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SUMMARY

In this paper we develop a constructive approach to the determination of stabilizing control laws for a class
of Lagrangian mechanical systems with symmetry — systems whose underlying dynamics are governed by
the Euler-Poincaré equations. This work extends our previous work on the stabilization of mechanical
control systems using the method of controlled Lagrangians. The guiding principle behind our methodology
is to develop a class of stabilizing feedback control laws which yield closed-loop dynamics that remain in
Lagrangian form. Using the methodology for Euler-Poincaré systems, we analyse stabilization of a satellite
and an underwater vehicle controlled with momentum wheels. Copyright © 2001 John Wiley & Sons, Ltd.
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1. INTRODUCTION

In this paper, we develop a constructive approach to the determination of stabilizing control laws
for a class of Lagrangian mechanical systems with symmetry — systems described by the
Euler-Poincare equations. This work complements and extends the class of systems discussed in
References [1-6].

The specific case we consider here is that in which the configuration space is the Cartesian
product of a non-abelian group H with an Abelian group G (a product of tori and lines) and where
the Lagrangian is left invariant on H, cyclic in the Abelian variables and the controls act only on
the cyclic variables.

As in our previous analysis, the guiding principle behind our methodology is to develop a
class of feedback control laws whose closed-loop dynamics remain in Lagrangian, and hence
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conservative, form and with these control laws, to achieve stabilization. We append controls that
are dissipative in nature to turn the conservative stabilization into asymptotic stabilization. The
dissipative case is studied in more detail in Reference [7] and related publications.

The advantage of requiring that the closed-loop dynamics be Lagrangian is that stabilization
can be understood in terms of energy. In particular, we can make use of energy methods which
provide a Lyapunov function and thereby give information on how to choose the control gains to
achieve closed-loop stability. Further, even though work is done by the control forces, there is
a modification of the mechanical energy of the system that is exactly conserved by the closed-loop
dynamics; one can think of it as a combined energy available to the mechanism and the control
forces. This can be used to show that, for example, for fixed control gains which achieve
stabilization, the control inputs will remain bounded.

Closed-loop dynamics are guaranteed to be Lagrangian by first choosing the closed-loop
Lagrangian from a class of controlled Lagrangians that we will explicitly describe. The controlled
Lagrangian then provides the control law: the closed-loop dynamics are the Euler-Lagrange
equations derived from the controlled Lagrangian and the new terms that appear in the dynamic
equations are identified with the control forces. Specific techniques are developed for choosing the
controlled Lagrangian so that new terms appear only in desired control directions. The asso-
ciated theory provides sufficient conditions under which this approach will provide such a control
law that yields a closed-loop system in Lagrangian form.

In this paper, we confine ourselves to controlled Lagrangians that only involve modifications
to the kinetic energy of the system. One can also consider modifications to the potential
energy for stabilization and tracking purposes. We have used this recently [4, 6] in achieving
stabilization of the cart and pendulum in the full phase space and with some applications
to tracking. Other relevant work involving energy methods in control and stabilization includes
Krishnaprasad [8], van der Schaft [9] Astrom and Furuta [10], Wang and Krishnaprasad
[11], Koditschek [12], Koditschek and Rimon [13], Baillieul [14], Auckly et al. [15] and
Hamberg [16].

Organization of the paper: In Section 1.1, we describe the controlled Lagrangian approach to
stabilization. In Section 1.2 we describe the structure of the general class of controlled Lagran-
gians we consider. In Section 2, we prove a matching theorem for the case of the Euler-Poincare
equations. This case is applied to the example of a spacecraft with an internal rotor in Section 3.1,
and in Section 3.2 we apply the method to the problem of stabilizing an underwater vehicle using
internal rotors. In Section 4 we discuss conclusions and future work.

1.1. The controlled Lagrangian approach

We begin by recalling, for the reader’s convenience, the general controlled Lagrangian approach.
Assume we have a mechanical system with an uncontrolled (free) Lagrangian equal to kinetic
energy minus potential energy. We will modify the kinetic energy to produce a new controlled
Lagrangian which describes the dynamics of the controlled closed-loop system.

The setting: Suppose our system has configuration space Q and that a Lie group G acts freely
and properly on Q. It is useful to keep in mind the case in which Q = S x G with G acting only on
the second factor by group multiplication.

For example, for a rigid spacecraft with a rotor (which we treat in detail later), 0 = SO(3) x S*,
where the group is G = S, corresponding to rotations of the rotor.
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CONTROLLED LAGRANGIANS OF EULER-POINCARE SYSTEMS 193

Our goal will be to control the variables lying in the shape space Q/G (in the case in which
Q = S x G, then Q/G = S) using controls which act directly on the variables lying in G. We assume
that the Lagrangian is invariant under the action of G on Q, where the action is on the factor
G alone. In many specific examples, such as those given below, the invariance is equivalent to the
Lagrangian being cyclic in the G-variables. Accordingly, this produces a conservation law for the
free system. Our construction, before the addition of dissipation, will preserve the invariance of
the Lagrangian, thus providing us with a controlled conservation law.

Horizontal and vertical spaces: The tangent space to Q can be split into a sum of horizontal and
vertical parts defined as follows: for each tangent vector v, to Q at a point g € Q, we can write
a unique decomposition

v, = Horv, + Veru,, (1)

such that the vertical part is tangent to the orbits of the G-action and where the horizontal part is
the metric orthogonal to the vertical space; that is, it is uniquely defined by requiring the identity

g(vy, w,) = g(Hor v,, Hor w,) + g(Ver v,, Verw,) (2)

where v, and w, are arbitrary tangent vectors to Q at the point g € Q. This choice of horizontal
space coincides with that given by the mechanical connection — see, for example, Reference [17].

The controlled Lagrangian: For the kinetic energy of our controlled Lagrangian, we use
a modified version of the right-hand side of Equation (2). The potential energy remains un-
changed. The modification consists of three ingredients:

(1) a different choice of horizontal space denoted Hor,,
(2) a change g — g, of the metric acting on horizontal vectors and
(3) a change g — g, of the metric acting on vertical vectors.

To explain these changes, we will need a little more notation.” Let &, denote the infinitesimal
generator corresponding to a Lie algebra element ¢ € g, where g is the Lie algebra of G. The
vector field ¢, may be thought of intuitively as infinitesimal group motions of the system. Thus,
for each ¢ e g, £y is a vector field on the configuration manifold Q and its value at a point g € Q is
denoted &y(q).

Definition 1.1

Let 7 be a Lie-algebra-valued horizontal one form on Q; that is, a one form with values in the
Lie algebra g of G that annihilates vertical vectors. The t-horizontal space at q € Q consists of
tangent vectors to Q at g of the form Hor,v, = Horv, — [1t(v)]o(g), which also defines
v,— Hor(v,), the t-horizontal projection. The t-vertical projection operator is defined by

Ver,(v,):= Ver(v,) + [t(v)]o(q).
Notice that from these definitions and (1), we have

v, = Hor.(v,) + Ver.(v,) (3)

‘ See, for example, References [17] or [18, Chapter 97, for the relevant elementary definitions and properties of Lie groups
and group actions.
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just as we did with 7 absent. In fact, this new horizontal subspace can be regarded as defining
a new connection, the t-connection. The t-horizontal space itself, which by abuse of notation, we
also write as Hor, depends on 7 also, but the vertical space does not—it is the tangent space to the
group orbit. On the other hand, the projection map v,+— Ver,(v,) does depend on .

Definition 1.2
Given ¢,, g, and 1, we define the controlled Lagrangian to be the following Lagrangian which
has the form of a modified kinetic energy minus the potential energy:

Le ., (v) = 3 [g,(Hor,v,, Hor.v,) + g,(Ver.v,, Ver.v,)] — V(q) )

where V is the potential energy.

The equations corresponding to this Lagrangian will be our closed-loop equations. The new
terms appearing in those equations corresponding to the directly controlled variables are
interpreted as control inputs. The modifications to the Lagrangian are chosen so that no new
terms appear in the equations corresponding to the variables that are not directly controlled. We
refer to this process as ‘matching’. This matching problem will be studied in detail in subsequent
sections for the Euler-Poincaré class of systems of interest to us in this paper.

Another way of expressing what we are doing here is the following. A principal connection on
a bundle Q — Q/G, may be thought of as a Lie-algebra-valued one form and one can obtain a new
connection by adding to it a horizontal one form t. The new horizontal space described in the
preceding definition is exactly of this sort.

The general strategy: In outline, the general procedure that one goes through to achieve
stabilization is given in the following steps.

1. Start with a mechanical system with a Lagrangian L of the form kinetic minus potential
energy and a symmetry group G.

2. Write down the equations of motion for the uncontrolled system.

3. Introduce 7, g, and g, to get the controlled Lagrangian (4).

4. Write down the equations of motion corresponding to the controlled Lagrangian and read
off the control law u from the equations in the symmetry variables (this will be a conserva-
tion law).

5. Choose 1, g, and g, so that the controlled Euler-Lagrange equations for the original system
(i.e. the Euler-Lagrange equations for the Lagrangian L with the control) agree with (that is,
match) the Euler-Lagrange equations for the controlled Lagrangian L., ,. Determine
a feedback law for u by using the Euler-Lagrange equations to eliminate accelerations; then
the control law becomes a feedback that is configuration and/or velocity dependent. The
general matching theorem can be used to guide these calculations.

6. The stability of an equilibrium is determined by linearization or by the energy-momentum
(or, when appropriate, the energy-Casimir-Arnold) method, using any available freedom in
the choice of 7, g, and g,.

7. Add dissipation to the controls to achieve asymptotic stabilization if desired.

The goal of this paper is to use this strategy to prove general matching and stabilizability
theorems for Euler-Poincaré systems. The matching theorems provide sufficient conditions for
successful completion of Steps 1-5 and an explicit construction of the controlled Lagrangian and
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CONTROLLED LAGRANGIANS OF EULER-POINCARE SYSTEMS 195

the control law. In the case that matching is achieved, the stabilizability theorems provide
sufficient conditions for closed-loop stability according to Step 6. Finally, we add dissipative
control terms in our control laws to achieve asymptotic stability.

1.2. The structure of the controlled Lagrangian

In this section, we give a structure theorem for L, , ,. The formula below is useful in many cases
including the cases of the satellite and the underwater vehicle.
We begin by recalling the definition of the controlled Lagrangian

Lr,a’,p(v) = %[go‘(Horrvqa Horrvq) + gp(Vert vqs Verr Uq)] - V(Q) (5)
and we make the following assumptions on the metric g,:

1. g = g, on Hor,
2. Hor and Ver are orthogonal for g,.

Keep in mind that Hor denotes the horizontal space for the given uncontrolled system and
that Hor, denotes the horizontal space as modified by the one form 7. Note also that the new
metrics g, and g, will modify g on Ver, the vertical space (or group directions), which is
independent of any modification due to 7. On the other hand, also recall that the vertical
projection operator

Ver,(v,):= Ver(v,) + [t(v)]o(q)
does depend on 1.

Theorem 1.3
We have the following formula:

Leo,(v) = L(v + 1)) + 2 ¢5(t(v)g. T(v)g) + 2 3(v) (6)
where v e T,Q and where

a(v) = (g, — g)(Ver(v), Ver,(v)) (6)

The proof may be found in Reference [5].

2. EULER-POINCARE MATCHING AND STABILIZATION

In this section we prove a general matching theorem in the Euler—Poincaré setting, but with
controls still in Abelian group directions. This will be illustrated in the next section by the
spacecraft and the underwater vehicle with internal rotors.

The satellite example has two symmetry groups associated with it, as do many other examples.
One group, which in this case is the non-abelian group SO(3), is associated with the rotational
symmetry of the overall problem and another group, an Abelian group, is the product of several
copies of S associated to the rotors. The Abelian group is associated with the control directions,
namely, the rotor variables. In this section, we use this setting to get concrete and readily
implementable Euler-Poincaré matching and stabilization theorems.
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2.1.  Euler-Poincare matching

Motivated by these considerations, we begin with the matching problem for the case
where the configuration space is the Cartesian product of a non-Abelian group H with an
Abelian group G (which is a product of tori and lines) and where the Lagrangian is left
invariant on H, cyclic in the Abelian variables and the controls act only on the cyclic
variables.

Let L denote a given left invariant Lagrangian on T(H x G). Let [:h x G — R be the restriction
of L to the identity of H and for a curve h(¢) € H let n(t) = Ty Ly -+h, or in abbreviated notation,
n(t) = h(t)” 'h(t). Then the (reduced) Lagrangian becomes

101, 0°) = 3gupn™n” + Gua0° + 900" (7)

Here 1™ are the variables in ) and 0° are the control variables. Note that g,4, g,, and g, are all
constant (fixed) matrices.

The conserved quantity: The conserved quantity, that is, the momentum conjugate to the
cyclic variable 0, is given by

ol .
Jo === gaull” + g’ 8
a@a g 1/’ g b ( )
The controlled Euler-Poincare equations: The equations of motion for the control
system where the controls u, act in the 6” directions are the controlled Euler-Poincaré equa-
tions:

d ol ol
— =By 9
dt (3171 s 0 B ( )
d ol
- = 10
droge ~ " (10)
where cf; are the structure constants of the Lie algebra .
Coordinate formulae for I, , ,: The formula from Theorem 1.3 gives in this setting
lt,a,p = l(na9 éa + Toacna) + %O-ab‘[;fznanﬂ
1 . .
+ 5 @0 + g°geatt” + Tan*)O0" + g"gepn” + Tpn”). (11)

2
To preserve symmetry g, and p,, are both constant.

The controlled conserved quantity. From (11) we find that the associated controlled conserved
quantity is given by

.l .
Jo= aé“p = pa(0” + 9" geutt” + To0%) (12)
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Euler-Poincaré equations for controlled Lagrangian: The controlled Lagrangian prescribes the
closed-loop system, i.e. the closed-loop dynamics are the Euler—Poincaré equations correspond-
ingtol ,,:

d by, 45 50,

a o - o (13)
dal.,,
dr a0* 14

To effect this closed-loop system, the control inputs u, must be chosen so that (13) and (14) are
equivalent. Additionally, the controlled Lagrangian must satisfy matching conditions, i.e. it must
be chosen so that (13) and (14) are equivalent.

Matching Euler-Poincaré expressions: To achieve matching in this case we simply need to
equate

0
I with —1
ana w1 anzx T,0,p
Firstly, we have
g + Gual” (15)
511“ —gw’? Yoa

Also, one gets

0

o 'a a, o a o '(1 a, o a
(3_11“lr’””’:6_17“l(”’0 + o) + =L (n*, 0° + Ton*) T,

a0°
+ aatsthn’ + (0 + g geat” + TN) (9" Ger + T2)
= gupl” + Gud0° + Th1”) + gurp™ T T + GuTiThH’
+ (pas — Gan) P9 Gex + T5) (16)

where in the second equality we used the conservation law, the definition of @ and where the
partial derivatives in this expression mean the derivatives with respect to the relevant variable slot
of the function.

For matching, we need to equate (15) and (16). Since the first two terms of (16) are the same as
(15) we simply need to set the remaining terms in (16) to zero. Thus, we need

(9ot + Tt TN + 9" T + (Pas — Gar)p“Tal9" e + T2) = 0. (17)
We make the following assumption:
Assumption EP-1
Ta=—0 abgbaz'
With this assumption, the first term in (17) is zero and the remaining terms are

- jcpbc{gabo-aegea - (,Dab - gab)(gadgda - O-aegeaz)} (18)
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Thus, we require

9a0“ — (Pap — Gap) (¢ — 0%) =0 (19)

1€.
(P — Jap)p"g™ = 0 (20)

ie.
Gab + pab — gab (21)

Therefore, consider the following additional assumption.

Assumption EP-2
O_ab + pab — gab‘
Then, we have proved the following theorem.

Theorem 2.1

Under Assumptions EP-1 and EP-2 the Euler-Poincaré equations for the controlled Lagran-
gian coincide with the controlled Euler-Poincaré equations.
2.2. Determination of the control law

The control law u, can be determined by comparing (10) to the controlled conservation law

dol,, d-

2= — 0 22
dt 96 dt™* (22)
where J, is given by (12). Since g,, and p,, are constant, (22) implies
L () = (g + gl + guril) = 0 (23)
dt ab d dt ao ab abta

Subtracting (23) from (10) gives

_ d bd T _ d b, o
U, = dt (gabp Jd Ja) - d[ (gabfocn )

= gabo-bcgca’;’a (24)

where J, is given by (8) and we have used the expression in Assumption EP-1 for 2.
To eliminate accelerations we make use of the fact that the Euler—Poincaré equations for 5 hold
(for both [ and I, , ;). The Euler-Poincaré equations (9) and (10) give

d al . il
— 2 —g.P 0 = cf.p° 25
dl’ a”la gaﬂn + Yoa Casl a”p ( )
d al . .
aﬁ = Gadll + gabab = U, (26)
Solving (26) for 0 gives
é'b = gabua - gabgaaﬁa (27)
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Substituting (27) into (25), we get
- B ab ab - B (/0] 6l
Gaupll” + Gl 9 tha — 9 Gapit”) = s o’

which yields

. o a al
i’ =B ﬁ< — Gog"uq + s’ (317"’) (28)
where
Brxﬁ = gaﬂ - gabgabgaﬂ (29)

Substituting (28) into (24), we get

ol
Ug = gdbabcgd?Baﬂ <— Jued Uy + s’ 5’7"’)

1e.
s 0l
iy, = Dyo bcgcﬂBaﬂCZMo a—n,,,
where
Dba — gba + O-bcgcﬂBuﬁgaegae (30)
If we define control gains
ki = Daba”"gcﬁB“ﬂ (31)
then
d ol ol .
u, =k a o = kiclsn’ 6717"’ = kictsn’(gypn” + gys0") (32)

2.3. Euler—Poincare stabilization

Once one has the problem in Lagrangian (or Hamiltonian) form, one can proceed to use the
energy-Casimir or energy-momentum method to determine stability (see e.g. References [17] or
[18]). Recall that for mechanical systems, an eigenvalue analysis alone is not sufficient for
determining stability.

Here we develop the general analysis of stability prior to proceeding to explicit computation in
the examples. Our general approach is to assume we have a given equilibrium and a finite
collection of Casimir functions (or more generally, conserved quantities) for the free Lagrangian
system on the group H without the introduction of the controlled variables. We then add the
control variables.

To carry this out, define, using our previous notation, the (reduced) Lagrangian [/, on by by

lo(n") =3 gupn™n” (33)
A (relative) equilibrium 7, for the corresponding dynamical equations satisfies the equation
ol
g0 00
Casll 577713 =0 (34)
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Now suppose we have a collection of Casimir functions C*(M,), ..., C™(M,) where

aly
M,=— = b
3 6}/](1 gaﬂn
Now set
Eq,:lo—i—(I)(Cl,...,C"‘) (35)

where @ is a smooth function.

In doing a stability analysis using the energy-Casimir method, it is standard to require
that the Casimir functions be chosen so that the first variation of Eq vanishes at equili-
brium, i.e.

m ack
H(Eo)ly, = gupon” <n“ + 2 (Dk<I>)aM> =0 (36)
k=1 a/ |e
Thus, we require
m ack
D,® =—1n 7
(k;( k )aM)e e (37
The second variation at equilibrium is given by
O*(Ea)ly, = (9up + guuH""G1p) OO (38)
where
Z oc* oC/ n 0*C*
H" = D, @) — D®) ——— 39
<,WZ_1( WO oo, 2 D )aMMan> . (39)

Now consider the full uncontrolled Lagrangian I given by (11). Using (9), the full system will
still have 7, as an equilibrium together with 6, provided

Asn(gpaml + gpabl) =0 (40)

This is satisfied if cfénﬁg,;aog =0 and in particular if 0% = 0. This implies, from our matching
conditions, that [, , , also has this equilibrium.!
Set

_ol,, ol

Mozz = = Yo ﬂ+ auéa
—ana o 9ap” T g

= (gocﬁ - gaocpabgbﬁ)"]ﬂ + gaap”hjb
= Gopt” + Goap™Jy (41)
using the conserved quantities fa and where we define

Gocﬂ = Yap — guacpabgbﬁ

I'This can also be seen using the general fact that [ and I, , , are reductions of Lagrangians L and L. , , that have the same
‘locked Lagrangian’. This is explained in Reference [5].
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To examine stability of the controlled system we now use
Eg = l.pp + 3 O(CH(M,), J) (42)
k

where @ is a smooth function. Note that C* are Casimir functions for the controlled system since
we have only reshaped energy and not modified the Lagrangian (Hamiltonian) structure.

We next compute the first and second variations of Eg. Using again the conserved quantities
J, and assumption EP-2, we get

(Gap + Gar0™ — g™)gop)*n” + 5 p™ T, J,
(9op — Gaul™gpp)™n" + 3p*J s
Go'n® + 1pJ,J, 43)

lr,a,p

Il
R= D=

Then, we have the first variation

Ck
SEs = G, pon" (17 + Z (D, D) — i )

+4J, <p“bf,, + Dyia® + ki (DD) % gubp“b> =0 (44)
Thus, in addition to condition (37), which in this context becomes
a k
(2 (D) aM) - (45)
we also require
Dy a®le = (= p™ Ty + pgoait”)le
= (= p™Ty + (99 — "G
= — 0 (46)

Similarly, we can compute the second variation of Eg. Consider the case (apparently sufficient
for applications) where

O(CL...,C" T = ®(CL,...,C™") + P(JY). (47)
Accordingly, (46) becomes
DY|, = — 6%, (48)
Now define
k J m 2k
ar=( 3 25 5+ 50 o) @
Then, the second variation is given by
0%Eg|. = 0%Egple = Noyon®on® + 2P20n*0J, + R™8J,0J,
= N,y0&6& + (R — N P4P%)5T,07, (50)
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where
Nog = Gy + G, HGyy
= Gayﬁwgéhpab
R 4 ~
Rab — ab S +Haz[3 ” ac bd
p +<aJanb>e GacP GpaP
and

8 = on* + NP5,

Definiteness of this quantity at the given equilibrium yields nonlinear stability. Using the freedom
in choosing (0*¥/0J,0J,)|. we can make the second term on the right-hand side of (50) have
whatever definiteness we require. Then, stability will be guaranteed if we can choose p,, such that
N, is definite (under the restrictions that (45) and (46) are satisfied). We summarize these findings
in the following result.

Theorem 2.2.

Let 5, be an equilibrium for the uncontrolled dynamics given by I, (33). Suppose that 0, satisfies
(40). Then, (7., ée) is an equilibrium for the controlled system described by I, , (43). This
equilibrium is Lyapunov stable for the controlled dynamics if p,, and ®(Cy, ..., C,,) can be found
so that (45) is satisfied and G,; + G,,H"’G; is definite at the equilibrium.

Recall that if the equilibrium is spectrally unstable for the uncontrolled dynamics, it won’t be
possible to make g,4 + ¢,,H°gs; definite. In the controlled setting, however, we modify the metric
so that now it can be possible to make G,; + G,,H"°G,; definite. The matrix G,; can be
interpreted as the horizontal part of the metric for the controlled system, i.e., the ‘controlled
inertia” associated with the group H variables. Since G,3 = ¢up — Juup*’gup» it is clear how the
control gain p,, enters in to provide stabilization, i.e. by modifying the inertia.

To obtain asymptotic stability, we introduce an additional term in the control law to simulate
dissipation. Let the complete control law be

COl’lS

U, = + YJabp udlss (51)

where

CUI’IS

= qabo- ‘Jcan

diss

i.e. the control law term derived above in equation (24), and where u,"* is the new feedback
term that will simulate dissipation. With this control law, the controlled dynamics are computed
to be

dal,, , ,o.,,
— e .o 52
dt 67/]1 Casl 611ﬁ ( )
dol,, =

- r,f?' =] = dlSS 53
a o s (53)

We choose ul™ so that (d/dt) Es is non-decreasing (non-increasing) if the equilibrium is a local
maximum (minimum) of Eg. We then carry out a LaSalle invariance principle analysis (details can
be found in References [7]).

Copyright © 2001 John Wiley & Sons, Ltd. Int. J. Robust Nonlinear Control 2001; 11:191-214



CONTROLLED LAGRANGIANS OF EULER-POINCARE SYSTEMS 203

Assume that @ can be taken in form (47). Then
d d GLORGL O

“Egy=-—1 — =1 54
i T e Tock Ty 69
., oY
__ pa, diss ~ diss
= O 4 5w (55)
. 0¥ .
= 0° — diss
< +3 Ja> ul (56)

where we have used the fact that (d/dt)[,, , = 0°ud™. We also used the fact that
C* = constant (57)

since the actuation is internal.
Without loss of generality, we may assume that Eg has a local maximum at the equilibrium.

Choose
) . 0¥
u™ = (9" T 5) (58)
where c,;, is a positive-definite matrix. Then,
d . oV / - oY
—Ej=cul0°+—=|[0"+—=]>0 59
Qi C”< +6Ja>< +an> 59)

In the case that the equilibrium of interest is such that 0|, = 0, we can take ¥ as
Y(J) = 36T, .
where £ is a sign definite symmetric matrix. Then, (59) becomes

d ) - . -
&E@ = (0 + &*J) (0" + &) =0 (60)

To obtain asymptotic stability we use the LaSalle invariance principle and the details of the
specific system. In Reference [ 7] the general theory of how to carry this out is examined in some
detail. See also Woolsey and Leonard [19].

3. GYROSCOPIC STABILIZATION WITH ROTORS

In this section we show how the preceding results on Euler—Poincaré matching and stabilization
apply to an important class of examples, namely rigid bodies carrying internal rotors. We treat
both the spacecraft with internal rotors and the underwater vehicle with internal rotors.

3.1. The rigid spacecraft with a rotor

Following Krishnaprasad [8] and Bloch et al. [20], we consider a rigid body with a rotor aligned
along the third principal axis of the body as in Figure 1. The rotor spins under the influence of
a torque u acting on the rotor. The configuration space is Q = SO(3) x S, with the first factor
H = SO(3) being the spacecraft attitude and the second factor G = S* being the rotor angle. The
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Lagrangian is total kinetic energy of the system, (rigid carrier plus rotor), with no potential
energy.
The Lagrangian: The reduced Lagrangian on so(3) x S* for this system is

1Q, ) = (2493 + 1,93 + 1,03 + J3(Qs + ¢)?)
;\41 0 0 0 Ql

1[0, Q, Q5 ¢] 0 % 0 01| (61)
CeEn T 0 0 Is+Js Jsi||Qs
0 0 Ji o Jsl| ¢

where Q = (Q4, Q,, Q) is the body angular velocity vector of the carrier, ¢ is the relative angle of
the rotor, I; > I, > I are the rigid body moments of inertia, J; = J, and J3 are the rotor
moments of inertia and A; = I; + J;.

The body angular momenta are determined by the Legendre transform to be

I, = 1,9,
I, = 1,Q,
I, = ;Q5 + J3¢
Note that IT, = M, following the notation of (41). The momentum conjugate to ¢ is
A= J3(Qs + ) (62)
0¢
Equations of motion: The equations of motion with a control torque u acting on the rotor are
244 = 2,2,Q5 — (7305 + J30)Q,
20Q = — 14 QQ5 + (A3Q5 + J3)Q
2305 + J3¢ = 0y — 22)Q,Q,
Iy=u (63)

Figure 1. The spacecraft with the rotor attached along the long axis.
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Controlled Lagrangian and matching: Next, we form the controlled Lagrangian and apply the
Euler-Poincaré matching theorem. Since the Abelian group G = S' is one-dimensional, ¢,
o and p,, are all scalars. From (61), g, = J3. We let o, = 0J5 and p,, = pJ; where ¢ and p are
dimensionless scalars. For matching we should choose 7; according to Assumption EP-1, i.c.

1
(h wh h)=——-0 0 Jy (64
3

Further, in order to satisfy Assumption EP-2 p should satisfy
1 1 1

ol ply T

which implies

(65)
Substituting into Equation (11) with these choices, the controlled Lagrangian is given by
17 2 7 02 2 1 2 I 1 2
lr,o',p :E /LIQI + /LZQZ + I3Q3 +EJ3Q3 +pJ3 Q3 + (],') —593

1 1 .1 2

S (P30T AU Yo LU (oY SRR ' T SRR 3 o I SUE oW (66)
2 a g—1 a

where ¢ is a free variable and matching is ensured by Theorem 2.1. The controlled conserved
quantity is

~ Ol ;
3= a!qbp = J3Q3 + pJ3¢
Control law: Using (24), the control law is
1 .
u=-JQ; (67)
a

To get the control law with accelerations eliminated we use formula (32). We compute from (29)
the matrix B to be diagonal with diagonal elements (1, 4,, I3). We then compute D from (30) to be

e 11
J3 613

Using (31), we find the control gains k

J
K¢ kP k) = —

Letting k = k* and using (32), the control law is
u= k(;hl - ;Lz)Qle (68)
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We note that
1 k Ij

o 1—kJ,

Stabilization: As in Reference [20], we consider the equilibrium (Q, Q,, Qs3, q5) =(0,9Q,0,0)
corresponding to steady rotation about the intermediate axis (unstable for the uncontrolled
spacecraft). In contrast to our earlier work, however, we carry out our analysis on the Lagrangian
side and we do not restrict the stability analysis to the zero level set of the conserved momentum.

Casimir functions for this problem are functions of the total angular momentum of the body
plus rotor system. We let

C =3(I17 + 113 + I13)
1 J —1~\?
= 2((2191)2 + (22Q2)” + <<I3 + ;) Q3 + 7 . l3> > (69)

Thus, our Lyapunov function for studying stability becomes

1 J 1 - - -
Edp==( 1} + Q% + (I + 2 ) Q3+ —T12 | + O(C) + Y(I5)
2 o 0J 3

To satisfy (45) for Theorem 2.2, the first derivative of ® evaluated at the equilibrium Cf)’le should
satisfy

&)/|e)u2§_22 =—0Q,,

1e.

Given this criterion, we need only show that we can make N,; = G,; + GMFI "’"G,;,; definite.
In this case we compute the matrix with elements G,5 = g,5 — Jaxp™grp to be the diagonal
matrix diag(l,, Z,, I3 + J3/0). The matrix with elements H** as defined by (49) is computed
to be

A = diag(@,, ¥, + ©",30,)
. 1 1 ~ _ 1
=diag| ——, —— + ®"cA3Q% — —
)\.2 )\.2 )
Using this, we compute the matrix with elements N,; to be

N2 2

. ~ 4 J 1 J

N = diag (zl S Lz 1o 50 A q<13 + > >
Az g Ay o

Since the first diagonal element is negative, we choose CT)”le to be negative also and require

that
Js 1 J3\?
Li+———I:+— ) <0
o Ay o
This condition holds if k > 1 — I3/4,. Therefore, by Theorem 2.2 we have proved.
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Proposition 3.1 _
For k > 1 — I3/4,, the equilibrium (0, Q, 0, 0) is nonlinearly stable for the feedback controlled
system where u is given by (68).

The stabilization that takes place as the gain is increased can be viewed in terms of a modifica-
tion of the phase portrait of the rigid body: the four heteroclinic orbits for the rigid body close up
along the ‘hinge’ joining the two saddle points forming a circle of fixed points and then open up
along a ‘hinge’ joining two stable points, forming a stability island where there were saddle points
previously.

One of the advantages of the approach in this paper is that it is systematic, given the class of
control Lagrangians we have proposed (of course, we are not excluding the possibility that other
interesting classes might be found). For example, with the satellite with rotors one can readily deal
with variants of the problem such as putting the rotor along the short axis instead of the long one,
or with its axis in some direction other than a principal axis direction.

Asymptotic stability: We now add further control to the system to achieve asymptotic stability
of the equilibrium. As in Section 2 we choose
~ 1 ~

Y(;) =
() =551

with ¢ < 0 and |¢| < 1. By (58) we choose a control of the form

udiss — C<¢ _{_il}) = C<1 Q3 + <1 +B>¢>
eJ; & &

with ¢ > 0. As is shown in Reference [7] this leads to asymptotic stability.

3.2. The dynamics of an underwater vehicle

The dynamics of an underwater vehicle provides another rich example of the methods of the
present paper. The techniques proceed somewhat similarly to those for the satellite to show what
explicit gains are needed to stabilize an otherwise unstable motion. The underwater vehicle
example is much richer, however, because it interacts with the surrounding fluid for both
rotational and translational motions, whereas the satellite stabilization problem deals only with
the rotational dynamics. Some of the relative equilibria that are of interest are discussed in
References [21, 22]. Stabilization of the underwater vehicle with internal rotors was first
investigated in Reference [23].

The dynamical model: We model the underwater vehicle using Kirchhoff’s equations which
describe the dynamics of a rigid body in an ideal, unbounded fluid. We assume that the vehicle is
neutrally buoyant (buoyant force equal and opposite to gravitational force) and for simplicity, we
assume that the vehicle has three planes of symmetry and uniformly distributed mass. The latter
assumption implies that the centre of gravity and centre of buoyancy are coincident. In reality, the
centre of gravity is designed to be lower than the centre of buoyancy for stability. By making the
centres coincident, the stability problem becomes more demanding. Our simplifying assumptions
also imply that the matrix of mass, inertia, added mass and added inertia of the body-fluid system
can be diagonalized (for further details see, for example, Reference [21]). We will denote the
diagonal elements of the mass plus added mass matrix by (m;, m,, mz) and the diagonal elements
of the inertia plus added inertia matrix by (I4, I, I3).
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We consider the underwater vehicle with two independently controlled, symmetric, internal
rotors, one aligned along the first principal axis and the other aligned along the second principal
axis. The first rotor spins under the influence of a torque u; acting on it, and the second rotor
spins under the influence of a torque u, acting on it.

The configuration space of the underwater vehicle plus rotors system is Q = SE(3) x (S* x %)
with the first factor H = SE(3) being the underwater vehicle attitude and position and the second
factor G = S* x S* being the pair of rotor angles. The Lagrangian is the total kinetic energy of the
system with no potential energy.

The Lagrangian: The reduced Lagrangian on se(3) x (S* x S') for this system is

(v, Q, a4, d>)
= Y(mo? + mov3 + msv3 + 1,2 + 1,Q3 + 7:3Q% + J1(Qq + d4)* + JH(Q, + d,)?)  (70)
(o, ] [my, 0 0 0 0 0 0 0][v;]
v, O my 0 O O O O O vy
U3 0O 0 mgy 0 O O O O U3
=1 Q, o o0 o0 4 O 0 J;y O Q, 1)
2| Q, 0 0 0 0 4 0 0 J,||Q
Q, 0O 0 O O 0 43 0 O Qs
oy o o o J, 0 0 Jy O oy
(6 [ [0 0 0 0 Jy 0 0 Jo]l|d

where v = (vy,v,,v3) is the body linear velocity of the vehicle, Q = (Q;, Q,, Q3) is the body
angular velocity vector of the vehicle, «; is the relative angle of the ith rotor, i=1,2, J;
and J} = J3 are the first rotor moments of inertia, J, and Ji =J3 are the second rotor
moments of inertia, I; =1, +J3, I,=I,+J} Jy=I3=I,+J,4+J3 and 4, =1, +J,
i=1,2.

The vehicle linear and angular momenta are determined by the Legendre transform to be

Py =mqv,
P, =myv,
Py = ms3v;

Hl = ;LIQI + JIOZI
H2 = /lez + Jzozz
I3 = 45Q5

Note that Z\7Ii =P;,i=1,2,3 and ]\7Ii+3 =1II;, i =1, 2, 3 following the notation of (41). The
momenta conjugate to o; and o, are

ol .
. =1l =J1(Q +ay)
oy
ol .
PP I, = J5(Q, + ay)
%}
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Equations of motion: The equations of motion with the control torques u; and u, acting on
the rotors are
M=1IxQ+ Pxv

P=PxQ
i1=u1
i2=”2 (72)

Controlled Lagrangian and matching: To develop our controller, we next form the controlled
Lagrangian and apply the Euler-Poincaré matching theorem. From (71), g, is given by

orgory gy J 0
[g Y } _ [ ! } 73)
gzxzal gazaz O J2

Let 04,0, be dimensionless scalars and let g, be given by

O—zzlacl 0—1112 J10'1 0
= (74)
O-zxzle O-oczazz O J20-2
Similarly, let p;,p, be dimensionless scalars and let p,, be given by
o0 3% 23 J O
[p p [ _ [ 1P1 } 75)
pazaz pazzz 0 J2p2

Note that we did not have to choose zero off-diagonal terms for the above. We have chosen to use
a diagonal gain matrix for simplicity, but matching does allow a more general gain matrix. For
matching we should choose t; according to Assumption EP-1, i.e.

1
o oo owow] (0005 00
o a a a a (Z. = ! 1 (76)
To: Tyo Tor T, Ta, 7o, 00 0 0 ~ 0
)
Further, by assumption EP-2, p should satisfy for i =1, 2,
1 N 1
O-z‘]z pi‘]t B Jl
which implies
Oj
pi = (77)
g; — 1
Plugging into (2.5) with these choices, the controlled Lagrangian is given by
lt,a,p(v9 Q9 dl: dZ)
1 — _ 1 1
=3 [mlu% + myv3 + myv? + 1,03 + 1,Q% + 1,02 + G—Jlgi + G—ngg
1 2
o 1 2 o 1 2
+71]1 Q) +dy —— +72J2 Q, +d;, ——Q, (78)
gy — 1 01 0y — 1 ()
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where o4, o, are free variables and matching is ensured by Theorem 2.1. The controlled conserved
quantities are for i = 1,2

~ 0l
li=—22F = JQ + piJo;
@O(i

Control law: Using (24), the control law is

1 .
uy =—Ji
(1
1 .
Uy, = — J,Q, (79)
(]

To get the control law with accelerations eliminated we use formula (32). We compute from (29)
that the matrix B is diagonal and has diagonal elements (my, m,, ms, I, I,, 23). We then compute
D from (30) to be

R B
(Dmla{1 Da112> J1 01 1_1

D pr . L1t
J2 () I_Z

Using (31), we find the control gains k. The only non-zero elements of this gain matrix are

J
Ky = k& = —1
! ! (7111+J1
J
k= k=2 80
R (%0)

Using (32), the control law is
uy =ki((Ar — 43)Q2Q3 + J20,Q3 + (my — m3)v,03)
Uy = k(A3 — 41)Q3Qq + J101Q3 + (m3 — my)v304). (81)

Stabilization: The family of relative equilibria that we are interested in stabilizing with the two
given rotors corresponds to translation along and rotation about the third principal axis of the
vehicle, i.e.

o

0
0
v=|0 Q=|0] a=[} (82)
Q

where v # 0. For example, if the third principal axis corresponds to the longest physical axis
of the vehicle (i.e. longest semi-axis of an ellipsoidal vehicle), then for the uncontrolled
vehicle, this family of relative equilibria is unstable (except possibly linearly stable in a
region of large values of Q/v as described in Reference [24]). Typically, such a motion is
stabilized by propellers and fins. Internal rotors are advantageous since they are not exposed
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to the harsh seawater environment and they can provide stabilization even at low vehicle
velocities.
We will consider here the case in which the third principal axis is the longest physical axis of the
vehicle and the first principal axis is the shortest. This implies that
msy < m, <my (83)
Two Casimir functions for this problem are as follows:
C1:P1H1+P2H2+P3H3
C, =3(Pt + P3 + P3) (84)
Thus, our Lyapunov function for studying stability becomes

Eow = Loy, + O(Cy, Co) + W(11, 1)

To satisfy (45) for Theorem 2.2, the first partial derivatives of ® evaluated at the equilibrium
should satisfy

- oD Q

V= =——— 85
| aC|. ms0 (85)

< oD 1 1,02

& = - el 86
|e 5C2 e ms + m%ﬁz ( )

Given this criterion, we need only show that we can make N,; = G,; + G,, H°G,; definite. In this
case we compute the matrix with elements G,; = g,5 — gaap‘”’gbﬁ to be the diagonal matrix
diag(my, my, ms, I; + J1/61, I, + J/o3, 73). The matrix with elements H* as defined by (49) is
computed to be

d, 0 0 ¥, 0 0

0o @, 0 0 @, 0
- [0 o H® 0o o0 H®
A=|.

@, 0 0 0 0 0

0O &, 0 0 0 0

0 0 H* 0 0 H*

where
0% = O, + 7|, 120 + 20|, 73 Om, + D|m30>
0% = &), + @), 15Q0ms0 + O, m2o>
%0 = ), mis?
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Using this, we compute the matrix with elements N,; to be

m, + m®), 0 0 m A, @, 0 0
0 my + mid), 0 0 maA, @, 0
0 0 ms + m3H>> 0 0 msl3H®
| oA, 0 0 A, 0 0
0 myA, D, 0 0 A, 0
0 0 msAsH3® 0 0 Ay + A3HC
where
- T
&:L+Z:1—h

The first three diagonal elements of N are

1 1 1 1 =
N11=m%<———><0, N22=m§<———><0, N33=(D|emgl_72<0
m;  ms m,  Ms

where we have used the fact that m; < m, < m; and have chosen (f)le < 0. Since these first three
diagonal element are negative, we seek to make N,; negative definite.

At this point we specialize to the equilibrium in which Q = 0. This is a practical choice as it
corresponds to the vehicle translating along its long axis but not spinning. For this equilibrium,
N,; is negative definite if we take

< - 1
(D’|e = 0, (I)’/|e < — T 3.2 Al < 0’ AZ < 0.
v

)v3m_7,
The conditions on A; and A, hold if and only if k; > 1 and k, > 1. Therefore, by Theorem 2.2 we
have proved.

Proposition 3.2
For k; > 1 and k, > 1, the equilibrium (0, 0, 7, 0, 0, 0, 0, 0), for v # 0, is nonlinearly stable for
the feedback controlled system where u is given by (81).

Asymptotic stability and dissipative controls for the underwater vehicle with rotors are
discussed in detail in Reference [19] and in the presence of viscous fluid drag in Reference [25].

4. CONCLUSIONS AND FUTURE DIRECTIONS

We expect that the techniques in this paper can be combined with those of Leonard [26] and
Bloch et al. [27, 7] who introduced and developed symmetry-breaking potentials for purposes of
stabilization as well as tracking. In the context of the satellite with rotors, for example, symmetry
breaking may allow for attitude control as well as spin stabilization. Jalnapurkar and Marsden
[27, 28], which put the potential shaping work of van der Shaft into the context of mechanical
systems with symmetry, may also be useful in this regard.
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