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Point vortices on a sphere: Stability of relative equilibria
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In this paper we analyze the dynamics\bpoint vortices moving on a sphere from

the point of view of geometric mechanics. The formalism is developed for the
general case dfl vortices, and the details are worked out for {hreegrable case

of three vortices. The system under consideration i§35iDvariant; the associated
momentum map generated by this SDsymmetry is equivariant and corresponds

to the moment of vorticity. Poisson reduction corresponding to this symmetry is
performed; the quotient space is constructed and its Poisson bracket structure and
symplectic leaves are found explicitly. The stability of relative equilibria is ana-
lyzed by the energy—momentum method. Explicit criteria for stability of different
configurations with generic and nongeneric momenta are obtained. In each case a
group of transformations is specified, modulo which one has stability in the original
(unreducedl phase space. Special attention is given to the distinction between the
cases when the relative equilibrium is a nongreat circle equilateral triangle and
when the vortices line up on a great circle. 1®98 American Institute of Physics.
[S0022-24888)01906-9

I. INTRODUCTION

The problem of vortex motion has a long and interesting history. It was Helnthotip
introduced the model that is referred to today as point vortices. Several of Helmholtz’ contempo-
raries immediately seized upon and developed the treasures in his paper, such as KRigsfthoff
his student Gibli. An account of some of the history of this problem can be found in Aref, Rott
and Thomanhand Kidambi and Newtofh.

We mention a few more historical facts relevant to the present paper. The problem of con-
figurations of vortices that could move without change of shape, narakdiive equilibriain the
language of Poincaravas analyzed by Thomsdrthe later Lord Kelvin, and stability aspects of
this motion were studied in his later paper, Thom&dihe geometric construction was rediscov-
ered, updated and added to by Novikavcentury later for the case of equal strength vortices.
Syngé developed a qualitative classification of all possible motions of three planar vortices and
was the first to introduce trilinear coordinates. Arafso treats the case of three vortices of general
strength.

The paper by Bogomold® contains the first systematic and thorough derivation of the equa-
tions of motion for point vortices on both rotating and nonrotating spheres. A later paper of
Bogomolov! contains an analysis of the motion of three identical point vortices on the sphere,
generalizing the planar result by Novikdhe paper by Kidambi and Newtbireats the case of
three vortices on a sphere for general vortex strengths, thus generalizing the planar results of
Syngé and Aref®

The topology of the problem of vortices moving on a sphere is considered by Kifwvan,
though this paper mainly deals with the symplectic reduciionthe sense of Marsden and
Weinsteirt®) of the problem and the study of the topology of the symplectically reduced phase
spaces and the number of equilibria, by computing, in the spirit of Staleme topological
invariants, such as Betti numbers.

The dynamics ofN vortices on a sphere is a Hamiltonian systéee, e.g., Kidambi and
Newtorf and references therginThis Hamiltonian structure can be obtained using general reduc-
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tion techniques starting with the geometrical description of ideal hydrodynamics in terms of
diffeomorphism groups; see Marsden and Weinsteamd Arnold and Khesif®

In this paper we explicitly carry out Poisson reduction for the 3-vortex problem on a sphere.
We calculate the induced Poisson structure on the Poisson reduced space and analyze the associ-
ated symplectic stratification. Furthermore, relative equilibria are classified and their stability is
determined by the energy—momentum metksee Marsdelf and references thergiriThe use of
the energy—momentum method for the stability of vortices was studied for certain planar cases by
Lewis and Ratid’ As in the basic example of the rigid body, stability in the reduced space can
also be studied by considering intersections of the energy levels with the symplectic leaves.

A. The phase space and its Poisson structure

The phase space of the dynamical systeml-afortices moving on the two sphere consists of
N copies of a sphere, nameB=S?x---x S? regarded as being embeddedNncopies of three
spaceR3N as the set defined bjx,|=R, whereR is the radius of the sphere amd=1,... N
labels the location of thath vortex. There are nonzero vortex strengihsascribed to each
vortex; i.e., to eacl®?. The Poisson structure d® is given by

R
3= = (1)

where{ , }, is the Poisson structure on tmeh copy of S* corresponding to the natural area
symplectic form onS?; that is, the Poisson structure in each copyRdfis the standard Lie—
Poisson structure oR® considered aso(3)*, the dual of the Lie algebra of the rotation group
SOR). (See, for example, Marsden and R&ifor the basic definitions used her&@he restriction
of the Lie—Poisson bracket operation B8R to a sphergwhich is a symplectic leaf imo(3)*]
defines an area form. For two functioRsH on thenth copy of R®, the Lie—Poisson structure is

{F!H}n(xn):_Xn'(VanVnH)r (2)

where x denotes the vector cross product.

B. The symmetry group and momentum map

Consider the diagonal action of the group (30on P defined by rotations in each®. This
action is canonical with respect to the Poisson structliye The corresponding Lie algebra is
naturally identified withR® (having the vector product as its Lie bracket operatamd we write
& for the vector inR® corresponding to the matrige so(3); thus,

s0(3)=(R3,x), ie., [£n]=&xy for any & neso(3). ®)

The vector field of infinitesimal transformations corresponding to an eleghienthe Lie algebra
is given by

d
&p(X) :zaexp(gt)-x =(EXXq, ... ,EXXN). 4
t=0

The spaceo(3)*, which, as mentioned above, is the dual of the Lie algeb(8), is equipped
with the natural Lie—Poisson structure given (& (after identifying the dual ofR® with itself
using the standard dot product &).

Recall that amomentum map:P—so(3)*=R? for this action is defined in terms of the
Poisson bracket of an arbitrary functiéhon P by

{F.3(&)}=¢&p[F],
whereJ:so(3)— C*(P) is related toJ by

I8 (2)=(I(2),¢),
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for all xe P, £es0(3), andwhere(-,-) is the natural paring between the Lie algebra and its dual.
It is readily checked that the momentum map is proportional to the moment of vorticity and is
given by

N
I(x)=— n; T, - (5)

x|~

Denote its components bi~= (£,7,.). The momentum map isot surjectivesince
max Ty — X [Tl << [Tl (6)
n m#n n

Denote the range af by .%2.
The momentum map isquivariant that is,

Ad-1(I(x)=3(9(x)), @)

for all ge SO(3).Here, the map Afl:s0(3)* —s0(3)*, defined for eack e SO(3), denotes the
coadjoint action of S(B) on so(3)*. That one can find arquivariantmomentum map is con-
sistent with general theorems for compact or semisimple groups. In our case, this can be seen
directly from (5) as the coadjoint action corresponds simply to rotations in the dual space
s0(3)*=R3.

It follows from equivariance ofl or directly, that]|J||? is invariant under the coadjoint action.
Hence, smooth functions §8||? are also invariant. Thus, = (b, ,b,,b3) € R® are coordinates in
the dualso(3)*, then any smooth function dib|? is a Casimir function. Correspondingly, the
generic symplectic leaves @b(3)* are spheres defined by the level sgif’=const0. Note
that as S@) is compact, the action of it on bofd andso(3)* is proper.

C. The Hamiltonian

The Hamiltonian describing the motion Nfvortices on the surface of a sphere of radRis
given by (see, e.g., Kidambi and Newtdn

1
H= e 2 Tnl'n In(5,), (8)

Wherelﬁm=2(R2—xm~xn) is the square of the chord distance between two vortices with positions
Xy, andx,. The constraintdx,|=R are assumed. Notice that the Hamiltonian is invariant with
respect to the diagonal action of 8D on P described above. Hence, the momentum rdap
defined by(5) is constant along the flow of this Hamiltonian.

II. POISSON AND SYMPLECTIC REDUCTION

A. Poisson quotients

In performing Poisson reduction, one normally constructs the quotient space by the symmetry
group and calculates its naturally induced Poisson bracket. As is well known, singularities in the
guotient space may arise if the group action on the phase space is not free. Strictly speaking, the
phase space of the problem is 18tx - --x S? but rather

SZX“'XSZ\ Zk Ui #inBig iy

whereAil...ikz{x| any two or more of; coincidg. This is because the self-interaction and col-
lision of vortices(which lead to infinite energyhave been excluded from consideration. This
restriction guarantees that the diagonal action of30n P is free providedN=3, i.e., there are

3 or more vortices. The action is also proper, as was mentioned above.
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Thus, the quotient T P/SO(3) is a smooth2N — 3 dimensional Poisson manifaldh coor-
dinatizing this quotient we shall use the quantiiiﬁ:,s,, which are functions o that are invariant
with respect to the S@) action, with the conditioni;rznn# 0. In general, there aret12(N—2)
=2N-3 independent functionk,,, and other invariant functions can be expressed in terms of
them.

To describe a configuration &f vortices on a sphergip to a global rotation it is sufficient
to specify the chord distance between some two vortices and the chord distances from the remain-
ing N—2 to those two(to remove the ambiguity of reflection consider, for example, a stereo-
graphic projection and choose two vortices such that all the rest lie to one side of the line
connecting those two

When 3 or more vortices are aligned on a great circle, this coordinate system is degenerate,
i.e., there are less tharN2- 3 independent function, ,, and so we shall introduce other coor-
dinates in the neighborhood of such points in the quotient space. Specifically, it is easy to see that
the differentials of the three square distances associated to three vortices are linearly dependent
when the three vortices lie on a great circle. This analysis, obviously, agrees with the dimension
of the Poisson quotient. Also, the variabll:—.f'ﬁ‘.n naturally appear in the Hamiltonian for the
N-vortex problem on the sphere, which makes the calculation of the reduced Hamiltoe&sy.

It follows from (5) that the square of the momentum map is given by

2 1
_Ean I‘nrmlﬁmv (9)

p=pp=( S,

which, as we mentioned, is invariant under the($Cction. Other invariants are given H)&m.
Denotel’=XTI", and define a mag ,:T—R by

D= (D) A1)+ 5z S TolnlZ,, (10

n<m

Notice that the relatiori9) between the variablel%m andJ can be expressed d5;(l,,,2) =0.

B. Reduction for the 3-vortex problem

Now we consider the 3-vortex problem and the structure of the corresponding Poisson re-
duced space in more detail. The phase space of the 3-vortex problem is trivial in a sense that it is
diffeomorphic to a product of S@) with a “shape-phase spacelU; that is, P=SO(3)xX U,
where

U={(a,a;,a,)|—R<a<R,0<a;+ ap,<2m,a;<a,} CR3. (11

Here,a can be interpreted as the height of the triangle of the vortices with respect to the sphere

and«a,, corresponds to an angle opposite thik vortex. For the computations we will use another

atlas which consists of three charts, two of which are nearly identical—they differ only in the

orientation and are connected byZa reflection. That is, for the same chord distances vectors

X1,X2,X3 can form a right-handed or left-handed coordinate system, corresponding to different

orientations and thus defining two different configurations, one in each of these two charts.
Denote the coordinates on these chartsaly:15,,a,=1%;,a3=12,, so that thea, are the

squares of the sides of the triangle inscribed in a circle of raditiR. Thus, all admissible values

of a,, can be parameterized by any two anglges «,,. The chart can be given parametrically by

an open set”C R® defined as the set of triplesi{,a,,a3) given by

a;=2r%(1—cosa;), a,=2r2(1—cosay,), az=2r2(1—cod a;+ay)), (12

where 0<a;+ ap<27r, 0<r<R. The third chart contains an open neighborhood of the set of
great circles and smoothly connects different orientations. Indeed, for great oifclescome
linearly dependent, and, ,x,,X5 fail to define either the right- or left-handed coordinate system.
The chart can be coordinatized by=x; - (X,XX3), i.e., the orientable volume of the parallelepi-
ped formed by the vectors; ,x,,x3, and any two chord distances ,a,,. The sign ofV deter-



5898 J. Math. Phys., Vol. 39, No. 11, November 1998 S. Pekarsky and J. E. Marsden

mines the orientatioriby distinguishing between right- and left-handed coordinate sy$tants
thus specifies one of the above two charts, whle 0 corresponds to the great circles. The
change of coordinates is checked to be nondegenerate in the open intersections of the charts.
We summarize our results on Poisson reduction for the 3-vortex problem in the following.
Proposition 11.1 (Poisson reduction for the 3-vortex problem): The quotienPTSO(3)is a
smooth3 dimensional manifold diffeomorphic to the shape phase space U defined by (11). The
natural projection of P to T is a surjective submersion with fibers being the SO(3)-orbits on P
The manifold T carries the quotient Poisson structure given as follows in the coordinate
charts described above. Let f and h be given functions defined on theGdt and let
(a1,a2,a3) lie in the setd® ,(a;,a,,a3)=0. Then

RV
{f’h}T(alyaZ!aS):quDIu(VfXVh)1 (13)

where V is regarded as a function af its sign, which corresponds to different orientations,
distinguishes between the two cha#s The Poisson bracket along the set of great circles is given
by the following expression:

oy B of oh af oh . of oh of oh 14
{f.h}r(V,a;,a3)=B; da, N oV da, 3l vag oV oV dag)’ @9
Here
2(a;ta,—az)R*—aja, 2(ay+az—a;)R*—azas
B,=4R -
Fl F3
and

2(ay,+az—a;)R?—a,a; 2(a;+az—a,)R*—aa
I, ry

B;=4R

in which g is regarded as a function of.,aas (since they are dependent wher=\).

Casimir functions on T are generated iy, ; that is, any function ofd, is a Casimir
function. The level sets, =0, determine the symplectic leaves; these leaves are isomorphic to
the symplectic-reduced spacegPJ‘l(,u)/SO(3)M. The generic leaves are those not containing
the great circle equilibria with1=0 and are open planes that foliat&. For every fixed choice of
I',, they are parallel to each other and none of them contains the central ljreaa=a;. If O
e RangeJ, then there is a unique nongeneric zero dimensional symplectic leaf that corresponds
to a great circle configuration witli=0.

Proof: DefineF = for, wherem:P—T is the projection. The Poisson bracket Bris given
by (1) and(2). One computes, in a straightforward wd¥,,H} using the chain rule to gét.3).

Then (14) is obtained upon change of coordinates in the chart intersections and Séttig
afterwards; we omit here the required simple but tedious calculations.

The structure of generic symplectic leaves follows from the linearity of the Casimir function
(10). O

A HamiltonianH on P that is invariant under the diagonal action of @0induces a reduced
Hamiltonianh on T=P/SO(3). Thecorresponding reduced equations on the lealvgs-0 in.7”
are checked to be given by the followiri§uler-like) equations(see Kummeér and Kirk and
Marsden and Silbé?):

4R3V
L0

a= VhxVo,, (15

wherea=(a;,a,,a3).
For the Hamiltonian8) the reduced equations are
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VF
R

1 1

;= a—j—a—k \ (16)

where (,],k) is a cyclic permutation of1,2,3. Along the set of great circles the equations are
represented in a different way, as is the Poisson bracket; in fact, they are given by

ar,—

8 4T
a; (F3+Ty)

. 1 az—a, a;—ap
V=g 2R (T'1+T3)+ (Fy+T9)+
3

a, a

: 7

1
- ﬁ(aS(Fl_F2)+a2(F3_F1)+a1(r2_r3))

together witha,=0 andaz=0.

These results reproduce, in the spirit of geometric mechanics, some of the results of Kidambi
and Newtorf. For instance, the second invariant in this reference is interpreted as a linear function
of the square of the momentum madld||?. They differ only in an overall factor and an additive
constant. As it was mentioned aboVd||?> determines the symplectic leavessis{3)* and natu-
rally leads to conserved quantities.

[ll. STABILITY OF RELATIVE EQUILIBRIA
A. The energy—momentum method

We will now utilize the energy—momentum meth¢ke Marsdel? for a summary and ref-
erences for the analysis of the stability afelative equilibrig i.e., dynamical orbits with initial
conditionsx, such thatx(t) =expEt)x. for some Lie algebra eleme@t and any timet. As is
well known for relative equilibria, th@augmented energfunction ng::H—(J—,ue,gQ has a
critical point atx., whereu.=J(X,) is the value of the momentum at the relative equilibrium. For
notational convenience we will occasionally omit the subsaipt

The orbital stability of a relative equilibrium is equivalent to the stability of the corresponding
equilibrium of the reduced system that is induced on the symplectic leRyesf the quotient
manifold P/SO(3). Theenergy momentum method is designed to enable one to test for orbital
stability directly on the unreduced manifold by constructing a subspaceéCT, P which is
isomorphic toTy P, This is done by considering a tangent space to the level set of constant
momentumJ~1(u.) and eliminating the neutrally stable directions associated to the isotropy
subgroup,

SO(3),, :={g e SO3)|Ad ue= puc}-

The energy—momentum method determines stability by examining definiteness of the second
variation onge restricted to the subspacg€. A detailed description of this method can be found
in Simo, Lewis and Marsdeft.
If one has a definite second variation, then Patrick’s theoisee Patrick) guarantees sta-
bility modulo the isotropy subgroup, provided its action®iis proper and the Lie algebra admits
an inner product invariant under the adjoint action of the isotropy subgroup. Note tha{@3siSO
compact, the assumptions of Patrick’s theorem are automatically satisfied for our applications.
As was mentioned above, relative equilibria are critical points of the augmented Hamiltonian
H§. For variational calculations, we extend all functionso functions on the ambient space
RN, and then restrict variations to the tangent space tay requiring

oF(x)- =0,

for all »e T,P. For the augmented Hamiltonian correspondingd)o this results in the following
conditions onx:

I, 1 Xn I,
E g(X)_ZﬂT_R r;r F“I_ﬁ_r —Krﬁzxr, (18)
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wherek, are constants to be determined.

B. Equidistant relative equilibria

An equidistant configurationis, by definition, one that sc";\tisfi<42$n=l2 for all m#n. What-
ever its dynamics, such a configuration is possible onlyNer2,3,4 (this follows by geometric
arguments similar to those used for the study of regular polytopes in three);spacexclude the
simple caseN=2 from our considerations.

To verify that an equidistant configuration is a relative equilibrium, one need only check that
conditions(18) are satisfied. It is easy to see that

1 1
§00= 527 2 Te=—5-23() (19

solves(18) with «,=T", /2|2, Notice, that in(19) the vectorst andJ have opposite directions.
These observations prove the following.

Proposition 11l.1: Equidistant configurations of relative equilibria satisfyidfx.)#0 are
possible only for N3 and 4 and are given by equilateral triangles and a tetrahedron, respec-
tively; the associated values of the momentum and the Lie algebra element for these relative
equilibria satisfy (19).

Condition (18) together withé=0 definesstatic equilibria It follows from (19) that equidis-
tant static equilibria are possible only in the degenerate case of zero momentum. This necessarily
implies forN= 3 that the vortices lie on a great circle, and for biith 3 andN=4 that alll", are
equal, i.e.I',=T. Moreover, a tetrahedral configuration with zero momenfsn® is necessarily
a static equilibrium.

C. Great circle relative equilibria

For N=3 vortices, we have the following classification gfeat circle equilibria (see
Kidambi and Newtofy; recall the notations, =13;,a,=1%;,a;=1%,.
1. Generic momentum, J(x,)#0

General relative equilibria correspond to vortices lying on a great ciesid thus satisfying
V=0) and also satisfying the following condition:

ax
a

ax as
(Fp+Tp)+ (I's+T'5)

az—a; a;—
2R
a

a, (F1+T3)+

3 1

1
_ﬁ(as(rl_rz)"‘az(rs_rl)+al(rz_rs))zoy (20)

obtained by settiny=0 in (17). This implicit formula determines another relatitn addition to
V=0), betweera,, a, anda; for each fixed set of’s. This is a nonlinear equation and thus can
have multiple solutions.

(a) Isosceles triangular great circle equilibria. A particular family fosceles triangular
relative equilibria for arbitrary values ofl’s is given by the following configuration:

a;=a,=2R? az=4R? (21

or, equivalently,a; = a,= 7/2, a3= 7, as well as configurations obtained from it by cyclic per-
mutations of indices. The whole configuration rotates around the vector

1
0= 722300 (22

and the constants,, in (18) are given by
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I'y I' I' I'y I'y
“4nR? 87R? 2T 4nR?T 8aRYT 3T 4zR%

(b) Equilateral triangular great circle equilibria. A great circle equilateral triangle relative
equilibrium with 12, _=12=3R? and ¢ given by (19).

Note: When the termequilateral triangle relative equilibriunis used, and we do not append
“great circle,” we will mean that it is anongreat circle equilateral triangle relative equilibrium

K1

2. Degenerate momentum, J(X.)=0

In this case, the vortices again lie on a great circle, and the whole configuration rotates around
the vector

Fixg Toxp  Taxg

1
E§x)=- 5= 23

12 12 12
23 13 12
Remarks.

(1) Another specific family of great circle solutions can be found in case two df'thare equal;
for instance,I';=T",. In fact, any isosceles triangle with the corresponding sides of the
triangle being also equal, that ig;=a, for I'y=TI",, solves to(20) and hence is a relative
equilibrium for any value of’;.

(2) If we consider the “inverse” problem, namely, given a configuration on a great circld find
satisfying(20) so that this configuration is a relative equilibrium, then condit@® becomes
a linear equation if",, of the form

Bal'1+ Bol'o+Bsl'3=0,

whereB,= B,(a;,a,,a3) are functions of a great circle configuration. One would expect this
to have a two parameter family of solutions.

The structure of the symplectic leaves sheds light on the stability of relative equilibria of the
system. In particular, generically, great circle configurations satisfi@fgform a family of one
dimensional curves in the Poisson manifdlthat intersect symplectic leaves in a point. Similarly,
equilateral configurations are isolated points within the symplectic leaves, and stability analysis is
done by restricting a proper second variation to the tangent space to these leaves.

D. Geometry of the tangent space of phase space

Following the outline in the beginning of this section, consider a gemeglar relative
equilibriumx,, that is, its symmetry subgroup is finite, i.e., for each nonzero elegehthe Lie
algebra, the corresponding infinitesimal generator evaluated ,atlenotedés(X.), is honzero.
Then, the isotropy subgroup of the corresponding nonzero momentum paké(x.) is the
group SQ@2) of rotations around the vectdr For u.=0 the isotropy subgroup is §8) itself; (the
stability in this is case is simple and will be considered in the end of the sgcliba isotropy Lie
subalgebra is defined by

Pyl IS]

E=0J(xe)=—

50(3)ue:[§ER3 > TXen, 0 @ constar}'. (24
n

Hence, the tangent space to the SQ(®)bit at X, which corresponds to the neutrally stable
direction, is given by
Ty (SQ3),,, - Xe) ={£XXe| €= 0I(Xo)}, (25

where agairp is a constant. For regular relative equilibria, Re(X,) =TXeJ‘1(,ue). The deriva-

tive of the momentum mapJ as a mapping frorT P to TR® can be easily computed frofB) to
produce
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1
DJ(x)-y=— ﬁ zn: oY,

wherey:=(yy, ... yn) € TxP andy, e T, S is a tangent vector to the sphes at the pointx,,.
Thus, the kernel is determined by the following condition:

KerDJ(x) = [ yeT,P

> Fnyn=0]. (26)
and is N—3 dimensional.
Using Egs.(25) and(26) it is easy to see that

Txe(SO(S)#- Xe) CKerDJ(Xe).

Indeed,

> ye=2> [hedxx,=0eJdxJ=0.
n n

We proceed to find a subspate_KerDJ(x,) that is transversal to the tangent space to the
SO(3), orbit atx,. It is done in the following way. Chose two arbitrary vect®s” and D(?
such that the plane through them contains no vortices. Then, tangent vectors at each of the
vortices,

1 1 2 2
Y=y DB xx,, Y=y D@ xx, 27

spanT,P. Notice that(27) guarantees that aj,lﬂ) lie in a plane perpendicular . Thus, for
eachD" there areN—2 iindependent zero linear combinationsygk. Also, it follows from (26)
that if the coefficientsy" are chosen to satisfy

EFn')’g)Xn:D(i) or EFnYS)XnZO, i=12, (28)
n n

then the corresponding tangent vectors belong to th®HBer
_Any of the equalities in(28) hasN—3+1=N—2 linearly independent solutions for each
DM, and, hence, a transversal subspaces defined by

=sparfyD:=(y'DP xx,), y?:=(y2D? xx,)}, (29

and dim&=2N—4. The isotropy subgroup transformations, i.e., rotations around theJaiss
determined by tangent vectors

1
Yni=— R JIXXq

and corresponds to an additional one-dimensional neutrally stable subspac®ih Ker
We note that special choice BX") would result in a diagonal structure of the second variation
of H.. We shall see an instance of this below.

E. Definiteness of the second variation

For the calculation of the second variation the Lagrange multiplier method is used. Define the
extended Hamiltonian H

H§::H§+; An(C—R?),
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where Q(ﬁ— R?)=0 constrains the motion of vortices to the sph&fe The Lagrange multipliers
\, are determined by the conditio?ﬁg(xe)=0 and are given by
Knl'y

M= oRE

where k, are determined froni18). Then the second variation &t is well-defined as a bilinear
form on Ty P It is given by the following expression:

T, Xt x!

- 2\, O — r,——, r=s,
(92H§ 3 r 7TR2 r;r n Iﬁf

| T,

- 27R?IZ

(30

X
42 |Szr . I#s.

rs

In the case of an equilateral triangle configuration, Wl“fgnclz, one can choose
D(l):X1+X2 and D(Z):X2+X3,

as a set of vectors defining a basis of the transversal subspamecording to(27) with the
constantsy{ that satisfy conditiong28) being given by{"=1/T",y{"=1I,,y{"=0 and
Y&=0, yP=1I',,7{?)=1/I'5. Then, the restriction of the second variation to it is given by the
following expression:

L sy
52|‘_|‘|,:V_2 Ty T (31
477 rR2|4 r, Iy’
I, T,

The second variation is definite provided (ﬁﬂg) is positive. Hence, the following.

Theorem II1.2 (stability of nongreat circle equilateral triangles): An equilateral triangle
configuration of nongreat circle relative equilibrig, is stable modul&O(2) rotations around the
vectorJ(X,) if

> .I,>0, (32)
n<m

and unstable if
> I[,<0. (33
n<m

This theorem generalizes the known results of S§rigethe stability of equilateral relative
equilibria of 3 vortices on a plane. Indeed, conditid®8) and(33) are independent of the radius
R. Thus, in the limitR— < the spherical stability conditions agree with those for the planar case.

Conjecture: The conditio ., I',I',,=0 corresponds to a (degenerate) Hamiltonian bifur-
cation.

Next we analyze stability for the family of great circle relative equilibria given(Bg).
Choose

DW=x,+x; and D®@:(D? x,)=0, |D?|=R,

as a set of vectors defining a basis of the transversal subspasecording to(27) with the
constantsy{!) satisfying conditions(28) being given byy{Y=1/1r";,{Y=0, y{"=1I"; and
Y@ =1, y=1I",,y?>=0. Then we obtain the following expression for the restriction of the
second variation:
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T2 0
52H|_:i I
A E+E)_2<1+E+E
T Iy Iy

Stability then follows from a direct analysis of its definiteness; that is, whether or not the two
diagonal entries have the same sign or not. In other words, one has stability if the determinant is
positive and instability if it is negative. Carrying out this simple calculation gives the following
result.

Theorem II1.3 (stability of isosceles triangle great circle equilibrig: A great circle con-
figuration of relative equilibriunx, given by (21) isstableif

Pi+05> 2 Tol'm (34
and unstableif
M2472< > Tl. (35)
n<m

The stability is modul&Q(2) rotations aroundJ(Xe).

F. Stability of great circle equilateral triangle relative equilibria

The stability analysis of a GCET, a great circle equilateral triangle relative equilibrium is
different from the nongreat circle equilateral triangle case. The reason is that the two-dimensional
subspace to which the second variation of the augmented Hamiltonian is restricted in the general
case fails to be a transversal subspace t@Xherbit (rotations around) within KerDJ but rather
degenerates to a one-dimensional subspace. A complimentary direction transversal to the plane of
the triangle has to be taken into account similar to the case of other great circle relative equilibria.
Using the notations developed in the section on the geometry of the tangent space, we choose
DW=nx,+mx, and D:(D@,x,)=0, [D®|=R as a set of vectors defining a basis of the
transversal subspac¢ according to(27) with the constants/ﬂ) satisfying condition§28) being
given by y{V'=n/T';,yY=miT',,y{"=0 and{P=1", /¥ =115,y =11;.

Using this basis, a straightforward computation gives the following expression for the restric-
tion of the second variation:

0 0

SPHl = 1

R PR

127 | 0 9— (T +T,+T)

One concludes from this ththese GCET equilibria are at best, neutrally stable

In the paragraphs below, we explore this in a little more detail and identify the source of the
zero eigenvector. Compute the gradient of the Casimir funciign given by equation(10),
which gives the normal direction to the symplectic leaf:

oD 2 I oxo+ T 3X5
V(I)M=( (?xﬂ) =Rz I'1Toxg+ a1 5xs

Evaluate this gradient at the point corresponding to the GCET, and take the gradient in the
direction corresponding to the family of equilateral triangles. To determine such a direction, recall
that in the coordinates of the trivialization this family is defined by the following cueve:
=a,a,=a,=2m/3, wherea is the curve parameter. The tangent vector to this cur&,&0

and so in coordinates of the ambient space, the variation of the GCET configuration along the
family of equilateral triangles is given by the following expression:
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X1 X X5
Wocet= X1 XXo | e T,P,

i.e., the same tangent vectorxx, is attached at each vortex position.

Intuitively, one can understand this in the following way. Fix a horizontal plane going through
the center of the sphere, intersecting it along a great circle. Inscribe an equilateral triangle giving
us precisely the GCET configuration. Constrain each vortex to move along a great circle going
through its original position and the North Pole. Then, shifting the plane vertically up and down
and keeping track on its cross-section with the sphere, defines a family of equilateral triangles.
Obviously, the vector of infinitesimal translation at the GCET configuration is givew gyt
above, i.e., at each vortex the vector points strictly vertically.

The gradientV® , evaluated orwgcer at GCET is zero; the volume functiov, being the
mixed vector product, vanishes at the great circle. This means that such a direction, i.e., the
equilateral triangle family of equilibria, is tangential to the leaf at this point. In this sense the
GCET is a nonisolated equilibrium within its symplectic leaf. Thus, further analysis of the stability
of the GCET equilibrium requires applications of some other, nonstandard techniques.

The preceding considerations are not applicable to a nongreat circle equilateral triangle con-
figuration, for which one shows that in the coordinates given by chord distéygethe family of
equilateral triangles given Hy,,=1 for all n,m intersects symplectic leaves, which are plarses
equation(10), @, is linear, transversally

G. The degenerate case J (x.)=0

Stability in this case is a simple task and can be done by a dimension count. This results in the
following theorem.

Theorem I11.4 (stability of great circle equilibria with J =0): A relative equilibrium with
zero vorticity momentund(x.) =0, which necessarily lies on a great circle, &able modulo
SQO3).

Proof: The isotropy subgroup SO(3), is, in this case, the whole group &)and hence the
dimension ofJfl(O)/SO(3)u:0 is zero. This implies that

KerDJ(x) =T, (SQA3) ,—-X).

The assumptions of Patrick’s theorem are satisfied a8)S® compact, and so this proves the
theorem. O

H. Stability in the reduced space

One can also study the stability of equidistant configurations of fixed equilibria in the reduced
space by analyzing level sets of the integrals of motion. In general, each such integral defines a
codimension 1 surface, and trajectories are confined to lie in the intersection of these surfaces. In
our case, the flow lines are given by intersecting the 2d energy lavet®nst with the coadjoint
orbits which are planes. This is analogous to the rigid body flow on the angular momentum
spheres, where the orbits are given by the intersection of the energy ellipseictnst with the
coadjoint orbits that are two-spherésee, e.g., Marsden and R&flu Similar to the Energy—
Casimir method, this approach, while defining stability conditions, does not specify the transfor-
mations in the unreduced space modulo which the stability is understood.

The equidistant fixed equilibria il are determined by the central liag=a,=asz=a. In the
neighborhood of such an equilibriumm=a(1+ ¢;), wheree; are small, and the energy levels are
given by

1
T 4nR? In anzm Fal'mt Faloes+ T sea+ ol 'se;

h

1 1 2 2 2
- m E(F1F263+F1F362+F2F361)+ P (36)
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The symplectic leaves are planes; up to a constant they are given by a linear(Béyt rhus,
in a small enough neighborhood of an equilibrium, trajectories are determined by the intersections
of these planes with the surfaces defined by the quadratic p&@6jinDepending on the mutual
signs ofI"’s these surfaces are either ellipsoids or hyperboloids of one sheet or hyperboloids of
two sheets. For instance, if dll, have the same sign, then the quadratic surface is an ellipsoid,
and its intersection with any plane is an ellipse. Hence, the fixed point is surrounded by closed
planar orbits and is therefore stable. Note that the cond(8@his satisfied. On the contrary, if the
signs ofl", are different, the quadratic surface is an hyperboloid, and its intersections with a plane
are either ellipses or hyperbolas, depending on the position of the plane. This results in either
stable or unstable fixed point, respectively, and is determined precisely by the con(Bgpasd
(33).

IV. CONCLUSIONS

A simple physical system of 3 point vortices on a sphere reveals a surprisingly rich geometri-
cal structure. In this paper we have explicitly constructed the quotient mariifeld/SO(3) of
the problem and calculated its inherited Poisson bracket.

An analysis of the symplectic structure of the symplectic leaves in this quotient manifold
sheds light on the classification of relative equilibria and their stability. By applying the energy—
momentum method, we have found explicit criteria for the stability of different configurations of
relative equilibria with generic and nongeneric momenta. In each case we have specified a group
of transformations modulo which stability in the unreduced space is understood.

In work in progress, we shall explore the link W|th dual pasee Marsden and Weinstéin

and Weinsteiff) more thoroughly. IndeedD/SO(3)H P—>//3 is a full dual pair. This duality is
also one way of viewing noncommutative complete integrability of the 3-vortex problem on a
sphere.

We also will be exploring the geometric pha@e the sense of Marsden, Montgomery and
Ratiu’®) for the three-vortex problem on a sphere.
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