introduction

An important feature of many integrable nonlinear evolution equations is the nature of
their soliton solutions. There are many examples of such solutions found in a variety of
physical applications, such as nonlinear optics and water wave equations. Nonsmooth
soliton solutions of integrable equations are now well known, and include solutions of
the shallow water equation (SW) with peaks, the points at which their spatial derivative
changes sign (see Camassa and Holm [1993] and Camassa, Holm and Hyman [1994]). It
was noted in Alber et al. [1994, 1995, 1999] that the spatial structure of these “peakon”
and finite-gap piecewise smooth weak solutions are closely related to finite dimensional
integrable billiard systems.

Some history.Camassa and Holm [1993] described classes-péakon solutions for

an integrable equation in the context of a model for shallow water theory. This work
(see also Camassa, Holm and Hyman [1994]) contains many other facts about these
equations as well, such as a Hamiltonian derivation of the equation, the associated linear
isospectral eigenvalue problem and its discrete spectrum corresponding to the peakons, a
steepening lemma important for understanding how solutions lose regularity, numerical
stability, etc. Of particular interest to us is their description of the dynamics of the
peakons in terms of a finite-dimensional completely integrable Hamiltonian system. In
other words, each peakon solution can be associated with a mechanical system of moving
particles. Calogero [1995] and Calogero and Francoise [1996] further extended the class
of mechanical systems of this type.

It is well-known (see, for example, Ablowitz and Segur [1981]), that solitons and
guasi-periodic solutions of most classical integrable equations can be obtained by using
the inverse scattering transform (IST) method. This is done by establishing a connec-
tion with an isospectral eigenvalue problem for an associated operator that is often
a Schrodinger operator. In some cases it involves a potential in the form of an en-
tire function of the spectral parameter. Such an operator is calletengy-dependent
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Schradinger operator. The scattering problem for the operators of this type was studied
by Jaulent [1972] and Jaulent and Jean [1976].

On the other hand, in connection with cert&incomponent systems of integrable
evolution equations, Antonowicz and Fordy [1989] investigated certain energy dependent
scalar Schrddinger operators. Using this formalism, they obtained multi-Hamiltonian
structures for this class of systems.

Later, Alber et al. [1994, 1995, 1999] showed that in case of certain potentials, a
limiting procedure can be applied to generic solutions, which results in solutions with
peaks. The latter were related to finite dimensional integrable dynamical systems with
reflections and were termeamecewise-smooth solutiona terminology that hereafter
we will adopt. This relation provides an efficient route to the study of finite-gap and
piecewise soliton solutions of nonlinear PDE’s. The approach is based on studying finite
dimensional Hamiltonian systems on certain Riemann surfaces and can be used for a
number of equations including the shallow water equation, the Dym type equation, as
well as certainV-component systems and equations in their hierarchies.

Finite-gap solutions of the Dym equation were studied in Dmitrieva [1993a] and
Novikov [1999] by making use of a connection with the KdV equation and with the
aid of additional phase functions. Soliton solutions of Dym type equations were studied
in Dmitrieva [1993b]. Periodic solutions of the shallow water equation were discussed
in McKean and Constantin [1999]. The papers by Beals et al. [1998, 1999, 2000] used
Stieltjes’ theorem on continued fractions and the classical moment problem for studying
multi-peakon solutions of the (SW) equation. Multi-peakon solutions have also been
derived in Camassa [2000] by Gram—Schmidt orthogonalization.

The main results of this papelVhile our techniques are rather general and can be
appliedto large classes d-component systems, we shallillustrate them in detail for two
specific integrable PDE’s. One of these equations is a member of the Dym hierarchy that
has been studied by, amongst others, Kruskal [1975], Cewen [1990], Hunter and Zheng
[1994] and Alber et al. [1995, 1999]. Using subscript notation for partial derivatives,
this equation is

Usrt + 2UyUsx + UUyyy — 2cUy = 0. (HD)

The other equation, derived from the Euler equations of hydrodynamics in a shallow
water framework by Camassa and Holm [1993], is

Uy +3UUy = Upys + 2UUsy + UUsxx — 26U, (SW)

In both equations, the dependent variabléx, t) may be interpreted as a horizontal
fluid velocity andx is a parameter.

Under appropriate boundary conditions, applying the limit- 0 to (SW) leads to
an equation that has peaked solutions. For equation (HD), such solutions exist also for
x # 0 (for example periodic and finite-gap peaked solutions).

By using the method of generating equations for nonlinear integrable PDE’s, we
reduce the equations to a Jacobi inversion problem associated with hyperelliptic curves.
The solutiondJ (x, ¢t) themselves are given by trace formulae, i.e., sums of coordinates
of points on such curves.

Animportant feature is that the corresponding Abel-Jacobi mapping is not a standard
one. First of all, the holomorphic differentials that are involved do not form a complete
set of such differentials on a hyperelliptic curve. Second, it involves a meromorphic
differential. As aresult, the image of the mapping turns out to be a non-Abelian subvariety
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(a stratum) of ayeneralizedlacobian. This also implies that theand¢-flows of (HD)

and (SW) are essentially nonlinear, i.e., they are not translationally invariant. Seen from
the viewpoint of algebraic geometry, these nonstandard aspects constitute the main
difference between shallow water and Dym type equations, and equations of KdV type
and more generally equations from the whole KP hierarchy which lead to standard
Abel-Jacobi mappings.

The basic technique of the present paper is rather different from earlier papers dealing
with peaked solutions. First, profiles of the finite-gap piecewise-smooth solutions are
linked to certain finite dimensional billiard dynamical systems and ellipsoidal billiards
in the field of Hooke potentials. Second, after reducing the solution of the finite dimen-
sional Hamiltonian systems on Riemann surfaces to the solution of a nonstandard Jacobi
inversion problem, it is resolved by introducing new parametrizations.

The philosophy that “justifies” procedures of this sort is that, in the end, by using the
trace formulaewe obtain weak solutions of the PDE’s (HD) and (SW) in the spacetime
senseThis is regarded as equivalent to the validity of Hamilton’s principle for these
PDE’s and is taken as a fundamental criterion for the definition of their solutions. It is
worth emphasizing that Hamilton’s principle naturally leads to weak solutions in the
spacetimesense (and not in the spatial sense alone). We might also remark that even
for billiards, one has to be careful about the sense in which solutions are interpreted. In
the case of a point particle bouncing off a wall, for example, the equations of motion
themselves do not rigorously make sense at the collision; what does make sense is the
fundamental principle of Hamilton. This point of view of course is not new — see, e.g.,
Young [1969] and Kane et al. [1999].

The contents of the papeln Sect. 2, basic trace formulae apdvariable represen-
tations are used to establish a connection between solutions of the nonlinear equations
and finite dimensional Hamiltonian systems on Riemann surfaces. These representations
describe finite-gap and soliton type solutions, as well as mixed soliton—finite-gap solu-
tions. Then, solving the Hamiltonian systems is reduced to Jacobi inversion problems
with meromorphic differentials. These inversion problems are solved by introducing a
new parameterization that yields a Hamiltonian flow on a nonlinear subvariety of the
Jacobi variety. The approach of recurrence chains used in this section is demonstrated
in detail in the case of Dym-type equations.

In Sect. 3 the geodesic motion and motion in the field of a Hooke potential on
an ellipsoid are linked, at any fixed timeto finite-gap solutions of (HD) and (SW)
equations respectively through trace formulae. In Sect. 4 it is shown how peaked finite-
gap solutions of (HD) and (SW) equations arise in the particular limit of smooth solutions.
Based on this, a connection to ellipsoidal and hyperbolic billiards is used to construct
the peaksolutions of equations (HD) and (SW) in the form of an infinite sequence of
pieces, corresponding to the segments between impacts, glued together along peaks. The
motion between impacts in the billiard problems is made linear on generalized Jacobians
of hyperelliptic curves.

By solving the corresponding generalized Jacobi inversion problem, we find theta-
function solutions to the billiards, which thereby enables us to describe explicit peak
solutions for the above PDE. We then extend the analysis from fixed-time peak solutions
to time-dependent ones and show that the latter are described by an infinite number
of meromorphic pieces in and: that are glued along peak lines (surfaces) where
the solution has discontinuous derivatives in the dependent variables. We give theta-
function expressions for the pieces and the peak surfaces. These formulae may be useful
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for stability analysis as well as for numerical investigations of the perturbed nonlinear
PDE's.

In Sect. 5 the Hamiltonian structure for the motion of the peaks of the finite-gap
piecewise-solutions is obtained by using algebraic-geometric methods. Lastly, in Sect. 6
we relate our method to the shock wave approach for weak solutions of wave equations
by determining jump conditions at the shock location.

2. Finite-Gap Solutions

In this section we will show that even on the level of finite-gap solutions, there are
crucial differences between the KdV equation case and equations (HD) or (SW). The
same method can be applied to other equations forming the HD and SW hierarchy as
well as toN-component systems of nonlinear evolution equations which have associated
with them energy dependent Schrédinger operators (see Alber et al. [1997]).

We will start by describing the algebraic geometrical structure of finite-gap solutions
of equations (HD) and (SW) related to a hyperelliptic curve of genasso called:-gap
solutions. The same method can be applied also to the other equations forming the HD
and SW hierarchy.

For the HD equation such solutions were obtained in terms of theta-functions by
Dmitrieva [19934a] (see also Dmitrieva [1993b]) and Novikov [1999]. For equation (SW)
on a circle, the problem was discussed in Constantin and McKean [1999].

Lax pairs and recurrence chaind/Ve now use the recurrence chain approach to develop a
basic trace formula which establishes a connection between solutions of equation (HD)
and finite dimensional Hamiltonian systems on Riemann surfaces, written in the so-
calledu-variables representation. This representation describes finite-gap solutions, as
well as their limiting forms of soliton-type. This representation also yields the existence
of peakons in a special limiting case. For definiteness, we concentrate here on equation
(HD). Analogous results are available in the case of equation (SW) (for details see Alber
et al. [1994, 1995]).

The hierarchy of Dym equations is obtained from the Lax equations

9 92
ELZ[L’AYI]’ neN, L=—ﬁ+V(E,XJn),
where the potentidl (E, x, t,,) is written in terms of a complex parametgin the form
M(.X, tn)
Vix,ty, E) = ———, 2.1
(x, 1, ) 2F ( )

forafunctionM (x, t,,) to be determined below. Assumip, A, ]to be a scalar operator,
we choosed,, = B,,0, — %B,’l for some functiomB, (E, x, t,) and obtain the following
sequence of equations for,

v 19%B, 9B, v
— = 42"y 4+ B,—. 2.2
a1, 2 9x3 + dx + " ox (2.2)

Now we chooseB,, to be a polynomial irE of degreen:

By(x,t,E) = bo [ [(E = pe(x,00) = Y basl.1) E. (2.3)
k=1 k=0
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Substituting the expressions (2.1) and (2.3) into the generating equation (2.2) and equat-
ing like powers ofE, we obtain a recurrence chain for coefficientsBif, r) which

yields then™ equation of the Dym hierarchy. For example, putting=  and choosing
n=1,Bi(x,t, E) = bo(x, t E + b1(x, t) yields the following chain

EL: —bg =0,
E®: —b] 4 264M + boM’ = 0,
M
EY:200M + byM' = = (2.4)

After settingbg = 1 and using (2.1), we get

M =b;,
oM

The first equation defings in terms ofM, M = b; + «, with « a constant. Renaming
b1 = —U, so that

M=-U"+k, (2.6)

and putting this into the second equation of the set (2.5) results in equation (HD). (For
further details about the hierarchies of (HD) and (SW), see for example Alber et al.
[1994, 1995, 1999].) The method of generating equations is due to S. Alber [1979] and
another exposition of it can be found in Alber et al. [1985, 1997].

We call (2.2) the “dynamical generating equations”, because it generates a hierarchy
of equations governing the dynamics of the dependent varidlile 7).

Remark.The flows whereB,, is a polynomialE, as in the definition (2.3) and in the
example above, will in general lead to nonlocal equations, i.e., the evolution equation
for M involves terms that depend on nonlocal operators acting on combinatidds of
and its derivatives. This can be seen, for instance, in Eq. (2.5) wherebaitd b}
require inverting (2.6) to writé/ in terms of M. Thus, flows generated by polynomials

B, in E should be properly classified as integro-differential evolution equations, rather
than PDE’s. In contrast, the choice of polynomials ji£ifor B, leads to flows that are
local, i.e.,M; only depends on combination$ and its (spatial) derivatives, and these
flows are proper PDE’s. This feature of equations of Dym (HD) or shallow water (SW)
type is somewhat different from other completely integrable PDE’s like the KdV or
Sine-Gordon equation. Equations (HD) and (SW) possess “open ended” hierarchies: the
recurrence chain can be extended from negative to positive powErgfchoosings,

in (2.2) to be a rational function of the paramerThe case when the chain includes
only negative powers of is in fact the one most studied in the literature (see, e.g.,
Dimitrieva [1993a], Novikov [1999] for the case of Dym equation).

Now let us consider the stationary flow for th€ equation of the hierarchy, which is
obtained by dropping the time derivativedfin the left-hand side of (2.2). By definition
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a stationary equation describes a finite-dimensional system for the coefficiéhtaond
is equivalent to the % 2 Lax pair

O Wo(E) = —[Wa(E), L(E)], or [% + L(E), Wn(E)} —o,

dax
1p/
—5B B 01
W, (E) = 27n "), E-—( )

The matrixW, (E) undergoes an isospectral deformation. Hence the spectral curve

2.7)

I'={IWa(E) — 21| = 0}

is an invariant of the stationary flow. The curve is hyperelliptic and can be represented
in the form

I = {w? = uCW), (2.8)
wherez = wE and
C(E)=E (—B,;’Bn + %Bf) + B2M. (2.9)

SinceB,, is a polynomial of degree, C(E) becomes a polynomial of degree (at most)
2n:

2n 2n
C(E)=) C;E/ =Ca [[(E—mp), (2.10)
j=0 k=0
for some constanta, k = 1, ..., 2n. In this case the curvE has genus and we set
the coefficientCo, to be a negative numbe€y, = —L%. We shall refer to (2.9) as the
stationary generating equation

Equating like-powers of in both sides of the stationary generating equation yields
first integrals

E¥:Cy =—by+M,
" " 1
E?Y: Cop1=— biby — by + = (b)) + 2b1 M,
2n—-1 1bq 2-|-2( -+ 2bh1 (2.11)
EJ -
E°:Co =2v’M.
Let us consider the divisor of point®, = (u1, w1),..., Py = (n, w,) ONT.

Substituting (2.3) into (2.9) and setting = w1, ..., u, successively, one gets the
following system of equations describing evolution of the points under the stationary
flow:

= /RGu) (2.12)

ax i [T (i — 1)’
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where
2n
R(w) = nC(u) = =L [ T — my). (2.13)
r=1

In the case of equation (SW), this should be replaced by

2n+1
Rw) =p [T —m). (2.14)
r=1

We now proceed to describe finite-gap solutions of equation (HD) and the other
equations from its hierarchy. According to a general theory (see, e.g., Dubrovin [1981],
Belokolos et al. [1994], for any fixed the x-profile of ann-gap solution of an inte-
grable PDE satisfies thé" stationary equation of the hierarchy. Henegyap solutions
M (x, t) of k" equation of HD hierarchy must satisfy the stationary generating equation
(2.9) represented by the Lax pair (2.7), as well as the dynamical generating equation

v 193B; 9By EXY% M(x, t)
L 2—V4+B—, V=—""2 2.15
FTR 293 T ax | TPy 2F (2.15)

where the coefficients a8, (E) are found recursively. Notice that the latter equation is
equivalent to the matrix commutativity relation

3 3
—+ L, — + W | =0, 2.16
[ax+ o "] (2.16)
where
1pn/
—5B By
Wi(E) = 25k > 2.17
10 = (gl i (@40

and /. is defined in (2.7). The compatibility of conditions (2.16), and (2.7) leads to the
following Lax pair:

%Wn(E) = —[W,(E), Wk(E)], keN, k#n. (2.18)
k

Fork = n, we replace (2.18) with the Lax pair (2.7) thus identifyipgvith x.
The (1,2)-entry of the matrix equation (2.18) implies the followipgpvolution of
the polynomialB,, (E):

0B, 0B, 3B
=g — B,k k£ 2.19
b ox kT B ke (2.19)

In casek = n this relation is replaced by

JoB oB
= V004>

E 0x

wherev is a constant, which can always be eliminated by rescaling
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Expanding the right-hand side of (2.19)ihand using the condition that it must be
a polynomial of degree — 1, we find

1
By (E) = [WBn(E)L—, (2.20)
where[ 15 denotes the polynomial part of the expression.

As follows from the first equation in (2.11 = C2, + b]. On the other hand,
according to formula (2.31 = — Y _/_; u;. Finally, using the definition (2.6) o/ in
terms of the solutio/ and integrating twice with respect 1o we obtain

n
U=Zui+%<K—C2n>x2+K1x+K2, (2.22)
i=1

whereK; andK> are constants of integration. If we assume that all the variahlese
bounded, which is related to the choice of sign of the leading order coeffcignthen
by is a bounded function of. To find bounded solution8 (x, ¢) of the PDE, we set

Cy, =k, and Ki1=0.

Hence, when the above requirements are imposed, we see that the leading order coeffi-
cient of the polynomial’ (E) must coincide with the parameterf the PDE.
The Dym equation (HD) is invariant under the Galilean transformation

f=x+Kot, t=t, U=U—Kbo,

so thatthe constaiif, can always be eliminated from expression (2.21). Therefore, under
the boundedness conditions above, and up to a Galilean transformation, we assume that
the finite-gap and soliton solutions of the Dym equation (HD) is reconstructed in terms
of the root variableg.'s by the “trace” formula which in case of equations (HD) and
(SW) have the form

Ux.t) =Y pi—m. (2.22)
i=1

Herem is a constant, which equals zero in the case of equation (HD).

Through (2.22) a solution of the system (2.12) allows to construct the instantaneous
profile of U(x, -) from a set of initial conditiong; (x, ) = u; (0, ) € [m2;, mo;i+1],
i =1,...,n. Here the “dot” notation stresses the fact that tiniejust a parameter in
this system.

On the other hand, substitution of (2.3) into (2.19), setfihg u1, ..., i, Succes-
sively, and taking into account expressions (2.12) results in the folloghegolution
equations fop;,

i api ~R(ui) .
L = Br(ui)—= = Bi(ii) . ! , i=1...,n, (2.23)
otk 0ty Mi nj#i(ﬂi - Mj)

where, in view of (2.3) and (2.20), far=1,...,n — 1,

1 —p1)-(s—un)
Bi(ui) = Res—o - — .,
N S — Wi
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i.e., up to the sign, theth elementary symmetric function ¢fi1, ... u,} \ pi. In the
casek =1,

_ i (i — X)VR()
o i [T i — )’

[Li =1....n, Z=pui+--+pu, (2.24)

the solution of which produces thes, and hence the PDE’s solutidh, at any (later)
time . We notice that fork > n, the derivativesd/dt, are linear combinations of
9/011,...,0/0t,.

Expressions (2.12), (2.23), and (2.12) provide the so-calle@riables represen-
tation for the finite-gap solutions of an evolution equation. They are the analogs of
Drach—Dubrovin equations which describe evolution of points on the spectral hyperel-
liptic curve in the case of the KdV equation. (For further details see Dubrovin [1975],
Drach [1919], Alber et al. [1994, 1995, 1999], Gesztesy et al. [1996], and Alber and
Fedorov [2001].)

With the initial conditions chosen, the right-hand-side of system (2.12) is real, and
the derivative ofu; changes sign when; reaches the end points of its gap, = my;
or u; = mg;11, corresponding to a change of the sheet of the spectral ¢urféus
each variablg. undergoes (real) oscillations between the end points of a gap (so that
the resulting PDE solutioly (x, ) remains real).

Remark.The condition that the root variablgss are real (or, equivalently, their initial
conditions are chosen as described above), while certainly sufficient to assure reality
of the PDE'’s solutiorU resulting from (2.21), is clearly not necessary (namely, some

of the u’s could occur in conjugate pairs). A wider class of real solutibnsould be
constructed by relaxing the reality assumption onitheariables. However, a thorough
discussion of the reality condition féf and its implications for the root variables, while
certainly desirable, lies beyond the scopes of the present paper, and it will be addressed
in future work.

By rearranging and summing up Egs. (2.12) and (2.24), (2.23), one obtains the fol-
lowing nonstandard Abel-Jacobi equations

n k

A =1...,n—-1
ZM, Wi Jdt k e, —1, (2.25)
i=1

VRw) |x  k=n,

which contain g — 1) holomorphic differentials and omeeromorphidifferential onI".

Thus, the number of holomorphic differentials is less than genus of the Riemann surface,
which implies that the corresponding inversion problem cannot be solved in terms of
meromorphic functions of andr, ..., 1,_1 (see e.g., Markushevich [1977]).

Finite-gap stationary flows im. Let us first consider the-flow by fixing time variables
in (2.25):5 = t,? =const,k = 1,...,n — 1, so thatdf; = 0. Now introduce a new
spatial variabler; defined as follows:

S |
x = / — U1 My dx1. (2.26)
o Lo
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In view of the well-known Jacobi identities

V(y- - pun) k=-1,

k — —
_ M _ 0 k=0,...,n-2, (2.27)
Hj;éi(/“l“i_ﬂj) 1 k=n-1,
h)) k=n,
Egs. (2.12) give rise to the following system:
n mi k=14 —

Z/ % m_)xatdr k=1, (2.28)

= Juo VR(w) bk k=2,...,n,
wheregy, .. ., ¢, are constant phases which depend,?)as on parameters.

Equations (2.28) include holomorphic differentials o and determine the stan-
dard Abel-Jacobi map of the symmetric prodiiét’ of n copies ofl" to the Jacobi
variety (Jacobian) J&E). Thus, the flow generated by the system (2.12) is made linear
on Jagl') after introducing the reparametrization (2.26). By using standard methods
(see e.g., Dubrovin [1981] or Mumford [1983]), the map can be inverted, resulting in
expressions for algebraic symmetric functiongefariables in terms of theta-functions
of n arguments which depend linearly epand, in a transcendental way;, x,?ras param-
eters. Then, by using the trace formula (2.22), one obtains a theta-functional expression
for U as a function of1, t2, U = U (x1, t).

On the other hand, substituting the theta-functional expression for the product
u1---uy, into (2.26) yields a quadrature. By solving it, one findss a meromor-
phic function ofx; which depends o as a parameter. However, the inverse function
x1(x, tp) is no longer meromorphic in.

Finally, the composition functiol (x, to) = U (x1(x, fo), t]?) gives a profile of the
finite-gap solutions of the (HD) or (SW) equation (for explicit theta-functional expres-
sionsU (x1, 1), x (x1, 1g) see Alber and Fedorov [2001]). Notice that as seen from (2.26)
and (2.28), the originat-flow is also made linear on JAc¢). However the straight line
motion is not uniform.

The transformation (2.26) involving andx; coincides with a change of variable in
the well-known Liouville transformation (see, e.g., Verhulst [1996]).

Finite-gap flows ins;. Now let us fix the coordinate = xg as well as all the times

t1, ..., t,_1 butz. Then introduce a new time variabl@efined by
dy = B Hn g (2.29)
Lo(Zk-1)

whereX;_1 are the elementary symmetric functionsaf, . . ., u,, such that
(s—p1) (s —pn) =s"+5"1T1 4 +5°%,.

Applying again the identities (2.27), from (2.24) and (2.23) we arrive at the following
canonical Abel-Jacobi mapping

/MiMX1dM_ Y1=1f+¢1 s =1, (2.30)
) ZVR(M) ¢s=5s,ktk+¢s §s=2,...,n, '

n

i=1
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where¢s, ..., ¢, are constant phases which dependi@and the rest of times as on
parameters, andl; is the Kronecker delta.

As aresult of inversion of (2.30), elementary symmetric functions ®&ind therefore
the solution of equations (HD) and (SW) can be found in terms of theta-functions of
arguments which depend linearly ¢y. This means that the arguments depend linearly
ont, as well as on the original timg. However,t itself depends om, in a nonlinear
way.

Indeed, to describe the relation betwegeandz,, we substitute the theta-functional
expressions for the symmetric functiolly = p1---u, andX;_1 into (2.29). As a
result, in contrast to the quadrature (2.26) relatingndx1, we now geta differential

equationof the form
dty ~
— = F(t, t|xo0),
r (., t|xo0)
whereF is a transcendental function aff and the parameteu. It can be shown that

the equation involves a transcendental integral.

Remarks.1. In contrast to the;- andx-flows considered above, the flows generated
by (2.23) ¢-flows) including (2.24), ar@onlinearflows on the Jacobi variety JAC).

From the point of view of algebraic geometry, this phenomenon constitutes the main
difference between solutions of such well known equations as KdV and sine Gordon
equations and equations of (HD) or (SW) type.

2. The problem of inversion of the full nonstandard Abel mapping defined by (2.25) can
be also studied by using a generalized Jacobian of the EutNamely, one has to extend

the mapping by including an extra holomorphic differentialtio get a complete set of

such differentials. As a result of this procedure, one gets a flow on nonlinear subvarieties
(strata) of generalized Jacobians. The complete algebraic geometrical description and
explicit formulae are presented in Alber and Fedorov [2001].

3. Flows on rn-Dimensional Quadrics and Stationary r-Gap Solutions of the (HD)
and (SW) Equations

Consider a family of confocal quadrics R+ = (X1, ..., X,11)

N X? X2
0(s) = 1 +-~-+n—+1=1, seR, O<app1<ar<---<ay.
ai

- ntl — S
(3.1)
The elliptic coordinategis, .. ., n+1 can be defined iiR”*1 in a standard way (see,
e.g., Jacobi [1884a]) as follows. The conditior= ¢ determines the quadri@(c) on
which one of the coordinqtes, say+1, equals, and the other coordinates, . . ., u,
are elliptic coordinates o@(c) defined by relations
I’l_ ai —
X2 =(aj -0 Mi—ataj = m) j=1...n+1 (3.2)

n+1 ’
Hk:l,k;ej (aj —a)

In the sequel without loss of generality we assume 0. ) }
It is well-known that the problem of geodesics on the ellips@id= Q(0) is com-
pletely integrable (Jacobi [1884 a,b]). Moreover, as noticed by Jacobi himself and later
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by many other authors (see e.g. Rauch-Wojciechowski [1995]), there exists an infinite
sequence of integrable generalizations of the problem describing a moti@rirothe

force field of certain polynomial potentialg, (X1, ..., X,41), p € N of degree 2.

The simplest integrable potential is the quadratic Hooke potential or the potential of an
elastic string joining the center of the ellipsajtito the point mass on it:

g
Vi = E(X§+---+X,21+l), o = const

In this case in terms of the ellipsoidal coordinates, the total energy (Hamiltonian) takes
the Stackel form:

12 H‘;&i(ﬂi — Ui (dp; 2 5
H="= J il = i 4+ cons
8; M) (dx) +2;“’+ t

where
D(u) = (u—ar) - (u—apt1)

andx denotes time. After fixing constants of motion, the system is reduced to the Abel—
Jacobi equations

n

Meoptdp .
— = §in X + ¢, i=1...,n, (3.3)
kglfuo 23/ R (k)

R(p) = —pu®(wlcoln —c1) -+ (b — cyu—1) —ou"l,  co,...,cyp—1 = CONSt

wheregy, ..., ¢, are constant phases and . . ., ¢,—1 are constants of motion.

Notice that foro = 0 the order of the polynomi&® (u) is 2n + 1, whereas fos # 0
itis 2n + 2. The case = 0 corresponds to the free (geodesic) motion(rg is the
constantin the firstintegraX, X) and the remaining constants admit a clear geometric
interpretation: the tangent line to a geodesic is also tangent to the fixed confocal quadrics
O(c1), ..., O(cu—1) (Chasles theorem).

Now notice that Egs. (3.3) are equivalent to the system (2.25)dwith 0 describing
stationary (HD) and (SW) equations, provided we identify the roots of the polynomial
R () with those of the odd order polynomial (2.13) (for= 0 andLo = 1) and of the
even order polynomial (2.14) (fer = 1) respectively. The equivalence also holds when
some of the parametets in (3.3) are negative, which correspond to the motion on a
hyperboloid. For concreteness, we shall consider only the case of ellipsoids. Taking into
account the trace formula (2.22), we arrive at the following theorem:

Theorem 3.1. The geodesic motion and motion in the field of a Hooke potential on
the ellipsoid O are linked, at any fixed time, to the n-gap solutions of (HD) and
(SW) equations respectively through the trace formula (2.22). Namely, if the roots of
the polynomialsR(w) in (2.13) or (2.14) coincide with the roots &(w) in (3.3), the
profiles of such solutions are given by the sum of the elliptic coordinates of the moving
point on Q with addition of (m) in case of equation (SW).

For the geodesic flow o (¢ = 0) and equation (HD), this result was obtained in
Alber and Alber [1985], Cewen [1990], and Alber et al. [1995]).

As with Eq. (2.25), under the change of parameter (2.26), Egs. (3.3) reduce to those
containing holomorphic differentials only and having the same structure as (2.28). By
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inverting the corresponding Abel-Jacobi mapping, one obtains explicit expressions for
elementary symmetric functions @f and, in view of (3.2), for the Cartesian coordinates
X1, ..., X,41 in terms of theta-functions of the new parametglfor the case of the
geodesic flow, see Weierstrass [1844], Moser[1978], and Knorrer [1982]). In the case
n = 2, the change of parameter (2.26) was first applied by Weierstrass [1844] to solve
the classical Jacobi geodesic problem on a triaxial ellipsoid (Jacobi [1884a,1884b]).

4. Billiard Dynamical Systemsand Piecewise-Smooth Weak Solutions of PDE’s

In this section it is first shown how peaked finite-gap solutions of (HD) and (SW)
equations arise in the limiz; — 0, wherem1 is the smallest root of the polynomial
R(E) in Egs. (2.12)—(2.24). Then a connection to ellipsoidal and hyperbolic billiards is
established.

Ellipsoidal billiards and generalized Jacobian&uppose that one of the semi-axes of

the ellipsoidQ tends to zero, namely,.1 — 0. In the limit, 0 passes into the interior
of (n — 1)-dimensional ellipsoid

0=1{X?/a1+ -+ X%/a, =1} e R", R"=(Xg,...,Xy).

The elliptic coordinateg, . . ., 1, on Q transform to elliptic coordinatea R” giving

n s —
x2 = i@ =) —1....n, (4.1)

- HZ:l,k;éj(aj —ap)’

which appear as the corresponding limits of (3.2).

Then the motion onQ gets transformed intdilliard motion inside the ellipsoid
0. Geodesics o) pass into straight line segments insidle whereas the points of
intersection of the geodesics with the pldiXg, 1 = 0} are mapped intiampact points
on Q with elastic reflection. Also, the motion o@ under the Hooke force passes
to the motion insideQ under the action of the Hooke force with the potentiak=
o (X2 + ... + X2)/2. However, in contrast to cases= 0 or¢ < 0, foro > 0
(an attracting Hooke potential), for the trajectory to reg@lthe total energy: must
be sufficiently large. Namely, there ought to exist a positiaich that inside) the
following double inequality holds:

h+U(X%+~-~—|—X,2l)/2>8>O.

Under this condition, the motion of transforms tdilliard motion inside the ellipsoid

Q again having impacts and elastic reflections alghgrhus, we have “an ellipsoidal
billiard with the Hooke potential” which is described by the mapphhg: (x,v) —

(X, V), wherex, v € R" are the Cartesian coordinates of a point@mnd thestarting
velocity vector respectively, whil&, V) are the coordinates and the starting velocity at
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the next impact point. Following Fedorov [2001], the mapping has the form

X

_Tl [(0 — (v, a~ V)X + 2(x, a~v)v],

v 1z

_Tl [(oc — (v, a” ')V — 26 (X, a"V)X] + oa™

! 4.2
= Tl [(0 — (v,a V)V + 0a %) + 2(x, a V) (0a v — oX)], 4.2
2(%, a~1%)
_ —-1\,\2 _ -1 2 -~ 7
v =40 (x,a"W)2 + (0 — (v,a V)2, o= R o)

Notice that in the limito — O this reduces to a standard billiard mapping given in
Veselov [1988]

5 2(x, a~1v) - 2V,a71%)
X=X— —F—= V=v+ ———

v.a 1) T ®Ra®
The mapping (4.2), as well as the billiard limits of the motion@with the higher order
potentialsV, (X4, ..., X,, X,41) (X,4+1 = 0) are completely integrable.

In the limita, 1 — 0 and after using the change of variable (2.26), the Abel-Jacobi
equations (3.3) are transformed as follows:

Mk i=1 g
% I .
=¢;=const i=1...,n—1,
/,LO 2 p(p) l
n

Z/uk du
S =1+,
i1 Juo 2/ p(i) e

n

k=1 (4.3)

p(u) = —(u—az)---(u—ap) [colw —c1) -+ (4 — cp—1) — o "]

This system contains— 1 holomorphic differentials on the Riemann surfdce {w? =
p(n)} of genusg = n — 1 and one differential of the third kind having a pair of simple
polesQ_, 9, onC with ©(Q+) = 0. Here agaimpy, ..., ¢, are constant phases and
co, - - - , cn—1 a@re constants of motion. The elliptic coordinates. . ., u, represent the
divisor of n points P; = (u;, w;) onC.

Equations (4.3) describe a well defined mapping of the symmetric prééuc? to
JadC, 9_, Q4), the(g + 1)-dimensionabeneralized Jacobiaof the curveC with two
distinguished point®... The later is obtained from the genugurvew? = R(u) in
(3.3) as a result of confluence of two Weierstrass pointsi(— 0) and regularization:
cutting out the double point and gluin@_, 9. .

The generalized Jacobian is a noncompact algebraic variety which is topologically
equivalent to the product of the customgrgimensional Jacobian variety J6¢ with
complex angle coordinates, . .., ¢, and the cylindelC* = C \ {0} (for the defini-
tion and description of generalized Jacobians see, among others, Serre [1959], Previato
[1985], Gavrilov [1999], and Fedorov [1999]).

As follows from (4.3), the geodesic and the potential billiard motion parameterized
by x1 is represented by a straight line flow on dacQ_, Q), which is directed along
the real section of* and leaves the coordinat¢son JagC) invariant.

As we shall see below, the solutions to the generalized inversion problem (4.3) have
different structures, depending on whetlRgy.) is an even or an odd order polynomial.
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Solutions in terms of generalized theta-functiofést we concentrate on straight line
billiards corresponding to the case= 0 when the curv€ has one infinite poinso.
Fix a canonical basis of cycle$y, ..., Ag, By, ..., B;onC and letwy, ..., @, be the
dual basis ohormalizecholomorphic differentials o6 andzy, . . ., z be corresponding
coordinates on the universal covering of @3c There exists a uniqug x g constant
normalizing matrixD such that

8 j— 8
J)kZZM, ZkZZij¢j, k=1 ...,g=n—-1 (4.4)
o Ve .

Let us also introduce mormalizeddifferential of the third kind2g having simple poles
at 91 with residuest1 respectively:

VpQ)du
+ ,
A/ p () Zﬁkwk

where 8, are unique constants such tla§ has zeroA-periods onC. Then the last
equation in (4.3) can be represented in the following form:

n Hk
2/ Qo=2Z, Z=2/p0)x1+ const (4.6)
k=1"Y M0

Qo= Vp0) = Ja1 @y 1 o1, (4.5)

Notice that in case of the ellipsoidal billiardéR (0) is always real and hencgis also

real. Let us also choose the base pdjng, wo) of the mapping (4.3) to be an infinite
pointoo € C. According to Fedorov [1999], the solution of the problem of inversion
(4.3) together with (4.1) yields the following expressions for the Cartesian coordinates
X; of the point moving inside the ellipsoig:

e ZI29[A + iy 1z — q/2) + #1280 A + niy](z + q/2)

Xi(x1,2) =t e ZI2[A)(z — q/2) + eZ120[ A1z + 4/2) ’

4.7)

i=1...,n, z=(1,-..,2-1)", Z=2yR(0)x1+ Zo,

Qy or \'
z, Zo = const q=2/ 6)1/ we | €C8,
o0 oo

ki = const

These expressions involve quotients of generalized theta-functions, firefe; ;)1 (z)
andd[A](z) are customary theta-functions associated with the Riemann st faite
appropriately chosen half-integer theta-characteristigg A is the half-integer theta-
characteristic corresponding to the vector of Riemann’s constants). The yector
incides with the vector oB-periods of the meromorphic differenti®y. The constant
factors«; depend on the parameters of the cutanly. (For the definition and properties
of the generalized theta-functions see e.g., Belokolos et al. [1994], Gagnon et al. [1992],
Ercolani [1987], and Fedorov [1999].)

The expressions (4.7) describe a straight line segmeRt itC") with z playing a
role of a constant phase vector which defines the position of the segment. When one of
the u-variables, sayt1, equals zero, the corresponding poit= (w1, ~/R(11)) on
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the curveC coincides with one of the pole@_, Q. of the differential2p. Then, as
follows from the mapping (4.3) and (4.6) andZ become infinite. On the other hand,
in view of (4.1), at this moment the moving pointlR¥ meets an ellipsoid.

It follows that asc; andZ change from-oo to co along the real axis, the expressions
(4.7) have finite limits, giving the coordinates of two subsequent impact poin{.on
Notice thatX; (oo, z) have the same values &$(—o0, z + ¢). Hence the next segment
of the billiard trajectory is given by (4.7) with being replaced by + ¢. This yields
the following algebraic-geometrical description of the billiard motion (see also Fedorov
[1999]).

Theorem 4.1. As the point mass insid@ approaches the ellipsoid, the poiff onC
tends to the pol@_,.. At the moment of impacP; jumps fromQ back toQ_, whereas
the phase vectaris increased by defined in formulas (4.7). The process repeats itself
for each impact.

Using this property and by applying induction, from (4.7) the coordinates of the
whole sequence of impact points are found in the form

Xi(N) = k; O[A + ni1(zo + Ng)
6[A](zo + Nq)

. i=1....n (4.8)

whereN € N is the number of impacts and the phase veggot (z1o, - . . , z50)” is the
same for all the segments of the billiard trajectory.

These expressions depend on customary theta-functions only and, as functions of
z0, are meromorphic on a covering of the Jacobian variet§.dfhey have also been
obtained by Veselov [1988] by using a factorization of matrix polynomials (see also
Moser and Veselov [1991]). The work of Veselov is closely related to the discretization
of mechanics that preserves the integrable structure. The numerical implementation of
Veselov's procedures was given in Wendlandt and Marsden [1997], a discrete reduction
procedure in Marsden, Pekarsky and Shkoller [1999], Bobenko and Suris [1999] and an
extension to PDE’s in Marsden, Patrick and Shkoller [1999].

The generalized Abel map (4.3) yields expressions in terms of generalized theta-
functions for the elementary symmetric functions of the variaple particular, fol-
lowing Fedorov [1999], one obtains

U1ty = B, 0y 10gA[A](z, Z)

- 123y 01A1z — q/2) +e“20v01AlG +q/D)  (49)
=2/ (09 e~Z2I20[Al(z — q/2) + €Z/20[Al(z + q/2)

where

0[Al(z, Z) = e 2120[A1(z — q/2) + €Z/?0[Al(z + q/2), (4.10)

0 0
9z1 0zy

and whereV is the last column of the normalizing matri@ defined in (4.4):V =
(D1g, ..., Dgg)T. The phases and Zo are the same as in (4.7). As follows from (4.9),
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for x1, Z — +o0, the produciu; - - - u, tends to zero, as expected. Taking the integral
(2.26) withLg = 1 yields

x(x1,2) = [uln-,u,, dxy = dy logf(z, Z) + const

_ TPOvOIANz — q/2) + P Pv0IAN +q/D) o
T e Z2[A1 — q/2) +e1%0[A1z +4/2)

It follows from this expression that the original parametédras finite values ag; —
+o00 andx(oo, z) has the same value ag—oo, z + ¢). Now, substituting in (4.11)
Z = —o0, Z = 0o, by induction, we find the length of th&" segment of the billiard
trajectory in the form

dvO[A]l(zo+ Ng)  dvO[A](zo + Ng —q)
O[Al(zo + Nq) 0[A)(zo+Ng —¢q) ’

zo being the same as in (4.8).

As a result, the solutio; (x), x € R, of thecontinuouggyeodesic billiard problem
should be viewed as consisting of an infinite number of pieces each parameterized by
x1 € (—o00, 00) and given by (4.7) and (4.11). These pieces are obtained by iteratively
adding vectorg to the phase in (4.7) and (4.11) and they are glued together at the
impact points corresponding 1q = +oo.

Now we turn to the ellipsoidal billiard with the Hooke potential & 1). In this
case the curv€ appearing in (4.3) has 2 infinite points abo. We again introduce
normalized differentialéy, Q0, and coordinates,, Z according to (4.4) and (4.6). Let
the base point of the mapping (4.3) be one of the Weierstrass poifitsay o = a,.

Then, instead of (4.7), the inversion of the generalized mapping (4.3) yields the following
expressions for thequaref the Cartesian coordinates of the mass point moving inside
an ellipsoidQ:

x(N)—x(N—-1) =

NeN (4.12)

92[A . JZ
X,-Z(XL 7) =k [A +nil(z, 2)

- _ ¢ _ — (4.13)
0[A1(z —4/2. Z — §/2)[Al(z + /2. Z + §/2)

i=1...,n,

=@ w1, Z= 2/ p(0)x1+ Zo, z,Zo = const
Q4 0o

q=/ (@1, ..., 097, c}=2/ (@1, ..., 097,
Q ap

e
5= / o
whered[A](z, Z) is defined in (4.10) and
OLA + 1i))(z, Z) = e 2I20[A + i)z — q/2) + 27201 A + ni)l(z + q/2) (4.14)

Here«; are constants, ang/p(0) is the same as in (4.5). Similarly to (4.7), &
and Z pass from—oo to oo, Xl-z(xl, z) tend to finite values resulting in the squares of
the coordinates of subsequent impact pointsorrhus, expressions (4.13) describe
a segment of trajectory of the billiard in the field of the Hooke potential between two
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impacts. After each impact the phase veetohanges according to Theorem 4.1. Then,
by using induction, the sequence of impact points is described as follows:

92[A ; N
X2(N) = ! (A+nolGo+Ne)
0[A)l(zo—q + Ng)O0[Al(zo+ g + Ng)

NeN, z0=(z10....250)" = const

(4.15)

Apparently, this theta-functional solution for the billiard with the Hooke potential was
not previously known. Lastly, we find the following expressionfor
6[A1(z —G/2.Z — 82

x(x1, z) = const+ log ~[ 1G ‘{/ ’ A/ ),
0[Al(z+¢q/2,Z+ §/2)
which, forx; — +ooandZ — +o0, has finite limits determining for two subsequent
impacts. Then, using the expression (4.10), by induction, we expreggerval between
the impacts in terms of the customary theta-function:
0[Al(zo —G/2+ Nq)
0[Al(zo+¢/2+ Nq)

o[A —q/2+ Nqg — X
~log [A](zo 6{/ +Ng—4q) log §.
0[Al(zo+q/2+ Ng —q)

We emphasize that, in contrast to the geodesic billiard, for the billiard in the potential
field the “time” x is not proportional to the length of a trajectory.

Z =2,/p(0)x1 + const (4.16)

x(N) —x(N —1) = log
(4.17)

Stationary finite-gap peaked solutionslow we return to the finite-gap solutions of
equations (HD) and (SW). Notice that under the limit — 0 the mapping (2.28) takes
the form (4.3) witho (1) being a polynomial of degree:2- 1 and 2: respectively.

The trace formula (2.22) and relations (4.1) yield

n n
U= X5+) ai+m.
j=1 i=1

Then solution to the billiard problems (4.7)—(4.17) provide solutibtis, 7) for the

above equations which consist of infinite sequences of smooth pieces each one cor-
responding to a segment between two impacts. The impacts themselves give peaks of
U (x, tg). This leads to the following theorem.

Theorem 4.2. 1) At any fixed time = 1, finite-gap peaked solution of the equation
(HD) consists of an infinite number of piedég (x, tp), N € Z glued at peak points.
Let p(n) be any polynomial with distinct roots, ..., a,. Then, for anyN, every
piece is given by the following pair of theta-functional expressions parameterized by
X1 € R,

n n
Uy =Y Xj(xwzn) + ) ai, (4.18)
j=1 i=1

e %129y 0[A)(zy — q/2) + ?/23v0[Al(zn + q/2)

4.19
e 2I29[Al(zyn — q/2) + €2120[Al(zy + q/2) +xo0, (4.19)

x(x1,2) =

iv=20+NgeC"Y  Z=2/p0)x1+ Zo,
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whererz.(xl, z) andgq are given by (4.7) andp, Zo, xo are constant phases of the

solution depending om, which are the same for any piece. The length of i
piece equals

dvO[Al(zo+ Ng)  dvO[Al(zo+ Ng —q)
0[Al(zo + Nq) 0[Al(zo+ Ng —¢q)

(4.20)

2) At any fixed time = g finite-gap peaked solution to equation (SW) consists of an
infinite number of piece8y (x, tp), N € Z which are glued at peak points. The pieces
are given in the following parametric form

n n
Uv=) X3(x1.zn)+ Y ai+m, zy=z0+NgeC'™, (4.21)
j=1 i=1

x(rp. 1) = log AN GN = 4/2. 2 = 5/2)

5o T Z=2/pOx1+Zo, (422
O[AlGzn + G/2,Z + §/2) 0 VoO)x1+ Zo, (4.22)

WhereXJZ.(xl, z) are given by (4.13) angh, Zo, xo are constant phases which depend
onto. Thex-length of N piece equals

0[A](zo —q/2+ Nq) 0[Al(zo —4/2+ Nq — q)

_ —logS. (4.23
Ao+ a2+ N " Y0Alzot a2t Ng —g) 095 (423)

When in the polynomials (2.13) or (2.14) = 0 andm> tends to zero, the distance
between subsequent peaks of a profile tends to zero and in the limit the peaks coalesce.
(Notice that this is done for a fixed) The solutionU (x, rg) for this limiting case is
smooth.

Remark.Itis known (see, for instance, Fedorov [1999]) that there are special degenerate
umbilic billiard solutions of the classical billiard problem (without a potential) that have
straight line segments meeting— 1 fixed focal conics oD between any subsequent
impacts and, as — +o0, the billiard motion converges to simple oscillations along
the largest axis of the ellipsoid. This corresponds to the confluence of the roots of the
polynomialp(w) in (4.3),

¢ci1=a, ..., Cp-1=4ap-1.

As a result, the hyperelliptic curvé becomes singular of arithmetic genus zero and
the asymptotic billiard motion is described in terms of tau-functions. The corresponding
asymptotic peaked solutions of equations (HD) and (SW) are givenin Alber and Fedorov
[2001].

Time-dependent piecewise-meromorphic solutiddew we pass to global algebraic
geometrical description of the finite-gap peaked solutions. After setting> 0, the
system (2.25) is formally reduced to the following Abel-Jacobi mapping:

(4.24)

[ uk-ldu+...+/“” Wldp _[nke k=1..n-1
no 2P () wo 2V p () X+¢n k=n,
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where
2n 2n+1

p(w)=~L§[[(w—my) and pu) = [T —m)
r=2 =

in the case of equations (HD) or (SW) respectively. Here . ., ¢, are constant phases.

This system contains — 1 independent holomorphic differentials defined on the genus

¢ = n — 1 Riemann surfacéw? = p(u)}, which can be identified with the cuné@

described above. However, in contrast to the system (4.3), in the case of a polynomial

p(un) of odd order which corresponds to equation (HD), the last equation in (4.24)

contains a meromorphic differential of tlecondkind having a double pole at the

infinite pointoco on C. In case of a polynomigb(u) of even order corresponding to

equation (SW), the last equation includes a meromorphic differential ahttiekind

with a pair of simple poles at the infinite points_, oo onC.

According to Clebsch and Gordon [1866] and Gavrilov [1999], in the odd order case,
such a system describes a well defined and invertible mapping of the symmetric product
C¢+D to JagC, o), the generalized Jacobian of the cutvavith one distinguished
point atoo. The set JaE, co) is a noncompact algebraic variety which is topologically
equivalent to the product J&H x C. To describe this case we introduce a normalized
differential of second kind having a double pole-at

v —1Lopu® du
Qb — dvay, g=n—1, (4.25)
°° 2J/p(w) Z

wherewy, are the normalized holomorphic differentials specified in (4l4are normal-

izing constants such that all-periods onfxlD) onC are zeros. Then the last equation in

(4.24) implies that

Mi
2/ QP =2, Z=+~1Lox + (d, Dr)+ const (4.26)

d:(dls"~7dn—l)T7 t:(tn,.."[z)T’

whereD is an(n — 1) x (n — 1) normalizing matrix defined in (4.11).

Sinceco now is a pole ofszéﬁ), we choose the basepoify = (uo, wo) to be a
finite Weierstrass point 0@. For concreteness we chooBg= (m2,, 0). Applying the
residue theorem to the generalized theta-function associated with, dag we solve
the inversion problem (4.24) and find the following expression:

n 2
Z b= C1— 72+ 279y 0[A + n2,1(z) — Oy 0[A + nZn](Z)’ (4.27)
, O[A + n2,1(2)

Z=+=1Lox+(d,Dt)+Zo, z=Dit+z0eC" %

8
Zo,zo=const Ci= Z% 1L &y + mon,
A

where the half-integer characteristig, labels the point(my,, 0), the vectorV =
(D1g, ..., Dgg)7 is specified in (4.4), and the consta®t contains the sum of inte-
grals along the canonical cycles, ..., A, onC. Notice that in the above formula
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dy = 0;,. Expression (4.27) is meromorphicirandsy, . . ., t,—1 and can be regarded
as a generalization of the Matveev—-Its formula to the case of the noncompact variety
JadC, 00).
In the case of an even order cu@ecorresponding to finite-gap peaked solutions
of equation (SW), system (4.24) defines a mapping of the symmetric prétidci to
the generalized Jacobian Jécoo) which is topologically equivalent to the product
JadC) x C*. As above, we sa to be thdastWeierstrass poinny, 11, 0) and introduce
the normalized differential of the third kind having a pair of simple polesat oo, € C,
as well as the corresponding varialdle

e m §._ n /m
Qooy = + ok, Z = Qoo s (4.28)
> 2/ p(u) ];_ ; mon4+1 o
where (d1, ...,ds) = d are chosen such that all the-periods ofQ2., are zeros.

Then, applying the residue theorem to the generalized theta-function associated with the
JadC, co4) yields

e 20[Al(z — §) + eZ6[A)(z + )
0[A]l(z)

n
Z Wi +m = const— , (4.29)
i=1
where, in view of (4.28),

Z=x+4+(d,Dt)+Zy, z=Dt+z9ecC8,

[o.eN R [o.eN R T (4.30)
é:(/ 5)1,...,/ cbg) e C8, Zop,zo=const

Remark.According to the formula (2.22), expressions (4.27) and (4.29) describe formal
solutions to equations (HD) and (SW) respectively. However, while treating these solu-
tions, one needs to take into account the reflection phenomenon described in Theorem
4.1. Namely, when a certain variahle passes zero, the poifit = (u;, ~/p(1;)) jumps

from one sheet of the Riemann surfac® another or, in other words, from the pae.

of the differential of the third kind2g to another pol&_. Therefore, the above expres-
sions do not provide global solutions to the equations. Instead, the following theorem
holds.

Theorem 4.3. 1) The time-dependent finite-gap peaked solutitqw, ¢) of (HD) con-

sists of an infinite number of piecedRA = (¢4, .. ., f,—1, x) described by meromorphic

functions

2ZNOVO[A + n241(zn) — 3ZOLA + n241(zn)
O[A + n2,1(zn) '

zn=Dt+Ng+z0, Zny=+~—-1Lox+ (d,zn)+ Nh + Zo,

Zo,zo=const t=(f1,...,%_1), (4.31)

Q (O Q4 T
h:/ b, ¢= / wl/ A
Q. - .

where( is the constant specified in (4.27).

Un(x,t) =C1— Z% + N eZ,
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For a fixedN the corresponding piecEy (x, t) is bounded by nonintersecting sur-
facesSy_1 andSy in R” given by equations

Sy ={x = pn()},

(4.32)
(3v 10gO[A + 12,12y + q/2) — (d, zv) — Nh).

1
pn(t) = m

The adjacent pieceSy (x, r) and Uy 1(x, t) are thus glued to each other aloi®)y,,
where

U(pn(1),1) = C1 — 8% 10g60[A + n2,1(zn +¢/2). (4.33)

2) The finite-gap peaked solutidh(x, 7) of (SW) consists of an infinite number of pieces
given by meromorphic functions

_ZN _ A ZN A
Un(x. 1) = const— e “NO[Al(zy — q) +e“NO[A](zn +q)’ NezZ
O[Al(zn)

iv=Dt+qN+z0, Zy=x+(d,zy)+ Nh+ Zo, (4.34)

_ Q4
t=(ty,...,12), Zo,zo=cONst h:/ QOOit
Q

where the vectqj is described in (4.30). The pie€hy (x, t) is bounded by peak surfaces
Sy_1 and Sy defined as follows:

O[Al(zy — 4 +q/2)
O1A)zn +4 +4/2)

Sy ={x=pn@®)}. pn() = const—log (4.35)

The adjacent pieceBy (x, t) andUy+1(x, t) are glued together along_N, where
O[Alzn — q)
O[Al(zn + G)

Notice that along the peak surfaces, the solutions described in 1) and 2) have discon-
tinuous partial derivatives with respectit@andry, . .., f,_1.

U(pn(t),t) = const— dy log (4.36)

Remark.By fixing all the times buty in the above expressions, one obtains 2-dimen-
sional piecewise solutior$y (x, ), whereas the corresponding sectionsSgf Sy C

(x, 1) = R" describe peak lines itx, #;)-plane. As follows from (4.32) and (4.35), the
motion of theN ™ peakpy () along thex-axis is described by a sum of a linear function
in 1 and a quasi-periodic one. The latter function becomes periodic in the;cask

Finally, after fixing all the times without exception, expressions (4.31) and (4.34)
provide pieces of the stationary finite-gap peaked solution already described in Theo-
rem4.2.

Proof of Theorem 4.3According to Theorem 4.2, the profiles of finite-gap peaked so-
lutions are associated with geodesic ellipsoidal billiards and billiards in the field of a
Hooke potential. An impact point on the boundary of a billiard trajectory corresponds to
a peak of the profilé/ (x, t9), and this happens when one of thepasses zero. Hence,
the solution (4.27) is valid until one of the poin®s, ..., P, onC coincides withQ_ or

Q., the poles of the differentialq in (4.5). Putting, for exampleR, = Q4 (i1, = 0)
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in (4.24), one arrives at the following relations involving the normalized differentials
defined in (4.4) and (4.25):

8w
Z/ (Dk=1k—61k/2’ k:l,...,g, (437)
i=17Fo

8w g g
Zf (szg}g - dea)k) = /—1Lox —f (Qg}} - dea)k> . (4.38)
i=1""Po k=1 P k=1

0
where Py = (m2,, 0). Notice that Egs. (4.37) form a closed system for the variables
U1, - .., in—1and describe the standard Abel-Jacobi map@itig— JadC). Hence, the
first symmetric polynomial has the following standard form in terms of theta-functions
in the odd order case:

Q4

8
pa+ e+ a1 = c1— 05 10g0[A + 12,1(z — q/2), c1=27§ . (4.39)
k=17 Ak

On the other hand, Eq. (4.38) implies that at a peak point the coordiria@eomes a
function of z and therefore of: x = po(¢). In the odd order case, this equation con-
tains a sum of Abelian integrals of the second kind, the so-cAlbedian transcendent

By making use of the following standard expression for the normalized transcendent
(Clebsch and Gordon [1866])

8 i g Hi
Z/ QY = —dv 10gO[A + 12,] (Z/P a‘)k> ,
i=1v"0

i=1 Y MO0

from (4.37) and (4.38) we find

Q
(O 10G01A + n2a1(z — 4/2) — (d.2) + hj2). b= /Q "o,
 (4.40)

1
po(t) = 1L,

Using the trace formula for the solutidn(po(?), t) = n1+ - - - + u,—1 and expression
(4.39) it follows that the equation = po(r) determines a surfacg in C" along which
the solutionU has a peak.

Now setting in (4.24)P, = Q_ and taking into account (4.4), (4.25) and

Q- Qi Q- Q4
/ Qg}):_/ o, / ca:_/ &
Py Py Po Po

we obtain an expression for another peak surfgcdetermined by the equatidn =
pi(t)} with

pi(t) = (Ov 10gO[A 4+ n2,1(z +q/2) — (d, z) — h/2), (4.41)

1
~—1Lg

along which

U(pr(t),1) = p1+ -+ pa_1 = C1 — 32 10g0[A + n2,1(z + q/2). (4.42)
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Under the reality condition, the surfac8s andS; do not intersect and therefore de-
termine a connected domain@ = (x, r) where the solution (4.27) is applicable. We
denote this piece of solution &3 (x, ). As follows from (4.40) and (4.419; is obtained
from Sp by changing the phase as follows:

1
Z—>Z+h, z—>z+4+gq thatis x > x+ ——(h —(d, Dt)),
v—1Lg (4.43)

t—t+D 1.

In addition, according to (4.42) and (4.39) at any two pointsSgrand S; which are
equivalent modulo the shift/1(x, t) takes the same values:

1
—1Lo

Ui(q1(2), 1) = U1 (qo(t) + (h—(d, D)), t + D_lq> . (4.44)
Now let us define the functioblz(x, 1) = U1 (x + (h — (d, Dt))/(~/—1Lo), t + D™ 1g),
which is also a local solution to (HD). In view of (4.44); andU- take the same values
alongSsi, which ensures a correct gluing of two pieces together. By using iteration with
respect to both positive and negatidés, we construct a complete sequence of peak
surfaces and obtain formulae given in part 1) of the theorem.

Similarly, solution (4.29) of (SW) is valid until one of the poings, ..., P, onC
coincides withQ_ or 9, the poles 0f2p. SettingP, = Q. in (4.24) for the case of
an even order curv@, and using (4.4) and (4.28) yields

n=l oy
Z/ ok=zk—qi/2, k=1,...,n—1, (4.45)
i=17/ 10
n—1 i n—1 _ Q. n—1 _
> / (Qooi - de(;)k) =x- [ <Qooi - dea)k> , (4.46)
i=17%0 k=1 Po k=1
where Py = (m2,+11, 0). Inverting (4.45) results in the following expression for a sym-

metric polynomial (see e.g., Clebsch and Gordon [1866])

0lAlz =g —q/2)
0[Alz+G —q/2)

After applying the theta-functional formula for the normalized transcendent of the third
kind (Clebsch and Gordon [1866]),

8§ pHi OTAI(s — & & i
E / Q0. = cOnst— IOQM, s = § / w, g=n-1,
i=1 Py G[A](S + Q) i=1 Py

from (4.46) and (4.45) we obtain

p1+ -+ y_1 = const— dy log (4.47)

0[Al(z — 4 +4q/2)
O[Alz+q+q/2)
By choosingP, = Q. in (4.24), one arrives at the expressions (4.47) and (4.48) with

q/2, h/2 replaced by—gq/2, —h/2. Then, following similar arguments and applying
induction, the piecewise solution of part 2) is constructed.

x = po(r) = const— log — (z,d)+ h/2. (4.48)
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We emphasize that although the different pieGgsx, r) of the solution are obtained
by iterative shifting the phases Z by the same vector, the piecé&s (x, 1p) of the
solution ¢o being fixed) are all distinct because the shift occurs in be#tmd: -directions.

Remark. If we omit the reality condition above, then the hypersurfags Sy in C"
intersect, bounding a set afdimensional domains adjacent to each other in a rather
complicated manner. Then the procedure of gluing different pieces of the functions
Uy (x, t) meromorphic inside each domain cannot be defined uniquely. As a result, the
generic complex solutioly (x, ¢) branches along the peak surfaces.

5. Kinematics of Peaks

Now we obtain expressions for the velocity of thd" peak py (1) of the piecewise
solution of (HD) with respect to timg.. As was shown above, the solution has a peak
when one of thei-variables passes zero implying that= Q_or P, = Q..

Theorem 5.1. Letys, ..., y,—1 denote the:.-coordinates of the point8y, ..., P,_1 at
the moment in time when one of thevariables passes zero. The following system of
equations holds:

dpn (1)
o o S s Y1) (5.1)
daty
wherex; is k" the symmetric function ofi, .. ., y,_1. In particular, we have
dpn (1)
patz =y1+-+y-1=Ulpn@®),1), (5.2)

i.e., therp-velocity of the peak coincides with its height.

Proof. After applying limitm1 — 0, Egs. (2.12) and (2.23) for the derivatives.of
take the form

n _ Vo (pn) ’ (5.3)
dx (n — p1) -+ (U — Un—1)

Iy A/ n

o S a(ua . ttne) £(ftn) . (5.4)
otk (n — 1) -+ (Un — Un—1)

On the other hand, along the peak lipe= py ()}, we have

d oln dPN(tk) O
—un(pn (), k) = ———= + — =0,
gt (pn (), 1) ox dn + ™

which, in view of (5.3) and (5.4) and after setting = 0, yields

Vp(O 0
VPO (—Mn + X101, --.,yn1)> =0.
M1 fp—1 \ Ol

Sincep(0) # 0andu1 = y1, ..., uy—1 = y,—1 are finite, the latter relation gives (5.1).
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Remark.The relations (5.1) can be also found by using direct differentiation of the
expression for thev™" peak surface (4.35) with respectsfo Namely, putting without
loss of generalityv = 0, and taking into accoumd, = 3,,, we write

n—1 .
dpo(t) we
= 31,01, 1090 A + 12,] <i§=l fpo a)) . (5.5)

According to Mumford [1983], in case of odd order hyperelliptic curves, this gives a
theta-functional expression for the coefficient in frontdf* in the polynomial(x —
n1) - - - (A — pg) which coincides withS,_1(y1, ..., ya-1).

6. The Dynamics of Peaks and Weak Solutions

Expression (5.2) states that for equations in the hierarchies of (HD) or (SW), every peak
in the solution profile moves with velocity determined by the local value of the solution.
In this section, we derive this property without recourse to tools related to the complete
integrability of the evolution equation. Thus, this property of peak motion can hold in
general for equations that admit piecewise-smooth weak solutions, with jumps in the first
spatial derivative at isolated points in the solution’s support. In this case, the derivative
discontinuity can be viewed as a “shock” in the appropriate weak form of the evolution
equation.
We will take the weak form of the equation (HD) or (SW) to be

/qu(x, 1)-V(x,t) dx dt =0, (6.1)
Q
where the equality is satisfied for all test functiang, ¢) is C* with compact support

in a domainS2 in the (x, 1) plane. HereVe¢ = (¢, ¢,), the dot denotes th&? inner
product, and the vector function(x, r) = (V1, V») is defined by

Vl:U)n
1 1 [ 6.2
Vo = by —U2——/ lx — y| (UZ —2¢U) dy |, 6.2
2 4] o )
for equation (HD) and
V].:UXs
1 1 [ 6.3
Vo = o —U2+—/ e (2024 UE - 2cU) dy |, (6:3)
2 4 ) o )

for equation (SW), respectively. We will look for jump conditions satisfied by the so-

lutions of Eq. (6.1). If the jump discontinuities are isolated, by adjusting the support of

the test function® (x, ) we only need to consider the case of a single discontinuity.
Let us suppose that the functiéi(x, r) is infinitely differentiable almost everywhere

in @, except along the curve = ¢(¢) where the first derivativé/, has a discontinuity.

If we partition the domairf2 into @ = Q1 U Q2 by cutting along the portion of the
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discontinuity curvex — ¢(¢r) = 0 in , the divergence theorem and the choice of test
functionse (x, r) vanishing on the boundagg2 allow us to write Eq. (6.1) as

0=/dxdtV¢-V=/dxdt¢V~V
Q

o (6.4)

+/dxdt¢V-V+ /dzqm-[vt.
Qo 0Q21N0Q22

Here the unit vecton is directed along the norm#l-4, 1] to the discontinuity curve
Q1 N 8y in Q, and[V]T denotes the jump of the vectaracross this curve,

V]t = lm V.- lim V(.

x—q(t) x—>q(t)~

By the arbitrariness ap (x, ), each integrand term on the right-hand side of (6.4)
has to vanish separately. Thus, from the first two terms,
A A7) .
at  ax
in Q1 or Q2, whereU (x.t) is smooth. This smoothness and zero divergence condition,
by the definition (6.2) or (6.3) for (HD) or (SW) respectively, imply thiatx, ¢) is a
solution of these equations {&; or ©2,. For instance, (6.5) becomes

V.V =0, 0, (6.5)

Ut +0xx | U7 — =~ IX—Y|(Uy—2KU)dy =0,
2 4 ] o

which is the integrated form of the Harry-Dym equation (HD).
The last (jump) condition in (6.4} - [V]T =0 alongd 2, implies
gvalt = [va]t. (6.6)
The left-hand side of this expression is simply
g[vilt = 4lU. ]2 (6.7)

As to the right-hand side, the second (integral) term in the definitions (6.2) or (6.3)
of Va(x,t) is a continuous function of, as the integral wipes out the discontinuity
sgn(x — y) as well as additional ones thH%? might have. Hence the integral terms do
not contribute to the right hand side of (6.6). The jumgfx, r) across the discontinuity
curvex = ¢(t) then reduces to

wart = 5 [(v2)] = v (6.8)

[Uc]E = Ux(gT, 1) — Uc(g™, 1) #0,
Egs. (6.7) and (6.8) yield
g=U(q.1), (6.9)

i.e., the location of the discontinuity (shock) in thie moves at the local speéd(q, ¢).
We have then proved the following
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Theorem 6.1. Let U (x, t) be a solution of Eq. (6.1), with the vectdix, r) defined in
terms ofU (x, r) by the nonlinear, nonlocal operators (6.2) and (6.3) respectively for
equations (HD) and (SW). Léf(x, t) be a smooth function dfx, r) in the domain

Q C R?, except along the curve = ¢(r), whereU is continuous while the first
derivativeU, has a jump discontinuity (peakj(g*,t) # U(g—,t). ThenU (x, 1) is

a solution of equations (HD) and (SW) in each dom@inand 22 in which the curve

x = ¢(¢) partitions 2, and the location of the peak(r) moves with velocity equal to its
height,g = U(q, t).

Conclusions.In this paper, profiles of the weak finite-gap piecewise-smooth solutions
of the integrable nonlinear equations of shallow water and Dym type are linked to
billiard dynamical systems and geodesic flows with reflections described in terms of finite
dimensional Hamiltonian systems on Riemann surfaces. After reducing the solution of
these systems to that of a nonstandard Jacobi inversion problem, solutions are found by
introducing new parametrizations. The extension of the algebraic-geometric method for
nonlinear integrable PDE’s given in this paper leads to a description of piecewise-smooth
weak solutions of a class &f-component systems of nonlinear evolution equations and

its associated energy dependent Schrdodinger operators.
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