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Abstract

In this paper we discuss stabilization of a nonholo-
nomic system consisting of a unicycle with rider. We
show in particular that one can achieve stability of slow
steady vertical motions by imposing a feedback control
force on the rider’s limb.

1 Introduction

In this paper we study the stabilization problem
for a model of a rider on a unicycle. We use some of
the ideas discussed in [10], where various techniques for
studying the stability of motion of nonholonomic me-
chanical systems are analyzed. In particular, energy-
based methods are considered as well as use of the so-
called Lyapunov-Malkin theorem.

We model the rider on a unicycle by a double pendu-
lum on a wheel, the two pendula representing the body
and the limb of the rider. This leads to complicated but
tractable equations. See [11] for details. To achieve
stabilization of slow vertical steady state motions of
the unicycle we then apply linear control to the pendu-
lum representing the limb of the rider. The stability of
the overall system is tested using the Lyapunov-Malkin
theorem. This theorem, which enables us to conclude
overall nonlinear stability using partial spectral infor-
mation about the system, turns out to be particularly
useful for the analysis of nonholonomic systems (see
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[5, 8, 10]). Fast motions may also be stabilized and are
in fact easier to handle because of the stabilizing effect
of the wheel velocity.

While the analysis here is quite nontrivial in itself
we intend to extend it both to more complex nonholo-
nomic/robotic systems and to more complicated non-
linear control techniques; for example, the matching
control technique discussed in [2, 3].

2 Modeling the Unicycle with Rider

We discuss here the dynamics of a homogeneous disk
on a horizontal plane with a double pendulum attached.
The upper pendulum is free to move in the plane or-
thogonal to the disk while the lower pendulum stays
“vertical” in the disk’s plane. We view this as a simple
model of a rider on a unicycle. The configuration space
with coordinates (θ,κ, ψ, φ, x, y) is S1×S1×S1×SE(2).
See Figure 1 for details. This mechanical system is
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Figure 1: The disk on the horizontal plane.

SO(2)×SE(2)-invariant. The action by the group ele-
ment (α, β, a, b) on the configuration space is given by
(θ,κ, ψ, φ, x, y) �→ (θ,κ, ψ+α, φ+β, x cosβ− y sinβ+
a, x sinβ + y cosβ + b).



To stabilize slow vertical steady state motions of
the unicycle with rider moving along a straight line, we
introduce a single linear control

u = k1θ + k2κ + k3θ̇ + k4κ̇

with gain parameters (k1, k2, k3, k4) into the upper pen-
dulum. One can think of this as a controlled limb of
the rider. We remark that fast steady state motions
of the unicycle without rider do not require stabiliza-
tion (see [10]). It is this fact that makes fast motions
of the unicycle with rider easier to stabilize than slow
motions.

3 Feedback Stabilization

Using results of [10], we find the special local coor-
dinates (r, s) in the neighborhood of an upright steady
state motion of the unicycle in which the dynamics of
the reduced system is governed by the equations

ṙ = Akr +R(r, s), ṡ = S(r, s), (1)

where Ak is a 4×4 matrix, s is a two dimensional vector,
and R(r, s), S(r, s) represent nonlinear terms vanishing
when r = 0. The entries of the matrix Ak depend on
the gain parameters. The steady state motions are the
equilibria

r = 0, s = c (2)

of (1). The equilibrium r = 0, s = 0 represents the
steady state motion under consideration while equilib-
ria (2) with c �= 0 represent nearby steady state mo-
tions.

According to the Lyapunov-Malkin theorem [6, 7],
the equilibria (2) are stable for small values of c if
all eigenvalues of the matrix Ak have negative real
parts. We emphasize the importance of the fact that
R(0, s) = 0, S(0, s) = 0. This theorem has been used by
a number of authors in analyzing stability of nonholo-
nomic systems. See [5, 8, 10] and references therein.
In particular, we stress that the conditions R(0, s) = 0
and S(0, s) = 0 are valid for all systems considered in
[1, 10].

In the next theorem we prove existence of the linear
feedback control that forces the spectrum of the matrix
Ak to belong to the left half plane.

Theorem. There exists an open non-empty stability
region S in the space of the gain parameters. For any
(k1, k2, k3, k4) ∈ S the spectrum of Ak belongs to the
left half plane and therefore by the Lyapunov-Malkin
theorem the steady state motion r = 0, s = 0 is stable.

The proof of this theorem is based on the Routh-
Hurwitz analysis of the characteristic polynomial of the
matrix Ak. For details see [11].

4 Final Remarks

We emphasize that the Lyapunov-Malkin theorem
can be used for nonlinear feedback stabilization. It ex-
tends a spectral stability condition to a nonlinear set-
ting. We expect that the domain of the local coordi-
nates (r, s) can be expanded by an appropriate choice of
nonlinear control terms. The basin of attraction there-
fore may be enlarged. We intend to address this issue
in a future publication.
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