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Abstract

This booklet studies the geometry of the reduction of Lagrangian systems
with symmetry in a way that allows the reduction process to be repeated; that is,
it develops a context for Lagrangian reduction by stages. The Lagrangian reduction
procedure focuses on the geometry of variational structures and how to reduce
them to quotient spaces under group actions. This philosophy is well known for the
classical cases, such as Routh reduction for systems with cyclic variables (where
the symmetry group is Abelian) and Euler–Poincaré reduction (for the case in
which the configuration space is a Lie group) as well as Euler-Poincaré reduction
for semidirect products.

The context established for this theory is a Lagrangian analogue of the bun-
dle picture on the Hamiltonian side. In this picture, we develop a category that
includes, as a special case, the realization of the quotient of a tangent bundle as
the Whitney sum of the tangent of the quotient bundle with the associated adjoint
bundle. The elements of this new category, called the Lagrange–Poincaré category,
have enough geometric structure so that the category is stable under the procedure
of Lagrangian reduction. Thus, reduction may be repeated, giving the desired con-
text for reduction by stages. Our category may be viewed as a Lagrangian analog
of the category of Poisson manifolds in Hamiltonian theory.

We also give an intrinsic and geometric way of writing the reduced equations,
called the Lagrange–Poincaré equations, using covariant derivatives and connec-
tions. In addition, the context includes the interpretation of cocycles as curvatures
of connections and is general enough to encompass interesting situations involving
both semidirect products and central extensions. Examples are given to illustrate
the general theory.

In classical Routh reduction one usually sets the conserved quantities conjugate
to the cyclic variables equal to a constant. In our development, we do not require
the imposition of this constraint. For the general theory along these lines, we refer
to the complementary work of Marsden, Ratiu and Scheurle [2000], which studies
the Lagrange-Routh equations.
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CHAPTER 1

Introduction

Reduction theory for mechanical systems with symmetry has its origins in the
classical works of Euler, Lagrange, Hamilton, Routh, Jacobi, Liouville and Poincaré,
who studied the extent to which one can reduce the dimension of the phase space of
the system by making use of any available symmetries and associated conservation
laws. Corresponding to the main two views of mechanics, namely Hamiltonian and
Lagrangian mechanics, one can also adopt two views of reduction theory.

In symplectic and Poisson reduction, which are now well developed and much
studied subjects, one focuses on how to pass the symplectic two form and the
Poisson bracket structure as well as any associated Hamiltonian dynamics to a
quotient space for the action of a symmetry group (see, for example, Meyer [1973],
Marsden and Weinstein [1974], Marsden and Ratiu [1986] and the expositions in
Abraham and Marsden [1978], Arnold [1989], Libermann and Marle [1987] and
Marsden [1992]).

In Lagrangian reduction theory, which proceeds in a logically independent way,
one emphasizes how the variational structure passes to a quotient space (see, for
example, Cendra and Marsden [1987], Cendra, Ibort and Marsden [1987], Mars-
den and Scheurle [1993a, 1993b], Bloch, Krishnaprasad, Marsden and Ratiu [1996],
Cendra, Holm, Marsden and Ratiu [1998], Holm, Marsden and Ratiu [1998a], Jal-
napurkar and Marsden [2000] and Marsden, Ratiu and Scheurle [2000]). Of course,
the two methodologies are related by the Legendre transform, although not always
in a straightforward way.

The main purpose of this work is to further the development of Lagrangian
reduction theory. There are several aspects to this program. First, we provide
a context that allows for repeated Lagrangian reduction by the action of a sym-
metry group. Second, we provide the geometry that is useful for the expression
of the reduced equations, called the Lagrange–Poincaré equations. Further details
concerning the main results of this work are given shortly.

1.1. Background

As we have mentioned, in the last few years there has been considerable ac-
tivity in the area of Lagrangian reduction in which one focuses on the reduction
of variational principles. We shall review the background for this theory briefly,
starting with the best known classical results.

Classical Cases. Several classical instances of Lagrangian reduction are well known,
such as Routh reduction which was developed by Routh [1877] in connection with
his studies of the stability of relative equilibria. Routh began the development of
what we would call today Lagrangian reduction for Abelian groups. One thinks of
this case as treating mechanical systems with cyclic variables.
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2 LAGRANGIAN REDUCTION BY STAGES

Another fundamental case is that of Euler–Poincaré reduction, which occurs
for the case in which the configuration space is a Lie group. One thinks of this case
as primarily intended for systems governed by Euler equations, such as those of a
rigid body and a fluid. This case has its origins in the work of Lagrange [1788] and
Poincaré [1901a]. Both of them clearly had some idea of the reduction process.

In these classical works, many important ideas were developed. However, for
both of these cases, some of the clarifications and generalizations are remarkably
recent. For example, only in Bretherton [1970] was the reduced variational principle
established for the fluid equations, but this was done by ad hoc rather than general
methods. Both the intrinsic (coordinate free) formulation of Routh reduction as
well as the general formulation of Euler–Poincaré reduction in terms of variational
principles were given in Marsden and Scheurle [1993a, 1993b]). The Euler–Poincaré
case was further developed in Bloch, Krishnaprasad, Marsden and Ratiu [1996]. An
exposition of Lagrangian reduction for both the Routh and Euler–Poincaré cases
can be found in Marsden and Ratiu [1999].

Semidirect Product Theory. Another well developed subject in Hamiltonian
reduction theory is that of semidirect product theory. This theory has its origins
in the work of Guillemin and Sternberg [1980] (see also Guillemin and Sternberg
[1984]), Ratiu [1980a; 1981; 1982a], and Marsden, Ratiu, and Weinstein [1984a,
1984b]. This theory has many interesting applications, such as to the heavy top,
MHD, and the dynamics of underwater vehicles (Leonard and Marsden [1997]). This
semidirect product theory was a direct precursor to the development of symplectic
reduction by stages (Marsden, Misiolek, Perlmutter and Ratiu [1998, 2000]).

Lagrangian analogues of the semidirect product theory were developed in Holm,
Marsden and Ratiu [1998a] with applications to many fluid mechanical problems
of interest. The point of view was to extend the Euler–Poincaré theory to the
case of systems such as the heavy top and compressible flows in which there are
advected parameters or fields. This methodology was applied to the case of the
Maxwell–Vlasov equations by Cendra, Holm, Hoyle and Marsden [1998]; Cendra,
Holm, Marsden and Ratiu [1998] showed how it fits into the general framework of
Lagrangian reduction.

Symplectic versus Poisson Reduction. We should emphasize that in the frame-
work of the theory of Poisson manifolds, Poisson reduction (in the naive sense of
just taking nonsingular quotients, not the more sophisticated sense of Marsden and
Ratiu [1986]) by stages is quite simple, while in the framework of symplectic man-
ifolds, symplectic reduction by stages is more sophisticated. On the other hand, if
one wants to study the reduction of cotangent bundles and to retain as much of
this structure as possible, then even the Poisson point of view is quite nontrivial.

The Lagrangian analogue of symplectic reduction is nonabelian Routh reduc-
tion (Marsden and Scheurle [1993a, 1993b], Jalnapurkar and Marsden [2000] and
Marsden, Ratiu and Scheurle [2000]) and its full development in the context of
reduction by stages is the subject of a future publication. The present work rep-
resents a Lagrangian analogue of the Poisson version of reduction by stages but
keeping the structure of the tangent bundle as much as possible. One of the things
that makes the Lagrangian side interesting has been the lack of a general category
that is the Lagrangian analogue of Poisson manifolds. Such a category, that of
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Lagrange–Poincaré bundles is given in §8, with the tangent bundle of a configura-
tion manifold and a Lie algebra as its two most basic examples. We also develop
the Lagrangian analogue of reduction for central extensions and, as in the case of
symplectic reduction by stages, cocycles and curvatures enter in this context in a
natural way.

Nonholonomic Mechanics. The ideas of geometric mechanics and Lagrangian
reduction have had a significant impact on the theory of nonholonomic systems
(such as mechanical systems with rolling constraints), as in Bloch, Krishnaprasad,
Marsden and Murray [1996] and Koon and Marsden [1997b, c, 1998], Marsden,
Ratiu, and Weinstein [1998, 1994] Bloch and Crouch [1999] and Lewis [1996, 2000].
These references also develop Lagrangian reduction methods in the context of non-
holonomic mechanics with symmetry. These methods have been quite useful in
many control problems and in robotics. The techniques of the present paper can
be used to give an intrinsic geometric meaning to the reduction of the Lagrange-
d’Alembert equations of nonholonomic mechanics. This is the subject of the work
Cendra, Marsden and Ratiu [2000].

Control Theory. Geometric mechanics and Lagrangian reduction theory has also
had a significant impact on control theory, including stabilization (as in Bloch,
Leonard and Marsden [2000] and Jalnapurkar and Marsden [1999] as well as on op-
timal control theory; see Vershik and Gershkovich [1988, 1994], Bloch and Crouch
[1993, 1994, 1995] Montgomery [1990, 1993], Koon and Marsden [1997a] and refer-
ences therein.

1.2. The Main Results of This Paper.

We now give a few more details concerning the main results. The first of these,
given in §5, develops the theory of Lagrange-Poincaré bundles, which enable one
to perform Lagrangian reduction in stages. Lagrange-Poincaré bundles may be
regarded as the Lagrangian analogue of a Poisson manifold in symplectic geometry.
Lagrange–Poincaré bundles include, of course, the case of reduced tangent bundles
(TQ)/G in which we take the quotient of the tangent bundle of the configuration
space Q by the action of a Lie group G on Q. This in turn, includes important
examples such as Euler–Poincaré reduction for the special case Q = G, a Lie group,
in which case, (TQ)/G = g, the Lie algebra of G. Euler–Poincaré reduction is now
a textbook topic that can be found in Marsden and Ratiu [1999]. We show that
when a general tangent bundle is reduced by a group action, one ends up in the
category of Lagrange-Poincaré bundles.

We mention that Lagrange-Poincaré bundles are in particular, Lie algebroids
but carry additional structure. We will not use any theory of groupoids or algebroids
in this work, but we will comment on part of the literature in the body of the work.

The Lagrange–Poincaré equations are expressed using connections and curva-
ture. These equations are obtained using the idea of reducing variational principles.
The Lagrange-Poincaré category is stable under reduction and the structure carried
by Lagrange–Poincaré bundles is exactly what is needed to write the Lagrange-
Poincaré equations in a covariant form.

In §5.3 and §5.4 we show that if the symmetry group has a normal subgroup
(i.e., one has a group extension), then reducing by the whole group is shown to be
isomorphic to what one gets by reducing in stages, first by the normal subgroup
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followed by reduction by the quotient group. This result is a Lagrangian analogue
of doing Poisson reduction by stages, but keeping track of the local structure of
Poisson manifolds, as in the Lie–Weinstein theorem (see Weinstein [1983a]).

The theory we establish may be viewed as the Lagrangian analogue of the bun-
dle picture on the Hamiltonian side developed by Montgomery [1986] and Mont-
gomery, Marsden and Ratiu [1984]. This bundle picture was in turn influenced by
work on Wong’s equations for a particle in a Yang–Mills field, as studied by Stern-
berg [1977], Weinstein [1978], Montgomery [1984], and Koon and Marsden [1997a].
As we shall see in §3.3, this theory has a very beautiful Lagrangian analogue. In
§6 we give a number of additional examples. In future works we plan to establish
additional links with the Hamiltonian side.

1.3. Future Work and Related Issues.

Our theory naturally suggests a number of additional things that warrant fur-
ther investigation.

Geometric Phases. The development of the theory of geometric phases in the
Lagrangian context is natural to develop given the relatively large amount of activ-
ity from the symplectic and Poisson point of view (see, eg, Marsden, Montgomery
and Ratiu [1990], Marsden [1992], Blaom [2000] and references therein).

The paper of Marsden, Ratiu and Scheurle [2000] gives geometric phase for-
mulas in the context of Routh reduction. The development of geometric phases by
stages would be of interest. In fact, the Lagrangian setting provides natural connec-
tions and also a natural setting for averaging which is one of the basic ingredients
in geometric phases.

Nonholonomic Mechanics. As mentioned above, the work of Cendra, Mars-
den and Ratiu [2000] extends the notion of Lagrange–Poincaré bundles to those of
Lagrange-d’Alembert-Poincaré bundles that are appropriate for nonholonomic me-
chanics. This extension may be regarded as the Lagrangian analogue of the notion
of an almost Poisson manifold (in which Jacobi’s identity can fail), as in Koon and
Marsden [1998] and Cannas da Silva and Weinstein [1999]. Furthering the links
with almost Poisson manifolds and also developing a nonholonomic reduction by
stages theory would of course be of interest.

Further Relations with the Hamiltonian Side. It would also be significant to
investigate the precise relationship of the work here with the Hamiltonian reduction
by stages theory in more detail, in particular, the relation with symplectic reduc-
tion by stages applied to cotangent bundles. This requires the nonabelian Routh
reduction analogue of the work here, namely that of Marsden, Ratiu and Scheurle
[2000], which extends the work of Marsden and Scheurle [1993a] and Jalnapurkar
and Marsden [2000].

Relations with Poisson Geometry. The Lie–Weinstein theorem states that a
Poisson manifold is locally the product of a symplectic manifold and the dual of a
Lie algebra. This paper develops a Lagrangian category that locally looks like the
dual of this local structure for Poisson manifolds. Our bundles actually have more
structure than this, which is important for carrying out the reduction, namely we
also carry along a connection and a two-form that helps keep track of curvature (or
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magnetic terms). This structure is also very useful for writing covariant versions of
the reduced equations, that is, the Lagrange–Poincaré equations.

Variational Integrators and Discrete Reduction. As Weinstein [1996] points
out, there is a more general context for Lagrangian mechanics that also includes
discrete mechanics in the sense of Veselov [1988, 1991] and Moser and Veselov
[1991]. Our category of Lagrange–Poincaré bundles does not include this literally,
but still, there is a well defined discrete analogue of these bundles. This picture is
useful in the understanding of the reduced Hamilton-Jacobi equation (see Ge and
Marsden [1988]).

One of the interesting developments in symplectic integration algorithms has
been the progress made in variational integrators. These are based on direct dis-
cretizations of Hamilton’s principle following some of the ideas of Veselov [1988].
See, for example, Wendlandt and Marsden [1997], Marsden, Patrick and Shkoller
[1998] and Kane, Marsden, Ortiz and West [2000]. There is a very interesting
discrete reduction theory for these that is still under development. See Marsden,
Pekarsky and Shkoller [1999], Bobenko and Suris [1999a, 1999b] and Jalnapurkar
Jalnapurkar, Leok, Marsden and West [2000].

Infinite Dimensional Examples. In this paper we will be dealing with La-
grangian reduction theory in the context of finite dimensional manifolds. Of course
the theory formally applies to many interesting infinite dimensional examples. In
the infinite dimensional context, many of the expressions that appear here as pure
partial derivatives must be written in the notation of functional derivatives (see
Marsden and Ratiu [1999] for some of the basic examples, an explanation of the
functional derivative notation, and additional references to the literature).

Multisymplectic Context. Another area of much current activity is that of mul-
tisymplectic geometry. See, for example, Marsden and Shkoller [1999] and Marsden,
Patrick and Shkoller [1998]. This theory has both a Lagrangian and a Hamiltonian
view and it has allowed, for example, a development of the Moser-Veselov theory
to the context of PDE’s. Reduction theory in this context is in its infancy (see, for
example, Marsden, Montgomery, Morrison and Thompson [1986] and Castrillón-
López, Ratiu and Shkoller [2000]). Obviously it would be of interest to develop
such a theory from the Lagrangian reduction point of view.

An exciting possible application where reduction by stages is involved is that
of various complex fluids, such as liquid crystals, where there is a group of particle
relabeling symmetries, as in fluids and plasmas, as well as an internal order param-
eter group. See Holm [2000]. This sort of example would also provide an interesting
context for multisymplectic reduction by stages!





CHAPTER 2

Preliminary Constructions

In this section we recall some results about bundles and connections that we
will use later. As a general reference, see Kobayashi and Nomizu [1963]; however,
the reader should be warned that various conventions and notations differ from this
reference and we shall point these out as we proceed. In general, we follow the con-
ventions of Abraham and Marsden [1978] and Abraham, Marsden and Ratiu [1988].
We provide intrinsic proofs with a view to infinite dimensional generalizations and
also because of the insight they provide. Coordinate expressions are important in
many applications, and they can be readily provided (some of these may be found
in Marsden and Scheurle [1993a, 1993b] and Bloch, Krishnaprasad, Marsden and
Murray [1996]).

2.1. Notation and general assumptions.

Maps. If f : A → B is a map between sets and C ⊂ A, we shall often write
f : C → B instead of f |C : C → B, for short.

Manifolds. Unless otherwise noted, for simplicity, manifolds are assumed to be
C∞, as are maps between them. While the manifolds will be assumed to be finite
dimensional, many results can be easily generalized for infinite dimensions in a
straightforward manner.

For a manifold Q, we let TQ be the tangent bundle of Q. An element of TqQ
will be denoted vq, uq, . . ., or (using a standard abuse of notation) by (q, q̇) or
simply by q̇.

Actions. Unless otherwise noted, an action ρ : G × Q → Q of a Lie group G on
a manifold Q is assumed to satisfy the additional condition that, relative to this
action, the manifold Q becomes a principal bundle with structure group G, say
πG(Q) : Q→ Q/G. In other words, we assume that Q/G is a manifold, that πG(Q)
is a submersion and that the action is free. As is well known (see, for example,
Abraham and Marsden [1978] for the proof), if the action is both free and proper,
then this hypothesis is satisfied.

We will often use the equivalent notations πG(Q)(q) = [q]G for the equivalence
class of q ∈ Q. We will work with left actions in this paper unless explicitly noted
otherwise; however, generalizations for right actions are straightforward.

The assumption of freeness of the action is, of course, a strong one and it
corresponds, in the Hamiltonian case, to eliminating the case of singular reduction
(see Sjamaar and Lerman [1991], Bates and Lerman [1997], Ortega [1998], and
Ortega and Ratiu [1997, 2001]). Similarly, on the Lagrangian side, this paper does
not address the case of singular reduction. Of course, such questions are very
interesting, but there is plenty to do even omitting that topic.

7



8 LAGRANGIAN REDUCTION BY STAGES

We will often use the equivalent notations ρ(g, q) ≡ ρg(q) ≡ ρq(g) ≡ g · q ≡ gq
for the action of the group element g on the point q ∈ Q. However, the concatenation
notation gq will be used most commonly. The tangent lift of this action will be
denoted gvq, where vq ∈ TqQ. For any element ξ in the Lie algebra g of G, the
infinitesimal generator at q ∈ Q is denoted ξq ≡ ξQ(q) and it is defined, as usual,
by

ξq :=
d

dt

∣∣∣∣
t=0

(exp tξ)q.

Bundles. If π : P → Q is a fiber bundle and q ∈ Q, the fiber π−1(q) at q is
sometimes denoted Pq. If τi : Vi → Qi are vector bundles for i = 1, 2 and f : V1 →
V2 is a vector bundle map, the induced map on the zero-sections, which are usually
identified with Qi, i = 1, 2, is denoted f0 : Q1 → Q2, or sometimes, by a slight
abuse of notation, simply f .

Given two bundles πi : Pi → Q, i = 1, 2, the fiber product is the bundle
π1 ×Q π2 : P1 ×Q P2 → Q where P1 ×Q P2 is the set of all elements (p1, p2) ∈
P1 × P2 such that π1(p1) = π2(p2) and the projection π1 ×Q π2 : P1 ×Q P2 → Q
is naturally defined by π1 ×Q π2(p1, p2) = π1(p1) = π2(p2). The fiber is given by
(π1 ×Q π2)−1(q) = π−1

1 (q)× π−1
2 (q).

A principal bundle is a manifold Q with a free left action G × Q → Q of a
Lie group G, such that the natural projection π : Q→ Q/G is a submersion.

The Whitney sum of two vector bundles τi : Vi → Q, i = 1, 2, over the same
base is their fiber product. It is a vector bundle over Q and is denoted V1 ⊕ V2.
This bundle is obtained by taking the fiberwise direct sum of the fibers of V1 and
V2.

Sometimes, for purposes of uniformizing notation, we will consider a manifold
Q as being identified with the vector bundle over Q whose fibers have dimension
0. Therefore if τ : V → Q is a vector bundle, Q ⊕ V is simply V , and an element
q ⊕ v of Q⊕ V satisfies τv = q.

Connections. The word connection will be used in two different but standard
senses in this paper. Sometimes it will mean a principal connection on a principal
bundle and sometimes will mean a connection on a vector bundle, usually denoted
∇ with the addition, sometimes, of some indexes to clarify the spaces on which
the connection is defined. In any case, the context will always make it clear the
sense in which we are using the word. We will recall some of the key notions and
conventions used in the following paragraphs.

2.2. Connections on Principal Bundles.

Horizontal and Vertical Spaces. Let π : Q → Q/G be a left principal bundle,
where π is the canonical projection. Recall that a (principal) connection A on
Q is a Lie algebra valued one form A : TQ→ g with the properties

(i) A(ξq) = ξ for all ξ ∈ g; that is, A takes infinitesimal generators of a given
Lie algebra element to that element, and

(ii) A(Tqρg · v) = Adg(A(v)), where Adg denotes the adjoint action of G on
g.

The restriction of a connection to the tangent space TqQ is denoted Aq. Recall
that connections may be characterized by giving their vertical and horizontal spaces
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defined at q ∈ Q by

Verq = KerTqπ, Horq = KerAq.

Thus, Ver(TQ) = ∪q∈Q Verq is the subbundle of vectors tangent to the group orbits.
The vertical and horizontal components of a vector vq will be denoted Ver(vq)
and Hor(vq) respectively. By definition,

Ver(vq) = A(vq)q and Hor(vq) = vq −A(vq)q.

This provides a decomposition TQ = Hor(TQ) ⊕ Ver(TQ) where Hor(TQ) =
∪q∈Q Horq and Ver(TQ) are the horizontal and vertical subbundles of TQ, which
are invariant under the action of G. A vector is called horizontal if its vertical
component is zero; i.e., if A(vq) = 0 and it is called vertical if its horizontal com-
ponent is zero; i.e., if Tqπ(vq) = 0. Note that Tqπ : Horq → Tπ(q)(Q/G) is an
isomorphism.

Curvature. The curvature of A will be denoted BA or simply B. By definition,
it is the Lie algebra valued two form on Q defined by

B(uq, vq) = dA(Horq(uq),Horq(vq)),

where d denotes the exterior derivative.
The reader should be aware that, although the notion of the curvature of a

given connection on a principal bundle is a well established and an essentially
unique concept, there are many conventions related to various sign conventions and
definitions of the wedge product and the exterior derivative. The one adopted here
for left actions is consistent with the one given in Abraham and Marsden [1978].

Cartan Structure Equations. The Cartan structure equations state that for
vector fields u, v (not necessarily horizontal) on Q, we have

B(u, v) = dA(u, v)− [A(u), A(v)], (2.2.1)

where the bracket on the right hand side is the Lie bracket in g. We write this
equation for short as

B = dA− [A,A].

Horizontal Lifts. Given a vector X ∈ Tx(Q/G), and q ∈ π−1(x), the horizontal
lift Xh

q of X at q is the unique horizontal vector in TqQ that projects via Tπ to the
vector X(x); that is, Xh

q ∈ (Tqπ)−1(X). We denote by Xh the vector field along
π−1(x) formed by all horizontal lifts of X at points of π−1(x).

For any curve x(t) in Q/G, where t ∈ [a, b], the family of horizontal lifts is
denoted xh. The definition is the following. For any point q0 ∈ π−1(x0), where
x0 = x(t0), for some t0 ∈ [a, b], the horizontal lift of x(t), which at t = t0 coincides
with q0, is uniquely determined by requiring its tangent to be a horizontal vector.
This curve is denoted xhq0 and is defined on [a, b].

Consider a curve q(t), where t ∈ [a, b], and choose t0 ∈ [a, b]. Then there is a
unique horizontal curve qh(t) such that qh(t0) = q(t0) and π (qh(t)) = π (q(t)) for all
t ∈ [a, b]. Therefore, we can define a curve gq(t), t ∈ [a, b] in G by the decomposition

q(t) = gq(t)qh(t) (2.2.2)

for all t ∈ [a, b]. Evidently gq(t0) is the identity. Also, notice that if x(t) = π(q(t))
and q0 = q(t0) then qh(t) = xhq0(t).
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Lemma 2.2.1. For any curve q(t), t ∈ [a, b] in Q we have

A(q, q̇) = ġqg
−1
q .

Proof. We start with the equality gq(t)qh(t) = q(t). Differentiating this with
respect to t gives

ġq(t)qh(t) + gq(t)q̇h(t) = q̇(t).

Here, the notation is interpreted in an obvious way; for example, for ug ∈ TgG and
q ∈ Q, ugq means the derivative of the orbit map g 7→ gq in the direction of ug to
give an element of TgqQ.

By definition of a horizontal vector, A (gq(t)q̇h(t)) = 0. Recall also that the
connection reproduces the Lie algebra element on infinitesimal generators (i.e.,
A(ξq) = ξ for ξ ∈ g and q ∈ Q). In particular, for ξ = ġqg

−1
q and q(t) = gq(t)qh(t)

we get
A(ġq(t)qh(t)) = A(ġq(t)g−1

q (t)gq(t)qh(t)) = ġqg
−1
q ,

from which the result follows. �

Curvature and Horizontal Lifts. For X1, X2 ∈ X∞(Q/G), let Xh
1 , X

h
2 ∈ X∞(Q)

be their horizontal lifts. Thus, Xh
i and Xi are π-related, that is, Tπ ◦Xh

i = Xi ◦π,
for i = 1, 2. However, the bracket operation of vector fields preserves π-relatedness
(see, for example, Abraham, Marsden and Ratiu [1988]) and hence Tπ ◦ [Xh

1 , X
h
2 ] =

[X1, X2]◦π. Thus, Hor[Xh
1 , X

h
2 ](q) and [X1, X2]h(q) are two horizontal vectors that

project by Tqπ to [X1, X2](π(q)) and hence they are equal. This proves the identity

Hor[Xh
1 , X

h
2 ] = [X1, X2]h. (2.2.3)

By Cartan’s structure equations, we get

B(q) (X1(q), X2(q)) q = (dA(q) (X1(q), X2(q))) q

= −
(
A
([
Xh

1 , X
h
2

])
(q)
)
q

= Ver
[
Xh

1 , X
h
2

]
(q)

= −
[
Xh

1 , X
h
2

]
+ Hor

[
Xh

1 , X
h
2

]
(q),

which shows, using (2.2.3), that[
Xh

1 , X
h
2

]
(q) = [X1, X2]h (q)−B(q)

(
Xh

1 (q), Xh
2 (q)

)
q. (2.2.4)

2.3. Associated Bundles.

Besides the principal bundle π : Q → Q/G discussed above, consider a left
action ρ : G ×M → M of the Lie group G on a manifold M . The associated
bundle with standard fiber M is, by definition,

Q×GM = (Q×M)/G,

where the action of G on Q×M is given by g(q,m) = (gq, gm). The class (or orbit)
of (q,m) is denoted [q,m]G or simply [q,m]. The projection πM : Q×GM → Q/G
is defined by πM ([q,m]G) = π(q) and it is easy to check that it is well defined and
is a surjective submersion.
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Parallel Transport. Let [q0,m0]G ∈ Q ×G M and let x0 = π(q0) ∈ Q/G. Let
x(t), t ∈ [a, b] be a curve in Q/G and let t0 ∈ [a, b] be such that x(t0) = x0. The
parallel transport of this element [q0,m0]G along the curve x(t) is defined to be
the curve

[q,m]G(t) = [xhq0(t),m0]G.
Let us check that this curve is well defined. In fact, for any g ∈ G, the equivariance
property of the connection gives xhgq0(t) = gxhq0(t) for all t and hence

[xhgq0(t), gm0]G = [gxhq0(t), gm0]G = [xhq0(t),m0]G
for all t.

Consider a curve x(t), t ∈ [a, b] in Q/G, as before. For t, t+ s ∈ [a, b], we adopt
the notation

τ tt+s : π−1
M (x(t))→ π−1

M (x(t+ s))
for the parallel transport map along the curve x(s) of any point

[q(t),m(t)]G ∈ π−1
M (x(t))

to the corresponding point

τ tt+s[q(t),m(t)]G ∈ π−1
M (x(t+ s)) .

Thus,
τ tt+s[q(t),m(t)]G = [xhq(t)(t+ s),m(t)]G.

Associated Vector Bundles. Now we concentrate on the particular case when
M is a vector space and ρ is a linear representation. (These will be the only
associated bundles needed in the present work.) In this case, the associated bundle
with standard fiber M is a vector bundle in a natural way. We now recall what
the vector bundle structure is. If [q,m]G, [q,m1]G, [q,m2]G ∈ π−1

M ([q]G), then the
vector space structure in this fiber is defined by

a[q,m]G = [q, am]G and [q,m1]G + [q,m2]G = [q,m1 +m2]G.

We shall sometimes use the notation ρ′(ξ) for the second component of the
infinitesimal generator of an element ξ ∈ g, that is, ξm = (m, ρ′(ξ)m). Here we are
using the identification TM = M ×M , appropriate for vector spaces. Thus, we are
thinking of the infinitesimal generator as a map ρ′ : g→ End(M) (the linear vector
fields on M are identified with the space of linear maps of M to itself). Thus, we
have a linear representation of the Lie algebra g on the vector space M .

Definition 2.3.1. Let [q(t),m(t)]G, t ∈ [a, b] be a curve in Q×GM , denote by

x(t) = πM ([q(t),m(t)]G) = π(q(t))

its projection on the base Q/G, and let, as above, τ tt+s, where t, t+s ∈ [a, b], denote
parallel transport along x(t) from time t to time t+ s. The covariant derivative
of [q(t),m(t)]G along x(t) is defined as follows

D[q(t),m(t)]G
Dt

= lim
s→0

τ t+st ([q(t+ s),m(t+ s)]G)− [q(t),m(t)]G
s

.

Thus, the covariant derivative of [q(t),m(t)]G is an element of π−1
M (x(t)).

Notice that if [q(t),m(t)]G is a vertical curve, then its base point is constant;
that is, for each t ∈ [a, b],

x(t+ s) = πM ([q(t+ s),m(t+ s)]G) = x(t),



12 LAGRANGIAN REDUCTION BY STAGES

so that xhq(t)(t+ s) = q(t) for all s. Therefore,

τ t+st [q(t+ s),m(t+ s)]G = [xhq(t+s)(t),m(t+ s)]G = [q(t),m(t+ s)]G

and so we get the well known fact that the covariant derivative of a vertical curve
in the associated bundle is just the fiber derivative. That is,

D[q(t),m(t)]G
Dt

= [q(t),m′(t)]G,

where m′(t) is the time derivative of m.

Affine Connections. The notion of covariant derivative can be defined from a
different, more axiomatic, point of view, which will be useful later in this paper.
By definition (see Kobayashi and Nomizu [1963]), a connection (sometimes called
an affine connection to distinguish it from a principal connection) ∇ on a vector
bundle τ : V → Q is a map ∇ : X∞(Q)×Γ(V )→ Γ(V ), say (X, v) 7→ ∇Xv, having
the following two properties:

(1) First, we require that

∇f1X1+f2X2v = f1∇X1v + f2∇X2v

for all Xi ∈ X∞(Q) (the space of smooth vector fields on Q), fi ∈ C∞(Q)
(the space of smooth real valued functions on Q), i = 1, 2, and all v ∈ Γ(V )
(the space of smooth sections of the vector bundle V ),

(2) and secondly,

∇X(f1v1 + f2v2) = X[f1]v1 + f1∇Xv1 +X[f2]v2 + f2∇Xv2

for all X ∈ X∞(Q), fi ∈ C∞(Q), and vi ∈ Γ(V ), i = 1, 2.
Here, X[f ] denotes the derivative of f in the direction of the vector field X.

Given a connection on V , the parallel transport of a vector v0 ∈ τ−1(q0)
along a curve q(t) in Q, t ∈ [a, b] such that q(t0) = q0 for a fixed t0 ∈ [a, b], is
the unique curve v(t) such that v(t) ∈ τ−1 (q(t)) for all t, v(t0) = v0, and which
satisfies ∇q̇(t)v(t) = 0 for all t. The operation of parallel transport establishes, as
before, for each t, s ∈ [a, b], a linear map

T tt+s : τ−1(q(t))→ τ−1(q(t+ s))

associated to each curve q(t) in Q. Then we can define the operation of covariant
derivative on curves v(t) in V similar to that in the previous definition; that is,

Dv(t)
Dt

=
d

ds
T t+st v(t+ s)

∣∣∣∣
s=0

.

Observe that the connection ∇ can be recovered from the covariant derivative (and
thus from the parallel transport operation). Indeed, ∇ is given by

∇Xv(q0) =
D

Dt
v(t)

∣∣∣∣
t=t0

,

where, for each q0 ∈ Q, each X ∈ X∞(Q), and each v ∈ Γ(V ), we have, by
definition, that q(t) is any curve in Q such that q̇(t0) = X(q0) and v(t) = v (q(t))
for all t. This property establishes, in particular, the uniqueness of the connection
associated to the covariant derivative D/Dt.
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Formula for the Covariant Derivative Induced by a Principal Connection.
Now we return to the study of the affine connection induced on an associated
bundle. The following formula gives the relation between the covariant derivative
of the affine connection and the principal connection.

Lemma 2.3.2.

D[q(t),m(t)]G
Dt

= [q(t),−ρ′ (A (q(t), q̇(t)))m(t) + ṁ(t)]G .

Proof. For fixed t and for any s we have

[q(t+ s),m(t+ s)]G = [gq(t+ s)qh(t+ s),m(t+ s)]G,

where we assume qh(t) = q(t) and gq(t) = e, the identity element of G. Then

τ t+st [q(t+ s),m(t+ s)]G = τ t+st [gq(t+ s)qh(t+ s),m(t+ s)]G

= τ t+st [qh(t+ s), gq(t+ s)−1m(t+ s)]G

= [qh(t), gq(t+ s)−1m(t+ s)]G.

Therefore, differentiating with respect to s at s = 0 we obtain

D[q(t),m(t)]G
Dt

= [q(t),−ġq(t)m(t) + ṁ(t)]G .

Since gq(t) = e we have, using Lemma 2.2.1, that ġq(t) = A (q(t), q̇(t)). Therefore,

ġq(t)m(t) = ρ′ (A (q(t), q̇(t)))m(t). �

Induced Connections on Associated Bundles. The previous definition of the
covariant derivative of a curve in the associated vector bundle Q×GM thus leads
to a connection on Q×GM . Let us call this connection ∇̃A or simply ∇̃.

We now describe this connection ∇̃A in more detail. Let ϕ : Q/G→ Q×GM
be a section of the associated bundle and let X(x) ∈ Tx(Q/G) be a given vector
tangent to Q/G at x. Let x(t) be a curve in Q/G such that ẋ(0) = X(x); thus,
ϕ (x(t)) is a curve in Q×GM . The covariant derivative of the section ϕ with respect
to X at x is then, by definition,

∇̃AX(x)ϕ =
Dϕ (x(t))

Dt

∣∣∣∣
t=0

. (2.3.1)

Notice that we only need to know ϕ along the curve x(t) in order to calculate the
covariant derivative.

The notion of a horizontal curve [q(t),m(t)]G on Q ×G M is defined by
the condition that its covariant derivative vanishes. A vector tangent to Q ×G M
is called horizontal if it is tangent to a horizontal curve. Correspondingly, the
horizontal space at a point [q,m]G ∈ Q ×G M is the space of all horizontal
vectors at [q,m]G.
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The Adjoint Bundle. The case that interests us most in this paper occurs when
M = g and ρg is the adjoint action Adg.

Definition 2.3.3. The associated bundle with standard fiber g, where the
action ofG on g is the adjoint action, is called the adjoint bundle, and is sometimes
denoted Ad(Q). We will use the notation g̃ := Ad(Q) in this paper. We let
π̃G : g̃→ Q/G denote the projection given by π̃G ([q, ξ]G) = [q]G.

Lemma 2.3.4. Let [q(s), ξ(s)]G be any curve in g̃. Then

D[q(s), ξ(s)]G
Ds

=
[
q(s),− [A (q(s), q̇(s)) , ξ(s)] + ξ̇(s)

]
G
.

Proof. Use the previous lemma and the fact that ρ′(ξ) = adξ. �

The next Lemma says that the adjoint bundle is a Lie algebra bundle.

Lemma 2.3.5. Each fiber g̃x of g̃ carries a natural Lie algebra structure defined
by

[[q, ξ]G, [q, η]G] = [q, [ξ, η]]G .

Proof. We must show that the bracket is well defined, which is done in a straight-
forward way as follows:

[[gq,Adg ξ]G, [gq,Adg η]G] = [gq, [Adg ξ,Adg η]]G
= [gq,Adg[ξ, η]]G
= [q, [ξ, η]]G
= [[q, ξ]G, [q, η]G] .

�

2.4. The Bundles TQ/G and T (Q/G)⊕ g̃

Let π : Q→ Q/G be a principal bundle with structure group G, as before. The
tangent lift of the action of G on Q defines an action of G on TQ and so we can
form the quotient (TQ)/G =: TQ/G. There is a well defined map τQ/G : TQ/G→
Q/G induced by the tangent of the projection map π : Q → Q/G and given by
[vq]G 7→ [q]Q. The vector bundle structure of TQ is inherited by this bundle.

Lemma 2.4.1. The rules

[vq]G + [uq]G = [vq + uq]G and λ[vq]G = [λvq]G,

where λ ∈ R, vq, uq ∈ TqQ, and [vq]G and [uq]G are their equivalence classes in the
quotient TQ/G, define a vector bundle structure on TQ/G having base Q/G. The
fiber (TQ/G)x is isomorphic, as a vector space, to TqQ, for each x = [q]G.

Proof. If [q0]G = x is given, the isomorphism between the fiber (TQ/G)xand Tq0Q
is given by the map [uq]G 7→ g−1uq, where g ∈ G is uniquely determined by the
relation gq0 = q. �
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The bundle TQ/G is a fundamental object in the present paper. One can state
reduced variational principles in a natural way in terms of this bundle without any
reference to a connection on Q, which we shall describe in the next section.

It is, however, also interesting to introduce an (arbitrarily chosen) connection
on Q relative to which one can realize the space TQ/G in a convenient way as
well as writing the Lagrange–Poincaré equations in an interesting form. The next
lemma is one of the main tools needed for doing this.

Lemma 2.4.2. The map αA : TQ/G→ T (Q/G)⊕ g̃ defined by

αA ([q, q̇]G) = Tπ(q, q̇)⊕ [q, A(q, q̇)]G
is a well defined vector bundle isomorphism. The inverse of αA is given by

α−1
A ((x, ẋ)⊕ [q, ξ]G) = [(x, ẋ)hq + ξq]G.

Proof. To show that αA is well defined, observe that for any g ∈ G we have
Tπ(gq, gq̇) = Tπ(q, q̇) and also

[gq,A(gq, gq̇)]G = [gq,Adg A(q, q̇)]G = [q, A(q, q̇)]G.

Then we see that
αA ([gq, gq̇]G) = αA ([q, q̇]G) .

To show that α−1
A is well defined, notice that (x, ẋ)hgq = g(x, ẋ)hq and that (Adg ξ)gq =

gξq. Therefore,

α−1
A ((x, ẋ)⊕ [gq,Adg ξ]G) = α−1

A ((x, ẋ)⊕ [q, ξ]G) . �

Remark. The bundles TQ/G and T (Q/G) ⊕ g̃ do not depend on the connection
A, but, of course, αA does.





CHAPTER 3

The Lagrange–Poincaré Equations

In this section we use the constructions from the previous section to show how
to write the Lagrange–Poincaré equations in an intrinsic way. This is done in terms
of an (arbitrarily chosen) connection A. The resulting equations are given on the
bundle T (2)(Q/G)⊕ g̃, where T (2)(Q/G) is the second order tangent bundle (which
is related to the 2-jet bundle) of Q/G, whose general definition is recalled in §3.2,
and where g̃ = Q×G g is the associated adjoint bundle to Q. A key point in doing
this is to decompose arbitrary variations of curves in Q into vertical and horizontal
components. This gives rise, correspondingly, to two reduced equations, namely,
vertical Lagrange–Poincaré equations, corresponding to vertical variations, and hor-
izontal Lagrange–Poincaré equations, corresponding to horizontal variations, which
are Euler–Lagrange equations on Q/G with an additional term involving the cur-
vature B of A. (Our conventions for the curvature were given in §2.2.)

3.1. The Geometry of Variations

Spaces of Curves. The Setup. Fix a time interval I = [t0, t1]. The space of
all (smooth) curves from I to Q will be denoted Ω(Q). We shall not include the
interval I explicitly in the notation for spaces of curves for simplicity; it will be
understood from the context and explicitly stated when necessary.

Given a map f : Q1 → Q2, the map Ω(f) : Ω(Q1)→ Ω(Q2) is defined by

Ω(f)(q)(t) = f(q(t)),

for q(t) an element of Ω(Q1). For given qi ∈ Q, i = 0, 1, by definition, Ω(Q; q0) and
Ω(Q; q0, q1) are, respectively, the spaces of curves q(t) on Q such that q(t0) = q0

and q(ti) = qi, i = 0, 1.
If π : Q → S is a bundle, q0 ∈ Q and π(q0) = x0, then Ω(Q;x0) denotes the

space of all curves in Ω(Q) such that π (q(t0)) = x0. The space Ω(Q;x1) is defined
in an analogous way. Similarly, Ω(Q;x0, q1) is the space of all curves in Ω(Q) such
that π (q(t0)) = x0 and q(t1) = q1. The spaces of curves Ω(Q; q0, x1), Ω(Q;x0, x1),
etc. are defined in a similar way.

If V → Q and W → Q are vector bundles then Ω (V ) → Ω (Q) and Ω (W ) →
Ω (Q) are vector bundles in a natural way and there is a natural identification
Ω (V ⊕W ) ≡ Ω(V )⊕ Ω(W ).

Deformations of Curves. A deformation of a curve q(t) on a manifold Q is,
by definition, a (smooth) function q(t, λ) such that q(t, 0) = q(t) for all t. The
corresponding variation is defined by

δq(t) =
∂q(t, λ)
∂λ

∣∣∣∣
λ=0

.

17
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Variations of curves q(t) belonging to Ω(Q; q0) or Ω(Q; q0, q1) satisfy the corre-
sponding fixed endpoints conditions, namely, δq(t0) = 0 or δq(ti) = 0 for i = 0, 1,
respectively.

Let τ : V → Q be a vector bundle and let v(t, λ) be a deformation in V of a
curve v(t) in V . If τ (v(t, λ)) = q(t) does not depend on λ we will call v(t, λ) a
V -fiber deformation of v(t), or simply, a fiber deformation of v(t). For each t,
the variation

δv(t) =
∂v(t, λ)
∂λ

∣∣∣∣
λ=0

may be naturally identified with an element, also called δv(t), of τ−1 (q(t)). In this
case, the curve δv in V is, by definition, a V -fiber variation of the curve v, or,
simply, a fiber variation of the curve v.

Horizontal and Vertical Variations. We now break up the variation of a curve
into horizontal and vertical parts. Thus, we consider a curve q ∈ Ω(Q; q0) (again,
it is understood that the curves are defined on a fixed time interval [t0, t1]), where,
as before, Q→ Q/G is a principal bundle with a connection A.

A vertical variation δq of q satisfies, by definition, the condition δq(t) =
Ver(δq(t)) for all t. Similarly, a horizontal variation satisfies δq(t) = Hor (δq(t))
for all t.

Clearly, any variation δq can be uniquely decomposed as follows:

δq(t) = Hor(δq(t)) + Ver(δq(t))

for all t, where Ver(δq(t)) = A(q(t), δq(t))q(t) and where Hor(δq(t)) = δq(t) −
Ver(δq(t)).

Structure of Vertical Variations. Given a curve q ∈ Ω(Q; q0, q1), let v =
A(q, q̇) ∈ g. Variations δq of q(t) induce corresponding variations δv ∈ g in the
obvious way:

δv =
∂A(q(t, λ), q̇(t, λ))

∂λ

∣∣∣∣
λ=0

.

Consider the decomposition q = gqqh introduced in equation (2.2.2). A vertical
deformation q(t, λ) can be written as q(t, λ) = gq(t, λ)qh(t). The corresponding
variation δq(t) = δgq(t)qh(t) is of course also vertical.

Now we introduce some important notation. Define the curve

η(t) = δgq(t)gq(t)−1

in g. The fixed endpoint condition gives η(ti) = 0, i = 1, 2.
Notice that, by construction,

δq(t) = δgq(t)qh(t) = η(t)gq(t)qh(t) = η(t)q(t).

Lemma 3.1.1. For any vertical variation δq = ηq of a curve q ∈ Ω(Q; q0, q1)
the corresponding variation δv of v = A(q, q̇) is given by δv = η̇+ [η, v] with ηi = 0,
i = 0, 1.

Proof. We will give the proof in the case that G is a matrix group. The more
general case can be treated using the appendix to Bloch, Krishnaprasad, Marsden
and Ratiu [1996].
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By Lemma 2.2.1, we have v = ġqg
−1
q . Then

δv = (δġq)g−1
q − ġqg−1

q δgqg
−1
q

= (δgq )̇g−1
q − vη

= (η̇gq + ηġq)g−1
q − vη

= η̇ + [η, v].

�

Note. In the variational approach to the Euler–Poincaré equations (see Marsden
and Ratiu [1999], Chapter 13), there is a class of constrained variations δξ = η̇ +
[ξ, η] introduced for computing the corresponding variational principle. The above
construction of v, η is not computing the same objects. These constrained variations
are, instead, special instances of the construction of covariant variations, to be
introduced shortly in Definition 3.1.3. In the second remark following Lemma
3.1.4, we shall explicitly remark on how the constructions of variations for the
Euler–Poincaré equations and those for the Lagrange-Poincaré case are related.

The Structure of Horizontal Variations. Now we calculate variations δv cor-
responding to horizontal variations δq of a curve q ∈ Ω(Q; q0, q1).

Lemma 3.1.2. Let δq be a horizontal variation of a curve q ∈ Ω(Q; q0, q1).
Then the corresponding variation δv of v = A(q, q̇) satisfies δv = B(q)(δq, q̇).

Proof. Let q(t, λ) be a horizontal deformation of q(t), that is, λ 7→ q(t, λ) is a
horizontal curve for each t. Now we work locally in a local trivialization of the
bundle and write the connection A in the following way:

v = A(q, q̇) = 〈A(q), q̇〉 .

Then, we compute using the chain rule:

δv =
∂v

∂λ

∣∣∣∣
λ=0

=
〈
DA(q) · ∂q

∂λ
, q̇

〉∣∣∣∣
λ=0

+
〈
A(q),

∂2q

∂λ∂t

〉∣∣∣∣
λ=0

.

On the other hand, since λ 7→ q(t, λ) is horizontal,〈
A(q),

∂q

∂λ

〉
= 0,

and so, by differentiating with respect to t,

0 =
〈
DA(q) · q̇, ∂q

∂λ

〉∣∣∣∣
λ=0

+
〈
A(q),

∂2q

∂t∂λ

〉∣∣∣∣
λ=0

.

Then we obtain, by subtraction,

δv = dA(q)
(
∂q

∂λ
,
∂q

∂t

)∣∣∣∣
λ=0

.

Since ∂q/∂λ is horizontal, Cartan’s structure equation (2.2.1) implies

δv = B(q)
(
∂q

∂λ
,
∂q

∂t

)∣∣∣∣
λ=0

or, in other words, δv = B(q)(δq, q̇). �
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The Covariant Variation on the Adjoint Bundle. Any curve in Q, q ∈
Ω(Q; q0, q1) induces a curve in g̃ in a natural way, namely,

[q, v]G(t) = [q(t), v(t)]G ,

where v(t) = A(q, q̇). Observe that, for each t, [q, v]G(t) ∈ g̃x(t) (the fiber over x(t)),
where x(t) = π (q(t)) for all t. We want to study variations δ[q, v]G corresponding
to vertical and also to horizontal variations δq of q.

While vertical variations δq give rise to vertical variations δ[q, v]G, horizontal
variations δq need not give rise to horizontal variations δ[q, v]G. The deviation of
any variation δ[q, v]G from being horizontal is measured by the covariant variation
δA[q, v]G(t), defined as follows

Definition 3.1.3. For any given deformation q(t, λ) of q(t), the covariant
variation δA[q, v]G(t) is defined by

δA[q, v]G(t) =
D [q(t, λ), v(t, λ)]G

Dλ

∣∣∣∣
λ=0

.

Vertical Variations and the Adjoint Bundle. We first consider the case of
vertical variations.

Lemma 3.1.4. The covariant variation δA[q, v]G(t) corresponding to a vertical
variation δq = ηq is given by

δA[q, v]G(t) =
D[q, η]G
Dt

+ [q, [v, η]]G .

Proof. Let q(t, λ) be a vertical deformation of q(t) with, as usual, δq = ∂q/∂λ|λ=0.
As we saw before, q(t, λ) = gq(t, λ)qh(t) and δgq = ηgq, where η = δgqg

−1
q =

A(q, δq). If we let v = A(q, q̇), by Lemma 3.1.1, we have δv = η̇ + [η, v]. From this
and Lemma 2.3.4, we obtain

δA[q, v]G(t) = [q,−[A(q, δq), v] + δv]G
= [q,−[η, v] + η̇ + [η, v]]G
= [q, η̇]G.

Again, by Lemma 2.3.4, we have

D[q, η]G
Dt

= [q,−[A(q, q̇), η] + η̇]G

= [q,−[v, η] + η̇]G
= [q, η̇ + [η, v]]G .

Therefore,

δA[q, v]G(t) =
D[q, η]G
Dt

+ [q, [v, η]]G . �

Remarks.

1. In view of Lemma 2.3.5, we can write

[q, [v, η]]G = [[q, v]G, [q, η]G] .
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2. Let us now show that the formula δv = η̇ + [v, η] for the constrained
variations for the Euler–Poincaré equations (see Marsden and Ratiu [1999]
and references therein) coincides with the construction of the covariant
variation given in Definition 3.1.3. Given a Lie group G, we regard it as a
principal bundle over a point; that is, we take G = Q. The identification
of g with T (Q/G) ⊕ g̃ in this case is given by v 7→ [e, v]G. Then this
equivalence defines δv ≡ δA[e, v]G and then the preceding lemma shows
that δv = η̇ + [v, η], which is the same type of variation one has for the
Euler–Poincaré equations.

The Reduced Curvature Form. In preparation for the consideration of vari-
ations δA[q, v]G(t) corresponding to horizontal variations, we prove the following
result of independent interest.

Lemma 3.1.5. The curvature 2-form B ≡ BA of the connection A induces a
g̃-valued 2-form B̃ ≡ B̃A on Q/G given by

B̃(x)(δx, ẋ) = [q,B(q)(δq, q̇)]G , (3.1.1)

where for each (x, ẋ) and (x, δx) in Tx(Q/G), (q, q̇) and (q, δq) are any elements of
TqQ such that π(q) = x, Tπ(q, q̇) = (x, ẋ) and Tπ(q, δq) = (x, δx).

Proof. We show that the right hand side does not depend on the choice of (q, q̇)
and (q, δq). For any g ∈ G we have

[gq,B(gq)(gδq, gq̇)]G = [gq,Adg B(q)(δq, q̇)]G
= [q,B(q)(δq, q̇)]G .

�

Definition 3.1.6. The g̃-valued 2-form B̃ on Q/G will be called the reduced
curvature form.

Horizontal Variations and the Adjoint Bundle. Now we are ready to describe
covariant variations δA[q, v]G(t) corresponding to horizontal variations δq.

Lemma 3.1.7. Variations δA[q, v]G(t) corresponding to horizontal variations
δq are given by

δA[q, v]G(t) = B̃(x)(δx, ẋ)(t),

where Tπ(q, q̇) = (x, ẋ), Tπ(q, δq) = (x, δx), and v = A(q, q̇).

Proof. By Lemma 2.3.4, we have δA[q, v]G(t) = [q,−[A(q, δq), v] + δv]G. Since δq
is horizontal, we have A(q, δq) = 0. Using this and lemmas 3.1.2 and 3.1.5, we
obtain δA[q, v]G(t) = B̃(x)(δx, ẋ). �

3.2. The Euler–Lagrange and Euler–Poincaré Operators

The purpose of the next three sections is to carry out the reduction of the
Euler–Lagrange equations by means of reduction of Hamilton’s principle using the
geometric set up in the preceding section. We will begin in this section with some
geometric preliminaries and treat the standard case of the Euler–Lagrange and the
Euler–Poincaré equations.
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Reduced Spaces of Curves. In what follows we shall often identify the bundles
TQ/G and T (Q/G) ⊕ g̃, using the isomorphism αA of Lemma 2.4.2. This leads
to other natural identifications as well. For instance, the reduced set of curves
[Ω(Q; q0, q1)]G is the set of curves [q]G(t) = [q(t)]G on Q/G such that the curve q(t)
belongs to Ω(Q; q0, q1). This reduced set of curves is naturally identified with the
set of curves [q(t), q̇(t)]G in TQ/G such that q(ti) = qi, for i = 0, 1, and in turn,
this is identified, via the map

Ω(αA) : [Ω(Q; q0, q1)]G → Ω (T (Q/G)⊕ g̃) ,

with the set of curves

Tπ(q(t), q̇(t))⊕ [q(t), A (q(t), q̇(t))]G

in T (Q/G)⊕ g̃, such that q(ti) = qi, for i = 0, 1. The image of this reduced set of
curves will be denoted Ω(αA) ([Ω(Q; q0, q1)]G) .

The Reduced Lagrangian. Let L : TQ → R be an invariant Lagrangian, that
is, L (g(q, q̇)) = L(q, q̇) for all (q, q̇) ∈ TQ and all g ∈ G. Because of this invariance,
we get a well defined reduced Lagrangian l : TQ/G→ R satisfying

l ([q, q̇]G) = L(q, q̇).

As we will see in detail in this section, the evolution of the reduced system will
be a critical point, say a curve [q]G in the reduced set of curves [Ω(Q; q0, q1)]G, of
the reduced action ∫ t1

t0

l ([q, q̇]G) dt

for suitable types of variations.
However, variations of curves in the reduced family of curves are not of the

usual sort found in Hamilton’s principle, and so the equations of motion in the
bundle TQ/G cannot be written in a direct way.

In this section we use the description of vertical and horizontal variations given
in the preceding section to derive equations of motion in the bundle T (2)(Q/G)⊕2g̃
defined below. Equations corresponding to vertical variations will be called the
vertical Lagrange–Poincaré equations, and equations corresponding to horizontal
variations will be called the horizontal Lagrange–Poincaré equations.

Identification of Bundles. We shall allow a slight abuse of notation, namely
we will consider l as a function defined on T (Q/G) ⊕ g̃ or TQ/G interchangeably,
using the isomorphism αA. Also we shall often use a slight abuse of the variable-
notation for a function, namely we will write l(x, ẋ, v̄) to emphasize the dependence
of l on (x, ẋ) ∈ T (Q/G) and v̄ ∈ g̃. However one should keep in mind that x, ẋ
and v̄ cannot be considered as being independent variables unless g̃ and T (Q/G)
are trivial bundles. Even in those cases in which g̃ and T (Q/G) are trivial, and
therefore x, ẋ and v̄ can be considered as being independent variables in a natural
way, it is sometimes convenient to proceed using the general theory.

The kth Order Tangent Bundle. We define below the kth-order tangent bundle
τ

(k)
Q : T (k)Q → Q. For q̄ ∈ Q, elements of T (k)

q̄ Q are equivalence classes of curves
in Q, namely, two given curves qi(t), i = 1, 2, such that q1(t̄1) = q2(t̄2) = q̄ are
equivalent, by definition, if and only if in any local chart we have q(l)

1 (t̄1) = q
(l)
2 (t̄2),



HERNAN CENDRA, JERROLD E. MARSDEN AND TUDOR S. RATIU 23

for l = 1, 2, . . . , k, where q(l) denotes the derivative of order l. The equivalence class
of the curve q(t) at q̄ = q(t̄) will be denoted [q](k)

q̄ . The projection

τ
(k)
Q : T (k)Q→ Q is given by τ

(k)
Q

(
[q](k)
q̄

)
= q̄.

It is clear that T (0)Q = Q, T (1)Q = TQ, and that, for l < k, there is a well
defined fiber bundle structure

τ
(l,k)
Q : T (k)Q→ T (l)Q, given by τ

(l,k)
Q

(
[q](k)
q̄

)
= [q](l)q̄ .

The bundles T (k)Q for k > 1 are not vector bundles, except for k = 1. The
bundle T (2)Q is often denoted Q̈, and is called the second order bundle (see,
for example, Marsden, Patrick and Shkoller [1998], Marsden and Ratiu [1999] and
references therein).

Relation to Jet Bundles. Consider the bundle R × Q → R, whose sections are
curves in Q (the fields of classical mechanics). Then the k-jet bundle of this bundle
may be identified with the bundle R× T (k)Q→ R×Q, where the first component
of this map is the identity.

From the point of view of jet bundles associated to maps between two manifolds,
T (k)Q coincides with the fiber bundle Jk0 (R, Q) formed by k-jets of curves from R
to Q (based at 0 ∈ R), as defined, for example in Bourbaki [1983] or Kolár̆, Michor,
and Slovák [1993].

Properties of kth Order Tangent Bundles. It is also easy to see that for any
map f : M → N we have a naturally induced map

T (k)f : T (k)M → T (k)N given by T (k)f
(

[q](k)
q̄

)
= [f ◦ q](k)

f(q̄).

In particular, a group action ρ : G × Q → Q can be naturally lifted to a group
action

ρ(k) : G× T (k)Q→ T (k)Q given by ρ(k)
g

(
[q](k)
q̄

)
= [ρg ◦ q](k)

ρ(g,q̄) .

We will often denote ρ(k)
g

(
[q](k)
q̄

)
= ρ(k)

(
g, [q](k)

q̄

)
= g[q](k)

q̄ .
Let M×N be the Cartesian product of the manifolds M and N . Then, for any

(m̄, n̄) ∈M×N there is a natural identification T (k)
(m̄,n̄)((M×N) ≡ T (k)

m̄ M×T (k)
n̄ N ,

which induces an identification T (k)(M ×N) ≡ T (k)M × T (k)N .
The natural action of G on the fiber bundle T (k)Q endows T (k)Q with a princi-

pal bundle structure with structure group G. The quotient T (k)Q/G can be easily
shown to be a fiber bundle over the base Q/G. The bundle T (2)Q/G is the one
that interests us most in this paper, because the Lagrange-Poincaré operator of a
reduced Lagrangian is defined on T (2)Q/G with values in T ∗(Q/G)⊕ g̃∗, as we shall
see in §3.3. The class of the element [q](k)

q̄ in the quotient T (k)Q/G will be denoted[
[q](k)
q̄

]
G

, as usual. Since we have the projection πG(Q) : Q → Q/G we obtain a
bundle map

T (k)πG(Q) : T (k)Q→ T (k)(Q/G).
Moreover, it can be easily shown that this bundle map induces a well defined bundle
map

T (k)Q/G→ T (k)(Q/G) given by
[
[q](k)
q̄

]
G
7→ T (k)πG(Q)

(
[q](k)
q̄

)
.
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Let q̄ ∈ Q, denote π(q̄) = [q̄]G = x̄, and let [x](k)
x̄ ∈ T (k) (Q/G) be given. Let

x(t) be any curve belonging to the class [x](k)
x̄ . Then there is a unique horizontal

lift xhq̄ of x(t). We define the horizontal lift of [x](k)
x̄ at q̄ by

[x](k),h
x̄,q̄ :=

[
xhq̄
](k)

q̄
.

We must also remark that T (k)G carries a natural Lie group structure.1 If [g](k)
ḡ ,

and [h](k)

h̄
are classes of curves g and h in G, we define the product [g](k)

ḡ [h](k)

h̄
as

being the class [gh](k)

ḡh̄
at the point ḡh̄ of the curve gh. The Lie algebra TeT (k)G of

T (k)G can be naturally identified, as a vector space, with (k+1)g (that is, the direct
sum of k + 1 copies of g), which, therefore, carries a unique Lie algebra structure
such that this identification becomes a Lie algebra isomorphism. There is also a
natural identification of T (k)

e G with kg.
Also, for k = 1, 2, . . ., T (k)Q is a principal bundle with structure group T (k)G

in a natural way. More precisely, if [g](k)
ḡ ∈ T (k)G is the class of a curve g in

G and [q](k)
q̄ ∈ T

(k)
q̄ (Q) is the class of a curve q in Q we let [g](k)

ḡ [q](k)
q̄ ∈ T

(k)
ḡq̄ Q

denote the class [gq](k)
ḡq̄ of the curve gq at the point ḡq̄. In particular, if ξ ∈ kg and

[q](k)
q̄ ∈ T (k)Q are given, there is a well defined element ξ[q](k)

q̄ ∈ T (k)Q.

Connection-like Structures on Higher Order Tangent Bundles. For q ∈
Ω(Q), we have the curve [q(t), v(t)]G in g̃, where v(t) = A(q(t), q̇(t)). Lemma 2.3.4
shows that the covariant derivative of [q(t), v(t)]G is given by

D[q(t), v(t)]G
Dt

= [q(t),− [A (q(t), q̇(t)) , v(t)] + v̇(t)]G

= [q(t), v̇(t)]G .

The second covariant derivative of [q(t), v(t)]G, again by Lemma 2.3.4, is given by

D2[q(t), v(t)]G
Dt2

= [q(t),− [v(t), v̇(t)] + v̈(t)]G .

More generally, for each k = 1, 2, . . ., we can find, by induction, a curve vk(t) in g,
having an expression that involves v(t) and the derivatives v(l)(t), l = 1, 2, . . . , k−1,
such that

Dk−1[q(t), v(t)]G
Dtk−1

= [q(t), vk(t)]G .

More precisely, we have

v1 = v and vk+1 = −[v, vk] + v̇k,

for k = 1, 2, . . .. In particular, we obtain

v2(t) = v̇(t), v3(t) = − [v(t), v̇(t)] + v̈(t),

1Recall that T (1)G = TG is the semidirect product group Gsg whose Lie algebra is the

semidirect product gsg, where the second factor is regarded as the representation space of the
adjoint action. This semidirect product Lie algebra is, as a vector space, equal to 2g := g⊕ g. We

will not need, or study, the Lie group structure of T (k)G in this paper, although this would be

interesting to do. It would also be interesting to see if there is any relation between the structures
here and the study of the algebras that occur in the BBGKY hierarchy, as in Marsden, Morrison

and Weinstein [1984].
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etc. In addition, we shall write, by definition, v0(t) = 0. Using the fact that
v(t) = A (q(t), q̇(t)), we can also find expressions for vk(t) in coordinates in terms
of q(l)(t), l = 1, 2, . . . , k. We state the following lemma, which is readily proved.

Lemma 3.2.1. Let q(t) be a given curve in Q such that q(t̄) = q̄. For each
k = 1, 2, . . . the formula

Āk

(
[q](k)
q̄

)
= vk(t̄)

gives a well defined map Āk : T (k)Q → g. Therefore there is also a well defined
map Ak : T (k)Q→ kg, given, for each k = 1, 2, . . ., by

Ak

(
[q](k)
q̄

)
= ⊕kl=1vl(t̄),

where we have written kg to stand for the vector space direct sum ⊕kl=1g of k copies
of g.

Let g ∈ G and [q](k)
q̄ ∈ T (k)

q̄ Q be given. Then we can easily prove that

Ak

(
g[q](k)

q̄

)
= Adg Ak

(
[q](k)
q̄

)
,

using induction, the definition of Ak, and taking into account the formulas

Adg v̇k =
d

dt
Adg vk

and Adg[v, vk] = [Adg v,Adg vk] . According to Lemma 2.2.1, for any curve q(t) in
Q such that q(t̄) = q̄ we have

A(q, q̇) = ġqg
−1
q .

Using this equation and the definition of vk, one can inductively find an expression
for vk(t̄) in terms of g(l)

q (t̄), for l = 1, 2, . . .. For instance, for the case of matrix
groups, we can see directly that v1(t̄) = v(t̄) = ġq(t̄), v2(t̄) = g̈q(t̄)− ġq(t̄)2, etc. It
is not difficult to see that the expression for vk(t̄) is the sum of g(k)

q (t̄) plus terms
involving only the lower order derivatives g(l)

q (t̄), l = 1, 2, . . . , k−1. Using this fact,
one sees that for any element ξ = (ξ1, . . . ξk) ∈ kg and any element q̄ ∈ Q there is
a unique point [q](k)

q̄ ∈ T (k)
q̄ Q which equals [gq̄](k)

q̄ for a curve g(t) in G satisfying

g(t̄) = e and Ak

(
[q](k)
q̄

)
= ξ.

In fact, since we obviously have gq(t) = g(t), it is enough to find g(t) such that the
derivatives g(l)(t̄), l = 1, 2, . . . , k, satisfy the appropriate conditions as explained
above. We shall call this unique element ξq̄, as before, and the set of all such
elements will be denoted kgq̄. Moreover, it is not difficult to see that the restriction
Ak : kgq̄ → kg is a diffeomorphism and therefore it naturally defines a unique
vector space structure on kgq̄ such that the restriction of Ak becomes a linear
isomorphism Ak(ξq̄) = ξ, for all xi ∈ kg. By construction, we see that there is a
natural identification between kgq̄ and T

(k)
q̄ (Gq̄). Note that we have Ak(ξq̄) = ξ

for all ξ ∈ kg, analogous to what one has for connections.
Let us define, for each k = 1, 2, . . ., the vector bundle kg̃ as being the Whitney

sum of k copies of g̃. Define a map

T (k)Q→ kg̃ by [q](k)
q̄ 7→

[
q̄, Ak

(
[q](k)
q̄

)]
G
,
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where the last term is defined by[
q̄, Ak

(
[q](k)
q̄

)]
G

= ⊕kl=1

[
q̄, Āl

(
[q](l)q̄

)]
G
.

The definitions show that, given any curve q(t) in Q such that q(t̄) = q̄, we have,
at t = t̄, [

q̄, Ak

(
[q](k)
q̄

)]
G

=
k⊕
l=1

D(l−1)[q(t), v(t)]G
Dt(l−1)

∣∣∣∣∣
t=t̄

.

We have essentially proven the following lemma, which generalizes Lemma 2.4.2

Lemma 3.2.2. The map

αAk : T (k)Q/G→ T (k)(Q/G)×Q/G kg̃

defined by

αAk

([
[q](k)
q̄

]
G

)
= T (k)πG(Q)

(
[q](k)
q̄

)
×Q/G

[
q̄, Ak

(
[q](k)
q̄

)]
G

is a well defined bundle isomorphism. The inverse of αAk is given by

α−1
Ak

(
[x](k)

x̄ ×Q/G [q̄, ξ]G
)

= ξ[x](k),h
x̄,q̄ .

Remark. As we have said earlier, the bundles T (k)Q, for k = 1, 2, are the only
ones that interest us in this paper. The cases k = 2, 3, . . . are needed, for instance,
to deal with higher order Lagrangians L : T (k)Q → R. Then the Euler–Lagrange
operator EL(L) will be defined on T (k+1)Q and will take values in a special vector
bundle. There are also several interesting structures on the bundles T (k)Q which
we will not study in the present paper.

Euler–Lagrange Operator. Next we introduce some notation and recall some
basic results concerning Euler–Lagrange operators. The fundamental connection
between the variational and differential-equation description of the evolution of a
given system is given by the following well known result.

Theorem 3.2.3 (Euler–Lagrange). Let L : TQ→ R be a given Lagrangian on
a manifold Q and let

S(L)(q) =
∫ t1

t0

L(q, q̇) dt

be the action of L defined on Ω(Q; q0, q1). Let q(t, λ) be a deformation of a curve
q(t) in Ω(Q; q0, q1) and let δq(t) be the corresponding variation. Then, by definition,
δq(ti) = 0 for i = 0, 1.

There is a unique bundle map

EL(L) : T (2)Q→ T ∗Q

such that, for any deformation q(t, λ), keeping the endpoints fixed, we have

dS(L)(q) · δq =
∫ t1

t0

EL(L)(q, q̇, q̈) · δq,

where, as usual,

dS(L)(q) · δq =
d

dλ
S(L) (q(t, λ))

∣∣∣∣
λ=0
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with

δq(t) =
∂q(t, λ)
∂λ

∣∣∣∣
λ=0

.

The 1-form bundle-valued map EL(L) is called the Euler–Lagrange operator.

In local coordinates EL(L) has the following well known expression:

EL(L)i(q, q̇, q̈) dqi =
(
∂L

∂qi
(q, q̇)− d

dt

∂L

∂q̇i
(q, q̇)

)
dqi

in which it is understood that one regards the second term on the right hand side
as a function on the second order tangent bundle by formally applying the chain
rule and then replacing everywhere dq/dt by q̇ and dq̇/dt by q̈. The Euler–Lagrange
equations can, of course, be written simply as EL(L)(q, q̇, q̈) = 0.

Euler–Poincaré Operator. Analogous to the Euler–Lagrange operator, the Euler–
Poincaré theorem (Marsden and Scheurle [1993b] and Bloch, Krishnaprasad, Mars-
den and Ratiu [1996]; see also Marsden and Ratiu [1999], section 13.5) induces an
operator, called the Euler–Poincaré operator. It is defined, as before, by the
variational principle.

Theorem 3.2.4 (Euler–Poincaré). Let G be a Lie group, L : TG → R a left
G-invariant Lagrangian,

S(L)(g) =
∫ t1

t0

L(g, ġ) dt

the action functional of L defined on Ω(G; g0, g1), l = L|g the reduced Lagrangian,
and

Sred(l)(v) =
∫ t1

t0

l(v) dt

the reduced action functional defined on Ω(g). Let g(t, λ) be a deformation
of a curve g(t) in Ω(G; g0, g1), keeping the endpoints fixed, and let δg(t) be the
corresponding variation; thus, by definition, δg(ti) = 0, for i = 0, 1. Let v(t) =
g(t)−1ġ(t) ∈ g.

The following are equivalent:
(i) the curve g(t) satisfies the Euler–Lagrange equations EL(L)(g, ġ, g̈) = 0

on G;
(ii) the curve g(t) is a critical point of the action functional S(L) for varia-

tions δg vanishing at the endpoints;
(iii) the curve v(t) solves the Euler-Poincaré equations

d

dt

∂l

∂v
= ad∗v

∂l

∂v
.

(iv) the curve v(t) is a critical point of the reduced action functional

Sred(l)(v) =
∫ t1

t0

l(v(t))dt,

for variations of the form

δv = η̇ + [v, η],
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where η(t) ∈ g is an arbitrary curve that vanishes at the endpoints. These
variations δv are exactly the variations induced by left translation of arbi-
trary deformations g(t, λ) of the curve g(t) = g(t, λ) such that δg(ti) = 0,
for i = 0, 1.

In addition, there is a unique bundle map

EP(l) : 2g→ g∗

where 2g := g⊕ g (in accordance with the definition introduced in the statement of
Lemma 3.2.1), such that, for any deformation v(t, λ) = g(t, λ)−1ġ(t, λ) ∈ g induced
on g by a deformation g(t, λ) ∈ G of g(t) ∈ Ω(G; g0, g1) keeping the endpoints fixed,
and thus δg(ti) = 0, for i = 0, 1, we have

dSred(l)(v) · δv =
∫ t1

t0

EP(l)(v, v̇) · η dt,

where, as usual,

dSred(l)(v) · δv =
d

dλ
Sred(l) (v(t, λ))

∣∣∣∣
λ=0

and δv(t) = ∂v(t, λ)/∂t|λ=0 = η̇(t) + [v(t), η(t)].
The map EP(l) is called the Euler–Poincaré operator and its expression is

given by

EP(l)(v, v̇) = ad∗v
δl

δv
− d

dt

δl

δv
where, as before, it is to be understood that the time derivative on the second term
is performed formally using the chain rule and that the expression dv/dt is replaced
throughout by v̇.

The Euler–Poincaré equations can be written simply as EP(l)(v, v̇) = 0. The
formula δv = η̇ + [v, η] represents the most general variation δv of v induced by an
arbitrary variation δg via left translation. The precise relationship is η = g−1δg
and so the condition δg = 0 at the endpoints is equivalent to the condition η = 0
at the endpoints.

3.3. The Lagrange–Poincaré Operator

In this section we introduce the Lagrange-Poincaré operator using the same
type of technique of reduction of variational principles that was used in the preced-
ing section to define the Euler–Lagrange and the Euler–Poincaré operators.

Reducing the Euler–Lagrange Operator. The map EL(L) : T (2)Q → T ∗Q,
being G- equivariant, induces a quotient map

[EL(L)]G : T (2)Q/G→ T ∗Q/G,

which depends only on the reduced Lagrangian l : TQ/G → R; that is, we can
identify [EL(L)]G with an operator EL(l). This is called the reduced Euler–
Lagrange operator and it does not depend on any extra structure on the principal
bundle Q. However, to write the explicit expressions, which are also physically
meaningful, we use the additional structure of a principal connection A on the
principal bundle Q→ Q/G to identify the quotient bundle

T (2)Q/G with T (2)(Q/G)×Q/G 2g̃
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and
T ∗Q/G with T ∗(Q/G)⊕ g̃∗

using the bundle isomorphisms αA2 from Lemma 3.2.2 and αA from Lemma 2.4.2,
and also a connection ∇ on Q/G to concretely realize the reduced Euler–Lagrange
operator; this will naturally lead us to the Lagrange–Poincaré operator.2

Geometry of Reduced Variations. A general variation δv̄(t) of a given curve
v̄(t) in g̃ is constructed as follows: choose a family of curves v̄(t, s) in g̃ such that
v̄(t, 0) = v̄(t) and define

δv̄(t) =
∂v̄(t, s)
∂s

∣∣∣∣
s=0

.

This δv̄(t) is, for each t, an element of T g̃. However, it turns out that we will not
need these kinds of general variations δv̄ subsequently. Instead, we are interested
in the special kind of deformations v̄(t, s) of the curve v̄(t) in which the projection
π̃G (v̄(t, s)) = x(t, s) does not depend on s, that is, deformations that take place only
in the fiber of g̃ over x(t) = π̃G (v̄(t)); thus, for each fixed t, the curve s 7→ v̄(t, s)
is a curve in the fiber over x(t). Then, since g̃ is a vector bundle, the variation
δv̄(t) induced by such a deformation v̄(t, s), is naturally identified with a curve,
also called δv̄(t), in g̃, a g̃-fiber variation, according to the notation introduced
in the paragraph Deformation of Curves of §3.1. We remark that, in the rest
of this paper, δv̄ will always mean a g̃-variation, unless explicitly stated otherwise.
Also, the meaning of δv̄ as an element of T g̃ will never be used without an explicit
previous warning.

Examples of g̃-fiber variations δv̄ are, for instance, the covariant variations δAv̄
considered in Definition 3.1.3, but, of course, there are more general variations of
this type. We have already encountered an easy example of such variations when
reviewing the Euler–Poincaré equations. In that case, Q = G, the connection
A : TG→ g is given by right translation, and δAv(t) = η̇(t) + [v(t), η(t)], for η(t) a
curve in g vanishing at the endpoints.

Of course, in the Euler–Poincaré case, it is obviously true that any deformation
of a curve v(t) is a deformation along the fiber, because the base of g̃ is a point.
However, as we have seen in the Euler–Poincaré Theorem 3.2.4, it is not true that
any curve in g is induced by a variation δg that vanishes at the endpoints; the
latter are only the curves of the type η̇(t) + [v(t), η(t)], for η(t) an arbitrary curve
in g vanishing at the endpoints.

In the study of the Lagrange-Poincaré operator and Lagrange-Poincaré equa-
tion we will use variations of curves in Q/G ⊕ g̃. (As explained in paragraph
Bundles of §2.1, the first summand means the vector bundle over Q/G with zero
dimensional fiber). For a given curve x(t) ⊕ v̄(t) in Q/G ⊕ g̃, and a given arbi-
trary deformation x(t, λ) ⊕ v̄(t, λ), with x(t, 0) ⊕ v̄(t, 0) = x(t) ⊕ v̄(t), of it, the
corresponding covariant variation δx(t)⊕ δAv̄(t) is, by definition,

δx(t)⊕ δAv̄(t) =
∂x(t, s)
∂s

∣∣∣∣
s=0

⊕ Dv̄(t, s)
Ds

∣∣∣∣
s=0

.

2In what follows we will assume that the connection ∇ is chosen to be torsion free. For an
account of the situation when a connection with torsion is chosen, see Gamboa Sarav́ı and Solomin

[2003].
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It is clear that δAv̄ is a g̃-fiber variation of v̄. The most important example of
a covariant variation δx(t) ⊕ δAv̄(t) is the one to be described next. Let q(t, s)
be a deformation of a curve q(t) = q(t, 0) in Q. This induces a deformation
x(t, s) ⊕ v̄(t, s) of the curve x(t) ⊕ v̄(t) by taking x(t, s) = [q(t, s)]G and v̄(t, s) =
[q(t, s), A(q(t, s), q̇(t, s))]G, where q̇(t, s) represents the derivative with respect to
t. Using Lemma 2.3.4 and Definition 3.1.3, it follows that the covariant variation
corresponding to this deformation of x(t)⊕ v̄(t) is δx(t)⊕ δAv̄(t), where

δAv̄(t) =
D[q(t), η(t)]G

Dt
+ [q(t), [A(q(t), q̇(t)), η(t)]]G + B̃(δx(t), ẋ(t)),

is an element of g̃ for each t, with η(t) ∈ g an arbitrary curve vanishing at the
endpoints. This is a special kind of covariant variation. It is precisely to these kinds
of variations that we will apply the usual techniques of the calculus of variations
in the next theorems to derive the Lagrange-Poincaré operator and equation. The
previous formula may be rewritten as follows, which emphasizes the similarity with
the Euler-Poincaré case,

δAv̄(t) =
Dη̄

Dt
(t) + [v̄(t), η̄(t)] + B̃(δx(t), ẋ(t)),

where η̄ = [q(t), η(t)]G.

Lagrange-Poincaré Operator. We are now ready to state a theorem that intro-
duces the Lagrange-Poincaré operator. Its proof will be contained in the proof of
Theorem 3.3.4.

Theorem 3.3.1. Let L : TQ→ R be an invariant Lagrangian on the principal
bundle Q as before. Choose a principal connection A on Q and identify the bundles
TQ/G and T (Q/G) ⊕ g̃ using the isomorphism αA and also the bundles T (2)Q/G
and T (2)(Q/G) ×Q/G 2g̃ using the isomorphism αA2 , as before. Thus an element
[q, q̇]G of TQ/G can be written, equivalently, as an element (x, ẋ, v̄) of T (Q/G)⊕ g̃.
Let l : T (Q/G)⊕ g̃→ R be the reduced Lagrangian. Then there is a unique bundle
map

LP(l) : T (2)(Q/G)×Q/G 2g̃→ T ∗(Q/G)⊕ g̃∗

such that for any curve q ∈ Ω(Q; q0, q1) and any variation δq of q vanishing
at the endpoints, the corresponding reduced curve [q, q̇]G = (x, ẋ, v̄), where v̄ =
[q, A(q, q̇)]G, and covariant variation δx⊕ δAv̄, where

δAv̄(t) =
Dη̄

Dt
(t) + [v̄(t), η̄(t)] + B̃(δx(t), ẋ(t)),

with η̄(t) = [q(t), η(t)]G and

δx(t) = Tπ(δq(t)),

satisfy

EL(L)(q(t), q̇(t), q̈(t)) · δq(t) = LP(l)(x(t), ẋ(t), v̄(t)) · (δx(t)⊕ η̄(t)).

Notice that, after all the identifications described at the beginning of the present
paragraph, the operator LP(l) coincides with the operator [EL(L)]G.

Definition 3.3.2. The 1-form valued bundle map

LP(l) : T (2)(Q/G) ×Q/G 2g̃→ T ∗(Q/G)⊕ g̃∗
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defined in the preceding theorem will be called the Lagrange–Poincaré operator.
The decomposition of the range space for LP(l) as a direct sum naturally induces
a decomposition of the Lagrange-Poincaré operator

LP(l) = Hor(LP)(l)⊕Ver(LP)(l)

which define the horizontal Lagrange–Poincaré operator and the vertical
Lagrange–Poincaré operator.

The Lagrange–Poincaré equations are, by definition, the equations LP(l) =
0. The horizontal Lagrange–Poincaré equation and vertical Lagrange–
Poincaré equation are, respectively, the equations

Hor(LP)(l) = 0 and Ver(LP)(l) = 0.

In the following paragraph we introduce some additional structure, namely, an
arbitrary connection ∇ on the manifold Q/G. This will also help us write explicit
expressions of Hor(LP)(l) and Ver(LP)(l).

The problem of computing the Lagrange–Poincaré equations can be done using
any connection, as we remarked earlier and, in addition, the problem can be local-
ized to any local trivialization of the bundle Q → Q/G. Because of this, one may
choose the vector space or trivial connection associated with such a local trivial-
ization of the bundle. Of course we are not assuming that the bundle has a global
flat connection.

Explicit formulas for Hor(LP)(l) and Ver(LP)(l) in coordinates using any con-
nection can be calculated from what we have developed and are given in §4.2. Doing
so, one arrives at the coordinate formulas given in Marsden and Scheurle [1993b].
We also mention that it is possible to derive these equations from Cendra, Ibort
and Marsden [1987] in a straightforward way.

Reduced Covariant Derivatives. The question of calculating formulas for Hor(LP)(l)
and Ver(LP)(l) rests on giving meaning to the partial derivatives

∂l

∂x
,

∂l

∂ẋ
and

∂l

∂v̄
.

Since g̃ and T (Q/G) are vector bundles, we may interpret the last two deriva-
tives in a standard (fiber derivative) way as being elements of the dual bundles
T ∗(Q/G) and g̃∗, for each choice of (x, ẋ, v̄) in T (Q/G) ⊕ g̃. In other words, for
given (x0, ẋ0, v̄0) and (x0, x

′, v̄′) we define

∂l

∂ẋ
(x0, ẋ0, v̄0) · x′ =

d

ds

∣∣∣∣
s=0

l(x0, ẋ0 + sx′, v̄0)

and
∂l

∂v̄
(x0, ẋ0, v̄0) · v̄′ =

d

ds

∣∣∣∣
s=0

l(x0, ẋ0, v̄0 + sv̄′).

To define the derivative ∂l/∂x, one uses the chosen connection ∇ on the mani-
fold Q/G, as we will explain next. Let (x0, ẋ0, v̄0) be a given element of T (Q/G)⊕g̃.
For any given curve x(s) on Q/G, let (x(s), v̄(s)) be the horizontal lift of x(s) with
respect to the connection ∇̃A on g̃ (see (2.3.1)) such that (x(0), v̄(0)) = (x0, v̄0) and
let (x(s), u(s)) be the horizontal lift of x(s) with respect to the connection ∇ such
that (x(0), u(0)) = (x0, ẋ0). (Notice that, in general, (x(s), u(s)) is not the tangent
vector (x(s), ẋ(s)) to x(s).)
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Thus, (x(s), u(s), v̄(s)) is a horizontal curve with respect to the connection
C = ∇ ⊕ ∇̃A naturally defined on T (Q/G) ⊕ g̃ in terms of the connection ∇ on
T (Q/G) and the connection ∇̃A on g̃.

Definition 3.3.3. The covariant derivative of l with respect to x at (x0, ẋ0, v̄0)
in the direction of (x(0), ẋ(0)) is defined by

∂C l

∂x
(x0, ẋ0, v̄0) (x(0), ẋ(0)) =

d

ds

∣∣∣∣
s=0

l (x(s), u(s), v̄(s)) .

We shall often write
∂C l

∂x
≡ ∂l

∂x
,

whenever there is no danger of confusion.

The covariant derivative on a given vector bundle, for instance g̃, induces a cor-
responding covariant derivative on the dual bundle, in our case g̃∗. More precisely,
let α(t) be a curve in g̃∗. We define the covariant derivative of α(t) in such a way
that for any curve v̄(t) on g̃, such that both α(t) and v̄(t) project on the same curve
x(t) on Q/G, we have

d

dt
〈α(t), v̄(t)〉 =

〈
Dα(t)
Dt

, v̄(t)
〉

+
〈
α(t),

Dv̄(t)
Dt

〉
.

Likewise we can define the covariant derivative in the vector bundle T ∗(Q/G). Then
we obtain a covariant derivative on the vector bundle T ∗(Q/G)⊕ g̃∗.

It is in the sense of this definition that terms like
D

Dt

∂l

∂ẋ

in the second equation (which defines the horizontal Lagrange–Poincaré operator)
and

D

Dt

∂l

∂v̄
in the first equation (which defines the vertical Lagrange–Poincaré equation) of the
following theorem should be interpreted. In this case D/Dt means the covariant
derivative in the bundle T ∗(Q/G). In the first equation D/Dt is the covariant
derivative in the bundle g̃∗.

Reduced Variational Principles & the Lagrange–Poincaré Equations. The
main result in this section is the following theorem. Its proof also contains the proof
of the preceding theorem.

Theorem 3.3.4. Assume the hypothesis of Theorem 3.3.1 Then:
the vertical Lagrange–Poincaré operator is given by

Ver(LP)(l) · η̄ =
(
− D

Dt

∂l

∂v̄
(x, ẋ, v̄) + ad∗v̄

∂l

∂v̄
(x, ẋ, v̄)

)
· η̄

or simply,

Ver(LP)(l) =
(
− D

Dt

∂l

∂v̄
(x, ẋ, v̄) + ad∗v̄

∂l

∂v̄
(x, ẋ, v̄)

)
and the horizontal Lagrange–Poincaré operator is given by

Hor(LP)(l) · δx =
(
∂l

∂x
(x, ẋ, v̄)− D

Dt

∂l

∂ẋ
(x, ẋ, v̄)

)
δx− ∂l

∂v̄
(x, ẋ, v̄)B̃(x)(ẋ, δx),
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or simply,

Hor(LP)(l) =
(
∂l

∂x
(x, ẋ, v̄)− D

Dt

∂l

∂ẋ
(x, ẋ, v̄)

)
− ∂l

∂v̄
(x, ẋ, v̄)B̃(x)(ẋ, .).

Proof. To compute the vertical and horizontal Lagrange-Poincaré operator, it suf-
fices to consider variations δAv̄ of a curve x(t) ⊕ v̄(t) corresponding to vertical
and horizontal variations δq of a curve q ∈ Ω(Q, q0, q1). The computations below
will show that these variations suffice to give us the variational principle in the
directions of the two summands in δx⊕ η̄ ∈ T (Q/G)⊕ g̃.

First, consider variations δAv̄ of a curve x(t) ⊕ v̄(t) corresponding to vertical
variations δq of a curve q. We have

0 = δ

∫ t1

t0

l(x, ẋ, v̄)dt =
∫ t1

t0

∂l

∂v̄
(x, ẋ, v̄)δAv̄dt.

According to Lemma 3.1.4 with v̄ = [q, v]G we obtain, for all curves η(t) ∈ g such
that η(ti) = 0 for i = 1, 2, the equation

0 =
∫ t1

t0

〈
∂l

∂v̄
,
D[q, η]G
Dt

+ [q, [v, η]]G

〉
dt

=
∫ t1

t0

〈
− D

Dt

∂l

∂v̄
+ ad∗v̄

∂l

∂v̄
, [q, η]G

〉
dt.

Arbitrariness of η then yields arbitrariness of η̄ = [q, η]G, so we get

Ver(LP)(l) = − D

Dt

∂l

∂v̄
(x, ẋ, v̄) + ad∗v̄

∂l

∂v̄
(x, ẋ, v̄).

Now consider variations δx⊕ δAv̄ corresponding to horizontal variations δq. Then
we have, for all δx with δx(ti) = 0, for i = 0, 1

δ

∫ t1

t0

l(x, ẋ, v̄)dt =
∫ t1

t0

(
∂l

∂x
δx+

∂l

∂ẋ
δẋ+

∂l

∂v̄
δAv̄

)
dt.

Integration by parts and Lemma 3.1.7 with v̄ = [q, v]G gives

δ

∫ t1

t0

l(x, ẋ, v̄)dt =
∫ t1

t0

[(
∂l

∂x
− D

Dt

∂l

∂ẋ

)
(x, ẋ, v̄)δx− ∂l

∂v̄
(x, ẋ, v̄)B̃(x)(ẋ, δx)

]
dt.

Integration by parts of the term (∂l/∂ẋ)δẋ is justified by showing that

δẋ =
D

Dλ

∂x

∂t
=

D

Dt

∂x

∂λ
,

which can be done, for example, by using Gaussian coordinates relative to the
connection ∇ at each point x(t). Arbitrariness of δx then yields

Hor(LP)(l)(x, ẋ, v̄) =
∂l

∂x
(x, ẋ, v̄)− D

Dt

∂l

∂ẋ
(x, ẋ, v̄)− ∂l

∂v̄
(x, ẋ, v̄)iẋB̃(x). �
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3.4. The Reduced Variational Principle

Now we turn to the reduction of the variational principle. As we stated at
the beginning of this section, Hamilton’s principle for a G-invariant L is equivalent
to a reduced variational principle for l with respect to a reduced set of curves
[Ω(Q; q0, q1)]G. Translated to the concrete realizations of our reduced bundles using
the map αA, this reads as follows.

The following conditions are equivalent:
(i) Hamilton’s principle holds: the curve q(t) is a critical point of the action

functional ∫ t1

t0

L(q, q̇)dt

on Ω(Q; q0, q1);
(ii) the reduced variational principle holds: the curve (x(t), v̄(t)) is a crit-

ical point of the action functional∫ t1

t0

l (x(t), ẋ(t), v̄(t)) dt

on the reduced family of curves Ω (αA ([Ω(Q; q0, q1)]G)).

Now comes a main theorem which summarizes what we have done so far.

Theorem 3.4.1. The following conditions are equivalent:
(i) Hamilton’s principle holds: the curve q(t) is a critical point of the action

functional ∫ t1

t0

L(q, q̇)dt

on Ω(Q; q0, q1), that is,

δ

∫ t1

t0

L(q, q̇)dt = 0

for arbitrary variations δq of the curve q such that δq(ti) = 0, for i = 0, 1.
(ii) The reduced variational principle holds: the curve x(t) ⊕ v̄(t) is a

critical point of the action functional∫ t1

t0

l (x(t), ẋ(t), v̄(t)) dt

on the reduced family of curves αA ([Ω(Q; q0, q1)]G), that is,

δ

∫ t1

t0

l (x(t), ẋ(t), v̄(t)) dt = 0,

for variations δx⊕ δAv̄ of the curve x(t)⊕ v̄(t), where δAv̄ has the form

δAv̄ =
Dη̄

Dt
+ [v̄, η̄] + B̃(δx, ẋ),

with the boundary conditions δx(ti) = 0 and η̄(ti) = 0, for i = 0, 1. If
v̄ = [q, v]G with v = A(q, q̇) then η̄ can be always written η̄ = [q, η]G, and
the condition η̄(ti) = 0 for i = 0, 1 is equivalent to the condition η(ti) = 0
for i = 0, 1.
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Also, if x(t) = [q]G and v̄ = [q, v]G where v = A (q, q̇), then variations
δx⊕ δAv̄ such that

δAv̄ =
Dη̄

Dt
+ [v̄, η̄]

≡ D[q, η]G
Dt

+ [q, [v, η]]G

with η̄(ti) = 0 (or, equivalently, η(ti) = 0) for i = 0, 1 correspond exactly
to vertical variations δq of the curve q such that δq(ti) = 0 for i = 0, 1,
while variations δx⊕ δAv̄ such that

δAv̄ = B̃(δx, ẋ)

with δx(ti) = 0 for 1 = 0, 1, correspond exactly to horizontal variations δq
of the curve q such that δq(ti) = 0.

(iii) The following vertical Lagrange–Poincaré equations, corresponding
to vertical variations, hold:

D

Dt

∂l

∂v̄
(x, ẋ, v̄) = ad∗v̄

∂l

∂v̄
(x, ẋ, v̄)

and the horizontal Lagrange–Poincaré equations, corresponding to
horizontal variations, hold:

∂l

∂x
(x, ẋ, v̄)− D

Dt

∂l

∂ẋ
(x, ẋ, v̄) =

〈
∂l

∂v̄
(x, ẋ, v̄), iẋB̃(x)

〉
.

Remarks.
(1) The operators EL(l), Hor(LP)(l) and Ver(LP)(l) depend on the (princi-

pal) connection A on the principal bundle Q but not on the connection ∇
on Q/G. It is only the explicit expressions of Hor(LP)(l) and Ver(LP)(l)
that appear in Theorem 3.3.4 that depend on ∇. As we have remarked
previously, in local coordinates it is often convenient to choose ∇ to be
simply the usual Euclidean, or vector space connection.

(2) Important particular cases of Theorems 3.3.1 and 3.3.4 occur when G = Q
and also when G = {e}. If G = Q then the operator Hor(LP)(l) is 0 and
Ver(LP)(l) is the Euler–Poincaré operator, as we saw before. Thus, in
a sense, the vertical Lagrange–Poincaré operator in the bundle g̃ is a
covariant version of the usual Euler–Poincaré operator on a Lie algebra.
If G = {e} then Ver(LP)(l) is 0, L = l and Hor(LP)(l) = EL(L) is the
usual Euler–Lagrange operator.





CHAPTER 4

Wong’s Equations and Coordinate Formulas

To illustrate the Lagrange-Poincaré theory that we have developed, we first
consider an interesting example, that of Wong’s equations. Secondly, in this sec-
tion we give coordinate expressions for the Lagrange-Poincaré equations. Wong’s
equations are first done intrinsically and then are used to illustrate the coordinate
formulas.

4.1. Wong’s Equations

Context of Wong’s Equations. Wong’s equations arise in at least two different
interesting contexts. The first of these, in the work of Wong [1970], Sternberg
[1977], Weinstein [1978] and Montgomery [1984], concerns the dynamics of a colored
particle in a Yang-Mills field. The second context is that of the falling cat theorem
of Montgomery [1990, 1993]. For a direct proof of the falling cat theorem using the
ideas of Lagrangian reduction, see Koon and Marsden [1997a] and Cendra, Holm,
Marsden and Ratiu [1998].

Abstract Setting. Let (X, g) be a given Riemannian manifold and let ∇ be the
corresponding Levi-Civita connection. Let G be a compact Lie group with a bi-
invariant Riemannian metric κ. Let π : Q→ X be a principal bundle with structure
group G acting on the left, let A be a principal connection on Q, and let B be the
curvature of A. Now define the Lagrangian L : TQ→ R by

L(q, q̇) =
1
2
κ (A(q, q̇), A(q, q̇)) +

1
2
g (π(q)) (Tπ(q, q̇), Tπ(q, q̇)) .

This Lagrangian is G-invariant and our object is to carry out the constructions for
Lagrangian reduction as described in the preceding sections to this situation.

We note that in the special case of G = S1, this Lagrangian is the Kaluza-
Klein Lagrangian for the motion of a particle in a magnetic field. In this case, the
constructions are done directly in Marsden and Ratiu [1999]. More generally, this
Lagrangian is the Kaluza-Klein Lagrangian for particles in a Yang-Mills field A.

Construction of the Reduced Bundle. An element of g̃ has the form v̄ = [q, v]G
where q ∈ Q and v ∈ g. Since κ is bi-invariant, its restriction to g is Ad-invariant,
and so we can define the fiber metric k on g̃ by

k ([q, u]G, [q, v]G) = κ(u, v).

The reduced bundle is T (Q/G)⊕ g̃ ≡ TX⊕ g̃ and a typical element of it is denoted
(x, ẋ, v̄). The reduced Lagrangian is given by

l(x, ẋ, v̄) =
1
2
k(v̄, v̄) +

1
2
g(x)(x, ẋ).
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Calculation of the Reduced Equations. Now we will write the vertical and
horizontal Lagrange–Poincaré equations. We start by writing the vertical Lagran-
ge-Poincaré equation from Theorem 3.3.1 as follows:(

− D

Dt

∂l

∂v̄
(x, ẋ, v̄) + ad∗v̄

∂l

∂v̄
(x, ẋ, v̄)

)
· η̄ = 0 (4.1.1)

for all η̄ ∈ g̃. We first note that

∂l

∂v̄
(x, ẋ, v̄) = k(v̄, ·)

and hence (
ad∗v̄

∂l

∂v̄
(x, ẋ, v̄)

)
η̄ = k (v̄, [v̄, η̄]) = 0,

since κ and hence k are bi-invariant. Thus, the vertical Lagrange–Poincaré equation
is

D

Dt
k(v̄, ·) = 0,

which is one of Wong’s equations, namely the charge equation. We will see this
explicitly in coordinates later.

From Theorem 3.4.1, the horizontal Lagrange-Poincaré equation is

∂l

∂x
(x, ẋ, v̄)− D

Dt

∂l

∂ẋ
(x, ẋ, v̄) =

〈
∂l

∂v̄
(x, ẋ, v̄), iẋB̃(x)

〉
.

Perhaps the easiest way to work out this expression is to do so in a local trivialization
of the principal bundle, which induces a corresponding trivialization of g̃. In such
a local trivialization, the metric k is independent of the base point x. Making
use of the vertical equation, the left hand side of the preceding equation becomes
the usual Euler–Lagrange expression. Note that this expression is independent of
which affine connection is used on X. It is well known that the Euler–Lagrange
expression for the kinetic energy on X gives the covariant acceleration ∇ẋẋ using
the Levi-Civita connection for the metric on X. Therefore, the horizontal Lagran-
ge–Poincaré equation becomes

(∇ẋẋ)[ = −k
(
v̄, B̃(x)(ẋ, ·)

)
,

which is the second Wong equation.

4.2. The Local Vertical and Horizontal Equations

In this section we shall derive local formulas (that is, for a local trivialization
of the principal bundle) of both the vertical and the horizontal Lagrange–Poincaré
operator. The expressions that we obtain coincide with or can be easily derived
from the ones obtained in Cendra and Marsden [1987], Cendra, Ibort and Marsden
[1987] and Marsden and Scheurle [1993b], with some changes in the notation. We
start with the covariant formulas for the vertical and horizontal Lagrange–Poincaré
operators described in the previous theorems and the local expressions are then
easily derived.
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Local Vertical Lagrange–Poincaré Equation. We now derive local coordinate
expressions for the vertical Lagrange–Poincaré equations.

Suppose that Q has dimension n, so that Q/G has dimension r = n − dimG.
We choose a local trivialization of the principal bundle Q → Q/G to be X × G,
where X is an open set in Rr. Thus, we consider the trivial principal bundle
π : X × G → X with structure group G acting only on the second factor by left
multiplication. Let e be the neutral element of G and let A be a given principal
connection on the bundle Q → Q/G, or, in local representation, on the bundle
X×G→ X. We shall also assume that there are local coordinates xα, α = 1, . . . , r,
in X and that we choose the standard flat connection on X. Then, at any tangent
vector (x, g, ẋ, ġ) ∈ T(x,g) (X ×G) we have

A(x, g, ẋ, ġ) = Adg (Ae(x) · ẋ+ v)

where Ae is the g-valued 1-form on X defined by Ae(x) · ẋ = A(x, e, ẋ, 0) and
v = g−1ġ. The vector bundle isomorphism αA in this case becomes

αA ([x, g, ẋ, ġ]G) = (x, ẋ)⊕ v̄

where v̄ = (x,Ae(x) · ẋ+ v). We will often write (x, ẋ, v̄) instead of (x, ẋ)⊕ v̄, and
sometimes, simply v̄ = Ae(x) · ẋ+ v. Let us choose maps

eb : X → g,

where b = 1, ...,dim(G), such that, for each x ∈ X, is a basis of g. For each
b = 1, ..,dim(G), let ēb(x) be the section of g̃ given by ēb(x) = [x, e, eb(x)]G ≡
(x, eb(x)). Let us call p = p(x, ẋ, v̄) the vertical body momentum of the reduced
system, that is, by definition,

p(x, ẋ, v̄) =
∂l

∂v̄
(x, ẋ, v̄). (4.2.1)

We denote the components of p by pb = p(ēb) ≡ 〈p, ēb〉. We want to find an
equation for the evolution of pb. We have

d

dt
pb =

d

dt
〈p, ēb〉

=
〈
D

Dt
p, ēb

〉
+
〈
p,
D

Dt
ēb

〉
. (4.2.2)

Using the vertical Lagrange-Poincaré equation we obtain, immediately,〈
D

Dt
p, ēb

〉
= 〈p, [v̄, ēb]〉

= 〈p, [Ae(x) · ẋ+ v, eb]〉 . (4.2.3)

Lemma 2.3.4 gives the general formula for calculating the covariant derivative of a
given curve [q(t), ξ(t)]G in g̃,

D[q(t), ξ(t)]G
Dt

=
[
q(t),−[A (q(t), q̇(t)) , ξ(t)] + ξ̇(t)

]
G
. (4.2.4)

We are going to apply this formula for the case of the curve

ēb (x(t)) = [x(t), e, eb (x(t))]G ≡ (x(t), eb (x(t)))
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in g̃. Note that the tangent vector to the curve q(t) ≡ (x(t), e) is (q(t), q̇(t)) ≡
(x(t), e, ẋ(t), 0), and therefore A (q(t), q̇(t)) ≡ Ae (x(t)) · ẋ. Using equation (4.2.4)
we obtain

D

Dt
ēb = [x, e,−[Ae(x) · ẋ, eb] + ėb]G

≡ (x,−[Ae(x) · ẋ, eb] + ėb) . (4.2.5)

Using equations (4.2.2), (4.2.3) and (4.2.5) we obtain the equation

dpb
dt

= 〈p, [v, eb] + ėb〉 . (4.2.6)

Using this equation we can easily find an expression in coordinates for the vertical
Lagrange-Poincaré equation. Let us choose the functions eb(x) to be constant
functions; therefore, we have ėb = 0 and the equation for the evolution of pb
becomes

dpb
dt

= 〈p, [v, eb]〉 . (4.2.7)

Recall that v̄ −Ae(x) · ẋ = v, and thus the equation (4.2.7) becomes

dpb
dt

= 〈p, [v̄ −Ae(x) · ẋ, eb]〉 . (4.2.8)

Let Cabd be the structure constants of the Lie algebra g. For the given local
coordinates xα in X let Aaα(x) be the coefficients of Ae, that is, by definition,
(Ae(x) · ẋ)aea = Aaα(x)ẋαea. Then equation (4.2.8) becomes the “Poincaré part”
of the Lagrange-Poincaré equations:

dpb
dt

= pa
(
Cadbv̄

d − CadbAdαẋα
)
, (4.2.9)

This equation coincides with equation (5.3.3) of Bloch, Krishnaprasad, Marsden
and Murray [1996] and equation (3.2) in Koon and Marsden [1997c]. It also agrees,
up to some sign problems, with that in Marsden and Scheurle [1993b] and is also
implicit in Cendra, Ibort and Marsden [1987].

Equation (4.2.9) reduces to the Euler–Poincaré equation in the case that the
base is a point. If we think of the variables evolving as (x, ẋ, v̄), and, thinking
of pb as a function of these variables, using the definition of pb, we can write this
equation as

dpb(x, ẋ, v̄)
dt

= pa(x, ẋ, v̄)
(
Cadbv̄

d − CadbAdα(x)ẋα
)
. (4.2.10)

Notice that using the variable v, which is obtained by v̄ = Ae(x) · ẋ + v, we can
write the equation as

dpb(x, ẋ, Ae(x) · ẋ+ v)
dt

= pa(x, ẋ, Ae(x)ẋ+ v)Cadbv
d. (4.2.11)

Observe that one can calculate pb in equation (4.2.1) by taking the derivative of l
with respect to either v̄b or vb.

In Bloch, Krishnaprasad, Marsden and Murray [1996], the variable v̄b is called
Ωb and is interpreted as the locked body angular velocity. This variable is intrinsic,
given the choice of a connection, whereas vb depends on the local trivialization. In
fact, the form of equation (4.2.11) is dependent on choosing a local trivialization.
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Local Horizontal Lagrange-Poincaré Equation. To calculate the local hori-
zontal Lagrange-Poincaré equation we shall first calculate

∂C l

∂x
(x, ẋ, v̄) · δx.

By Definition 3.3.3 of the notation ∂C l/∂x, we have

∂C l

∂x
(x, ẋ, v̄) · δx =

d

dλ
l (x+ λδx, ẋ, w̄(λ))

∣∣∣∣
λ=0

,

where w̄(λ) is a curve such that w̄(λ) ∈ g̃x+λδx for each λ, w̄(0) = v̄ and

Dw̄(λ)
Dλ

= 0.

If w̄(λ) = (x+ λδx, e, w(λ)), we can deduce from equation (4.2.4)

Dw̄(λ)
Dλ

=
(
x(λ), e,− [A (x(λ)) · δx, w(λ)] +

dw(λ)
dλ

)
. (4.2.12)

Therefore we must have
dw(λ)
dλ

= [A (x(λ)) · δx, w(λ)] .

We then obtain

∂C l

∂x
(x, ẋ, v̄) · δx =

∂l

∂x
(x, ẋ, v̄) · δx+

∂l

∂v̄
(x, ẋ, v̄) · [A (x(λ)) · δx, w̄(λ)] .

On the other hand, it is easy to see that B̃(x)(ẋ, δx) = (x, e,B(x, e)(ẋ, δx)). Then
the horizontal Lagrange-Poincaré operator is(

∂l

∂x
(x, ẋ, v̄)− d

dt

∂l

∂ẋ
(x, ẋ, v̄)

)
δx =

∂l

∂v̄
(x, ẋ, v̄) (B(x, e)(ẋ, δx) + [v̄, A(x) · δx]) .

(4.2.13)
As we did with the vertical Lagrange-Poincaré operator, it is convenient to rewrite
this equation explicitly in coordinates and we easily obtain

∂l

∂xα
(x, ẋ, v̄)− d

dt

∂l

∂ẋα
(x, ẋ, v̄) =

∂l

∂v̄a
(x, ẋ, v̄)

(
Baβα(x, e)ẋβ + Cadbv̄

dAbα(x)
)
,

(4.2.14)
where a fixed basis ēa of g̃ has been chosen and, in this basis, v̄ = v̄aēa. This
equation coincides with equation (5.3.2) of Bloch, Krishnaprasad, Marsden and
Murray [1996] and equation (3.1) of Koon and Marsden [1997c]. We remark that
in these papers the convention for the sign of the curvature Baαβ is the opposite to
the one used in this paper.

Summary. The Lagrange-Poincaré equations in coordinates have been shown to
be (dropping the independent variables from the notation)

dpb
dt

= pa
(
Cadbv̄

d − CadbAdαẋα
)

(4.2.15)

∂l

∂xα
− d

dt

∂l

∂ẋα
=

∂l

∂v̄a
(
Baβαẋ

β + Cadbv̄
dAbα

)
, (4.2.16)

where, as usual, a summation is implied over repeated indices.
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In the special case when the bundle Q → Q/G is endowed with a trivial con-
nection in local representation, i.e., A = 0, these equations simply become

dpb
dt
− paCadbv̄d = 0 (4.2.17)

∂l

∂xα
− d

dt

∂l

∂ẋα
= 0, (4.2.18)

which are the Hamel equations (Hamel [1904]).
In many concrete applications, involving, for instance, stability theory, the

general form of the Lagrange-Poincaré equations given in (4.2.15) and (4.2.16) are
more useful than Hamel’s equations, as explained by an example in Marsden and
Scheurle [1993b].

Coordinate Version of Wong’s Equations. Locally, the expression of the La-
grangian l in the variables (x, ẋ, v̄) is

l(x, ẋ, v̄) =
1
2
κabv̄

av̄b +
1
2
gαβ(x)ẋαẋβ .

The local expression of the vertical Lagrange-Poincaré equation is given by (4.2.15),
where

pa =
∂l

∂v̄a
= κabv̄

b.

However, the first term on the right hand side of (4.2.15) equals

paC
a
dbv̄

d = κaev̄
eCadbv̄

d.

However, bi-invariance of κ means that

κaeC
a
db = κabC

a
ed

and so we get

paC
a
dbv̄

d = κaev̄
eCadbv̄

d = κabv̄
eCaedv̄

d = κab[v̄, v̄]a = 0.

Therefore, the vertical equation becomes
dpb
dt

= −paCadbAdαẋα.

The local expression of the horizontal Lagrange-Poincaré equation is given by
(4.2.16), where

∂l

∂xα
=

1
2
∂gβγ(x)
∂xα

ẋβ ẋγ .

The second term on the right hand side of (4.2.16) vanishes as in the case of the
vertical equation. Therefore the horizontal Lagrange-Poincaré equation is given by

d

dt
(gαβ(x)ẋβ) = −paBaβαẋβ +

1
2
∂gβγ(x)
∂xα

ẋβ ẋγ ,

or equivalently, with pα := gαβ(x)ẋβ ,

d

dt
pα = −paBaβαẋβ −

1
2
∂gβγ

∂xα
pβpγ ,

which is the second Wong equation.



CHAPTER 5

The Lie Algebra Structure on Sections of the
Reduced Bundle

The main result of this section is the establishment of a natural Lie algebra
structure on the space Γ(T (Q/G)⊕ g̃) of sections of the bundle T (Q/G)⊕ g̃, which
will be used for reduction in the next section. This quotient Lie algebra structure
is defined in Definition 5.2.3 and it is computed in Theorem 5.2.4. This Lie algebra
is, roughly speaking, a synthesis of the Jacobi-Lie bracket of vector fields on shape
space Q/G with the Lie algebra structure on the bundle g̃. However, as we shall
see, this Lie algebra structure involves the reduced curvature form as well.

5.1. The Bundle T (Q/G)⊕ g̃ Revisited

In this subsection, we assume that we have the following set up: a manifold Q,
a smooth Lie group action ρ : G × Q → Q, and a connection A on the principal
bundle π : Q→ Q/G.

Vertical and Horizontal Invariant Bundles. Consider the vector bundle iso-
morphism αA : TQ/G → T (Q/G) ⊕ g̃ defined in Lemma 2.4.2 and let TQ =
Hor(TQ)⊕Ver(TQ) be the decomposition into horizontal and vertical parts. Since
the bundles Hor(TQ) and Ver(TQ) are G-invariant we have

TQ/G = Hor(TQ)/G⊕Ver(TQ)/G.

This implies αA(Hor(TQ)/G) = T (Q/G) and αA(Ver(TQ)/G) = g̃.

Definition 5.1.1. Let

ιG(TQ) : IG(TQ)→ Q/G

be the vector bundle whose fiber IG(TQ)x = (ιG(TQ))−1(x) at an element x =
[q]G ∈ Q/G is the vector space of all G-invariant vector fields along π−1(x). That
is,

IG(TQ)x := {Z : π−1(x)→ TQ | Z(q) ∈ TqQ for all q ∈ π−1(x) and g∗Z = Z}.

Here and in what follows we denote by g∗ the pull back of various tensorial objects
by the diffeomorphism on Q defined by g ∈ G via the given G-action.

We also let
ιG(TQ)V : IVG (TQ)→ Q/G

be the vector bundle whose fiber IVG (TQ)x = (ιG(TQ)V )−1(x) at an element x =
[q]G ∈ Q/G is the vector space of all vertical invariant vector fields on π−1(x). That
is,

IVG (TQ)x := {Y ∈ X∞(π−1(x)) | g∗Y = Y }.
We call ιG(TQ)V : IVG (TQ)→ Q/G the vertical invariant bundle.

43



44 LAGRANGIAN REDUCTION BY STAGES

Likewise, we define

ιG(TQ)H : IHG (TQ)→ Q/G

to be the vector bundle whose fiber IHG (TQ)x = (ιG(TQ)H)−1(x) at an element
x = [q]G ∈ Q/G is the vector space of all horizontal invariant vector fields on Q
along π−1(x). That is,

IHG (TQ)x := {X : π−1(x)→ TQ | X(q) ∈ HorTqQ for all q ∈ Q and g∗X = X}.
We call ιG(TQ)H : IHG (TQ)→ Q/G the horizontal invariant bundle.

Brackets of Invariant Vector Fields. Recall that the Lie bracket of two G-
invariant vector fields, say X and Y , is again a G-invariant vector field. Also, if
X and Y are both vertical G-invariant vector fields, that is, X,Y ∈ IVG (TQ), then
[X,Y ] is also a vertical G-invariant vector field, that is, [X,Y ] ∈ IVG (TQ).

Given q ∈ Q, let x = [q]G, and define the diffeomorphism ρq : G → π−1(x)
by ρq(g) = gq. This diffeomorphism ρq commutes with the action of G, that is,
ρq(hg) = hρq(g), for all h, g ∈ G. We claim that IVG (TQ)x is isomorphic to the Lie
algebra of left invariant vector fields on G. The Lie algebra of left invariant vector
fields X∞L (G) is identified with g = TeG in the usual way. That is, to each element
ξ ∈ g, we associate the element Xξ ∈ X∞L (G) given by Xξ(g) = TeLg · ξ, where Lg
denotes the left translation map by the group element g ∈ G.

To prove the claim, we will show that the map given by the push-forward of
vector fields ρq∗ : X∞L (G) → IVG (TQ)x is a q-dependent Lie algebra isomorphism.
Indeed, this map preserves the Lie algebra structure since ρq commutes with the
action of G, and it is invertible, so it is a Lie algebra isomorphism.

Notice that the tangent map of ρq at e is given by Teρq · ξ = ξq. This implies
in particular that for any given ξ ∈ g, we have (ρq∗Xξ)(q) = ξq.

On the other hand, the map Tπ establishes a vector bundle isomorphism cov-
ering the identity on the base Q between IHG (TQ) and T (Q/G), namely, X ∈
IHG (TQ)x 7→ Tqπ(X(q)) ∈ Tx(Q/G) for any q ∈ π−1(x) (it is easy to check that this
definition does not depend on the choice of q in the fiber over x).

The Bundles IVG (TQ) and g̃ are Isomorphic. The next lemma shows that
there is a natural vector bundle isomorphism covering the identity between these
two vector bundles that also preserves the Lie bracket.

Lemma 5.1.2. The map

βA : IVG (TQ)→ g̃

given by
βA(Y ) = [q, A (Y (q))]G,

where Y ∈ IVG (TQ)x, x ∈ Q/G, and q ∈ π−1(x) is arbitrary, is a well defined
Lie algebra bundle isomorphism. The inverse of βA is defined by the following
condition: β−1

A ([q, ξ]G) is the (unique) left invariant vector field Y on π−1(x) such
that Y (q) = ξq.

Extend the domain of βA as follows: define the vector bundle isomorphism

βA : IHG (TQ)⊕ IVG (TQ)→ T (Q/G)⊕ g̃

in such a way that it coincides with the isomorphism given by Tπ on the summand
IHG (TQ) and with the isomorphism βA defined above on the summand IVG (TQ).
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Proof. To see that βA is well defined we simply check that for any g ∈ G we have

[gq,A (Y (gq))]G = [gq,A (gY (q))]G
= [gq,Adg Y (q)]G
= [q, A (Y (q))]G.

It is easy to check that βA is linear on each fiber. Now we will show that βA is
a Lie algebra bundle isomorphism. Let us fix q ∈ Q. Then the pull-back ρ∗q :
IVG (TQ)x → g is a Lie algebra isomorphism and we can easily check that, for all
Y ∈ IVG (TQ)x, and any q ∈ π−1(x) we have ρ∗q (Y ) = A (Y (q)). Therefore we have,
for all X,Y ∈ IVG (TQ)x,

A ([X,Y ] (q)) = ρ∗q ([X,Y ])

= [ρ∗q(X), ρ∗q(Y )]

= [A (X(q)) , A (Y (q))] .

Using this and the definition of the Lie bracket on g̃ (see Lemma 2.3.5) we can write

βA ([X,Y ]) = [q, A ([X,Y ] (q))]G
= [q, [A (X(q)) , A (Y (q))]]G
= [βA (X) , βA (Y )] .

It is clear that β−1
A is given by the rule described in the statement since A (Y (q)) = ξ

if Y (q) = ξq. The rest of the proof, namely, to show that the extended βA is a
vector bundle isomorphism is obvious. �

5.2. The Lie Algebra of Sections of T (Q/G)⊕ g̃

Quotient Vector Bundles. We begin with some preliminaries concerning quo-
tient vector bundles with some additional structures.

Let τ : V → Q be a given vector bundle and let ρ : G× V → V denote a given
G-action on V (see §2.1).

Recall that, by definition, the action ρ is a vector bundle action if for each
g ∈ G the map ρg : V → V is a vector bundle isomorphism. This implies, in
particular, that there is an action ρ0 : G × Q → Q such that τ : V → Q is
equivariant and for each q ∈ Q the restriction of ρg to τ−1(q) is a linear isomorphism
ρg : τ−1(q)→ τ−1(ρ0g(q)). We will often use the simpler notation gv and gq instead
of ρg(v) and ρ0g(q) respectively. As mentioned in §2.1, throughout this work we will
assume that the action ρ0 ofG onQ is free and, moreover, that relative to this action
Q→ Q/G is a principal G-bundle. Then V is also a principal G-bundle. Although
this assumption is not strictly needed for the validity of some properties, we will
still take it for granted, to simplify the exposition. An immediate consequence of
this is that the quotient V/G carries a naturally defined vector bundle structure
over the base Q/G.

More precisely, we have the following lemma, whose proof, which is standard,
is included for the sake of completeness.

Lemma 5.2.1. The quotient V/G carries a naturally defined vector bundle
structure over the base Q/G, say τ/G : V/G→ Q/G, where (τ/G)([v]G) is defined
by (τ/G)([v]G) = [τv]G.
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The projection πG(V ) : V → V/G is a surjective vector bundle homomorphism
covering π, and the restriction πG(V )|τ−1(q) : τ−1(q)→ (τ/G)−1([q]G) is a linear
isomorphism for each q ∈ Q. In addition, πG(V )|τ−1(q)◦g−1 = πG(V )|τ−1(gq) for
all q ∈ Q and g ∈ G.

Assume that τ ′ : V ′ → Q′ is another vector bundle and that there is a vector
bundle action G× V ′ → V ′. Let f : V → V ′ be an equivariant vector bundle map.
Then the naturally induced quotient map [f ]G : V/G → V ′/G is a vector bundle
map. If f is a vector bundle isomorphism, so is [f ]G.

Proof. First we show that τ/G is well defined, namely, for any g ∈ G and any
v ∈ V we have τ/G([gv]G) = [τgv]G = [gτv]G = [τv]G. Next we define the vector
space structure on each fiber (τ/G)−1([q]G). Let [vi]G ∈ V/G, for i = 1, 2, be such
that τ/G[v1]G = τ/G[v2]G = [q]G, for some q ∈ Q. This implies that there are
gi ∈ G such that giτvi = q for i = 1, 2. The gi are uniquely determined for a fixed
q, as before, because the action ρ0 is free. Define [v1]G + [v2]G = [g1v1 + g2v2]G.
We must show that this gives a well defined additive structure. Elements of V
equivalent to vi are of the type hivi with hi ∈ G for i = 1, 2. For given hivi with
hi ∈ G, i = 1, 2, the only elements di ∈ G such that diτhivi = q are di = gih

−1
i ,

i = 1, 2. Then our definition gives

[h1v1]G + [h2v2]G = [d1h1v1 + d2h2v2]G = [g1v1 + g2v2]G
= [v1]G + [v2]G.

This shows that the definition does not depend on the choice of the representative
in the class [vi]G, i = 1, 2, for a given q. Now, if we choose an arbitrary element,
say hq ∈ [q]G, then the only elements di ∈ G such that diτvi = hq are di = hgi, for
i = 1, 2. We obtain then

[v1]G + [v2]G = [hg1v1 + hg2v2]G
= [h(g1v1 + g2v2)]G
= [g1v1 + g2v2]G

as before.
We can define λ[v]G = [λv]G and check that it is well defined in a similar

way. To finish the proof, it only remains to show that the restriction of πG(V ) to
each fiber, πG(V ) : τ−1(q) → (τ/G)−1([q]G), is a linear isomorphism. This can
be easily established using the definition of the linear structure on (τ/G)−1([q]G).
We omit the rest of the proof, which can also be easily performed using standard
techniques. �

Spaces of Sections. For a vector bundle τ : V → Q, the vector space of sections
of V is denoted by Γ(V ), which is also a C∞(Q)-module. Let f : V1 → V2 be a
vector bundle homomorphism where τ i : Vi → Qi are vector bundles for i = 1, 2.
This implies, in particular, that there is a map f0 : Q1 → Q2 such that, for
each q ∈ Q1, the restriction f : (τ1)−1(q) → (τ2)−1 (f0(q)) is linear. Assume, in
addition, that this restriction is a linear isomorphism. Then f induces a linear
map f∗ : Γ(V2) → Γ(V1) defined by f∗(s)(q) = f−1 (s (f0(q))), where f−1 is the
inverse of the restriction of f to (τ2)−1(q). The properties (f ◦ h)∗ = h∗ ◦ f∗ and
id∗V = idΓ(V ), where both f and h satisfy the condition that their restriction to
each fiber is a linear isomorphism, can be easily checked. It follows, in particular,
that if f is an isomorphism, then f−1∗ = f∗−1. In this case we write f−1∗ = f∗.



HERNAN CENDRA, JERROLD E. MARSDEN AND TUDOR S. RATIU 47

Sections si ∈ Γ(Vi), i = 1, 2, are said to be f-related if for all q ∈ Q1 we have
f (s1(q)) = s2 (f0(q)). We can easily show that if for each q ∈ Q1 the restriction
f : (τ1)−1(q)→ (τ2)−1 (f0(q)) is a linear isomorphism as before, then for any given
s2 ∈ Γ(V2), the section s1 = f∗(s2) is the only one in Γ(V1) which is f -related to
s2.

If G× V → V is a vector bundle action on τ : V → Q, a section s : Q → V is
called an invariant section if for all g ∈ G and all q ∈ Q we have gs(q) = s(gq).
The set ΓG(V ) of invariant sections of V is a subspace of Γ(V ).

Lemma 5.2.2. Let G × V → V be a vector bundle action and let πG(V ) :
V → V/G be the vector bundle homomorphism described in lemma 5.2.1. Then
(πG(V ))∗ : Γ(V/G)→ ΓG(V ) is a linear isomorphism.

Proof. Let s̄ ∈ Γ(V/G). Then for each q ∈ Q and each g ∈ G, using the fact that
the restriction of πG(V ) to each fiber is an isomorphism, we have

πG(V )∗s̄(gq) = πG(V )−1 (s̄([gq]G))

= g
(
πG(V )−1 (s̄([q]G))

)
= gπG(V )∗s̄(q),

where in the first equation πG(V ) is restricted to τ−1(gq) and in the second πG(V )
is restricted to τ−1(q). The second equality is then an easy consequence of the
definition of a vector bundle action and, also, the definition of the quotient vector
bundle (see Lemma 5.2.1). Thus, we have shown that πG(V )∗ is an injective map
into ΓG(V ). Now let s ∈ ΓG(V ). Define s̄ ∈ Γ(V/G) by s̄([q]G) = [s(q)]G. The
element s̄ is well defined because, since s is invariant, for any g ∈ G and any q ∈ Q
we have [s(gq)]G = [gs(q)]G = [s(q)]G. We can easily check that s = πG(V )∗s̄
which finishes the proof. �

Quotient Lie Algebras. If v ∈ ΓG(V ) we will denote [v]G or, sometimes, v̄
the corresponding section of Γ(V/G) via the isomorphism πG(V )∗ of the previous
lemma. Let ρ be a vector bundle action of the Lie group G on the vector bundle
τ : V → Q. Then we obtain a representation ρ∗ : G × Γ(V ) → Γ(V ) given by the
operation (g, s) ∈ G×Γ(V ) 7→ ρg∗s ∈ Γ(V ). We will often write simply g∗s instead
of ρg∗s. It is clear that ΓG(V ) is an invariant subspace of Γ(V ). Now assume that
there is a Lie algebra structure on Γ(V ) which is invariant under the action ρ∗, that
is, g∗[s1, s2] = [g∗s1, g∗s2] for all si ∈ Γ(V ), i = 1, 2, and all g ∈ G. In particular,
ΓG(V ) is a Lie subalgebra of Γ(V ).

Since πG(V )∗ : Γ(V/G) → ΓG(V ) is a linear isomorphism we can define a Lie
algebra structure on Γ(V/G) in the following way.

Definition 5.2.3. Assume that the space of sections Γ(V ) of the vector bundle
τ : V → Q has a Lie algebra structure. The quotient Lie algebra structure on
Γ(V/G) is defined by

[s̄1, s̄2] = (πG(V )∗)−1 [πG(V )∗s̄1, πG(V )∗s̄2] .

The most important case of the situation described above is the case of the
vector bundle TQ on which G acts by the tangent lift of the action of G on Q
and the Lie bracket on Γ(TQ) ≡ X∞(Q) is the usual Lie bracket of vector fields.
According to the previous results we obtain a quotient Lie algebra structure on
Γ(TQ/G).
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Let us denote π ≡ πG(Q) the natural projection of the principal bundle π :
Q → Q/G, for simplicity. Recall that for each choice of a principal connection A
on Q we have vector bundle isomorphisms

αA : TQ/G→ T (Q/G)⊕ g̃

and
βA : IHG (TQ)⊕ IVG (TQ)→ T (Q/G)⊕ g̃.

The linear isomorphism α∗A between the corresponding spaces of sections defines
a Lie algebra structure on Γ (T (Q/G)⊕ g̃) by declaring it to be a Lie algebra
isomorphism. In order to calculate this Lie bracket on Γ (T (Q/G)⊕ g̃) we shall
make use of the equivalent condition that β∗A is a Lie algebra isomorphism. We do
this in the next theorem.

The map Tπ induces a well defined isomorphism between Γ
(
IHG (TQ)

)
and

X∞(Q/G). More precisely, for any X ∈ Γ
(
IHG (TQ)

)
the vector field π∗X ∈

X∞(Q/G) given by π∗X(x) = TπX(q), where q ∈ π−1(x) is arbitrary, is well
defined. Also, if X,Y ∈ Γ

(
IHG (TQ)

)
then π∗[X,Y ] = [π∗X,π∗Y ] since the bracket

operation preserves π-relatedness of vector fields. Observe that the inverse of
π∗ : Γ

(
IHG (TQ)

)
→ X∞(Q/G) is given by the horizontal lift of vector fields,

h : X∞(Q/G) → Γ
(
IHG (TQ)

)
, which also coincides with the restriction of β∗A to

X∞(Q/G). Also, we recall that if X,Y ∈ Γ
(
IHG (TQ)

)
then A([X,Y ]) = −B(X,Y )

where B is the curvature of A. Finally we remark that, from what we have said
before, we can deduce that there are natural identifications

ΓG(TQ) ≡ Γ(TQ/G) ≡ Γ
(
IHG (TQ)

)
⊕ Γ

(
IVG (TQ)

)
,

where the last identification involves the choice of a connection.

Calculation of the Lie Algebra Structure. The main result of this section
is a formula, given in the next theorem, for the Lie bracket on the Lie algebra
Γ (T (Q/G)⊕ g̃) ≡ X∞(Q/G) ⊕ Γ(g̃) which involves the Lie bracket on g̃, the con-
nection ∇̃A on g̃, and the g̃-valued curvature B̃A.

Theorem 5.2.4. Let Xi ⊕ ξ̄i ∈ Γ (T (Q/G)⊕ g̃), i = 1, 2, be given sections of
T (Q/G)⊕ g̃. Then

[X1 ⊕ ξ̄1, X2 ⊕ ξ̄2] = [X1, X2]⊕ ∇̃AX1
ξ̄2 − ∇̃AX2

ξ̄1 − B̃A(X1, X2) + [ξ̄1, ξ̄2].

A remark is in order to avoid any confusion in the interpretation of the bracket
notation in the preceding and in several other formulas. Namely, the bracket on the
left-hand-side is the bracket in Γ (T (Q/G)⊕ g̃) given in Definition 5.2.3, while the
bracket that appears immediately before the sign ⊕ is the usual bracket of vector
fields. This caution is needed to avoid the apparently contradictory statement

[X1, X2] ≡ [X1 ⊕ 0, X2 ⊕ 0] = [X1, X2]⊕−B̃A(X1, X2).

Proof of the Theorem. Let Xi ⊕ ξ̄i ∈ Γ (T (Q/G)⊕ g̃), i = 1, 2. Then there are
elements Yi ∈ Γ

(
IVG (TQ)

)
and Xh

i ∈ Γ
(
IHG (TQ)

)
, where Xh

i is the horizontal lift
of Xi ∈ X∞(Q/G), such that β∗Aξ̄i = Yi and β∗AXi = Xh

i for i = 1, 2. According to
the definition of the bracket in Γ (T (Q/G)⊕ g̃) given before the theorem, we have

[X1 ⊕ ξ̄1, X2 ⊕ ξ̄2] = βA∗[Xh
1 + Y1, X

h
2 + Y2].
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For any q ∈ Q let x = π(q) = [q]G. By (2.2.4) we have

[Xh
1 , X

h
2 ](q) = [X1, X2]h(q)−B

(
Xh

1 (q), Xh
2 (q)

)
q.

Applying βA∗ to this identity and evaluating the result at x = [q]G, we obtain, in
the Lie algebra Γ (T (Q/G)⊕ g̃),

[X1, X2](x) = [X1, X2](x)⊕
[
q,−B

(
Xh

1 (q), Xh
2 (q)

)]
G

= [X1, X2](x)⊕−B̃A(x)(X1, X2);

again, the bracket [X1, X2] on the left hand side is that in Γ (T (Q/G)⊕ g̃), whereas
the same notation on the right hand side signifies the usual Lie bracket of vector
fields. Using Lemma 5.1.2 we can deduce that for any x ∈ Q/G,

βA∗[Y1, Y2](x) = [ξ̄1, ξ̄2](x).

Thus, we are left with the computation of the terms [X1, ξ̄2] = βA∗[Xh
1 , Y2]

and [X2, ξ̄1] = βA∗[Xh
2 , Y1]. For this, we first recall that, since Xh

1 is an invariant
horizontal vector field, its flow Xh

1t, which is the horizontal lift of the flow X1t of
X1, maps a point q ∈ π−1(x) to a point Xh

1t(q) ∈ π−1 (X1t(x)). Since Xh
1 and X1

are π-related, we have π ◦Xh
1t = X1t ◦ π, and thus, for any vertical vector field Y

on Q, the pull back Xh∗
1t Y is also vertical. Therefore the Lie bracket

[Xh
1 , Y ] =

d

dt
Xh∗

1t Y

∣∣∣∣
t=0

is also a vertical vector field. Using this, we see that for any q ∈ Q we have

[Xh
1 , Y2](q) = A

(
[Xh

1 , Y2](q)
)
q.

The G-invariance of Xh
1 and Y2, immediately implies the G-invariance of [Xh

1 , Y2].
Thus [Xh

1 , Y2] is a vertical G-invariant vector field.
Second, we need to calculate βA∗[Xh

1 , Y2]. For any x ∈ Q/G and any q ∈
π−1(x), we have

βA∗[Xh
1 , Y2](x) =

[
q, A

(
[Xh

1 , Y2](q)
)]
G
.

Cartan’s structure equations give

dA(Xh
1 , Y2) =

[
A(Xh

1 ), A(Y2)
]

+B(Xh
1 , Y2).

Since A(Xh
1 ) = 0 (because Xh

1 is horizontal) and B(Xh
1 , Y2) = 0 (because Y2 is

vertical), we obtain dA(Xh
1 , Y2) = 0. On the other hand we have the formula

dA(Xh
1 , Y2) = Xh

1 [A(Y2)]− Y2

[
A(Xh

1 )
]
−A

(
[Xh

1 , Y2]
)
.

We conclude that A
(
[Xh

1 , Y2]
)

= Xh
1 [A(Y2)]. This shows, in particular, that at a

given point q ∈ Q, A
(
[Xh

1 , Y2](q)
)

only depends on Xh
1 (q) and not on the behavior

of Xh
1 in a neighborhood of q. Now it is clear that, for any q ∈ Q, we have(

Xh
1 [A(Y2)]

)
(q) =

d

dt
A
(
Y2

(
Xh

1t(q)
))∣∣∣∣

t=0

.

Let q ∈ Q and x = π(q); thus X1t(x) = π
(
Xh

1t(q)
)
, for all t. Let ξ2(t) =

A
(
Y2

(
Xh

1t(q)
))

for all t. Lemma 5.1.2 implies that ξ̄2 (x(t)) =
[
Xh

1t(q), ξ2(t)
]
G

for all t and therefore

∇̃AX1(x)ξ̄2(x) =
D

Dt

[
Xh

1t(q), ξ2(t)
]
G

∣∣∣∣
t=0

.
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Now using Lemma 2.3.4 to calculate the covariant derivative of the curve [Xh
1t(q), ξ(t)]G ∈

g̃ we obtain
D

Dt

[
Xh

1t(q), ξ2(t)
]
G

∣∣
t=0

= [q, ξ̇2(0)]G.

But ξ̇2(0) =
(
Xh

1A(Y2)
)

(q) which implies ξ̇2(0) = A
(
[Xh

1 , Y2](q)
)
. We conclude

that
∇̃AX1

ξ̄2 = βA∗[Xh
1 , Y2].

Analogously, we have ∇̃AX2
ξ̄1 = βA∗[Xh

2 , Y1].
Collecting these results, we obtain

[X1 ⊕ ξ̄1, X2 ⊕ ξ̄2] = [X1, X2]⊕ ∇̃AX1
ξ̄2 − ∇̃AX2

ξ̄1 − B̃(X1, X2) + [ξ̄1, ξ̄2],

as desired. �

The following corollary is a consequence of Theorem 5.2.4.

Corollary 5.2.5. Let pQ/G : T (Q/G)⊕ g̃→ T (Q/G) and pg̃ : T (Q/G)⊕ g̃→ g̃
be the natural projections. Then the induced maps p(Q/G)∗ : Γ (T (Q/G)⊕ g̃) →
Γ (T (Q/G)) given by p(Q/G)∗(X ⊕ ξ̄) = X and p∗g̃ : Γ (g̃) → Γ (T (Q/G)⊕ g̃) given
by p∗g̃(ξ̄) = 0⊕ ξ̄ are Lie algebra homomorphisms. The Lie algebra structure on Γ (g̃)
is defined pointwise, that is, for given ξ̄, η̄ ∈ Γ (g̃) we have, [ξ̄, η̄](x) = [ξ̄(x), η̄(x)]
for all x ∈ Q/G.



CHAPTER 6

Reduced Tangent Bundles

The results of the preceding sections may be viewed as a geometrized and
intrinsic way of writing the results of Cendra, Ibort and Marsden [1987] and of
Marsden and Scheurle [1993b]. Next we turn to our main task: find a context in
which the Lagrangian reduction process can be iterated . In other words, we develop
a framework in which the objects are stable under Lagrangian reduction. These
objects will be called reduced tangent bundles.

Lagrange–Poincaré Bundles and Reduced Tangent Bundles. We begin by
describing the geometric objects on which reduced Lagrangians are naturally de-
fined. They form a category of vector bundles denoted LP, objects of which will be
called Lagrange–Poincaré bundles. Important special Lagrange–Poincaré bundles
are the reduced tangent bundles. These form a subcategory, denoted RT, which
is the smallest subcategory that contains the tangent bundles and which remains
stable under reduction; each bundle carries some additional structure needed to
describe the reduction of given Lagrangians defined on them and the corresponding
variational principles.

For example, objects of RT are vector bundles of the type T (Q/G)⊕ g̃ where,
as we have seen, g̃ is a Lie algebra bundle, there is a covariant derivative ∇̃A on g̃,
a g̃-valued 2-form B̃, and the space of sections of T (Q/G)⊕ g̃ admits a Lie algebra
structure which is related to ∇̃A, B̃, and the Lie algebra structure on the fibers of
g̃ by the formula of Theorem 5.2.4.

In this section we show how to reduce further these kinds of objects. They are,
in a sense, special cases of Lie algebroids (see Mackenzie [1987], Courant [1990],
Weinstein [1996, 1998] and Cannas da Silva and Weinstein [1999]) although we
consider some extra structure on them. We also recall (see Weinstein [1996] and
Marsden, Pekarsky and Shkoller [2000]) that these notions are very useful in discrete
Lagrangian mechanics. Further exploration of the link between our work, that of
groupoids and algebroids, as well as noncommutative differential geometry would
of course be very interesting.

Below we will show that the reduction process can be performed by stages and
we will also write explicit expressions for Lagrangians and variational principles
reduced by stages.

Even though the most important objects of LP seem to be those of RT, it is
natural to first deal with the larger category LP rather than the category RT.

The objects in the category LP of Lagrange–Poincaré bundles are vector bun-
dles of the type TQ⊕V where V is a Lie algebra bundle over the base Q and which
carry

1. a covariant derivative D on V ,
2. a V -valued 2-form on Q, and

51
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3. a Lie algebra structure on Γ(TQ ⊕ V ) that satisfies an equality formally
similar to the formula of Theorem 5.2.4.

We shall make this more explicit and describe the mappings in this category shortly.
We will show that the category RT is strictly contained in the category LP.

Moreover, the simplest way of describing RT is by defining it as the smallest sub-
category of LP that contains the tangent bundles TQ. The special importance of
the category RT is that each of its objects is a reduced tangent bundle, after some
number of reduction by stages; in addition, reduced versions of Euler–Lagrange
equations corresponding to invariant Lagrangians on tangent bundles can be writ-
ten in terms of these reduced tangent bundles.

It is important to remark at this point that we can obtain a generalization of
all this, that is, a category bigger than LP, which contains in particular vector
bundles which are some subbundles of bundles of LP, to describe reduction in non-
holonomic mechanics. This, as well as other interesting topics like a local study of
objects of LP, will be the purpose of future work.

An important result in this section is an explicit expression for the reduction
by stages of the Lie algebra of sections of bundles which are objects of LP. This,
together with the results of §5.2, will be related in §8 to the Poisson bracket on the
dual bundles of the bundles which are objects of LP. These dual bundles carry
a Poisson bracket induced by the structure of the objects of LP. Therefore, by
duality, we obtain a direct link to the topic of Poisson reduction by stages of at
least some important examples of Poisson manifolds. The special case of duals
of elements of RT gives cotangent Poisson reduction (see Montgomery, Marsden
and Ratiu [1984] and Montgomery [1986]). A generalization of all this for more
general Poisson manifolds is tied to the consideration of a category bigger than LP
as indicated above, and will be also the purpose of future work.

6.1. The Geometry of Lagrange–Poincaré Bundles

We will need to fix some notation for maps induced on quotients. Recall that
if a Lie group G acts on the manifolds E and F and f : E → F is a G-equivariant
map, then there is a natural quotient map f/G : E/G→ F/G, defined by

f/G ([a]G) = [f(a)]G .

Lagrange–Poincaré Bundles. We now give the details of the definition of a
Lagrange–Poincaré bundle.

Definition 6.1.1. The category LP of Lagrange–Poincaré bundles is de-
fined as follows:

(A) The objects of LP are vector bundles which are Whitney sums of the
form τQ ⊕ τ : TQ⊕ V → Q where τQ : TQ→ Q is the tangent bundle of
a manifold Q and τ : V → Q is a vector bundle, together with some extra
structure given by:
(a) a Lie algebra structure on each fiber of V , in such a way that V is a

Lie algebra bundle; the Lie bracket of given elements v1, v2 ∈ τ−1(q)
is denoted by [v1, v2];

(b) a V -valued 2-form ω on Q;
(c) a covariant derivative D/Dt for curves in V , related in the standard

way to a connection∇ on V , namely, if v(t) is any curve in V , consider



HERNAN CENDRA, JERROLD E. MARSDEN AND TUDOR S. RATIU 53

the curve q(t) = τ (v(t)) on Q, and let

T t+st : τ−1q(t+ s)→ τ−1q(t)

be the parallel transport along q(t) defined by ∇; then

Dv(t)
Dt

=
d

ds
T t+st v(t+ s)

∣∣∣∣
s=0

;

(d) a Lie bracket operation defined on sections X⊕u ∈ Γ(TQ⊕V ) which
is defined by

[X1 ⊕ u1, X2 ⊕ u2] = [X1, X2]⊕∇X1u2 −∇X2u1 − ω(X1, X2) + [u1, u2].

(B) Let TQi ⊕ Vi, i = 1, 2, be two Lagrange-Poincaré bundles with structures
[ , ]i, ωi, ∇i on τ i : Vi → Qi, i = 1, 2. Let Di/Dit denote the covariant
derivative along a curve in Qi defined by ∇i on Vi, i = 1, 2. A morphism
f : TQ1⊕V1 → TQ2⊕V2 between Lagrange–Poincaré bundles is a vector
bundle map covering f0 : Q1 → Q2 that satisfies the following conditions:
(a) f(TQ1) ⊂ TQ2 and, moreover, f |TQ1 = Tf0;
(b) f(V1) ⊂ V2 and the restricted vector bundle map f |V1 commutes

with the structures on Vi given by [ , ]i, ωi, ∇i, which means that for
given u, u′ ∈ (τ1)−1(q), X,X ′ ∈ τ−1

Q1
(q), and a given curve v(t) in V1,

the following conditions are satisfied

f ([u, u′]1) = [f(u), f(u′)]2,

f (ω1(X,X ′)) = ω2 (f(X), f(X ′)) ,
and

f

(
D1v(t)
D1t

)
=
D2f (v(t))

D2t
.

Bundles of the type T (Q/G)⊕g̃ as considered in previous sections are important
examples of elements of LP.

Projections and Injections. The following lemma is an easy consequence of the
previous definition.

Lemma 6.1.2. Let TQ⊕V be an object of LP and let ∇, ω, [ , ] be the structure
on V . Then the following statements hold.

(i) The maps Γ(TQ ⊕ V ) → Γ(TQ) given by X ⊕ v 7→ X and Γ(V ) →
Γ(TQ⊕ V ) given by v 7→ 0⊕ v are Lie algebra homomorphisms.

(ii) Let ϕ ∈ C∞(Q), Xi ∈ Γ(TQ), and vi ∈ Γ(V ), i = 1, 2, be given. Then we
have

[v1, ϕv2] = ϕ[v1, v2]

[X1, ϕX2] = X1[ϕ]X2 + ϕ[X1, X2]

[X1, ϕv2] = X1[ϕ]v2 + ϕ[X1, v2]

[ϕX1, v2] = ϕ[X1, v2]

[X1 ⊕ v1, ϕ(X2 ⊕ v2)] = X1[ϕ](X2 ⊕ v2) + ϕ[X1 ⊕ v1, X2 ⊕ v2].

Let us denote W := TQ⊕ V and also wi := Xi ⊕ vi, for i = 1, 2. Define w1[ϕ] :=
X1[ϕ]. Then the previous equalities can be converted into a single equality

[w1, ϕw2] = ϕ[w1, w2] + w1[ϕ]w2.
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Morphisms between Lagrange–Poincaré Bundles. The nature of morphisms
between Lagrange–Poincaré bundles is clarified by the following.

Lemma 6.1.3. (i) Let TQ ⊕ V be an object of LP and let ∇, ω, [ , ]
be the structure on V . Assume that there is a structure ∇′, ω′, [ , ]′ on
V such that the Lie algebra on Γ(TQ ⊕ V ) defined by ∇′, ω′, [ , ]′ is the
same as the Lie algebra defined by ∇, ω, [ , ]. Then ∇′ = ∇, ω′ = ω, and
[ , ]′ = [ , ].

(ii) Let TQi ⊕ Vi be objects of LP for i = 1, 2. Let f : TQ1 ⊕ V2 → TQ2 ⊕ V2

be a vector bundle isomorphism. Assume that

f∗ : Γ(TQ1 ⊕ V2)→ Γ(TQ2 ⊕ V2)

is a Lie algebra homomorphism. Then f(V1) = V2. Assume, in addition,
that f(TQ1) ⊂ TQ2. Then f is an isomorphism in the category LP, that
is, f is an isomorphism of Lagrange–Poincaré bundles.

Proof. (i) By hypothesis, we have, for all Xi ⊕ ui ∈ Γ(TQ⊕ V ), i = 1, 2,

[X1, X2]⊕∇X1u2 −∇X2u1 − ω(X1, X2) + [u1, u2]

= [X1, X2]⊕∇′X1
u2 −∇′X2

u1 − ω′(X1, X2) + [u1, u2]′.

Taking u1 = u2 = 0 and Xi arbitrary for i = 1, 2, we obtain ω′ = ω. Taking
X1 = X2 = 0 and ui arbitrary for i = 1, 2, we obtain [ , ]′ = [ , ]. Taking u1 = 0,
X2 = 0 and u2, X1 arbitrary, we obtain ∇′ = ∇.

(ii) First, we will prove that f(V1) = V2. By contradiction, assume that there
is an element v̄1 ∈ V1 such that f(v̄1) = X̄2 ⊕ v̄2, where X̄2 ∈ Tq2Q2, satisfies
X̄2 6= 0. Then there exists ϕ2 ∈ C∞(Q2) such that dϕ(q2)(X̄2) 6= 0. Since f is
a vector bundle isomorphism, the induced map on the base f0 : Q1 → Q2 is a
diffeomorphism. Let q1 = f−1

0 (q2) and ϕ1 = f∗0ϕ2 = ϕ2 ◦ f0. Let v1 ∈ Γ(V1) be
such that v1(q1) = v̄1 and let f∗v1 = X2 ⊕ v2. Thus, X2(q2) ⊕ v2(q2) = X̄2 ⊕ v̄2.
We obviously have [ϕ1v1, v1] = ϕ1[v1, v1] = 0, and therefore f∗[ϕ1v1, v1] = 0.

On the other hand, using the fact that f∗ is a Lie algebra isomorphism and
also Lemma 6.1.2, we have

f∗[ϕ1v1, v1] = [ϕ2(X2 ⊕ v2), X2 ⊕ v2]

= −X2[ϕ2](X2 ⊕ v2) + ϕ2[X2 ⊕ v2, X2 ⊕ v2]

= −X2[ϕ2](X2 ⊕ v2),

which gives a contradiction since X2[ϕ2](q2) = dϕ(q2)(X2) 6= 0. We have proven
hence that f(V1) ⊂ V2.

Replacing in the above argument f by the vector bundle isomorphism f−1 :
TQ2 ⊕ V2 → TQ1 ⊕ V1 and using the fact that (f−1)∗ is a Lie algebra isomor-
phism between the corresponding spaces of sections, it follows that f−1(V2) ⊂ V1.
Therefore, f(V1) = V2.

Now let ∇i, ωi, [ , ]i be the structure on the bundle Vi for i = 1, 2, and assume
that f(TQ1) ⊂ TQ2. Since f is a vector bundle isomorphism and f(V1) = V2, it
follows that f(TQ1) = TQ2. However f∗ is a Lie algebra isomorphism so we get
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for any X ⊕ v,X ′ ⊕ v′ ∈ Γ(TQ1 ⊕ V1),

f∗[X,X ′]⊕ f∗∇1Xv
′ − f∗∇1X′v − f∗ω1(X,X ′) + f∗[v, v′]1

= f∗ ([X,X ′]⊕∇1Xv
′ −∇1X′v − ω1(X,X ′) + [v, v′]1)

= f∗[X ⊕ v,X ′ ⊕ v′]1
= [f∗(X ⊕ v), f∗(X ′ ⊕ v′)]2
= [f∗X ⊕ f∗v, f∗X ′ ⊕ f∗v′]2
= [f∗X, f∗X ′]⊕∇2f∗Xf∗v

′ −∇2f∗X′f∗v − ω2(f∗X, f∗X ′) + [f∗v, f∗v′]2.

Taking X = X ′ = 0, we get f∗[v, v′]1 = [f∗v, f∗v′]2. Next, taking X ′ = 0 and
v = 0 we obtain f∗∇1Xv

′ = ∇2f∗Xf∗v
′. Finally, taking v = v′ = 0, we have

f∗ω1(X,X ′) = ω2(f∗X, f∗X ′) and also f∗[X,X ′] = [f∗X, f∗X ′].
To show that f is a morphism of Lagrange–Poincaré bundles (i.e., a morphism

in the category LP), it remains to show that f |TQ1 = Tf0. Let X ∈ Γ(TQ1) =
X∞(Q1) and ϕ ∈ C∞(Q1). Then we have

f∗[X,ϕX] = f∗ (X[ϕ]X) = f∗ (X[ϕ]) f∗X.

On the other hand,

f∗[X,ϕX] = [f∗X, f∗(ϕX)] = [f∗X, f0∗ϕf∗X] = ((f∗X)[f0∗ϕ]) (f∗X).

Therefore we have proven that for any X ∈ Γ(TQ1) and ϕ ∈ C∞(Q1) we have
f∗ (X[ϕ]) = (f∗X)[f0∗ϕ]. Since f(TQ1) = TQ2, this implies f |TQ1 = Tf0 as we
shall show below.

Let q2 ∈ Q2 and denote q1 = f−1
0 (q2). Then using the above relation in the

third equality below, we get

d(ϕ ◦ f−1
0 )(q2) · Tq1f0(X(q1)) = dϕ(q1) ·X(q1) =

(
X[ϕ] ◦ f−1

)
(q2)

= (f∗X)[f0∗ϕ](q2) = d(ϕ ◦ f−1
0 )(q2) · (f∗X)(q2)

= d(ϕ ◦ f−1
0 )(q2) · f (X(q1)) ,

that is, f (X(q1)) = Tq1f0(X(q1)) for any X1 ∈ X∞(Q1) which proves that f |TQ1 =
Tf0. �

Morphism-related Sections of Lagrange–Poincaré Bundles. Let f : TQ1⊕
V1 → TQ2⊕V2 be a given morphism of Lagrange–Poincaré bundles and let X⊕u ∈
Γ(TQ1 ⊕ V1) and Y ⊕ v ∈ Γ(TQ2 ⊕ V2) be given. Then X ⊕ u and Y ⊕ v are said
to be f-related if

f (X(q)⊕ u(q)) = Y (f0(q))⊕ v (f0(q))

for all q ∈ Q1. In particular, it is easy to prove that if X⊕u and Y ⊕v are f -related
then X and Y are f0-related as vector fields according to the usual definition.

Lemma 6.1.4. Let f : TQ1 ⊕ V1 → TQ2 ⊕ V2 be a morphism of Lagran-
ge–Poincaré bundles and let Xi ⊕ ui ∈ Γ(TQ1 ⊕ V1), Yi ⊕ vi ∈ Γ(TQ2 ⊕ V2) for
i = 1, 2, be given. Assume that Xi ⊕ ui and Yi ⊕ vi are f -related for i = 1, 2. Then
[X1 ⊕ u1, X2 ⊕ u2] and [Y1 ⊕ v1, Y2 ⊕ v2] are also f -related.

Proof. Since Xi⊕ ui and Yi⊕ vi are f -related for i = 1, 2, Definition 6.1.1 implies
for all q ∈ Q1
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f ([X1 ⊕ u1, X2 ⊕ u2](q))

= f (([X1, X2]⊕∇X1u2 −∇X2u1 − ω(X1, X2) + [u1, u2]) (q))

= [Y1, Y2](f0(q))⊕∇Y1v2 −∇Y2v1 − ω(Y1, Y2) + [v1, v2] (f0(q))

= [Y1 ⊕ v1, Y2 ⊕ v2](f0(q)).

�

Lemma 6.1.5. Let f : TQ1⊕V1 → TQ2⊕V2 be a morphism in LP and assume,
in addition, that f is a linear isomorphism on each fiber. Then f∗ : Γ(TQ2⊕V2)→
Γ(TQ1 ⊕ V1) is a Lie algebra homomorphism.

Proof. Using the remarks preceding Lemma 5.2.2 it follows that f∗ is well defined,
that for given Yi⊕ vi ∈ Γ(TQ2⊕ V2), i = 1, 2, f∗(Yi⊕ vi) ∈ Γ(TQ1⊕ V1), and that
f∗(Yi ⊕ vi) = f∗Yi ⊕ f∗vi and Yi ⊕ vi are f -related for i = 1, 2. Then, by Lemma
6.1.4, [f∗(Y1⊕v1), f∗(Y2⊕v2)] and [Y1⊕v1, Y2⊕v2] are also f -related. However, the
hypothesis of the lemma implies that there is one and only one section of TQ1⊕V1

which is f -related to a given section of TQ2 ⊕ V2, so we can conclude

[f∗(Y1 ⊕ v1), f∗(Y2 ⊕ v2)] = f∗ ([Y1 ⊕ v1, Y2 ⊕ v2]) . �

Group Actions on Vector Bundles with a Structure [ , ], ω, ∇. As we have
already indicated, when tangent bundles are reduced, one enters the category of
Lagrange–Poincaré bundles and so, to continue the process of reduction, it is im-
portant to know how these objects themselves behave under reduction. The first
job is to examine group actions on vector bundles with the extra structure given in
Definition 6.1.1.

Let τ i : Vi → Qi, i = 1, 2, be vector bundles with extra structure [ , ]i, ωi,
∇i satisfying conditions (a), (b), (c) of Definition 6.1.1A. A vector bundle map
f : V1 → V2 is called a morphism if it commutes with the structures given by [ , ]i,
ωi, ∇i, i = 1, 2, that is, if the conditions of Definition 6.1.1B(b) hold.

Definition 6.1.6. An action ρ : G × V → V of a Lie group G on a vector
bundle τ : V → Q with extra structure [ , ], ω, ∇ as in Definition 6.1.1A , is a vector
bundle action such that, for each g ∈ G, ρg : V → V is a morphism in the previous
sense. More precisely, we assume

(a) g[v1, v2] = [gv1, gv2] for all g ∈ G and all v1, v2 ∈ V satisfying τ(v1) =
τ(v2);

(b) gω(X,Y ) = ω(gX, gY ), for all g ∈ G and all X,Y ∈ TQ satisfying
τQ(X) = τQ(Y );

(c)
Dgv(t)
Dt

= g
Dv(t)
Dt

for any curve v(t) on V and any g ∈ G.

Now we shall state the following lemma whose proof is straightforward.
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Lemma 6.1.7. Let τ i : Vi → Qi, i = 1, 2, be vector bundles with an extra
structure given only by [ , ], ω satisfying conditions (a), (b) of Definition 6.1.1A.
Let ρ : G × V → V be a vector bundle action. Assume that [ , ] or ω are invariant
relative to the action ρ, that is, condition (a) or (b) of Definition 6.1.6 holds. Then
there are corresponding structures [ , ]G, [ω]G on the quotient vector bundle V/G.
These quotient structures are naturally defined by:

(a) [[v1]G, [v2]G] = [[v1, v2]]G for all v1, v2 ∈ V such that τ(v1) = τ(v2), and
(b) [ω]G ([X]G, [Y ]G) = [ω(X,Y )]G for all X,Y ∈ TQ such that τQ(X) =

τQ(Y ).

We will sometimes use the isomorphism αA of Lemma 2.4.2 as an identification
and, consequently, write [X]G ≡ Tπ(X)⊕ ξ̄, [Y ]G ≡ Tπ(Y )⊕ η̄. Thus, the second
identity in the above lemma becomes

[ω]G ([X]G, [Y ]G)

≡ [ω]G
(
Tπ(X)⊕ ξ̄, Tπ(Y )⊕ η̄

)
= [ω]G (Tπ(X), Tπ(Y )) + [ω]G (Tπ(X), η̄) + [ω]G

(
ξ̄, Tπ(Y )

)
+ [ω]G

(
ξ̄, η̄
)
.

Invariance Properties of Covariant Derivatives. To pass covariant derivatives
to quotient bundles, we will need some preparatory lemmas.

Lemma 6.1.8. Let τ : V → Q be a vector bundle and let D/Dt be a covariant
derivative along curves associated to an affine connection ∇ on V (see the para-
graphs following Definition 2.3.1 and Lemma 2.3.2). Let ρ : G×V → V be a vector
bundle action. If ρ commutes with D in the sense of Definition 6.1.6(c), then ∇ is
invariant in the following sense:

∇g∗Xg∗v = g∗∇Xv,
for all X ∈ X∞(Q), all v ∈ Γ(V ), and all g ∈ G. Conversely, if ∇ is invariant then
D/Dt is invariant.

The proof of this lemma is straightforward. See also the proof of Lemma
6.1.11(b) for a similar argument.

Horizontal and Vertical Components of Connections. To define the notion
of quotient covariant derivative or quotient connection, we will need some extra
structure, namely, a principal connection on Q. Our first job is to synthesize this
connection with a given connection on a vector bundle to obtain horizontal covariant
derivatives and connections.

Definition 6.1.9. Let τ : V → Q be a vector bundle and let D/Dt be the
covariant derivative along curves associated to a connection ∇ on V . Let ρ :
G × V → V be a vector bundle action covering the action ρ0 : G × Q → Q. Let
A be a principal connection on the principal G-bundle Q → Q/G (relative to the
action ρ0). Let v(t) be any curve in V and let q(t) = τ (v(t)) for all t. Choose t0
and let q0 = q(t0). Let gq(t) and qh(t) be as in §2.2; that is, qh(t) is a horizontal
curve, q(t) = gq(t)qh(t), and gq(t0) = e. Then we define

vh(t) = g−1
q (t)v(t),

D(A,H)v(t)
Dt

∣∣∣∣
t=t0

=
Dvh(t)
Dt

∣∣∣∣
t=t0

,
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and
D(A,V )v(t)

Dt

∣∣∣∣
t=t0

=
Dv(t)
Dt

∣∣∣∣
t=t0

− D(A,H)v(t)
Dt

∣∣∣∣
t=t0

.

We will call
D(A,H)v(t)

Dt
the A-horizontal covariant derivative of v(t) and

D(A,V )v(t)
Dt

the A-vertical covariant derivative of v(t). For X ∈ X∞(Q) and v ∈ Γ(V ) we
also define ∇(A,H)

X v and ∇(A,V )
X v by

∇(A,H)
X v(q0) =

D(A,H)

Dt
v(t)

∣∣∣∣
t=t0

and

∇(A,V )
X v(q0) =

D(A,V )

Dt
v(t)

∣∣∣∣
t=t0

,

where the covariant derivatives on the right hand side are taken along any smooth
curve q(t) in Q satisfying q(t0) = q0, q̇(t0) = X(q0), and v(t) = v (q(t)) for all
t. We will call ∇(A,H) the A-horizontal component and ∇(A,V ) the A-vertical
component of the connection ∇.

We see from this definition that

∇Xv(q0) = ∇(A,H)
X v(q0) +∇(A,V )

X v(q0).

The following lemma gives, in particular, an alternative characterization of
∇(A,H)
X v and ∇(A,V )

X v for a G-invariant section v of V . It also shows that, when
restricted to invariant sections v ∈ ΓG(V ), the operator ∇(A,H) has the formal
properties of a connection.

Lemma 6.1.10. (a) Let HorA(X) ≡ XH and VerA(X) ≡ XV , for short.
Then we have, for each q0 ∈ Q, each X ∈ X∞(Q), and each v ∈ ΓG(V ),

∇(A,H)
X v(q0) = ∇XHv(q0)

and
∇(A,V )
X v(q0) = ∇XV v(q0).

In particular,

∇Xv(q0) = ∇XHv(q0) +∇XV v(q0).

(b) Let v ∈ ΓG(V ) and let q(t) be any curve in Q such that q̇(t0) = X(q0).
Define qh(t) and gq(t) as in Definition 6.1.9 (see also §2.1). Then

∇(A,H)
X v(q0) =

D

Dt
g−1
q (t)v(t)

∣∣∣∣
t=t0

=
D

Dt
v(qh(t))

∣∣∣∣
t=t0

and

∇(A,V )
X v(q0) =

D

Dt
gq(t)v(t0)

∣∣∣∣
t=t0

.

In particular, ∇(A,V )
X v(q0) depends only on ξ0 = ġq(t0) and v(q0) = v(t0).
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(c) Let v ∈ ΓG(V ), let q(t) be any curve in Q, and let v(t) = v (q(t)) for all
t. Then

D(A,H)

Dt
v(t)

∣∣∣∣
t=t0

=
D

Dt
g−1
q (t)v(t)

∣∣∣∣
t=t0

=
D

Dt
v(qh(t))

∣∣∣∣
t=t0

and
D(A,V )

Dt
v(t)

∣∣∣∣
t=t0

=
D

Dt
gq(t)v(t0)

∣∣∣∣
t=t0

.

Proof. (a) Let q(t) be any curve inQ such that q̇(t0) = X(q0) and let v(t) = v (q(t))
for all t. Then we can easily see that τ (vh(t)) = qh(t) for all t. Since v is G-invariant
we have v(t) = gq(t)v (qh(t)). This argument and the definition of ∇, ∇(A,H), and
∇(A,V ) imply the formulas in part (a) of the lemma.

(b) This part is basically a restatement of part (a). The first equality is a direct
consequence of the definition of ∇(A,H). Now Let ξ0 = ġq(t0). Then

XV (q0) = ξ0q0 =
d

dt
(gq(t)q0)

∣∣∣∣
t=t0

.

Therefore the second equality is a consequence of the second equality of part (a)
and the G-invariance of v.

(c) To prove this part we can proceed essentially as in the proof of parts (a)
and (b). Alternatively, we can deduce it directly from part (b). �

As a technical point, we note that in the proof of the previous lemma we are
strongly using the fact that the covariant derivative D/Dt is defined by a connection
∇ which, in particular, has the formal property ∇X+Y = ∇X +∇Y .

The next two lemmas establish some basic properties of invariant covariant
derivatives and invariant connections.

Lemma 6.1.11. (a) Assume the same hypothesis as in Definition 6.1.9
and, in addition, that D/Dt is G-invariant in the sense of Definition
6.1.6(c). Then

D(A,H)

Dt
and

D(A,V )

Dt
are also G-invariant in the following sense:

D(A,H)gv(t)
Dt

= g
D(A,H)v(t)

Dt
and

D(A,V )gv(t)
Dt

= g
D(A,V )v(t)

Dt
,

for all curves v(t) in V and all g ∈ G.
(b) Let ∇(A,H) and ∇(A,V ) be the A-horizontal and A-vertical components of a

given connection ∇ on V and assume that ∇ is G-invariant. Then ∇(A,H)

and ∇(A,V ) are also G-invariant in the following sense:

∇(A,H)
g∗X

g∗v = g∗∇(A,H)
X v

and
∇(A,V )
g∗X

g∗v = g∗∇(A,V )
X v,

for all X ∈ X∞(Q), all v ∈ Γ(V ), and all g ∈ G.
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Proof. (a) Let a ∈ G and v(t) be given. Let τ (v(t)) = q(t). Then we immediately
have τ (av(t)) = aq(t). For any chosen t0 we have aq(t) = gaq(t)(aq)h(t) and
q(t) = gq(t)qh(t) with gaq(t0) = gq(t0) = e. We know that (aq)h(t) = aqh(t) for all
t. Using these equalities we can easily see that gaq(t) = agq(t)a−1 for all t. Then

D(A,H)

Dt
av(t)

∣∣∣∣
t=t0

=
D

Dt
g−1
aq (t)av(t)

∣∣∣∣
t=t0

=
D

Dt
ag−1
q (t)a−1av(t)

∣∣∣∣
t=t0

=
D

Dt
ag−1
q (t)v(t)

∣∣∣∣
t=t0

=
D

Dt
avh(t)

∣∣∣∣
t=t0

= a
D

Dt
vh(t)

∣∣∣∣
t=t0

= a
D(A,H)

Dt
v(t)

∣∣∣∣
t=t0

.

To prove that

D(A,V )av(t)
Dt

= a
D(A,V )v(t)

Dt

for all curves v(t) on V and all a ∈ G we simply use Definition 6.1.9 and invariance
of D/Dt and of D(A,H)/Dt.

(b) To prove invariance of∇(A,H) and∇(A,V ) we use part (a) and the definitions
of ∇(A,H) and ∇(A,V ). �

To prove part (b) of the preceding lemma for invariant v, we can use, alterna-
tively, Lemma 6.1.10 and recall that for any g ∈ G and any X ∈ X∞(Q) we have
(g∗X)H = g∗XH and also (g∗X)V = g∗XV .

Lemma 6.1.12. Assume the same hypothesis as in Lemma 6.1.11. Then for
any curve a(t) on G and any curve v(t) in V we have

D(A,H)

Dt
[a(t)v(t)] = a(t)

D(A,H)

Dt
v(t).

Proof. If q(t) = τ (v(t)), then a(t)q(t) = τ (a(t)v(t)). Choose t0. Then we have, for
all t, gaq(t)(aq)h(t) = a(t)q(t) and also gq(t)qh(t) = q(t), where gaq(t0) = gq(t0) = e.
We have (aq)h(t) = a(t0)qh(t) for all t, since both curves are horizontal, both
pass through the same point a(t0)q(t0) at t = t0, and both project to the same
curve in Q/G. Therefore a(t)q(t) = gaq(t)a(t0)qh(t), for all t. On the other hand,
a(t)q(t) = a(t)gq(t)qh(t) which then implies that gaq(t) = a(t)gq(t) (a(t0))−1. Using
this and the G-invariance of D/Dt we obtain

D(A,H)

Dt
a(t)v(t)

∣∣∣∣
t=t0

=
D

Dt
a(t0) (gq(t))

−1
a−1(t)a(t)v(t)

∣∣∣∣
t=t0

= a(t0)
D

Dt
(gq(t))

−1
v(t)

∣∣∣∣
t=t0

= a(t0)
D(A,H)

Dt
v(t)

∣∣∣∣
t=t0

.

�
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Two More Properties of Covariant Derivatives. The next two lemmas are
included for the sake of completeness only, although they will not be used in an
essential way in the present work.

Lemma 6.1.13. Assume the same conditions as in Definition 6.1.9. Let v(t)
be a curve in V , q(t) = τ (v(t)), and let f(t) be a real valued function. Then

D(A,H)

Dt
[f(t)v(t)] = ḟ(t)v(t) + f(t)

D(A,H)

Dt
v(t)

for all t and
D(A,V )

Dt
[f(t)v(t)] = f(t)

D(A,V )

Dt
v(t)

for all t.

Proof. It is not difficult to prove this lemma from the definitions. We will omit
the details. �

The following lemma generalizes Lemma 6.1.12

Lemma 6.1.14. For each curve q(t) in Q and each choice of t0 define ξ(t0) =
ġq(t0). Thus, as t0 varies, ξ(t0) describes a curve in g which we will denote ξq(t).
Assume the same conditions as in Definition 6.1.9. Now let v(t) be a curve in V
and let q(t) = τ (v(t)) for all t. Let a(t) be any curve in G. Then we have

(a)
D(A,H)

Dt
[a(t)v(t)]

∣∣∣∣
t=t0

=
D

Dt

[
a(t0) (gq(t))

−1
v(t)

]∣∣∣∣
t=t0

(b)
ξaq(t) = Ada(t) ξq(t) + ȧ(t)a−1(t)

for all t. For each t,

D(A,V )

Dt
[a(t)v(t)]

only depends on a(t)v(t) and ξaq(t).

Proof. (a) The proof of this part is an immediate consequence of the last
part of the proof of Lemma 6.1.12.

(b) From the proof of Lemma 6.1.12 it follows that gaq(t) = a(t)gq(t) (a(t0))−1.
Using this, we can easily prove that ξaq(t) = Ada(t) ξq(t) + ȧ(t)a−1(t).

�

6.2. Reduction of Lagrange–Poincaré Bundles

Now we embark on the task of reducing Lagrange–Poincaré bundles. The goal
is to see how the geometric structures on these bundles pass to the quotient bundle
so that the result is still a Lagrange–Poincaré bundle. Most of this structure passes
to the quotient in a fairly straightforward way. However, things are not as simple
with the covariant derivative, so we will need to pay special attention to this.

Now we are ready to pass covariant derivatives as well as horizontal and vertical
covariant derivatives and connections to the quotient.
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The notion of quotient connection may be defined without any reference to
quotient covariant derivatives. However, we shall treat these two notions together,
which will be helpful in our later applications to variational principles.

There are some interesting links between the constructions here and those that
appear in the theory of geometric phases (see Marsden, Montgomery and Ratiu
[1990], §13), but this will not be pursued in this paper.

Quotient Horizontal Covariant Derivatives and Connections.

Definition 6.2.1. Assume that the conditions of Definition 6.1.9 hold and, in
addition, assume that D/Dt is G-invariant; thus the associated connection ∇ on
the vector bundle V is also G-invariant.

(a) We define the quotient, or reduced, horizontal covariant derivative
on the vector bundle V/G by[

D(A,H)

Dt

]
G

[v(t)]G =
[
D(A,H)

Dt
v(t)

]
G

for any curve v(t) on V . (This expression is well defined in view of Lemma
6.1.11a.)

(b) We define the quotient, or reduced, horizontal connection by([
∇(A,H)

]
G

)
[X]G

[v]G ≡
[
∇(A,H)

]
G,[X]G

[v]G =
[
∇(A,H)
X v

]
G

for given [X]G ∈ Γ(TQ/G) and [v]G ∈ Γ(V/G) and corresponding X ∈
ΓG(TQ) and v ∈ ΓG(V ). (This expression is well defined in view of Lemma
6.1.11b.)

In this definition, recall that we identify elements of ΓG(TQ) with elements of
Γ(TQ/G) and also elements of ΓG(V ) with elements of Γ(V/G) using Lemma 5.2.2.

The connection associated to
[
D(A,H)/Dt

]
G

is precisely
[
∇(A,H)

]
G

in view of
Lemmas 6.1.12 and 6.1.11(b).

The reduced horizontal connection can be naturally interpreted as a connection,
which we shall denote ∇̄, on the vector bundle V/G in the usual sense. Using
the general considerations in the paragraph Affine Connections in §2.3, this is
explained as follows. Let Y be any vector field on Q/G and let Y h be its horizontal
lift to Q. For any given [v]G ∈ Γ(V/G) define

∇̄Y [v]G :=
[
∇(A,H)

Y h
v
]
G
.

Then one can check that the properties defining a connection hold for ∇̄. Moreover,
we can check that if X is any vector field such that HorA(X) = Y h, then

∇̄Y [v]G =
[
∇(A,H)
X v

]
G
.

Quotient Vertical Covariant Derivatives and Connections. It is important
for us to define a quotient vertical covariant derivative as well as a quotient vertical
connection. However, these will not be a covariant derivative and a connection in
the usual sense.

Let us begin with a simple case, namely, the case of a constant curve in V/G.
This is instructive because the answer turns out to be nonzero.
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Let [v0]G ∈ V/G be given. Choose v0 ∈ V and q0 ∈ Q such that τ(v0) = q0. Let
x0 ∈ Q/G be given by x0 = (τ/G) ([v0]G) = π(q0), where, as before, π : Q→ Q/G
is the projection. Let ξ0 ∈ g and consider the class [q0, ξ0]G ∈ g̃x0 .

Consider [v0]G as a constant curve; we define the notion of the vertical covariant
derivative of this curve with respect to [q0, ξ0]G, as follows. Choose a curve g0(t)
in G such that g0(t0) = e and ġ0(t0) = ξ0. Let v0(t) = g0(t)v0. Define the vertical
covariant derivative by[

D(A,V )

Dt

]
G,[q0,ξ0]G

[v0]G

∣∣∣∣∣
t=t0

=

[
D(A,V )v0(t)

Dt

∣∣∣∣
t=t0

]
G

. (6.2.1)

Now we have to show that this expression is well defined. First of all, we need
to explain why the left hand side has the new subscript [q0, ξ0]G. This notation
means that the class on the right hand side depends on the class [q0, ξ0]G. The
reason for this is as follows: during the quotient process, one represents the class
[v0]G by an element of V , say g(t)v0; the point is that the representative depends on
a group element and this group element could be time dependent without changing
the class [v0]G. The class of the resulting covariant derivative then depends on the
class of ġ, so this dependence on [q0, ξ0]G cannot be eliminated.

We now examine this in more detail, still using the constant curve [v0]G in the
quotient. First of all, note that from Definition 6.1.9, and the fact that the quotient
curve x0 in Q/G is constant,

D(A,H)v0(t)
Dt

∣∣∣∣
t=t0

= 0

and therefore,
D(A,V )v0(t)

Dt

∣∣∣∣
t=t0

=
Dv0(t)
Dt

∣∣∣∣
t=t0

.

It is clear that the right-hand side does not depend on the choice of the curve g0(t)
satisfying g0(t0) = e, ġ0(t0) = ξ0, and now we shall see that it depends only on
[v0]G ∈ V/G and [q0, ξ0]G ∈ g̃x0 and not on the particular choice of v0 and q0.
Let us choose v1 ∈ [v0]G and also q1 ∈ [q0]G such that τ(v1) = q1. There is an
h ∈ G such that q1 = hq0. Let ξ1 = Adh ξ0, and note that [q0, ξ0]G = [q1, ξ1]G.
Using Lemma 5.2.1, we get v1 = hv0. If a curve g0(t) on G satisfies g0(t0) = e and
ġ0(t0) = ξ0 then the curve g1(t) = hg0(t)h−1 satisfies g1(t0) = e and ġ1(t0) = ξ1.
Define v1(t) = g1(t)v1. Then, v1(t) = hg0(t)h−1hv0 = hv0(t). Then using Lemma
6.1.11, we obtain[

D(A,V )v1(t)
Dt

∣∣∣∣
t=t0

]
G

=

[
h
D(A,V )v0(t)

Dt

∣∣∣∣
t=t0

]
G

=

[
D(A,V )v0(t)

Dt

∣∣∣∣
t=t0

]
G

.

Thus, we can consistently define the quotient vertical covariant derivative of the
constant curve [v0]G on V/G with respect to [q0, ξ0]G by equation (6.2.1).

Next we consider the case of general curves. Let [v]G(t) be a curve in V/G and
x(t) = (τ/G) ([v]G(t)]G). Choose [q0, ξ0]G ∈ g̃x0 , where x0 = x(t0) = (τ/G) ([v]G(t0)).
We want to define the covariant derivative of [v]G(t) with respect to [q0, ξ0]G at
t = t0. Choose v0 ∈ V and q0 ∈ Q such that τ(v0) = q0. Choose a curve g0(t) on
G such that g0(t0) = e and ġ0(t0) = ξ0. Lemma 5.2.1 shows that there is a unique
curve vhq0(t) in V such that

[
vhq0(t)

]
G

= [v]G(t) and τ
(
vhq0(t)

)
= xhq0(t) for all t. Let

v0(t) = g0(t)vhq0(t) and q0(t) = g0(t)xhq0(t). Again by Lemma 5.2.1, one sees that
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v0(t) is the only curve in V such that [v0(t)]G = [v]G(t) and τ (v0(t)) = q0(t) for all
t. Then it is easy to see that

D(A,H)v0(t)
Dt

∣∣∣∣
t=t0

=
D(A,H)vh0 (t)

Dt

∣∣∣∣
t=t0

=
Dvh0 (t)
Dt

∣∣∣∣
t=t0

does not depend on the choice of [q0, ξ0]G as before, although, of course, it depends
on the choice of v0 and q0, satisfying τ(v0) = q0. Then, we have

D(A,V )v0(t)
Dt

∣∣∣∣
t=t0

=
Dv0(t)
Dt

∣∣∣∣
t=t0

− Dvh0 (t)
Dt

∣∣∣∣
t=t0

.

It is clear that the right-hand side does not depend on the choice of the curve g0(t)
satisfying g0(t0) = e and ġ0(t0) = ξ0.

Now we claim that [Dv0(t)/Dt]G depends only on the curve [v]G(t) in V/G and
on [q0, ξ0]G ∈ g̃x0 but not on the particular choice of v0 and q0 satisfying the previous
assumptions. Since we already know that [D(A,H)v0(t)/Dt]G depends only on the
curve [v]G(t) on V/G, we will then conclude, by definition of [D(A,V )v0(t)/Dt]G,
that [D(A,V )v0(t)/Dt]G depends only on the curve [v]G(t) in V/G and on [q0, ξ0]G ∈
g̃x0 but not on the particular choice of v0 and q0 satisfying the previous assumptions.

To prove the claim, choose v1 ∈ [v0]G and also q1 ∈ [q0]G such that τ(v1) = q1.
Then there exists h ∈ G such that q1 = hq0 and ξ1 = Adh ξ0, and we also know
from Lemma 5.2.1 that v1 = hv0. If a curve g0(t) on G satisfies g0(t0) = e and
ġ0(t0) = ξ0, let g1(t) = hg0(t)h−1, which satisfies, g1(t0) = e and ġ1(t0) = ξ1.
Lemma 5.2.1 shows that there is a unique curve vhq1(t) in V such that

[
vhq1(t)

]
G

=
[v]G(t) and τ

(
vhq1(t)

)
= xhq1(t) for all t. Define v1(t) = g1(t)vhq1(t) for all t and

also q1(t) = g1(t)xhq1(t). Then we see that v1(t) = hg0(t)h−1hv0 = hv0(t). Lemma
5.2.1 implies that v1(t) is the only curve in V such that [v1(t)]G = [v]G(t) and
τ (v1(t)) = q1(t) for all t. Then using Lemma 6.1.11, we obtain[

Dv1(t)
Dt

∣∣∣∣
t=t0

]
G

=

[
h
Dv0(t)
Dt

∣∣∣∣
t=t0

]
G

=

[
Dv0(t)
Dt

∣∣∣∣
t=t0

]
G

.

This and the definition of the vertical covariant derivative shows that[
D(A,V )v1(t)

Dt

∣∣∣∣
t=t0

]
G

=

[
h
D(A,V )v0(t)

Dt

∣∣∣∣
t=t0

]
G

=

[
D(A,V )v0(t)

Dt

∣∣∣∣
t=t0

]
G

.

This argument also shows that we can define the quotient covariant deriv-
ative of the curve [v]G(t) in V/G with respect to [q0, ξ0]G by[

D(A)

Dt

]
G,[q0,ξ0]G

[v]G(t)

∣∣∣∣∣
t=t0

=

[
Dv0(t)
Dt

∣∣∣∣
t=t0

]
G

.

This justifies the following definition of the reduced covariant derivative and
also the reduced vertical covariant derivative.

Definition 6.2.2. Assume the same conditions as in Definition 6.1.9 and as-
sume that the connection ∇, and therefore also the covariant derivative D/Dt, is
G-invariant. Let [v]G(t) be a given curve in V/G. Let (τ/G)[v]G(t0) = [q0]G and
choose [q0, ξ0]G ∈ g̃x0 . Let vhq0(t) be the unique curve in V such that

[
vhq0(t)

]
G

=
[v]G(t) and τ

(
vhq0(t)

)
= xhq0(t) for all t. Choose a curve g0(t) on G such that

g0(t0) = e and ġ0(t0) = ξ0. Let v0(t) = g0(t)vhq0(t).



HERNAN CENDRA, JERROLD E. MARSDEN AND TUDOR S. RATIU 65

(a) The quotient, or reduced, covariant derivative of the curve [v]G(t)
with respect to [q0, ξ0]G at t = t0 is defined by[

D(A)

Dt

]
G,[q0,ξ0]G

[v]G(t)

∣∣∣∣∣
t=t0

=

[
Dv0(t)
Dt

∣∣∣∣
t=t0

]
G

.

(b) The quotient, or reduced, vertical covariant derivative of the curve
[v]G(t) with respect to [q0, ξ0]G at t = t0 is defined by[

D(A,V )

Dt

]
G,[q0,ξ0]G

[v]G(t)

∣∣∣∣∣
t=t0

=

[
D(A,V )v0(t)

Dt

∣∣∣∣
t=t0

]
G

.

The following formula is a direct consequence of the previous definition and
previous equalities[

D(A)

Dt

]
G,[q0,ξ0]G

[v]G(t)

∣∣∣∣∣
t=t0

=

[
D(A,V )

Dt

]
G,[q0,ξ0]G

[v]G(t)

∣∣∣∣∣
t=t0

+
[
D(A,H)

Dt

]
G

[v]G(t)
∣∣∣∣
t=t0

.

Next we consider an important particular case in which the reduced vertical
covariant derivative can be calculated with a formula entirely similar to the one
derived before for the case of a constant curve.

Lemma 6.2.3. Assume the conditions of definition 6.2.2 and, in addition, as-
sume that there is a G-invariant section u ∈ ΓG (V ) such that v0(t) = u

(
g0(t)xhq0(t)(t)

)
.

Then [
D(A,V )

Dt

]
G,[q0,ξ0]G

[v]G(t)

∣∣∣∣∣
t=t0

=

[
Dg0(t)v0

Dt

∣∣∣∣
t=t0

]
G

.

Proof. The proof is a direct consequence of Lemma 6.1.10(c). �

Quotient Vertical Connections. Now we will describe the notion of quotient,
or reduced, vertical connection and also the quotient, or reduced, connection.

Definition 6.2.4. Let [q0, ξ0]G ∈ g̃ with π̃G[q0, ξ0]G = [q0]G and let [v]G ∈
Γ(V/G), where v ∈ ΓG(V ) according to Lemma 5.2.2. Let Y0 ∈ IVG (Q) such that
βA(Y0) = [q0, ξ0]G, according to Lemma 5.1.2. Then

(a) The quotient, or reduced, vertical connection is defined by[
∇(A,V )

]
G,[q0,ξ0]G

[v]G =
[
∇(A,V )
Y0

v
]
G
.

(b) Let X̄0 ∈ T[q0]G(Q/G), define X0 = X̄h
0 , so X0 ∈ IHG (Q), and Z0 =

X0 + Y0. The quotient, or reduced, connection is defined by the
condition [

∇(A)
]
G,X̄0⊕[q0,ξ0]G

[v]G = [∇Z0v]G ,

or by the equivalent condition[
∇(A)

]
G,X̄0⊕[q0,ξ0]G

[v]G =
[
∇(A,H)

]
G,X̄0

[v]G +
[
∇(A,V )

]
G,[q0,ξ0]G

[v]G
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One sees that the expressions in Definition 6.2.4 are well defined using Lemma
6.1.11, which establishes invariance of ∇(A,V ) and ∇(A,H), and also Lemma 5.2.2.

The following lemma establishes the link between the notions of quotient verti-
cal covariant derivative (resp. quotient covariant derivative) and quotient vertical
connection (resp. quotient connection).

Lemma 6.2.5. Let [q0, ξ0]G ∈ g̃ and let [v]G ∈ Γ(V/G), where v ∈ ΓG(V )
according to Lemma 5.2.2. Let [q]G(t) = x(t) be any curve in Q/G such that
π̃G ([q0, ξ0]G) = [q]G(t0) and let, with a convenient abuse of notation, [v]G(t) =
[v]G ([q]G(t)). Assume that D/Dt is G-invariant. Then we have

(a) [
D(A,V )

Dt

]
G,[q0,ξ0]G

[v]G

∣∣∣∣∣
t=t0

=
[
∇(A,V )

]
G,[q0,ξ0]G

[v]G ([q]G(t0))

(b) [
D(A)

Dt

]
G,[q0,ξ0]G

[v]G

∣∣∣∣∣
t=t0

=
[
∇(A)

]
G,ẋ(t0)⊕[q0,ξ0]G

[v]G ([q]G(t0)) .

Proof. The proof is a direct consequence of Lemma 6.2.3 and the fundamental link
between covariant derivatives and connections in a vector bundle explained before
(see the paragraph Affine Connections in §2.3). �

Group Actions on Lagrange–Poincaré Bundles. Now we shall define the no-
tion of an action of a group G on an object of LP.

Definition 6.2.6. An action in the category LP of a group G on an object
TQ⊕ V of LP is a vector bundle action ρ : G× TQ⊕ V → TQ⊕ V such that, for
each g ∈ G, ρg : TQ⊕ V → TQ⊕ V is an isomorphism of LP. Sometimes we will
call an action in the category LP simply an action, if the fact that it is an action
in the category LP is clear from the context.

Corollary 6.2.7. If ρ : G × TQ ⊕ V → TQ ⊕ V is an action in the category
LP then we have

(i) ρ∗ : G×Γ(TQ⊕ V )→ Γ(TQ⊕ V ) is a representation of G such that, for
each g ∈ G, ρg∗ : Γ(TQ⊕V )→ Γ(TQ⊕V ) is a Lie algebra isomorphism;

(ii) The restriction ρ|G×TQ : G×TQ→ TQ is the tangent lift of the action
on the zero section, ρ0 : G×Q→ Q.

Proof. (i) is a consequence of Lemma 6.1.5 and (ii) is a consequence of the defini-
tion of morphism in the category LP. �

Definition 6.2.8. Let τ : V → Q be a vector bundle and let ρ : G×V → V be
a vector bundle action. As usual, the action on the zero section ρ0 : G×Q→ Q is
assumed to give Q the structure of a principal bundle. Let ιG(V ) : IG(V )→ Q/G
be the vector bundle whose fiber at the point [q]G ∈ Q/G is the space of all G-
invariant sections of the restriction V |Gq, where, as usual, Gq = [q]G is the orbit of
q. In addition, let γG(V ) be the vector bundle isomorphism γG(V ) : IG(V )→ V/G
given by

γG(V )
(
v[q]G

)
=
[
v[q]G(q)

]
G
,

where v[q]G is a section of V |Gq.
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It is easy to see that γG(V ) is a well defined vector bundle isomorphism. Ob-
serve that Definition 6.2.8 is consistent with Definition 5.1.1; in fact, we can easily
see that IHG (TQ) = IG (Hor(TQ)) and IVG (TQ) = IG (Ver(TQ)). Obviously we have
a vector bundle isomorphism

γ : IHG (TQ)⊕ IVG (TQ)⊕ IG(V )→ Hor(TQ)/G⊕Ver(TQ)/G⊕ (V/G)

defined by

γ ≡ γG (Hor(TQ))⊕ γG (Ver(TQ))⊕ γG (V )

≡ γG (Hor(TQ)⊕Ver(TQ)⊕ V ) .

Isomorphisms Between Quotient Bundles. Using the definition of βA from
Lemma 5.1.2, taking into account the natural identifications TQ ≡ Hor(TQ) ⊕
Ver(TQ) and also TQ/G ≡ Hor(TQ)/G⊕Ver(TQ)/G, and using the isomorphism
γG(V ) just defined, we obtain a vector bundle isomorphism

βA ⊕ γG(V ) : IHG (TQ)⊕ IVG (TQ)⊕ IG(V )→ T (Q/G)⊕ g̃⊕ (V/G).

Also from Lemma 5.2.2 we see that there are linear isomorphisms

πG(V )∗ : Γ(V/G)→ ΓG(V ),

πG(Hor(TQ))∗ : Γ (Hor(TQ)/G)→ ΓG (Hor(TQ)) ,

and

πG(Ver(TQ))∗ : Γ (Ver(TQ)/G)→ ΓG (Ver(TQ)) .

Definition 6.2.9. Define the linear isomorphism

π∗ : ΓG (Hor(TQ))⊕ ΓG (Ver(TQ))⊕ ΓG(V )

→ Γ (Hor(TQ)/G)⊕ Γ (Ver(TQ)/G)⊕ Γ(V/G)

by

π∗ = (πG(Hor(TQ))∗ ⊕ πG(Ver(TQ))∗ ⊕ πG(V )∗)−1
.

Similarly, the linear isomorphism

ϕ ≡ ϕA(Q,G, V ) ≡ ϕA : ΓG (Hor(TQ))⊕ ΓG (Ver(TQ))⊕ ΓG(V )

→ Γ (T (Q/G))⊕ Γ (g̃)⊕ Γ(V/G)

is defined by

ϕ = (βA ⊕ γG(V ))∗ ◦ γ
∗ ◦ π∗.

If we consider γ∗ ◦π∗ as being an identification, which is natural in the present
context, we can write ϕ ≡ (βA ⊕ γG(V ))∗. Likewise, if we consider γ∗ and π∗ as
being identifications we can write the map

ϕ : Γ(TQ/G)⊕ Γ(V/G)→ Γ (T (Q/G)⊕ g̃)⊕ Γ(V/G)

as ϕ ≡ α∗A ⊕ id(V/G)∗.
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Structure of Reduced Lagrange–Poincaré Bundles. Now we state and prove
our main result in this section.

Theorem 6.2.10. Let τQ ⊕ τ : TQ ⊕ V → Q be an object of LP and let ∇,
ω, [ , ] be the structure on V . Let ρ : G × (TQ ⊕ V ) → TQ ⊕ V be an action in
the category LP. Choose a connection A on the principal bundle Q with structure
group G. Consider the bundle

T (Q/G)⊕ g̃⊕ (V/G).

Define the structure ∇g̃, ωg̃, [ , ]g̃ on g̃⊕ (V/G) by

∇g̃
X

(
ξ̄ ⊕ [v]G

)
= ∇̃AX ξ̄ ⊕ [∇(A,H)]G,X [v]G − [ω]G(X, ξ̄)

ωg̃(X1, X2) = B̃A(X1, X2)⊕ [ω]G(X1, X2)[
ξ̄1 ⊕ [v1]G, ξ̄2 ⊕ [v2]G

]g̃ = [ξ̄1, ξ̄2]⊕ [∇(A,V )]G,ξ̄1 [v2]G − [∇(A,V )]G,ξ̄2 [v1]G
− [ω]G(ξ̄1, ξ̄2) + [[v1]G, [v2]G] .

Then the bundle T (Q/G)⊕ g̃⊕ (V/G), with the structure on the bundle g̃⊕ (V/G)
given by ∇g̃, ωg̃, [ , ]g̃, is an object of the category LP.

Remark. Theorems 6.2.10 and 5.2.4 seem to shed light on the structure of Lie
group extensions, namely that they necessarily have the structure, roughly speak-
ing, of a semidirect product with a curvature cocycle. It would be of interest to
explore this technical point further.

Proof of the Theorem. It is easy to see that∇g̃ is a connection on g̃⊕(V/G) (see
the paragraph Affine Connections of §2.3 for the definition). It is also easy to
check that ωg̃ is a g̃⊕(V/G) -valued 2-form. We must now show that the expression
of [ , ]g̃ given in the statement of the theorem defines a Lie bracket on the fibers of
g̃ ⊕ (V/G) that endows this bundle with the structure of a Lie algebra bundle. It
is clear that each one of the terms [ξ̄1, ξ̄2], −[ω]G(ξ̄1, ξ̄2) and [[v1]G, [v2]G]] defines
a bilinear and skew symmetric operation on the fibers of g̃ ⊕ (V/G). Now using
Lemma 6.1.10 and Definition 6.2.4 we can see that the term

[∇(A,V )]G,ξ̄1 [v2]G − [∇(A,V )]G,ξ̄2 [v1]G

also defines a bilinear and skew symmetric operation on the fibers of g̃⊕ (V/G). So
far we have proven that the expression of [ , ]g̃ defines a bilinear and skew symmetric
operation on the fibers of g̃⊕(V/G). Moreover, it is easy to see that for any function
f ∈ C∞(Q/G) we have[

ξ̄1 ⊕ [v1]G, f
(
ξ̄2 ⊕ [v2]G

)]g̃ = f
[
ξ̄1 ⊕ [v1]G, ξ̄2 ⊕ [v2]G

]g̃
.

It remains to prove that [ , ]g̃ satisfies the Jacobi identity. For this we must first
study the Lie algebra structure on the space of sections

Γ (T (Q/G))⊕ Γ (g̃)⊕ Γ(V/G) ≡ Γ ((T (Q/G))⊕ g̃⊕ (V/G)) .

According to Definition 6.1.1 the operation on sections Zi ⊕ vi ∈ Γ(TQ ⊕ V ),
i = 1, 2, given by

[Z1 ⊕ v1, Z2 ⊕ v2] = [Z1, Z2]⊕∇Z1v2 −∇Z2v1 − ω(Z1, Z2) + [v1, v2]

is a Lie bracket.



HERNAN CENDRA, JERROLD E. MARSDEN AND TUDOR S. RATIU 69

The G-invariance of ∇, ω, and [ , ] implies that

ΓG(TQ⊕ V ) ≡ ΓG (Hor(TQ))⊕ ΓG (Ver(TQ))⊕ ΓG(V )

is a Lie subalgebra. Using this and the linear isomorphism ϕ introduced in Defini-
tion 6.2.9, we can define a Lie algebra on the space of sections

Γ (T (Q/G))⊕ Γ (g̃)⊕ Γ(V/G)

by [
X1 ⊕ ξ̄1 ⊕ [v1]G, X2 ⊕ ξ̄2 ⊕ [v2]G

]
= ϕ

[
ϕ−1

(
X1 ⊕ ξ̄1 ⊕ [v1]G

)
,

ϕ−1
(
X2 ⊕ ξ̄2 ⊕ [v2]G

)]
.

We now show that this Lie bracket coincides with the one constructed on

Γ (T (Q/G))⊕ Γ (g̃)⊕ Γ(V/G)

using the structures ∇g̃, ωg̃ and [ , ]g̃, according to Definition 6.1.1. We know that
ϕ−1Xi = Xh

i , for i = 1, 2. Let ϕ−1ξ̄i = Yi and ϕ−1[vi]G = vi, for i = 1, 2 (recall
that there is a unique vi ∈ ΓG(V ) in each class [vi]G). By Definition 6.1.1 we have

[Xh
1 ⊕ Y1 ⊕ v1, X

h
2 ⊕ Y2 ⊕ v2]

= [Xh
1 + Y1, X

h
2 + Y2]⊕∇Xh1 +Y1

v2 −∇Xh2 +Y2
v1

− ω(Xh
1 + Y1, X

h
2 + Y2) + [v1, v2].

Since ϕ |ΓG(TQ) = αA∗ |ΓG(TQ) we have, using Theorem 5.2.4, that

ϕ[Xh
1 ⊕ Y1, X

h
2 ⊕ Y2] = [X1, X2]⊕ ∇̃AX1

ξ̄2 − ∇̃AX2
ξ̄1 − B̃A(X1, X2) + [ξ̄1, ξ̄2].

Using Definition 6.2.4 we have, for

ϕ(∇Xhi +Yivj) =
[
∇(A,H)

]
G,Xi

[vj ]G +
[
∇(A,V )

]
G,ξ̄i

[vj ]G.

Using Lemma 6.1.7 we can easily see that

ϕω(Xh
1 + Y1, X

h
2 + Y2)

= [ω]G(X1, X2) + [ω]G(X1, ξ̄2) + [ω]G(ξ̄1, X2) + [ω]G(ξ̄1, ξ̄2)

and also that
ϕ[v1, v2] = [[v1]G, [v2]G] .

It is not difficult to conclude that the operation on

Γ ((T (Q/G))⊕ g̃⊕ (V/G))

using the structures ∇g̃, ωg̃, and [ , ]g̃, according to Definition 6.1.1 is a Lie bracket.
Moreover, we have a description of this bracket using the isomorphism ϕ. It follows
that the restriction of this Lie bracket to Γ (g̃⊕ (V/G)) is also a Lie bracket. This
restriction is given by [ , ]g̃. Therefore, the Jacobi identity for the bilinear and skew
symmetric operation on fibers of Γ (g̃⊕ (V/G)) defined by [ , ]g̃ is satisfied. This
finishes the proof of the theorem. �

Now we introduce some more notation.
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Definition 6.2.11. Assume the hypothesis of Theorem 6.2.10. The bundle

T (Q/G)⊕ g̃⊕ (V/G)

with the reduced structure ∇g̃, ωg̃, and [ , ]g̃ on g̃⊕ (V/G) is called the reduced
bundle with respect to the group G and the connection A. The reduced
Lie algebra structure on

Γ(T (Q/G)⊕ g̃⊕ (V/G))

is the one described in Theorem 6.2.10 using the reduced structure ∇g̃, ωg̃, [ , ]g̃ on
g̃⊕ (V/G) according to Definition 6.1.1.

Let W = TQ⊕ V , for short. We will denote by αWA the natural map

αWA : (TQ⊕ V )/G→ T (Q/G)⊕ g̃⊕ (V/G),

that is, αWA := αA ⊕ idV/G, where αA is the map of Lemma 2.4.2. To make the
notation consistent in the case V = 0, that is, W = TQ, we will write αA ≡ αTQA .

Lemma 6.2.12. Assume the hypothesis of Theorem 6.2.10. Then we have:
(a) The push forward map

αWA∗ : Γ ((TQ⊕ V )/G)→ Γ (T (Q/G)⊕ g̃⊕ (V/G))

is a Lie algebra isomorphism. Here the Lie algebra on Γ ((TQ⊕ V )/G)
is the natural quotient Lie algebra structure, as defined in the comments
following Lemma 5.2.2.

(b) Let A′ be another connection on the principal bundle Q with structure
group G. Then αWA′ ◦ (αWA )−1 is an isomorphism in the category LP if
and only if A = A′.

Proof. (a) The proof of this part is an easy consequence of the proof of Theorem
6.2.10.

(b) Let
X ≡ X ⊕ 0⊕ 0 ∈ Γ (T (Q/G)⊕ g̃⊕ (V/G)) .

The proof of Theorem 6.2.10 shows that (αWA )−1(X) is the horizontal lift of X with
respect to the connection A and hence (αWA′ ◦ (αWA )−1)(X) can be written as

(αWA′ ◦ (αWA )−1)(X) = X ⊕ ξ̄,

where ξ̄ ∈ g̃. Also, by the same argument as in the proof of Theorem 6.2.10, we can
see that ξ̄ = 0 if and only if (αWA )−1(X) is horizontal with respect to the connection
A′. On the other hand, the proof of Theorem 6.2.10, also shows that for any

ξ̄ ⊕ [v]G ≡ 0⊕ ξ̄ ⊕ [v]G ∈ Γ (T (Q/G)⊕ g̃⊕ (V/G))

we have
(αWA′ ◦ (αWA )−1)

(
ξ̄ ⊕ [v]G

)
∈ Γ (g̃⊕ (V/G)) .

Using what we have proven so far, we can deduce that the conditions(
αWA′ ◦ (αWA )−1

)
T (Q/G) = T (Q/G)

and (
αWA′ ◦ (αWA )−1

)
(g̃⊕ (V/G)) = g̃⊕ (V/G)

are satisfied if and only if A = A′. �
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6.3. Reduction by Stages of objects of LP

We shall begin by recollecting, without proof, some basic facts. In this section
G will be a Lie group and N ⊂ G a normal Lie subgroup.

Lemma 6.3.1. Assume that a group G acts on the left on a manifold Q (this
time we do not need to assume that, with this action, Q becomes a principal bundle)
and let N ⊂ G be a normal subgroup. Then the rule [g]N [q]N = [gq]N defines an
action of G/N on Q/N . The map

iQG/N : Q/G→ (Q/N)/(G/N)

given by
iQG/N ([q]G) = [[q]N ](G/N)

is a bijection.
If the action of G on Q is free then the action of N on Q is free and also the

action of G/N on Q/N is free. Conversely, if the action of N on Q is free and also
the action of G/N on Q/N is free then the action of G on Q is free.

Now assume, in addition, that π : Q→ Q/G, is a principal bundle with struc-
ture group G. Then the map iQG/N is a well defined diffeomorphism. Moreover,
Q/N is a principal bundle with structure group G/N and Q is a principal bundle
with structure group N . Conversely, if Q/N is a principal bundle with structure
group G/N and Q is a principal bundle with structure group N then Q is a principal
bundle with structure group G.

We are interested in cases of the previous lemma in which the manifold Q carries
some extra structures which remain invariant under the action of the group G and
we also want to show how to obtain the corresponding quotient structures by stages.
The next lemma considers the case of an invariant vector bundle structure. We will
use some notation and results described in section §5.2, in particular Lemma 5.2.1

Lemma 6.3.2. Let τ : V → Q be a vector bundle and let ρ : G× V → V be a
vector bundle action of the group G on V covering the action ρ0 : G × Q → Q on
the zero section. We assume that the action ρ0 endows Q with the structure of a
principal bundle over Q/G. Let N ⊂ G be a normal subgroup. Then

τ/N : V/N → Q/N and τ/G : V/G→ Q/G

are vector bundles and G/N acts with a vector bundle action on V/N . The quotient

(τ/N)/(G/N) : (V/N)/(G/N)→ (Q/N)/(G/N)

is a vector bundle. The isomorphism iVG/N is a vector bundle isomorphism.

Now we state the following lemma whose proof is straightforward.

Lemma 6.3.3. Assume the hypothesis of Lemma 6.1.7 and, in addition, as-
sume that N is a normal subgroup of G. Thus, in particular, any one of the
structures (a) or (b) defined in Lemma 6.1.7 which is invariant under the action
of G is also invariant under the restricted action of N , so it gives rise to a corre-
sponding quotient structure on the quotient vector bundle V/N . Then the quotient
structures so defined are invariant under the action of G/N on V/N described
in Lemma 6.3.2 and they define corresponding quotient structures on the bundle
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(V/N)/(G/N). Moreover, the isomorphism iVG/N described in Lemma 6.3.2 com-
mutes with those structures, that is, it is also an isomorphism with respect to these
structures.

Let us now consider an important example of this situation. Assume that the
hypothesis of Lemma 6.3.1 hold. Let ñ be as in Definition 2.3.3. Then G/N acts
on ñ as follows:

[g]N [q, ξ]N = [gq,Adg ξ]N .
We will prove that this action is well defined. Since N ⊂ G is a normal subgroup,
for any g ∈ G and any n ∈ N there exist n′g, n

′′
g ∈ N such that gn = n′gg and

ng = gn′′g . Besides, for any ξ ∈ n we have Adg ξ ∈ n. Now let ni ∈ N be given for
i = 1, 2. Then we have

[n1g]N [n2q,Adn2 ξ]N = [n1gn2q,Adn1g Adn2 ξ]N
= [n1n

′
2ggq,Adn1n′2gg

ξ]N

= [n1n
′
2ggq,Adn1n′2g

Adg ξ]N
= [gq,Adg ξ]N ,

which shows that the action is well defined.
Now we will study invariance properties of the structures on ñ. We will omit

the proof of the next lemma, which is straightforward.

Lemma 6.3.4. Assume the same hypothesis as in Lemma 6.3.3 and, in addi-
tion, choose a connection AN on the principal bundle Q with structure group N .
Then the action of G/N on ñ defined above commutes with the Lie algebra structure
on fibers of ñ defined in Lemma 2.3.5 and also with the ñ-valued curvature 2-form
B̃AN defined by equation (3.1.1). More precisely, for any [q, ξi]N ∈ ñ, i = 1, 2, any
Xi ∈ T[q]N (Q/N), i = 1, 2, and any g ∈ G we have

[[g]N [q, ξ1]N , [g]N [q, ξ2]N ] = [g]N [[q, ξ1]N , [q, ξ2]N ]

and
B̃AN ([g]NX1, [g]NX2) = [g]N B̃AN (X1, X2).

It is not generally true that for any connection AN the covariant derivative
D̃AN /Dt or, equivalently, the connection ∇̃AN on the bundle ñ, is invariant under
the action of G/N . However there is always a connection AN having this property,
that is, having the property that the action of G/N commutes with D̃AN /Dt or,
equivalently, with the connection ∇̃AN , as we shall see next. Let 〈 , 〉 be any G-
invariant metric on Q. It is not difficult to show that any given principal bundle,
say π : Q→ Q/G with structure group G, carries an invariant Riemannian metric.
For instance, it is well known that using partitions of unit one can construct both,
a Riemannian metric g on the base Q/G and also a principal connection A on the
principal bundle Q. With respect to the connection A, we have the decomposition
TQ = HorTQ ⊕ VerTQ. We are going to define an invariant metric gh on the
vector bundle HorTQ and an invariant metric gv on the vector bundle VerTQ.
Then, by declaring that HorTQ and VerTQ are orthogonal, g = gh ⊕ gv will be
an invariant positive definite metric on the vector bundle TQ, that is, an invariant
Riemannian metric on Q. We can define gh as being the horizontal lift of the
Riemannian metric g on the base. To define gv, let us recall that the vector bundle
VerTQ is isomorphic to the vertical invariant bundle IVG (TQ), defined in 5.1.1. It
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is also well known that any vector bundle carries a positive definite metric, so let
ḡv be a positive definite metric on the vector bundle IVG (TQ). Define the metric gv

on VerTQ as follows: For each Xq, Yq ∈ VerTQ, let X,Y ∈ IVG (TQ) be such that
X(q) = Xq and Y (q) = Yq, then set, by definition, gv(Xq, Yq) = ḡv(X,Y ).

Then for each q ∈ Q we have a direct sum orthogonal decomposition

TqQ = VerN (TqQ) +HN (q),

where HN (q) is the orthogonal complement of VerN (TqQ). Given vq ∈ TqQ we can
then write vq = ξq + vqHN where vqHN ∈ HN (q) and ξ ∈ n. We can easily see that
the restriction

TqπN |HN (q) : HN (q)→ T[q]N (Q/N)

is a linear isomorphism and that the collection of all HN (q) is G-invariant, there-
fore, also N -invariant. Thus the collection of all HN (q) defines a connection on the
principal bundle Q with structure group N . Let AN be the corresponding connec-
tion 1-form. By definition, we have AN (vq) = ξ if vq = ξq + vqHN . The horizontal
spaces of this connection are HorANq (TQ) ≡ HN (q).

Lemma 6.3.5. Let AN be the connection associated to a G-invariant metric
〈 , 〉 as explained above. Then for any g ∈ G and any vq ∈ TqQ we have AN (gvq) =
Adg AN (vq).

Proof. For any g ∈ G and any vq ∈ TqQ we have

AN (gvq) = AN (gξq + gvqHN ) = AN (gξq) +AN (gvqHN ).

Since the collection of horizontal spaces is G-invariant, it follows that gvqHN ∈
HN (gq) and therefore AN (gvqHN ) = 0. On the other hand we have AN (gξq) =
AN (Adg ξgq). Since N is normal, we have Adg ξ ∈ n and we get

AN (gvq) = Adg ξ = Adg AN (vq) for all q ∈ Q. �

Lemma 6.3.6. (a) Let AN be a connection on the principal bundle Q
with structure group N having the property that for any g ∈ G and any
vq ∈ TqQ we have AN (gvq) = Adg AN (vq). Let ∇̃AN be the covariant
derivative on ñ associated to AN according to Definition 2.3.1. Then ∇̃AN
is G/N -invariant.

(b) Assume the same conditions as in (a). Then the action of G/N on
T (Q/N)⊕ ñ defined by the natural actions of G/N on T (Q/N) and on ñ
commutes with the isomorphism αAN : TQ/N → T (Q/N)⊕ ñ (see Lemma
2.4.2).

Proof. (a) Let D̃AN /Dt be the covariant derivative along curves associated to the
connection ∇̃AN . Using the previous lemmas, the proof of this part is straightfor-
ward. Indeed, according to Lemma 2.3.4 we have

D̃AN [q(s), ξ(s)]G
Ds

=
[
q(s),− [AN (q(s), q̇(s)) , ξ(s)] + ξ̇(s)

]
N
.
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Given any [g]N ∈ G/N we have

D̃AN [gq(s),Adg ξ(s)]G
Ds

=
[
gq(s),− [AN (gq(s), gq̇(s)) ,Adg ξ(s)] + Adg ξ̇(s)

]
N

=
[
gq(s),−Adg [AN (q(s), q̇(s)) , ξ(s)] + Adg ξ̇(s)

]
N

= [g]N
[
q(s),− [AN (q(s), q̇(s)) , ξ(s)] + ξ̇(s)

]
N
,

which proves the G/N -invariance of the covariant derivative D̃AN /Dt.
(b) This follows easily from the previous lemmas. �

Theorem 6.3.7. Let Q be a principal bundle with structure group G and let
N be a normal subgroup of G. Let AN be a connection on the principal bundle Q
with structure group N having the property that for any g ∈ G and any vq ∈ TqQ
we have AN (gvq) = Adg AN (vq). Consider the action of G/N on T (Q/N) ⊕ ñ
such that its restriction to ñ coincides with the natural action and its restriction
to T (Q/N) coincides with the tangent lift of the action of G/N on Q/N defined
in Lemma 6.3.1. Then this action is an action in the category LP. The reduced
bundle of T (Q/N)⊕ ñ by the group G/N with respect to any connection AG/N on
the bundle Q/N with structure group G/N is an object of LP.

Proof. The proof is a direct consequence of Definition 6.2.4, Lemmas 6.3.4 and
6.3.6, and Theorem 6.2.10. �

More Preparatory Lemmas. Before we can state and prove one of our main
results on Lagrangian reduction by stages we need a few more lemmas.

Lemma 6.3.8. Assume the conditions of Theorem 6.3.7 and, in addition,
choose a connection AG on the principal bundle Q with structure group G. Let
K = G/N . Consider the following vector bundle isomorphisms:

(a) the quotient isomorphism (see Lemma 6.3.6 and Definition 6.2.11)

[αTQAN ]G/N : (TQ/N)/(G/N)→ (T (Q/N)⊕ ñ) /(G/N),

(b) the isomorphism (see Lemma 6.3.1)

iTQG/N : TQ/G→ (TQ/N)/(G/N),

(c) the isomorphism (see Definition 6.2.11)

αTQAG : TQ/G→ T (Q/G)⊕ g̃,

(d) the isomorphism (see Definition 6.2.11)

α
T (Q/N)⊕ñ
AG/N

: (T (Q/N)⊕ ñ) /(G/N)

→ T ((Q/N)/(G/N))⊕ k̃⊕ (ñ/(G/N)) ,

where k is the Lie algebra of K (and hence one has a Lie algebra isomor-
phism k ≡ g/n).

Then the linear isomorphisms, given by the push forward of maps corresponding to
the previous vector bundle isomorphisms

(a’)

[αTQAN ]G/N∗ : Γ ((TQ/N)/(G/N))→ Γ ((T (Q/N)⊕ ñ) /(G/N))
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(b’)
iTQG/N∗ : Γ (TQ/G)→ Γ ((TQ/N)/(G/N))

(c’)
αTQAG∗ : Γ (TQ/G)→ (T (Q/G)⊕ g̃)

(d’)

α
T (Q/N)⊕ñ
AG/N∗ : Γ ((T (Q/N)⊕ ñ) /(G/N))

→ Γ
(
T ((Q/N)/(G/N))⊕ k̃⊕ (ñ/(G/N))

)
are Lie algebra isomorphisms.

Consider the composition
(e)

εTQ(AN ,AG/N ,AG) = α
T (Q/N)⊕ñ
AG/N

◦ [αTQAN ]G/N ◦ iTQG/N ◦ (αTQAG )−1,

which is a vector bundle isomorphism from

T (Q/G)⊕ g̃ onto T ((Q/N)/(G/N))⊕ k̃⊕ (ñ/(G/N)) .

Then εTQ(AN ,AG/N ,AG) induces a Lie algebra isomorphism

(e’)

εTQ(AN ,AG/N ,AG)∗ : Γ ((T (Q/G)⊕ g̃))

→ Γ
(
T ((Q/N)/(G/N))⊕ k̃⊕ (ñ/(G/N))

)
.

Proof. The conclusion follows using Lemmas 5.2.1, 6.3.6, 6.2.12, the paragraph on
quotient Lie algebras in section §5.2, and standard results on quotient manifolds.

�

It is not generally true that εTQ(AN ,AG/N ,AG) is an isomorphism in the category
LP, for arbitrary choices of the connections AN , AG/N , and AG. Next we will
show that it is always possible to choose AN , AG/N , and AG in such a way that
εTQ(AN ,AG/N ,AG) is an isomorphism in the category LP.

Lemma 6.3.9. Assume the hypothesis of Lemma 6.3.5 and define the connec-
tion AN as in that lemma. Define the connection AG on the principal bundle Q
with structure group G by the condition that, for all q ∈ Q, HorAGq (TQ) is the
orthogonal complement of VerGq (TQ). For each [q]N ∈ Q/N let

H[q]N (T (Q/N)) = TπN
(
HorAGq (TQ)

)
,

where πN : Q → Q/N is the natural principal bundle projection. Then the collec-
tion of all H[q]N (T (Q/N)) as [q]N varies in Q/N defines a connection AG/N on
the principal bundle Q/N with structure group G/N , by choosing these to be the
horizontal spaces, that is,

HorAG/N[q]N
((T (Q/N)) ≡ H[q]N (T (Q/N)) .

The following property is satisfied: for all vq ∈ TQ and all q ∈ Q we have
AG(vq) = 0 if and only if AN (vq) = 0 and AG/N (TπN (vq)) = 0.
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We shall omit the proof of this lemma which can be carried out in a standard
way using the preceding results.

The next theorem, together with its generalization for arbitrary objects of LP
given in Theorem 6.3.14 constitutes one of our main results on Lagrangian reduction
by stages.

Theorem 6.3.10. Assume the hypothesis of Theorem 6.3.7 and, in addition,
choose the connections AN , AG/N , and AG in such a way that the following property
is satisfied: for all vq ∈ TQ and all q ∈ Q we have AG(vq) = 0 if and only if
AN (vq) = 0 and AG/N (TπN (vq)) = 0. Then εTQ(AN ,AG/N ,AG) (see Lemma 6.3.8) is
an isomorphism in the category LP.

Proof. Taking into account Lemmas 6.3.9 and 6.1.3 we see that we only need to
show that

εTQ(AN ,AG/N ,AG) (T (Q/G)) = T ((Q/N)/(G/N)) .

However, this follows easily from the definition of εTQ(AN ,AG/N ,AG). �

The following corollary gives a structure theorem for Lie algebras.

Corollary 6.3.11. Let G be a Lie group, let N be a normal subgroup, and let
K = G/N . Let g, n, and k be the Lie algebras of G, N , and K respectively. Choose
an identification g ≡ k ⊕ n as linear spaces. Choose any connection AN on the
principal bundle G with structure group N such that AN (gvq) = Adg AN (vq) for
all g ∈ G, all vq ∈ TqG, and all q ∈ G. Then the Lie algebra bracket on g can be
written in terms of the Lie algebra brackets on n and k and also ∇(AN ,V ) and B̃AN
as follows:

[κ1 ⊕ η1, κ2 ⊕ η2] = [κ1, κ2]⊕ [∇(AN ,V )]G/N,κ1η2 − [∇(AN ,V )]G/N,κ2η1

− [B̃AN ]G/N (κ1, κ2) + [η1, η2].

Proof. The proof is a straightforward application of Theorems 6.2.10, 6.3.7, and 6.3.10.
�

Now we shall generalize Theorem 6.3.7, Lemma 6.3.8, and Theorem 6.3.10 for
arbitrary objects TQ⊕V rather than the particular case V = 0 considered in those
results. We will give precise statements, but we shall omit the proofs since they are
entirely similar to the proofs of Theorem 6.3.7, Lemma 6.3.8, and Theorem 6.3.10.

Theorem 6.3.12. Let W = TQ⊕ V be an object of LP and let G×W →W
be an action in the category LP of a Lie group G on W ; in particular, this action
induces a principal bundle structure on Q with structure group G. Let N be a
normal subgroup of G and let AN be a connection on the principal bundle Q with
structure group N having the property that for any g ∈ G and any vq ∈ TqQ we
have AN (gvq) = Adg AN (vq). Consider the action of G/N on T (Q/N)⊕ ñ⊕(V/N)
such that its restriction to T (Q/N)⊕ ñ coincides with the action defined in Theorem
6.3.7 and its restriction to V/N is the quotient action of the action of G on V by
N (see Lemma 5.2.1). Then this is an action in the category LP. The quotient
bundle of T (Q/N) ⊕ ñ ⊕ (V/N) by the group G/N with respect to any connection
AG/N on the bundle Q/N with structure group G/N is an object of LP.
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Lemma 6.3.13. Assume the conditions of Theorem 6.3.12 and, in addition,
choose a connection AG on the principal bundle Q with structure group G. Let
K = G/N . Consider the following vector bundle isomorphisms:

(a) the quotient isomorphism (see Lemma 6.3.6)

[αWAN ]G/N : (W/N)/(G/N)→ (T (Q/N)⊕ ñ⊕ (V/N)) /(G/N),

(b) the isomorphism (see Lemma 6.3.1)

iWG/N : W/G→ (W/N)/(G/N),

(c) the isomorphism (see Definition 6.2.11)

αWAG : W/G→ T (Q/G)⊕ g̃⊕ (V/G),

(d) the isomorphism (see Definition 6.2.11)

α
T (Q/N)⊕ñ⊕(V/N)
AG/N

: (T (Q/N)⊕ ñ⊕ (V/N)) /(G/N)

→ T ((Q/N)/(G/N))⊕ k̃⊕ (ñ⊕ (V/N)) /(G/N),

where k̃ is the Lie algebra of K.
Then the corresponding linear isomorphisms

(a’)

[αWAN ]G/N∗ : Γ ((W/N)/(G/N))→ Γ ((T (Q/N)⊕ ñ⊕ (V/N)) /(G/N)) ,

(b’)
iWG/N∗ : Γ(W/G)→ Γ ((W/N)/(G/N)) ,

(c’)
αWAG∗ : Γ(W/G)→ Γ (T (Q/G)⊕ g̃⊕ (V/G)) ,

(d’)

α
T (Q/N)⊕ñ⊕(V/N)
AG/N∗ : Γ ((T (Q/N)⊕ ñ⊕ (V/N)) /(G/N))

→ Γ
(
T ((Q/N)/(G/N))⊕ k̃⊕ (ñ⊕ (V/N)) /(G/N)

)
are Lie algebra isomorphisms. Consider the composition

(e)

εW(AN ,AG/N ,AG) = α
T (Q/N)⊕ñ⊕(V/N)
AG/N

◦ [αWAN ]G/N ◦ iWG/N ◦ (αWAG)−1,

which is a vector bundle isomorphism from T (Q/G)⊕ g̃⊕ (V/G) onto

T ((Q/N)/(G/N))⊕ k̃⊕ (ñ⊕ (V/N)) /(G/N).

Then εW(AN ,AG/N ,AG) induces a Lie algebra isomorphism

(e’)

εW(AN ,AG/N ,AG)∗ : Γ((T (Q/G)⊕ g̃⊕ (V/G))

→ Γ
(
T ((Q/N)/(G/N))⊕ k̃⊕ ñ/(G/N)⊕ ((V/N)/(G/N))

)
.

Theorem 6.3.14. Assume the hypotheses of Theorem 6.3.12 and, in addition,
choose the connections AN , AG/N and AG in such a way that the following property
is satisfied: for all vq ∈ TQ and all q ∈ Q we have AG(vq) = 0 if and only if
AN (vq) = 0 and AG/N (TπN (vq)) = 0. Then εW(AN ,AG/N ,AG) is an isomorphism in
the category LP.
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6.4. The Subcategory RT and Reduction by Stages of Variational
Principles on TQ.

Let T be the category of tangent bundles of manifolds and tangent lifts of
maps, which is a subcategory of LP. The category RT is defined as the smallest
subcategory of LP that contains T and is closed under the quotienting operation.
Thus, as vector bundles, elements of RT are constructed by an inductive procedure
of the type V0 = TQ, Vi+1 = Vi/Gi, where for each i = 1, 2, . . ., Gi is a group acting
on Vi. Using this and the fact that tangent bundles are always orientable manifolds
we can easily prove that objects of RT are orientable manifolds. This shows in
particular that RT does not coincide with LP since there are simple examples of
objects of LP that are nonorientable manifolds. For instance, let Q ≡ S1 and
consider the vector bundle TQ ⊕ M , where M is the Möbius band; thus, as a
manifold, TQ⊕M is nonorientable. The Lie algebra structure on the fibers of M
must be 0 because the fibers are 1-dimensional. The M -valued 2-form ω must be
0 because Q is 1-dimensional. Now choose a vector bundle metric on M . Then
define the connection ∇ on the vector bundle M by the condition that a curve in
M is horizontal if and only if its distance to the 0 section is constant. Then we can
check that, with this structure, TQ⊕M is an object of LP.

It is immediate that all the results of the previous sections involving generic
objects of LP are valid for generic objects of RT. A study of the local structure
of objects of RT or LP and the study of categories bigger that LP, which appear
in the study of nonholonomic systems, Poisson geometry, and other topics is being
planned for future work. See Cendra, Marsden and Ratiu [2000] for work in this
direction for nonholonomic systems. In this section, we shall present the theory of
Lagrangian reduction by stages for the bundle TQ, where Q is a principal bundle
with structure group G having a normal subgroup N . This theory explains how
Hamilton’s variational principle corresponding to a given G-invariant, and hence
N -invariant, Lagrangian L : TQ → R is reduced by stages, first under the action
of N and then under the action of G/N . The reduced bundles for these reduced
variational principles and corresponding Lagrange-Poincaré operators are elements
of RT, as we saw in section §3.2, where the case of the first stage reduction was
studied. A more general theory of reduction by stages of variational principles for
any given object of LP including the reduction of the corresponding variational
principles is being planned for future work.

We shall begin with some remarks on the geometry of variations, using a nota-
tion slightly more precise than the one used in sections §2.1, §3.1, and §3.2. In this
section, we will often use, for short, the notation TQ⊕ V to denote an element of
RT, meaning that this bundle is isomorphic to a bundle of the type T (M/K)⊕ k̃,
where M is a principal bundle with structure group G.

Let Q be a manifold. The tangent lift of a given curve q ∈ Ω(Q) is the curve
`(q) in q ∈ Ω(TQ) defined by `(q)(t) = (q(t), q̇(t)) for all t; thus we obtain a map
` : Ω(Q)→ Ω(TQ).

The space of allowed variations of a curve q is the tangent space ∆q ≡
TqΩ(Q; q0, q1). Thus, elements of ∆q are variations δq such that δq(ti) = 0 for
i = 1, 2, where, as usual, δq is the derivative of some deformation qλ(t), that is, for
all t, we have

δq(t) =
d

dλ
qλ(t)

∣∣∣∣
λ=0

.
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We have a canonical inclusion map TqΩ(Q) → Ω(TQ). The space of lifted al-
lowed variations of a curve `(q) is the subspace ∆`

q of T`(q)Ω(TQ) defined by

∆`
q = Tq` (TqΩ(Q; q0, q1)) ,

where
Tq` : TqΩ(Q)→ T`(q)Ω(TQ)

is the tangent map of `. A generic element of ∆`
q can therefore be written Tq` · δq,

for some variation δq of q such that δq(ti) = 0 for i = 1, 2. It is easy to prove that
the restriction of Tq` to TqΩ(Q; q0, q1) ≡ ∆q is a linear bijective map onto ∆`

q.
The following definition is inspired by Lemmas 3.1.4 and 3.1.7.

Definition 6.4.1. Let TQ ⊕ V be an object of RT and let τ : V → Q be
the projection. We denote by `Ω(Q) ⊕ Ω(V ) the set of all `(q) ⊕ v ∈ Ω(TQ ⊕ V ).
Likewise `Ω(Q; q0) ⊕ Ω(V ; q0) is the subset of all `(q) ⊕ v ∈ Ω(TQ ⊕ V ) such that
q(t0) = q0 and `Ω(Q; q0, q1)⊕Ω(V ; q0, q1) is the subset of all `(q)⊕ v ∈ Ω(TQ⊕V )
such that q(t0) = q0 and q(t1) = q1. Let v be a curve in V and let q = τv. We
will sometimes think of the manifold Q as being identified with the vector bundle
having base Q and 0-dimensional fiber. Thus if q = τv we can write v ≡ q ⊕ v (see
section §2.1) The space of allowed variations of q ⊕ v is the subspace ∆q⊕v of
TqΩ(Q)⊕ Ω(V ) of all curves of the type

δq ⊕ δv = δq ⊕ Dw

Dt
+ [v, w]− ω(q)(q̇, δq),

where δq is a variation of q with δq(ti) = 0 for i = 1, 2, that is, δq ∈ ∆q, and w is a
curve in V such that τ (w(t)) = q(t) for all t and w(ti) = 0 for i = 1, 2. The space
of lifted allowed variations of a curve `(q)⊕ v ∈ Ω(TQ⊕ V ) is the subspace

∆`
q⊕v := ∆`

q ⊕ Ω(V ) of T`(q)Ω(TQ)⊕ Ω(V )

of all variations of the type

Tq` · δq ⊕
Dw

Dt
+ [v, w]− ω(q)(q̇, δq),

where δq is a variation of q with δq(ti) = 0 for i = 1, 2, w is a curve in V such that
τ (w(t)) = q(t) for all t, and w(ti) = 0 for i = 1, 2.

Assume that the group G acts on the manifold Q. Then we have maps (see
Lemma 5.2.1 and Lemma 2.4.2)

πG(TQ) : TQ→ TQ/G and αA : TQ/G→ T (Q/G)⊕ g̃.

Let `(q) ∈ Ω(TQ). Then we have

Ω (αA ◦ πG(TQ)) (`(q)) = `(x)⊕ ξ̄,
where

x(t) = [q]G(t) and ξ̄(t) = [q(t), A (q(t), q̇(t))]G
for all t.

Lemma 6.4.2. Assume the hypothesis of Lemma 2.4.2. Then the map

Ω (αA ◦ πG(TQ)) : Ω(TQ)→ Ω (T (Q/G)⊕ g̃)

restricted to `Ω(Q; q0) is injective. The image of this restriction is

`Ω (Q/G;x0)⊕ Ω (g̃;x0) .
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Proof. Let ẋ(t) ⊕ ξ̄(t) = `(x)(t) ⊕ ξ̄(t) be given such that x(t0) = x0. We must
show that there is a unique curve q ∈ Ω(Q; q0) such that

Ω(αA ◦ πG(TQ))`(q) = `(x)⊕ ξ̄.
We can always write ξ̄(t) = [xhq0(t), ξ(t)]G. Let q(t) = g(t)xhq0(t) where g(t) is a
curve in G. Then we can see that

Ω(αA ◦ πG(TQ))`(q) =
(
ẋ(t)⊕ [xhq0(t), ġ(t)g−1(t)]G

)
.

Thus, g(t) must satisfy ġ(t) = ξ(t)g(t) for all t and g(t0) = e. �

Corollary 6.4.3. The map

Ω (αA ◦ πG(TQ)) : Ω(TQ)→ Ω (T (Q/G)⊕ g̃)

restricted to `Ω(Q; q0, q1) is injective.

Lemma 6.4.4. Assume the hypothesis of Lemma 6.4.2. Then the restriction
of the map TqΩ (αA ◦ πG(TQ)) to ∆`

q is a linear isomorphism onto ∆`
x⊕ξ̄, where

ẋ⊕ ξ̄ = `(x)⊕ ξ̄ = Ω(αA ◦ πG(TQ))`(q)

and ∆`
x⊕ξ̄ is the space of lifted allowed variations of `(x)⊕ ξ̄ (see Definition 6.4.1).

Proof. Using Lemmas 3.1.4, 3.1.7, and 6.4.2 and considering that an element of ∆`
q

can be represented as the derivative of a deformation ` ((qλ(t)) of a curve q(t) ≡ q0(t)
at λ = 0, it follows easily that

TqΩ (αA ◦ πG(TQ)) ∆`
q ⊂ ∆`

x⊕ξ̄.

Bijectiveness of the restriction TqΩ (αA ◦ πG(TQ)) |∆`
q can be proved using a re-

construction procedure as in the proof of Lemma 6.4.2. Namely, let `(xλ) ⊕ ξ̄λ be
given a deformation of `(x)⊕ ξ̄, where ξ̄λ(t) = [xhq0λ(t), ξλ(t)]G. This gives a unique
deformation gλ(t) of g(t) satisfying ġλ(t) = ξλ(t)gλ(t), which in turn gives a unique
deformation qλ(t) = gλ(t)xhq0λ(t) of q(t). Therefore by differentiation with respect
to λ at λ = 0 we obtain the inverse of the tangent map TqΩ (αA ◦ πG(TQ)). �

Lemma 6.4.2 and Corollary 6.4.3 can be easily generalized for any object of LP
instead of TQ. However, a generalization of Lemma 6.4.4 involves a careful study
of the geometry of the space of variations and will be the purpose of future work
on general Lagrangian reduction in the category LP. More precisely, we have

Lemma 6.4.5. Assume the hypothesis of Lemma 6.4.2 and, in addition, let
W = TQ⊕ V be an element of LP. Then the map

Ω
(
αWA ◦ πG(W )

)
: Ω(W )→ Ω (T (Q/G)⊕ g̃⊕ (V/G))

restricted to `Ω(Q; q0)⊕ Ω(V ; q0) is injective. The image of this restriction is

`Ω(Q/G;x0)⊕ Ω(g̃;x0)⊕ Ω(V/G;x0).

Proof. For a given curve

ẋ(t)⊕ ξ̄(t)⊕ [v]G(t) with x(t0) = x0

we find, using the curve ẋ(t) ⊕ ξ̄(t), the curve q ∈ Ω(Q; q0) as in Lemma 6.4.2.
Then using Lemma 5.2.1 we see that there is a unique curve v ∈ Ω(V ) such that
τv(t) = q(t), where τ : V → Q is the projection of V , and its class is [v]G(t) for all
t. �
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We now state the generalization of Corollary 6.4.3.

Corollary 6.4.6. The map

Ω
(
αWA ◦ πG(W )

)
: Ω(W )→ Ω (T (Q/G)⊕ g̃⊕ (V/G))

restricted to ` (Ω(Q; q0, q1))⊕ Ω(V ) is injective.

Next we will see how the space of lifted allowed variations is transformed under
reduction by stages.

Lemma 6.4.7. Assume the hypothesis of Theorem 6.3.14. Then we have

εW(AN ,AG/N ,AG) ◦ α
W
AG ◦ πG(W )

= α
T (Q/N)⊕ñ⊕(V/N)
AG/N

◦ πG/N (T (Q/N)⊕ ñ⊕ (V/N)) ◦ αWAN ◦ πN (W ).

Proof. We can prove in a straightforward manner that

iWG/N ◦ πG(W ) = πG/N (W/N) ◦ πN (W )

[αWAN ]G/N ◦ πG/N (W/N) = πG/N (T (Q/N)⊕ ñ⊕ (V/N)) ◦ αWAN .

Using this and the definition of εW(AN ,AG/N ,AG) the lemma follows. �

Theorem 6.4.8. Assume the hypothesis of Theorem 6.3.10. Then we have

TΩ
(
εTQ(AN ,AG/N ,AG)

)
◦ TΩ

(
αTQAG ◦ πG(TQ)

)
= TΩ

(
α
T (Q/N)⊕ñ
AG/N

◦ πG/N (T (Q/N)⊕ ñ)
)
◦ TΩ

(
αTQAN ◦ πN (TQ)

)
.

Let q ∈ Ω(Q) and let

Ω
(
αTQAG ◦ πG(TQ)

)
(`(q)) = [q]G ⊕ ξ̄,

Ω
(
αTQAN ◦ πN (TQ)

)
(`(q)) = [q]N ⊕ η̄,

Ω
(
α
T (Q/N)⊕ñ
AG/N

◦ πG/N (T (Q/N)⊕ ñ)
)

(`([q]N ⊕ η̄)) = [[q]N ]G/N ⊕ κ̄⊕ [η̄]G/N .

Then

TΩ
(
αTQAG ◦ πG(TQ)

)
: ∆`

q → ∆`
[q]G⊕ξ̄,

TΩ
(
αTQAN ◦ πN (TQ)

)
: ∆`

q → ∆`
[q]N⊕η̄,

TΩ
(
α
T (Q/N)⊕ñ
AG/N

◦ πG/N (T (Q/N)⊕ ñ)
)

: ∆`
[q]N⊕η̄ → ∆`

[[q]N ]G/N⊕κ̄⊕[η̄]G/N
,

TΩ
(
εTQ(AN ,AG/N ,AG)

)
: ∆`

[q]G⊕ξ̄ → ∆`
[[q]N ]G/N⊕κ̄⊕[η̄]G/N

are linear isomorphisms.

Proof. The first equality in the statement of the theorem is a consequence of
Lemma 6.4.7 for V = 0. The fact that

TΩ
(
αTQAG ◦ πG(TQ)

)
: ∆`

q → ∆`
[q]G⊕ξ̄,

TΩ
(
αTQAN ◦ πN (TQ)

)
: ∆`

q → ∆`
[q]N⊕η̄,

TΩ
(
εTQ(AN ,AG/N ,AG)

)
: ∆`

[q]G⊕ξ̄ → ∆`
[[q]N ]G/N⊕κ̄⊕[η̄]G/N
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are linear isomorphisms is a consequence of Lemma 6.4.4 and Theorem 6.3.10. Then
it follows from the first equality in the statement of the theorem that also

TΩ
(
α
T (Q/N)⊕ñ
AG/N

◦ πG/N (T (Q/N)⊕ ñ)
)

: ∆`
[q]N⊕η̄ → ∆`

[[q]N ]G/N⊕κ̄⊕[η̄]G/N

is a linear isomorphism. �

The previous theorem says that, in the process of reducing the bundle TQ by
stages, the spaces of lifted allowed variations can also be reduced by stages. This
leads to reducing variational principles by stages, as we will see next.

First we need to generalize the notion of action defined by a Lagrangian. Let
TQ ⊕ V be an object of LP, where τ : V → Q is the projection of V , and the
structure on V is given by ∇, ω, [ , ]. Let

L : TQ⊕ V → R

be a given Lagrangian, let v ∈ Ω(V ) be a given curve, and let q = τv. The action
of L at the curve v ∈ Ω(V ) is, by definition,

J(L)(q) =
∫ t1

t0

L(q, q̇, v)dt.

We will also call this quantity the action of L at the curve `(q)⊕v of Ω(TQ⊕V )
and denote it also by J(L) (`(q)).

The following definitions are obviously inspired by the results of §3.2. The
Lagrange-Poincaré operator is a bundle map

LP(L) : T (2)Q×Q/G 2V → T ∗Q⊕ V ∗

defined by

(LP)(L)(δq ⊕ δv) = Hor(LP)(L)δq + Ver(LP)(L)δv,

where the vertical and horizontal Lagrange-Poincaré operators are given by

Ver(LP)(L)δv =
(
− D

Dt

∂L

∂v
(q, q̇, v) + ad∗v

∂L

∂v
(q, q̇, v)

)
δv,

Hor(LP)(L)δq =
(
∂L

∂q
(q, q̇, v)− D

Dt

∂L

∂q̇
(q, q̇, v)

)
δq − ∂L

∂v
(q, q̇, v)ω(q)(q̇, δq).

Here we must choose an arbitrary affine connection ∇ on Q to make sense of the
covariant derivatives, in a similar way as we explained in §3.2 for the case V = g̃.
For instance, in local coordinates, we can choose the Euclidean connection.

Now assume that there is an action of the group G on TQ⊕ V in the category
LP and that the Lagrangian L is invariant under the action. Then for any choice
of a connection AG on the principal bundle Q we can identify

(TQ⊕ V ) /G with T (Q/G)⊕ g̃⊕ (V/G)

via the isomorphism αTQ⊕VAG
and we obtain an induced Lagrangian

L(G) : T (Q/G)⊕ g̃⊕ (V/G)→ R,

called the reduced Lagrangian (to make the notation consistent with the one
used in the particular case V = 0 considered in Theorem 3.3.4 we should write
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l ≡ L(G), in that particular case). If, furthermore, L(G) is invariant under the
action of another group K on the object

T (Q/G)⊕ g̃⊕ (V/G)

in the category LP, and we choose a connection AK on the principal bundle Q/G
with structure group K, then we will denote the reduced Lagrangian simply by
L(G,K) instead of

(
L(G)

)(K)
. We have

L(G,K) : T ((Q/G)/K)⊕ k̃⊕ (g̃/K)⊕ (V/G)/K)→ R.

As we said before, in this work we will explain how to perform reduction by
stages only for the case V = 0, leaving a more general theory for future work.

Assume the hypothesis of Theorem 6.4.8, let K = G/N , and let L : TQ → R
be a given Lagrangian. Then we have reduced Lagrangians

L(G) : T (Q/G)⊕ g̃→ R,

L(N) : T (Q/N)⊕ ñ→ R
and

L(N,K) : T ((Q/N)/K)⊕ k̃⊕ (ñ/K)→ R.
For any given curve q ∈ Ω(Q) let

Ω
(
αTQAG ◦ πG(TQ)

)
(`(q)) = x⊕ ξ̄,

Ω
(
αTQAN ◦ πN (TQ)

)
(`(q)) = y ⊕ η̄,

Ω
(
α
T (Q/N)⊕ñ
AK

◦ πK (T (Q/N)⊕ ñ)
)

(`(y ⊕ η̄)) = z ⊕ κ̄⊕ [η̄]K ,

as in Theorem 6.4.8. The next theorem is the main result of this section.

Theorem 6.4.9. Assume the situation explained above. Then the following
conditions are equivalent:

(i) The curve q(t) is a critical point of the action functional∫ t1

t0

L(q, q̇)dt

with restrictions on the variations given by ∆`
q.

(ii) The Euler–Lagrange equations

(EL)(L)(q) = 0

are satisfied.
(iii) The curve x(t)⊕ ξ̄(t) is a critical point of the action functional∫ t1

t0

L(G)
(
x(t), ẋ(t), ξ̄(t)

)
dt

with restrictions on the variations given by ∆`
x⊕ξ̄.

(iv) The Lagrange-Poincaré equations

LP(L(G))(x⊕ ξ̄) = 0

are satisfied.
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(v) The curve y(t)⊕ η̄(t) is a critical point of the action functional∫ t1

t0

L(N) (y(t), ẏ(t), η̄(t)) dt

with restrictions on the variations given by ∆`
y⊕η̄.

(vi) The Lagrange-Poincaré equations

LP(L(N))(y ⊕ η̄) = 0

are satisfied.
(vii) The curve z ⊕ κ̄⊕ [η̄]K is a critical point of the action functional∫ t1

t0

L(N,K) (z ⊕ κ̄⊕ [η̄]K) dt

with restrictions on the variations given by ∆z⊕κ̄⊕[η̄]K .
(viii) The Lagrange-Poincaré equations

LP(L(N,K))(z ⊕ κ̄⊕ [η̄]K) = 0

are satisfied.

We will omit the proof of this theorem. It can be easily performed using an
argument similar to the one used in the proof of Theorems 3.3.4 and 3.4.1 and also
using Theorem 6.4.8.

Remark. The main point of Theorem 6.4.9 is the equivalence with the last two
statements (vii) and (viii), since the equivalence between the statements (i) to (vi)
has been already established in Theorem 3.4.1. This shows that one can write the
Euler–Lagrange equations for the Lagrangian

L(N,K) : T ((Q/N)/K)⊕ k̃⊕ (ñ/K)→ R
using the reduced structures given by the formulas of Theorem 6.2.10. More pre-
cisely, the structure on the bundle ñ is the one given by ∇̃AN , B̃AN , [ , ]AN . Then
from Theorem 6.2.10 we obtain the formulas for the structure ∇, ω, [ , ] on the
bundle k̃⊕ ñ, with ∇ ≡ ∇̃AN , ω ≡ B̃AN , [ , ] ≡ [ , ]AN .

All this can be generalized for several stages, that is, for the case where we
have a chain

{e} ≡ N0 ⊂ N1 ⊂ N2 ⊂ N3 . . . ⊂ Nr ≡ G,
where for each i = 0, 1, 2, . . . , r−1, Ni is a normal subgroup of Ni+1. This together
with some applications will be the purpose of future work.



CHAPTER 7

Further Examples

We have already seen one example of Lagrange-Poincaré reduction, namely in
the study of Wong’s equations. Now we turn to some examples that involve reduc-
tion by stages. The first one concerns the classical setting of semidirect products in
which one is given a Lagrangian that is invariant under the action of a semidirect
product, for example, as in underwater vehicle dynamics (see Leonard and Marsden
[1997]). Here we show how this theory fits into the framework of the present paper.

Following this, we consider central extensions from the Lagrangian viewpoint,
the sort of example that is well known in the Hamiltonian context of the KdV
equation, as in Marsden, Misiolek, Perlmutter and Ratiu [1998, 2000].

The third example is that of the spacecraft with internal rotors. The group in
this case is just a direct product, but it is nonetheless interesting. See, for example,
Bloch, Krishnaprasad, Marsden and Alvarez [1992].

The Lagrangian version of systems with a Lagrangian depending on parame-
ters, in which semidirect products are, in a sense, created, is studied in the fourth
example. These systems include, for instance, the classical heavy top. This sort
of theory was studied in Holm, Marsden and Ratiu [1998a] and in Cendra, Holm,
Marsden and Ratiu [1998].

7.1. Semidirect Products

In this subsection we show that the reduction of a system having a symmetry
group that is a semidirect product of a Lie group G with a vector space V can be
done in two stages, reducing by the normal subgroup V first and by the group G
second.

Let G be a Lie group and let ρ : G × V → V be a linear representation of G
on a vector space V . We will write, equivalently, ρ(g, v) ≡ ρgv ≡ ρ(g)v ≡ gv. Let
S = GsV be the semidirect product. Thus, by definition,

(g1, v1)(g2, v2) = (g1g2, g1v2 + v1)

and (g, v)−1 = (g−1,−g−1v). The Lie algebra of S is s = gsV with the Lie bracket
given by

[(ξ1, v1), (ξ2, v2)] = ([ξ1, , ξ2], ρ′(ξ1)v2 − ρ′(ξ2)v1) .
We will think of V as being a normal subgroup of S, as usual, via the inclusion

map V → GsV given by v 7→ (e, v). Next, we will perform the reduction of
TS = T (GsV ) in the category LP in two stages, first we reduce by V and then
by G ≡ (GsV )/V .

Stage 1. We can identify in a natural way T (GsV ) = TG×V ×V . Let us choose
the trivial connection AV on the principal bundle GsV with structure group V ,
that is AV (g, ġ, v, v̇) = v̇. Then the curvature BAV = 0. Also, by definition V is

85
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Abelian and we can identify its Lie algebra v ≡ V , where the Lie bracket is 0. We
will also identify (GsV )/V ≡ G by [g, v]V ≡ g. The bundle ṽ is a trivial bundle
with base (GsV )/V ≡ G and we can identify ṽ ≡ G × V via [(g, v), ξ]V ≡ (g, ξ).
The covariant derivative on ṽ is given by

D̃AV

Dt
[(g(t), v(t)), ξ(t)]V ≡

D̃AV

Dt
(g(t), ξ(t)) = (g(t), ξ̇(t)).

We also have B̃AV = 0, and [ , ]ṽ = 0. The reduced bundle that is obtained after
the first stage of reduction is then

T ((GsV )/V )⊕ ṽ ≡ TG× V
with the structure given above.

Stage 2. The action of G on ṽ commutes with the structure ∇ ≡ ∇̃AV , ω ≡
B̃AV = 0, [ , ] ≡ [ , ]ṽ = 0. Now consider the principal bundle G over a point with
structure group G and connection AG(g, ġ) = ġg−1. We are in position to apply
Theorems 6.2.10, 6.3.10 and 6.4.9. Reduction by G of the bundle TG×V obtained
in the first stage gives, using Theorem 6.2.10, a reduced bundle which is clearly
isomorphic, in the category LP, to the bundle g⊕ V whose base has dimension 0.
It is clear that ωg̃ = 0, ∇g̃ = 0, because the base has dimension 0. Besides, we can
check very easily that the formula for [ , ]g̃ gives the usual semidirect product Lie
algebra structure on gsV . We remark that even if the bundle obtained in the first
stage depends on the connection A, the bundle obtained in the second stage does
not depend on the connection A. This is, of course, also a direct consequence of
Theorem 6.3.10.

7.2. Central Extensions

We now study the particular case of R or S1-group extensions. This already
includes the Bott–Virasoro central extension of Diff(S1) as an interesting infinite
dimensional example. More general central extensions by Abelian Lie groups, rel-
ative to an arbitrary action (see, for instance, De Azcárraga and Izquierdo [1995]),
can also be dealt with using the methods of this paper. For instance, the exam-
ples studied in Marsden, Misiolek, Perlmutter and Ratiu [1998, 2000], such as the
Heisenberg group and the Bott–Virasoro group treated there from a Hamiltonian
point of view, can also be approached using our Lagrangian techniques.

Let G be a Lie group and consider central extensions of G of the type Ĝ = G×R
or Ĝ = G× S1, where the composition law is given by

(g, α)(h, β) = (gh, α+ β + Σ(g, h)) .

If we deal with G× S1, the sum in second component is understood to be modulo
2π. Here, Σ : G×G→ R is a group 2-cocycle relative to the trivial action of G on
R and hence Σ satisfies the cocycle identity

Σ(g, h) + Σ(gh, k) = Σ(g, hk) + Σ(h, k).

As is well known, the second group cohomology ofG with values in an Abelian group
classifies the extensions of G by this Abelian group. Therefore, in the definition
of the composition law for Ĝ we can modify Σ by the addition of a 2-coboundary
such that Σ(e, e) = 0. The cocycle identity implies that Σ(h, e) = Σ(e, h) = Σ(e, e)
and Σ(h, h−1) = Σ(h−1, h) for all h ∈ G. It can be directly checked that the
cocycle identity and the condition Σ(e, e) = 0, are necessary and sufficient for the
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composition law defined above to satisfy the group axioms. It is easily verified that
the neutral element of Ĝ is (e, 0), where e is the neutral element of G. The inverse
of (g, α) is given by

(g, α)−1 =
(
g−1,−α− Σ(g, g−1)

)
.

An element of the tangent space T(g,α)Ĝ is often denoted by (g, α, ġ, α̇) or
(ġ, α̇). The Lie algebra ĝ is the space of all tangent vectors at (e, 0), that is, vectors
(e, 0, ξ, a), where ξ is an element of the Lie algebra g. With these basic formulas in
place we can calculate the Lie bracket in ĝ which is given by

[(ξ, a), (η, b)] = ([ξ, η], ∂1∂2Σ(e, e) · η · ξ − ∂2∂1Σ(e, e) · η · ξ) .

Here we define

∂1∂2Σ(e, e) · η · ξ =
∂

∂t

∣∣∣∣
t=0

∂

∂s

∣∣∣∣
s=0

Σ(exptξ, expsη)

and

∂2∂1Σ(e, e) · η · ξ =
∂

∂t

∣∣∣∣
t=0

∂

∂s

∣∣∣∣
s=0

Σ(expsη, exptξ).

We will define the Lie algebra 2-cocycle σ by

σ(ξ, η) = ∂1∂2Σ(e, e) · η · ξ − ∂2∂1Σ(e, e) · η · ξ

and then the Lie bracket is [(ξ, a), (η, b)] = ([ξ, η], σ(ξ, η)).
The set N = {(e, α) | α ∈ R} is a normal subgroup of Ĝ isomorphic to R or

S1. Moreover, N is contained in the center of Ĝ. We can therefore consider Ĝ
as a principal bundle with structure group N . Now consider any metric on ĝ, for
instance one given by the simple formula

〈(ξ, a), (η, b)〉 = 〈ξ, η〉+ ab,

where (by a slight abuse of notation), 〈ξ, η〉 is a given inner product on g. This
generates a left invariant metric on Ĝ in the following way. Let (ġi, α̇i) ∈ T(g,α)Ĝ,
i = 1, 2. Then define

〈(ġ1, α̇1), (ġ2, α̇2)〉 =
〈
g−1ġ1, g

−1ġ2

〉
+
(
α̇1 + ∂2Σ(g−1, g) · ġ1

) (
α̇2 + ∂2Σ(g−1, g) · ġ2

)
.

Now we can proceed to perform the construction of the mechanical connection, that
is, the connection whose horizontal spaces are the orthogonal complements of the
vertical spaces of the bundle Ĝ with structure group N . Then the conclusion of
6.3.5 holds, that is, the corresponding connection 1-form given by

AN (ġ, α̇) = α̇+ ∂2Σ(g−1, g) · ġ.

is Ĝ-equivariant and not just N -equivariant.
Now we apply the reduction by stages process given in Theorems 6.3.14 and

6.2.10. The first stage is reduction by N and we obtain the reduced bundle TG⊕ ñ,
since Ĝ/N ≡ G. We obtain a structure ∇ ≡ ∇̃AN , B ≡ B̃AN , and [ , ] on the
bundle ñ. Then, by applying Theorems 6.3.14 and 6.2.10 we see that we obtain an
equivalent expression for the Lie bracket on ĝ ≡ g⊕ [n]G. We can easily check that,
in the expression of the Lie bracket of Theorem 6.2.10, the terms [∇(A,V )]Gξ̄1 [v2]G,
[∇(A,V )]Gξ̄2 [v1]G, as well as the term [[v1]G, [v2]G] are all 0. Thus, in particular, the
cocycle σ is minus the reduced curvature.
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7.3. Rigid Body with Rotors

We will use the description of the rigid body with rotors given in Marsden and
Scheurle [1993b]. The configuration space for a rigid body with three rotors aligned
with, say, the principal axes, is

Q = SO(3)× S1 × S1 × S1

with elements denoted (R, θ1, θ2, θ3), where the angles are relative to the carrier.
The group structure on Q is the direct product structure, so, in particular, N =
SO(3) is a normal subgroup. The body angular velocity is Ω = R−1Ṙ. We also
denote

Ω = ˙(θ1, θ̇2, θ̇3).

We now think of Q as a principal bundle with structure group N and choose the
mechanical connection AN given by

AN (R, θ1, θ2, θ3) = R−1Ṙ+ (I +K)−1KΩ.

The first stage of reduction is reduction by N which gives the reduced bundle

T (S1 × S1 × S1)⊕ ñ ≡ T (S1 × S1 × S1)× n.

The second stage is reduction by the group S1 × S1 × S1 ≡ Q/N . We can easily
see that the reduced bundle is

R× R× R× ñ/S1 × S1 × S1 ≡ R× R× R× n.

We can also easily see that, in our case, several terms of the expression of the Lie
bracket given in Theorem 6.2.10 vanish; more precisely, [ξ̄1, ξ̄2] = 0, [∇(A,V )]Gξ̄1 [v2]G =
0, [∇(A,V )]Gξ̄2 [v1]G = 0, and [ω]G(ξ̄1, ξ̄2) = 0. We can also easily check that the
term [[v1]G, [v2]G] is, in our case, simply [Ω1,Ω2]. Thus the Lie algebra structure
on R×R×R×n obtained by reduction by stages coincides with the direct product
Lie algebra, as expected, according to Theorems 6.3.14 and 6.2.10.

7.4. Systems Depending on a Parameter

In this subsection, we consider Lagrangian systems depending on a parameter
and show how they fit into the framework developed in this paper. In the process
we shall recover the Euler-Poincaré equation in Holm, Marsden and Ratiu [1998a];
see equation (7.4.1) below.

Recall from Marsden, Ratiu, and Weinstein [1984a] and Marsden, Misiolek,
Perlmutter and Ratiu [1998] that on the Hamiltonian side of this same problem,
the semidirect product GsV appears as a symmetry group of an enlarged system
and symplectic reduction by stages is relevant. The situation on the Lagrangian
side of the same problem is somewhat different.

The fundamental difference between this subsection and §7.1 is that in §7.1,
one imagines having a system whose given symmetry group is a semidirect product
from the outset, as, for example, the Euclidean group is the symmetry group of
an underwater vehicle. Here, on the other hand, the Lagrangian has a symmetry
group G, but in a way that includes the dependence on a parameter a ∈ V ∗, where
V is a representation space for G. The goal is then to show that the more general
Euler–Poincaré equations referred to above, can be obtained by using Lagrangian
reduction with respect to the action of G.
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There are interesting links between the set up described below and the topic of
Clebsch variables and Lin constraints; these are described in Cendra and Marsden
[1987]. We also refer to Cendra, Holm, Marsden and Ratiu [1998] and Cendra,
Holm, Hoyle and Marsden [1998] for interesting connections with degenerate Le-
gendre transformations.

Consider a Lagrangian

L : T (G×Q)× V ∗ → R,

where G is a group, Q is a manifold, and V ∗ is the dual of the vector space V . The
value of L at the point (g, q, ġ, q̇, a0) ∈ T (G×Q)×V ∗ will be denoted L(g, q, ġ, q̇, a0),
as usual, and we will think of a0 as being a parameter that remains fixed along the
evolution of the system. Assume that there is a linear action ρ : G×V → V of G on
V , so there is also an induced action ρ∗ : G×V ∗ → V ∗ such that 〈ga0, gb0〉 = 〈a0, b0〉
for all a0 ∈ V ∗, all b0 ∈ V , and all g ∈ G, where, as usual, we write ga0 = ρ(g, a0)
and gb0 = ρ∗(g, b0). We will often write 〈a0, b0〉 = 〈b0, a0〉, due to the identification
V ∗∗ ≡ V . Assume that L has the following invariance property:

L(hg, q, hġ, q̇, ha0) = L(g, q, ġ, q̇, a0),

for all a0 ∈ V ∗, all q ∈ Q, and all h, g ∈ G. Let

L(e, q, ξ, q̇, a) = l(ξ, q, q̇, a),

for all ξ ∈ g, all q ∈ Q, and all a ∈ V ∗. Then the invariance property implies

L(g, q, ġ, q̇, a0) = l(ξ, q, q̇, a),

for all g ∈ G, all q ∈ Q, and all a ∈ V ∗, where ξ = g−1ġ and a = g−1a0.
By direct calculation we can show that the following conditions are equivalent:

(i) The curve (g(t), q(t), a0) is a critical point of the action∫ t1

t0

L(g, q, ġ, q̇, a0)dt,

with restrictions on variations given by δg(ti) = 0 for i = 0, 1, δq(ti) = 0
for i = 0, 1, and δa0 = 0.

(ii) The curve (ξ(t), q(t), a(t)), where a(t) = g−1(t)a0 for all t and ξ(t) =
g−1(t)ġ, is a critical point of the action∫ t1

t0

l(ξ, q, q̇, a)dt,

with restrictions on variations given by

δξ = η̇ + [ξ, η],

where η is any curve in g such that η(ti) = 0 for i = 0, 1,

δq(ti) = 0,

for i = 0, 1,
δa = −ηa,

and
ȧ+ ξa = 0,

for all t. We remark that this last condition comes from the condition
ȧ0 = 0 together with a0 = ga.
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A direct application of (ii) leads to the equations

− d

dt

∂l

∂ξ
+ ad∗ξ

∂l

∂ξ
+
∂l

∂a
� a = 0 (7.4.1)

∂l

∂q
− d

dt

∂l

∂q̇
= 0, (7.4.2)

where for all η ∈ g, all a ∈ V ∗, and all b ∈ V we have, by definition,

(b � a)(η) = −〈ηa, b〉 .

The equation (7.4.1) is called the Euler–Poincaré equation (see Holm, Marsden
and Ratiu [1998a]). This equation together with the Euler–Lagrange equation
(7.4.2) in the variable (q, q̇) and the equation ȧ + ξa = 0 form the complete set of
equations of the system in terms of the variables (ξ, q, a).

Now we shall recast conditions (i) and (ii) into an equivalent form. The idea is
to introduce the condition that a0 is a constant of the motion, that is, ȧ0 = 0, via
a Lagrange multiplier. Thus, let us define the new Lagrangian

L̄ : T (G×Q× V ∗ × V )→ R

by
L̄(g, q, a0, b0, ġ, q̇, ȧ0, ḃ0) = L(g, q, ġ, q̇) + 〈ȧ0, b0〉 .

Now we observe that G×Q×V ∗×V is a principal bundle with structure group G
acting as before, that is, h(g, q, a0.b0) = (hg, q, ha0, hb0). Moreover, G×Q×V ∗×V
is isomorphic, as a principal bundle, to the trivial bundle G × Q × V ∗ × V where
the action of G is given by

h · (g, q, a, b) = (hg, q, a, b),

for all h, g ∈ G, all a ∈ V ∗, and all b ∈ V . More precisely, we have the isomorphism

ψ : G×Q× V ∗ × V → G×Q× V ∗ × V

given by
ψ(g, q, a0, b0) = (g, q, g−1a0, g

−1b0) ≡ (g, q, a, b).

We can check that

ψ (h(g, q, a0, b0)) = h · ψ(g, q, a0, b0) ≡ h · (g, q, a, b)

for all h, g ∈ G, all a0 ∈ V ∗, and all b0 ∈ V . We can easily check that the
composition L̄ ◦ Tψ−1 =: LV is given by

LV (g, q, a, b, ġ, q̇, ȧ, ḃ) = L(g, q, ġ, q̇, a) +
〈
ȧ+ g−1ġa, b

〉
.

We will use the trivial bundle, where the action of G is given by the · operation,
from now on. Thus, the base is

(G×Q× V ∗ × V )/G ≡ Q× V ∗ × V

in a natural way. The Lagrangian on this bundle is LV . Using techniques as
in Cendra and Marsden [1987], which gives a version of the Lagrange multiplier
theorem, we can show that conditions (i) and (ii) are equivalent to any of the
following conditions
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(iii) The curve (g(t), q(t), a0, b0) is a critical point of the action∫ t1

t0

L̄(g, q, a0, b0, ġ, q̇, ȧ0, ḃ0)dt

with restrictions on the variations given by

δg(ti) = 0, δq(ti) = 0, δa0(ti) = 0, and δb0(ti) = 0

for i = 0, 1.
(iv) The curve (g(t), q(t), a(t), b(t)) is a critical point of the action∫ t1

t0

LV (g, q, a, b, ġ, q̇, ȧ, ḃ)dt

with restriction on the variations given by

δg(ti) = 0, δq(ti) = 0, δa(ti) = 0, and δb(ti) = 0

for i = 0, 1.
However, this time we do not want to use that version of the Lagrange multiplier

theorem. Instead, we want to use directly Theorem 3.3.4 to obtain a reduced
system, starting with the Lagrangian LV , equivalent to the system

− d

dt

∂l

∂ξ
+ ad∗ξ

∂l

∂ξ
+
∂l

∂a
� a = 0

∂l

∂q
− d

dt

∂l

∂q̇
= 0

ȧ+ ξa = 0

(7.4.3)

obtained before.
We need to calculate the reduced bundle T (Q × V ∗ × V ) ⊕ g̃. We can easily

verify that the bundle g̃ equals Q× V ∗ × V × g. The Lie algebra structure on g̃ is
given by

[(q, a, b, ξ1), (q, a, b, ξ2)] = (q, a, b, [ξ1, ξ2]).

Now let us choose the trivial principal connection A on G × Q × V ∗ × V , that is,
the connection given by

A(g, q, a, b, ġ, q̇, ȧ, ḃ) = ġg−1.

Using Lemma 2.3.4 we can see that the covariant derivative along a curve in g̃ is
given by

D

Dt
(q(t), a(t), b(t), ξ(t)) =

(
q(t), a(t), b(t), ξ̇(t)

)
.

Therefore the connection ∇̃A on g̃ is given by

∇̃A
(q,a,b,q̇,ȧ,ḃ)

(q, a, b, ξ) =
(
q, a, b,

∂ξ

∂q
q̇
∂ξ

∂a
ȧ+

∂ξ

∂b
ḃ

)
,

for any section (q, a, b) 7→ (q, a, b, ξ(q, a, b)) of g̃ and any tangent vector

(q, a, b, q̇, ȧ, ḃ)

at the point (q, a, b) of the base Q×V ∗×V of g̃. Since the curvature of A is BA = 0
we have B̃A = 0. A generic element of the bundle

T (Q× V ∗ × V )⊕ g̃
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will be written (q, a, b, q̇, ȧ, ḃ, ξ). Let lV be the reduced Lagrangian

lV : T (Q× V ∗ × V )⊕ g̃→ R.

Thus, lV (q, a, b, q̇, ȧ, ḃ, ξ) is a function of the independent variables

(q, a, b, q̇, ȧ, ḃ, ξ).

More precisely, we can easily see that

lV (q, a, b, q̇, ȧ, ḃ, ξ) = l(q, ξ, q̇, a) + 〈ȧ+ ξa, b〉 ,
where, as before,

l(ξ, q, q̇, a) = L(e, q, ξ, q̇, a).
We can read off directly from the expression of the Lagrangian lV above that the
condition ȧ + ξa = 0 has been imposed with the Lagrange multiplier b. We can
write (see Cendra and Marsden [1987])

lV (q, a, b, q̇, ȧ, ḃ, ξ) = l(q, ξ, q̇, a) + J(a, b)(ξ) + θ0(a, b)(ȧ, ḃ),

where J : V ∗ × V → g∗ is the momentum map of the lift of the action ρ to
the cotangent bundle V ∗ × V ≡ V ∗ × V ∗∗, and θ0 is the canonical 1-form on
V ∗ × V ≡ V ∗ × V ∗∗. Using Theorem 3.3.4 we can obtain the vertical and also the
horizontal Lagrange–Poincaré equations. The vertical Lagrange–Poincaré equation
is

− d

dt

(
∂l

∂ξ
(ξ, q, q̇, a) + J(a, b)

)
+ ad∗ξ

(
∂l

∂ξ
(ξ, q, q̇, a) + J(a, b)

)
= 0.

The horizontal Lagrange-Poincaré equation is
∂l

∂q
(ξ, q, q̇, a)− d

dt

∂l

∂q̇
(ξ, q, q̇, a) = 0

∂l

∂a
(ξ, q, q̇, a) +

∂J(a, b)(ξ)
∂a

− db

dt
= 0

ȧ+ ξa = 0.

Using the property 〈ξa, b〉+ 〈a, ξb〉 = 0, we can see that

∂J(a, b)(ξ)
∂a

= −ξb.

The last two horizontal equations can therefore be rewritten as

ḃ = −ξb+
∂l

∂a
ȧ = −ξa.

It is also clear that
dJ(a, b)
dt

= dJ(a, b)(ȧ, ḃ).

Thus we obtain
dJ(a, b)
dt

= dJ(a, b)
(
−ξa,−ξb+

∂l

∂a

)
.

Using directly the formula J(a, b)(ν) = 〈νa, b〉 = −〈a, νb〉 we can prove in a
straightforward manner that

dJ(a, b)
(
−ξa,−ξb+

∂l

∂a

)
= ad∗ξ J(a, b)− ∂l

∂a
� a.
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Using this, together with the vertical Lagrange–Poincaré equation, we obtain at
each point (ξ, q, q̇, a),

− d

dt

(
∂l

∂ξ

)
+
∂l

∂a
� a+ ad∗ξ

(
∂l

∂ξ

)
= 0,

which is the Euler–Poincaré equation. We can easily conclude from all this that
any solution to the reduced system of equations is a solution of the system (7.4.3).

We can also prove the converse, namely, starting with a solution (q(t), a(t), ξ(t))
of the system (7.4.3) we can see that the curve b(t) = g(t)b0, for any given b0 ∈ V ,
is such that (q(t), a(t), b(t), ξ(t)) is a solution of the system formed by the reduced
vertical and horizontal Euler–Poincaré equations. This is done by simply reversing
the previous procedure.





CHAPTER 8

The Category LP∗ and Poisson Geometry

In this section we will define a new category LP∗. The objects of LP∗ are
the dual bundles of the objects in LP and they carry a Poisson structure which
is dual to the Lie bracket structure on sections of objects of the category LP.
Cotangent bundles are important examples of objects of LP∗. The parallelism
between Lagrangian mechanics and Poisson mechanics is a consequence of the Le-
gendre transformation. Interesting aspects of this parallelism can be viewed under
the light of the categorical duality. For instance, reduction in the category LP∗ is
dual to reduction in the category LP. This includes cotangent bundle reduction
as a special case (see Montgomery, Marsden and Ratiu [1984] and Montgomery
[1986]). Thus, LP∗ is an interesting class of Poisson manifolds which is stable
under reduction.

In this section we establish the basic link between Lagrangian and Poisson
mechanics given by this duality and show how reduction in the category LP∗,
which is a subcategory of the category of Poisson manifolds and Poisson maps, can
be viewed as being dual to reduction in the category LP. A more complete study,
including a precise description of the symplectic leaves of objects of LP∗ and several
other related topics will be the purpose of a future work.

8.1. The Poisson Bracket on Duals of Objects of LP

We shall begin with some notation and definitions. Let W = TQ ⊕ V be an
object of LP and let π : W → Q, pQ : W → TQ and pV : W → V be the natural
projections. Let W ∗ = (TQ⊕ V )∗ ≡ T ∗Q⊕ V ∗ be the dual of W and let

π̄ : W ∗ → Q, p̄Q : W ∗ → T ∗Q, and p̄V : W ∗ → V ∗

be the naturally induced projections. A section w ∈ Γ(W ) will be sometimes
written more explicitly as w = X ⊕ v or w = q̇ ⊕ v. Likewise, a section µ ∈ Γ(W ∗)
will be sometimes written µ = γ ⊕ ν. We have well defined maps

Γ(pQ) : Γ(W )→ Γ(TQ) and Γ(pV ) : Γ(W )→ Γ(V )

and also

Γ(p̄Q) : Γ(W ∗)→ Γ(T ∗Q) and Γ(p̄V ) : Γ(W ∗)→ Γ(V ∗).

We will often denote

Γ(pQ)(w) ≡ pQw and Γ(pV )(w) ≡ pV w

and also

Γ(p̄Q)µ ≡ p̄Qµ and Γ(p̄V )(µ) ≡ p̄V µ.
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Thus, if we write a section w ∈ Γ(W ) as w = X ⊕ v and a section µ ∈ Γ(W ∗) as
µ = γ ⊕ ν, we have

Γ(pQ)(w) ≡ pQw = X and Γ(pV )(w) ≡ pV w = v

and also
Γ(p̄Q)µ ≡ p̄Qµ = γ and Γ(p̄V )(µ) ≡ p̄V µ = ν.

Definition 8.1.1. For each w ∈ Γ(W ) we define the function P (w) ∈ C∞(W ∗)
by

P (w)(µ) = µ(w)
for all µ ∈ W ∗. In addition, for each f ∈ C∞(Q) we have the function f ◦ π̄ ∈
C∞(W ∗).

Define the space A(W ∗) ⊂ C∞(W ∗) to be the vector space generated by the
set of all functions f ◦ π̄ with f ∈ C∞(Q), together with the set of all functions
that are linear along the fibers of C∞(W ∗), that is, the functions of the type P (w)
with w ∈ Γ(W ).

Lemma 8.1.2. Let wi ∈ Γ(W ) and fi ∈ C∞(Q), for i = 1, 2. Define We
will sometimes write, for given f ∈ C∞(Q) and given w ∈ Γ(W ), f ≡ f ◦ π̄ and
w[f ] ≡ (Γ(pQ)(w)) [f ] ◦ π̄, for short.

Then { , } extends to a uniquely determined skew-symmetric bilinear map

{ , } : A(W ∗)×A(W ∗)→ A(W ∗).

The operation { , } satisfies the Jacobi identity, that is,

{f1, {f2, f3}} = {{f1, f2}, f3}+ {f2, {f1, f3}}
for all fi ∈ A(W ∗), i = 1, 2, 3.

Proof. Every element of A(W ∗) can be written f ◦ π̄ + P (w) for some uniquely
determined f ∈ C∞(Q) and w ∈ Γ(W ). Using this we can prove in a straightfor-
ward manner that { , } extends to a uniquely determined skew-symmetric bilinear
form on A(W ∗). The verification that { , } satisfies the Jacobi identity is also a
straightforward calculation. �

Theorem 8.1.3. The operation { , } on A(W ∗) defined in the previous lemma
can be uniquely extended to a Poisson bracket

{ , } : C∞(W ∗)× C∞(W ∗)→ C∞(W ∗).

Proof. The proof will be divided into several steps.

Step 1: The definition of the bracket.

Let fi ∈ C∞(W ∗), i = 1, 2, and σ0 ∈ W ∗ be given and denote π̄(σ0) = q0.
We are going to define {f1, f2}(σ0). Consider any section σ ∈ Γ(W ∗) such that
σ(q0) = σ0. Then for each q ∈ Q we have the Taylor expansion, for i = 1, 2,

fi(µ) = fi (σ(q)) +
∂fi
∂µ

(σ(q)) (µ− σ(q)) + εi (σ(q), µ) · (µ− σ(q)) ,

where for each q ∈ Q we have µ ∈W ∗q ,

∂fi
∂µ

(σ(q))
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is the fiber derivative of fi along W ∗q evaluated at σ(q), and εi (σ(q), µ) → 0 as
µ→ σ(q). Define wi ∈ Γ(W ) and ai ∈ C∞(Q) for i = 1, 2, by

wi(q) =
∂fi
∂µ

(σ(q))

and

ai(q) = fi (σ(q))− ∂fi
∂µ

(σ(q))σ(q)

for all q ∈ Q. Thus, for i = 1, 2, ai + P (wi) is the affine approximation of fi
along the fibers of W ∗. To emphasize the dependence on σ we will sometimes write
aσi ≡ ai, wσi ≡ wi, and fσi ≡ aσi +P (wσi ), for i = 1, 2. The functions fσi are elements
of A(W ∗). Then we can define, for each choice of σ satisfying σ0 = σ(q0),

{f1, f2}σ,σ0(µ) = {fσ1 , fσ2 }(µ),

where the bracket on the right hand side is the bracket in A(W ∗) defined before.
We want to show that

{f1, f2}σ,σ0(σ0)

only depends on σ0 and not on σ. To do this, we need first the following technical
statement.

Step 2: If dfi(σ0) = 0 for i = 1 or i = 2, then {f1, f2}σ,σ0(σ0) = 0.

We work in a local bundle chart of W = TQ ⊕ V whose restriction to TQ
is a natural tangent bundle chart. This can be done by first choosing a vector
bundle chart of V which induces a chart of Q and hence has a naturally associated
tangent bundle chart. The same bundle chart of W induces a bundle chart on
W ∗ = T ∗Q ⊕ V ∗. An element of W will be represented in this local chart by
(q, w) ≡ (q, q̇ ⊕ v) and an element of W ∗ will be represented in the corresponding
local chart by (q, µ) ≡ (q, p⊕ν). Thus we will write, with a slight abuse of notation,

σ0 = (q0, µ0) = (q0, p0 ⊕ ν0),

σ(q) = (q, µ(q)) = (q, p(q)⊕ ν(q)),

and
wσi (q) ≡ (q, wσi (q)) ≡ (q, q̇σi (q)⊕ vσi (q)).

A straightforward calculation shows that, for i = 1, 2, we have dfi(σ0) = dfσi (σ0).
It is also easy to see that dfσi (σ0) = 0 for i = 1 or i = 2 if and only if the following
equalities hold, for i = 1 or i = 2, respectively :

∂aσi
∂q

(q0) + µ0
∂wσi
∂q

(q0) = 0

wσi (q0) = 0

or, equivalently, for i = 1, 2,

∂aσi
∂q

(q0) + p0
∂q̇σi
∂q

(q0) + ν0
∂vσi
∂q

(q0) = 0

q̇σi (q0) = 0

vσi (q0) = 0.
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This is valid for any chart as before. From now on we will assume that the previous
conditions are satisfied for i = 1. The case i = 2 can be established in an entirely
analogous way. By definition we have

{f1, f2}σ,σ0(σ0) = {fσ1 , fσ2 }(σ0)

= {aσ1 + P (wσ1 ), aσ2 + P (wσ2 )}(σ0)

= wσ2 (aσ1 )(q0)− wσ1 (aσ2 )(q0)− P ([wσ1 , w
σ
2 ]) (σ0).

Since wσ1 (q0) = 0 we have wσ1 (q0)(aσ2 )(q0) = 0. On the other hand, by definition,
we have

wσ2 (q0)(aσ1 )(q0) = (pQwσ2 )(aσ1 )(q0)

=
∂aσ1
∂q

(q0)(pQwσ2 )(q0)

=
∂aσ1
∂q

(q0)q̇σ2 (q0).

By Definition 6.1.1 the Lie bracket in the category LP is given by

[wσ1 , w
σ
2 ] = [q̇σ1 ⊕ vσ1 , q̇σ2 ⊕ vσ2 ]

= [q̇σ1 , q̇
σ
2 ]⊕∇q̇σ1 v

σ
2 −∇q̇σ2 v

σ
1 − ω(q̇σ1 , q̇

σ
2 ) + [vσ1 , v

σ
2 ].

Since q̇σ1 (q0) = 0 and vσ1 (q0) = 0 we have

[wσ1 , w
σ
2 ](q0) = [q̇σ1 , q̇

σ
2 ](q0)⊕−∇q̇σ2 v

σ
1 (q0).

We can easily show that

[q̇σ1 , q̇
σ
2 ](q0) = −∂q̇

σ
1

∂q
(q0)q̇σ2 (q0).

Now we choose the chart on W in such a way that the Christoffel symbols of the
connection∇ on V vanish at q0, which we can assume without any loss of generality.
Then we obtain

∇q̇σ2 v
σ
1 (q0) =

∂vσ1
∂q

(q0)q̇σ2 (q0).

Therefore, using the previous equalities, we can conclude that

{fσ1 , fσ2 }(σ0) =
∂aσ1
∂q

(q0)q̇σ2 (q0) + p0
∂q̇σ1
∂q

(q0)q̇σ2 (q0) + ν0
∂vσ1
∂q

(q0)q̇σ2 (q0)

=
(
∂aσ1
∂q

(q0) + p0
∂q̇σ1
∂q

(q0) + ν0
∂vσ1
∂q

(q0)
)
q̇σ2 (q0)

= 0.

We have therefore proved the aforementioned property, namely dfi(σ0) = 0 for
i = 1 or i = 2 implies that {f1, f2}σ,σ0(σ0) = 0.

Step 3: The bracket is independent of σ.

Using the above property, it follows by a standard argument that for given
fi, gi ∈ C∞(W ∗), i = 1, 2, and σ ∈ Γ(W ∗) satisfying dfi(σ0) = dgi(σ0) and
σ(q0) = σ0, we have

{f1, f2}σ,σ0(σ0) = {g1, g2}σ,σ0(σ0).
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We can easily check that if fi ∈ A(W ∗) , for i = 1, 2, then for any section σ ∈ Γ(W ∗)
and any choice of σ0 such that σ(q0) = σ0 we have fi = fσi , for i = 1, 2, and also

{f1, f2}(σ0) = {f1, f2}σ,σ0(σ0).

On the other hand, we can show, using the Taylor expansion, that for any choice
of a section σ′ ∈ Γ(W ∗) satisfying σ′(q0) = σ0 and any f ∈ C∞(W ∗) we have
dfσ

′
(σ0) = df(σ0) = dfσ(σ0). Using all this and the previous step, we can see

that

{f1, f2}σ,σ0(σ0) = {fσ1 , fσ2 }σ,σ0(σ0)

= {fσ
′

1 , fσ
′

2 }σ,σ0(σ0) = {fσ
′

1 , fσ
′

2 }σ
′,σ0(σ0) = {f1, f2}σ

′,σ0(σ0).

So far, we have proved that the bracket {f1, f2}σ,σ0(σ0) is well defined, that is, it
does not depend on the choice of the section σ ∈ Γ(W ∗) as long as σ(q0) = σ0.
Thus, we shall denote this bracket from now on only by {f1, f2}(σ0).

It is clear that the well defined operation {f1, f2}(σ0) is bilinear and skew
symmetric. We need to show that it satisfies the Jacobi identity.

Step 4: Verification of the Jacobi identity.
Let fi ∈ C∞(W ∗), i = 1, 2, 3, and σ0 ∈W ∗. We need to verify that

{f1, {f2, f3}}(σ0) = {{f1, f2}, f3}(σ0) + {f2, {f1, f3}}(σ0).

To do this, choose σ ∈ Γ(W ∗) such that σ(q0) = σ0. Using what we have proven
so far we can see that the question reduces itself to showing that

{fσ1 , {fσ2 , fσ3 }}(σ0) = {{fσ1 , fσ2 }, fσ3 }(σ0) + {fσ2 , {fσ1 , fσ3 }}(σ0).

However, this identity holds by Lemma 8.1.2 since fσi ∈ A(W ∗), for i = 1, 2, 3.
The last axiom for a Poisson bracket is the Leibnitz identity. We shall verify it

below.

Step 5: Verification of the Leibnitz identity.

Let fi ∈ C∞(W ∗), i = 1, 2, 3, and σ0 ∈W ∗. We must prove that

{f1, f2f3}(σ0) = {f1, f2}(σ0)f3(σ0) + f2(σ0){f1, f3}(σ0).

As we have seen before, we can assume without loss of generality that fi = fσi ∈
A(W ∗), for i = 1, 2, 3, so we can write fi = ai + P (wi), for ai ∈ C∞(Q) and
wi ∈ Γ(W ). Using the bilinearity and skew-symmetry of { , }, we can easily see
that it is sufficient to consider the following six particular cases:

f1 ≡ a1, f2 ≡ a2, f3 ≡ a3;

f1 ≡ a1, f2 ≡ a2, f3 ≡ P (w3);

f1 ≡ a1, f2 ≡ P (w2), f3 ≡ P (w3);

f1 ≡ P (w1), f2 ≡ a2, f3 ≡ a3;

f1 ≡ P (w1), f2 ≡ a2, f3 ≡ P (w3);

f1 ≡ P (w1), f2 ≡ P (w2), f3 ≡ P (w3).

The first, second, fourth, and fifth cases can be established using directly the def-
inition of the bracket on A(W ∗) and the fact that for any a ∈ C∞(Q) and any
w ∈ Γ(W ) we have aP (w) = P (aw).
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To prove the third case, we first write the Taylor expansion of P (w2) and P (w3),
namely

P (wi)(q, µ) = σ(q)(wi)(q) + (µ− σ(q)) (wi)(q)
for i = 2, 3. Then, since

d ((µ− σ(q)) (w2)(q) · (µ− σ(q)) (w3)(q)) = 0

at (q, µ) = σ0, we see that

{a1, P (w2)P (w3)}(σ0) = {a1, σ(q)(w2)(q)P (w3) + P (w2)σ(q)(w3)(q)}(σ0)

= {a1, P (σ(q)(w2)(q)w3) + P (σ(q)(w3)(q)w2)}(σ0) .

The Leibnitz identity for this case now follows from this equality.
To prove the sixth case we use the Taylor expansion of P (w2) and P (w3). We

obtain

{P (w1), P (w2)P (w3)}(σ0)

= {P (w1), σ(q)(w2)(q)P (w3) + P (w2)σ(q)(w3)(q)}(σ0)

= {P (w1), P (σ(q)(w2)(q)w3) + P (σ(q)(w3)(q)w2)}(σ0) .

As before, this equality implies the Leibnitz identity for this case also. �

Remark. In the extreme case V = 0, that is, W ≡ TQ, we have W ∗ = T ∗Q and
the Poisson structure on W ∗ coincides with the standard Poisson structure on the
symplectic manifold T ∗Q. In the other extreme case in which Q is a point, that is
W ≡ V , we have W ∗ = V ∗ and the Poisson structure on W ∗ coincides with the
standard Lie-Poisson structure on the dual of a Lie algebra.

8.2. Poisson Reduction in the Category LP∗ Viewed as Dual to
Reduction in the Category LP

Let W = TQ ⊕ V be an object of LP and assume that the hypotheses of
Theorem 6.2.10 hold. The composition of the natural vector bundle map πG(W ) :
W →W/G and the vector bundle isomorphism

αWA : (TQ⊕ V )/G→ T (Q/G)⊕ g̃⊕ (V/G),

of Definition 6.2.11 gives a vector bundle map PG(W ) = αWA ◦πG(W ). Introducing
the notation

WG = T (Q/G)⊕ g̃⊕ (V/G)
for the target space, WG is an object of LP, and

PG(W ) : W →WG

is a morphism of LP. The restriction of PG(W ) to the zero section coincides with
the natural projection πG(Q) : Q → Q/G and the restriction of PG(W ) to each
fiber is a linear isomorphism. Thus, PG(W ) induces a vector bundle morphism
P̄ (W )G : W ∗ → W ∗G. The restriction of P̄ (W )G to the zero section coincides with
the natural projection πG(Q) : Q→ Q/G. The restriction of P̄ (W )G to each fiber
is a linear isomorphism, which is precisely the dual of the inverse of the restriction
of PG(W ) to the same fiber.

According to Theorem 8.1.3, W ∗ and W ∗G each carry a Poisson structure. We
are going to show that P̄ (W )G is a Poisson map.

We begin by introducing some notation. Reduced objects under the action of
G will be denoted with a subindex G. Let us give more precise definitions. For
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given w ∈W we will denote wG = PG(W )(w). Likewise, for µ ∈W ∗ we will denote
µG = P̄ (W )G(µ). If w ∈ ΓG(W ) or µ ∈ ΓG(W ∗) then, respectively, wG ∈ Γ(WG)
is the unique section of WG such that

PG(W ) (w(q)) = wG (π(q))

for all q ∈ Q and µG ∈ Γ(W ∗G) is the unique section of W ∗G such that

P̄ (W )G (µ(q)) = µG (π(q)) for all q ∈ Q.
If f ∈ C∞(W ∗) is G-invariant or a ∈ C∞(Q) is G-invariant then, respectively, fG ∈
C∞(W ∗G) is the unique function such that f = fG ◦ P̄ (W )G and aG ∈ C∞(Q/G)
is the unique function such that a = aG ◦ πG(Q). We can easily show that, for
any w ∈ W and any µ ∈ W ∗ we have µG(wG) = µ(w). For given wi ∈ ΓG(W ),
i = 1, 2, we have proven before (this is part of the content of Theorem 6.2.10)
that [w1G, w2G] = [w1, w2]G. It is also easy to see that for given w ∈ ΓG(W ) and
a ∈ C∞(Q), a G-invariant function, we have wG(aG) = (w(a))G. Using the last
two assertions we can easily show that for any given wi ∈ ΓG(W ), i = 1, 2, we have

{P (w1G), P (w2G)} = {P (w1), P (w2)}G,
that is, for any σ ∈W ∗ we have

{P (w1G), P (w2G)}(σG) = {P (w1), P (w2)}G(σG).

Using the previous notations, the assertion that P̄ (W )G is a Poisson map can
be restated as follows: for any given G-invariant functions fi ∈ C∞(W ∗), i = 1, 2,
we have {f1G, f2G} = {f1, f2}G.

First, we will consider the case in which fi ∈ A(W ∗), i = 1, 2. Then fi =
ai +P (wi), for some ai ∈ C∞(Q) and wi ∈ Γ(W ), i = 1, 2. The G-invariance of fi,
i = 1, 2, implies the G-invariance of ai and of wi, that is, in particular, wi ∈ ΓG(W ),
i = 1, 2. Using this and the previous formulas we can show in a straightforward
manner that {f1G, f2G} = {f1, f2}G.

Second, we will consider the general case. Let fi ∈ C∞(W ∗), i = 1, 2, be G-
invariant. Let σ0 ∈ W ∗, say σ0 ∈ W ∗q0 . We can always find σ ∈ ΓG(W ∗) such that
σ(q0) = σ0. We can easily show that fσi ∈ C∞(W ∗) is G-invariant, for i = 1, 2. Let
fσi = aσi + P (wσi ), i = 1, 2. We can show easily, for i = 1, 2, that (aσi )G = (aiG)σG
and also that (wσi )G = (wiG)σG . Then we have

{f1, f2}(σ0) = {fσ1 , fσ2 }(σ0) = {fσ1 , fσ2 }G(σ0G) = {(fσ1 )G, (fσ2 )G}(σ0G)

= {(f1G)σG , (f2G)σG}(σ0G) = {f1G, f2G}(σ0G).

We have proved the following

Theorem 8.2.1. P̄ (W )G : W ∗ →W ∗G is a Poisson map.

This theorem establishes that Poisson reduction in the category LP∗, in par-
ticular cotangent bundle reduction, is dual to reduction in the category LP. The
decomposition of the bracket as a sum of three brackets given in Montgomery, Mars-
den and Ratiu [1984] and Montgomery [1986] should be compared, via duality, with
the decomposition of the reduced Lie bracket on sections of the reduced object of
LP given in Theorem 6.2.10. As we said before, a more detailed study of all this is
being planned for future work.

Acknowledgments. We thank Darryl Holm, Gerard Misiolek, Matt Perlmutter,
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Euler–Poincaré equations and double bracket dissipation, Comm. Math. Phys.,
175, 1–42.

Bloch, A. M., N. Leonard and J. E. Marsden, Controlled Lagrangians and the
Stabilization of Mechanical Systems I: The First Matching Theorem, IEEE Trans.
Automat. Control (to appear).

103



104 LAGRANGIAN REDUCTION BY STAGES

Bobenko, A. I. and Y. B. Suris [1999a], Discrete time Lagrangian mechanics on Lie
groups, with an application to the Lagrange top, Commun. Math. Phys., 204,
147–188.

Bobenko, A. I. and Y. B. Suris [1999b], Discrete Lagrangian reduction, discrete
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