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Sonja Glavaški, Jerrold E. Marsden, and Richard M. Murray 1

Control and Dynamical Systems, 107-81
California Institute of Technology

Pasadena, CA 91125
sonja@cds.caltech.edu, marsden@cds.caltech.edu, murray@indra.caltech.edu

Abstract

We propose a new computationally efficient model-
ing method that captures existing translation symme-
try in a system. To obtain a low order approximate sys-
tem of ODEs prior to performing Karhunen Loeve ex-
pansion we process the available data set using a “cen-
tering” procedure. This approach has been shown to
be efficient in nonlinear scalar wave equations.

1 Introduction

The classical approach to model reduction of non-
linear systems using the Galerkin method and the
Karhunen-Loeve Expansion (KLE) attempts to find an
approximate solution of a PDE in the form of a trun-
cated series expansion given by

û(x, t) =
N∑

n=1

an(t)ϕn(x),

where the mode functions ϕn(x) are based on empirical
data and are generated by the standard KLE methods.
For systems with rotational (periodic) symmetry, the
mode functions are Fourier modes and the order of the
reduced model determined by reasonable criteria for the
truncation point is not small. For a PDE with a travel-
ing wave as a solution, normally this approach will not
give satisfactory results.

In this paper, we propose a new computationally
efficient modeling method that captures existing trans-
lation symmetry in a system by finding an approximate
solution of the governing PDE in the form of a trun-
cated series expansion given by

û(x, t) =
N∑

n=1

an(t)ϕn(x + d(t)). (1)

To generate an optimal set of basis functions ϕn(x),
prior to performing KLE we process the available data
set using a “centering” procedure which involves giv-
ing an appropriate definition of the center of a wave
and moving it to a standard position. The eigenvalues

of the covariance matrix of the “centered” data decay
rapidly and we obtain a low order approximate system
of ODEs. The method may be viewed as a way of im-
plementing the KLE on the space of solutions of the
given PDE modulo a given symmetry group. Viewed
this way, the methodology is quite general and therefore
should be useful in a variety of problems.

To demonstrate the method’s performance we ap-
plied it to a PDE modeling a deep stall cell phenom-
ena in jet engine compressor systems. Rotating stall
is an instability causing a sudden drop in performance
of an engine and feedback control is necessary to pre-
vent it from developing. The most preferred approach
to control design is to use low order models that ade-
quately describe the basic dynamics of a system. Thus,
the three state nonlinear model of Moore and Greitzer
(MG3), a Galerkin truncation onto the first Fourier
mode of the full Moore-Greitzer model developed in [3]
is widely used. The disadvantage of making a Galerkin
projection onto a non-propagating function with fixed
spatial shape is that it does not properly describe how
the stall cell propagates and evolves in simulations. One
usually observes that the stall cell quickly develops a
square like spatial structure. There are also some recent
results [2] in modeling a deep stall cell phenomena lead-
ing to the conclusion that stall cell is a rotating square
wave. To capture this behavior with non-propagating
modes of fixed spatial shape, one needs to include many
modes. The method of centering captures the dynam-
ics of the system with a family of propagating curves
and significantly lowers the order of a model obtained.

2 The Galerkin Projection

The Galerkin method is a discretization scheme for
PDEs based on the separation of variables approach
which attempts to find an approximate solution in the
form of a truncated series expansion given by

û(x, t) =
N∑

n=1

an(t)ϕn(x) + ū(x), (2)
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where the ϕn(x) are known as trial functions and
ū(x) = limT→∞

1
T

∫ T

0
u(x, t)dt. In this way the orig-

inal infinite dimensional system is approximated by
an N dimensional system. We assume that u be-
longs to a Hilbert space L2([0, 2π]) with inner product
〈f, g〉 =

∫ 2π

0
f(x)g∗(x)dx.

Suppose we have a system governed by the PDE

∂u

∂t
= D(u) u : [0, 2π] × (0,∞) → R

with appropriate boundary conditions and initial con-
ditions, where D(·) is a nonlinear operator that may
involve spatial derivatives and/or integrals. To be sure
that the original PDE is satisfied as closely as possi-
ble by (2) we choose time dependent coefficients an(t)
in such a way that they minimize, with respect to a
suitable norm, the residual error produced by using (2)
instead of the exact solution. We obtain a reduced or-
der model, namely the system of N ODEs:

ȧi(t) = 〈D
(

N∑
n=1

an(t)ϕn(x) + ū(x)

)
, ϕi(x)〉 (3)

where i = 1, . . . , N. The initial conditions are deter-
mined by a system of N linear equations

ai(0) = 〈u(x, 0) − ū(x), ϕi(x)〉 (4)

where i = 1, . . . , N. It is important to notice that to be
able to solve the system of ODEs (3) and (4) one only
needs to select the set of trial functions {ϕn} and the
initial conditions of the original system u(x, 0). Any
complete set of trial functions will suffice, but we focus
on those generated by the KLE.

3 Karhunen-Loeve Expansion

The Karhunen-Loeve Expansion (KLE) is a well
known procedure for extracting a basis for a modal
decomposition from an ensemble of signals, such as
data measured in the course of an experiment. Its
mathematical properties, especially, optimality suggest
that it is the preferred basis to use in many applica-
tions. Karhunen-Loeve expansion provides the most
efficient way of capturing the dominant components
of an infinite-dimensional process with surprisingly few
modes. The KLE technique was introduced in the con-
text of turbulence by Lumley (see [1]) in the late sixties
to analyze experimental data aiming to extract typical
patterns in space and time.

The fundamental idea behind KLE is very prag-
matic. Suppose we have an ensemble {u(k)} of scalar
fields, each being a function u(k) = u(k)(x) defined for
x ∈ [0, 2π]. To find a good representation of members of
{u(k)}, we will need to project each u(k) onto candidate
basis functions, so we assume that the u’s belong to a
Hilbert space L2([0, 2π]).

We want to find a basis {ϕn} for L2([0, 2π]) that
is optimal for the given data set in the sense that the
finite-dimensional representation of the form

û(x, t) =
N∑

n=1

an(t)ϕn(x) + ū(x) (5)

describes typical members of the ensemble better than
representations of the same dimension in any other ba-
sis. To simplify notation we introduce the variation
of u(x, t) from the mean ū(x) and denote it as v(x, t).
The notion of typical implies the use of time average
over an ensemble {u(k)} and optimality is equivalent
to maximizing the averaged normalized projection of
v(x, t) onto {ϕn}.

In general, the existence of the expansion (5) is guar-
anteed under certain conditions by the Karhunen-Loeve
expansion theorem (see [5]), that also provides us with
a method for constructing the orthonormal set of func-
tions {ϕn} and the uncorrelated set of coefficients {an}.

The orthonormal basis functions {ϕn(x)} are found
via the integral equation∫ 2π

0

Rv(x, y)ϕn(y)dy = λnϕn(x), (6)

where
R(x, x′) .= E(u(x)u∗(x′)),

and E(·) stands for time averaging, i.e.

E(f(t)) =
1
T

lim
T→∞

∫ T

0

f(t)dt.

Thus , the optimal basis is given by the eigenfunctions
{ϕn} of the integral equation (6) whose kernel is the
averaged autocorrelation function and in the rest of
the paper they will be called empirical eigenfunc-
tions. If we define the mean energy projection to
be E[| 〈u, ϕn〉 |2], then the eigenvalues {λn} correspond-
ing to an empirical eigenfunction may be interpreted as
the “the mean energy of the process u(x, t) projected
on the ϕn axis in function space.”

Assume that the eigenvalues {λn} corresponding to
{ϕn} have been ordered so that λi+1 > λi for all i.
It can be shown that if {ψn} is some arbitrary set of
orthonormal basis functions in which we expand u(x, t),
then for any value of N

N∑
n=1

E
[
| 〈ϕn, v〉 |2

]
≥

N∑
n=1

[
| 〈ψn, v〉 |2

]
.

Therefore, for a given number of modes N the projec-
tion on the subspace used for modeling the flow will on
average contain the most energy possible compared to
all other linear decompositions.

We consider a linearly independent set of snapshot
data samples {u(1), u(2), . . . , u(M)} which is either a re-
sult of performed physical experiment or generated as
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the numerical solution to a scalar nonlinear PDE. The
averaged snapshot is computed as ū = 1

M

∑M
k=1 u

(k)

and the mean adjusted snapshots are given by v(k) =
u(k) − ū.

For computational purposes, we discretize the spa-
tial domain, which usually leads to a very large spatial
correlation matrix and determining the corresponding
eigenvalue decomposition is extremely costly. Assum-
ing that u(x, t) is an ergodic process, meaning that time
averages equal ensemble averages for each fixed value
of x, we can represent the averaged spatial correlation
function as

R(x, y) = lim
T→∞

1
T

∫ T

0

v(x, t)v(y, t)dt.

The problem of finding empirical eigenfunctions then
reduces to finding eigenvectors fn and eigenvalues λn

of the M ×M matrix C whose elements are given by

(C)ij =
1
M

∫ 2π

0

v(i)(x)v(j)(x)dx

where i, j = 1, . . . ,M. The empirical eigenfunctions are
then computed as linear combinations of the data snap-
shots via

ϕn(x) = [v(1)(x) . . . v(M)(x)]fn

where n = 1, 2, . . . ,M . This approach is known as the
method of snapshots.

4 Symmetry and the Karhunen-Loeve
Expansion

Physical systems may exhibit various types of both
continuous and discrete symmetries. It is of a great
importance to note that while a physical system or its
dynamical system model may well admit a symmetry
group, one can not expect ensembles of observations to
share the full underlying symmetry group. A simple
example of this would be a system with several distinct
attractors. Then the time average of a single solution
will reproduce just one of these attractors and empir-
ical eigenfunctions generated by time averaging data
snapshots obtained in one experimental run have less
symmetry than the original problem. Let

u̇ = f(u) (7)

be an n-dimensional system of ODEs and Γ be a sym-
metry group acting on the phase space R

n, where the
elements γ of Γ are n×n matrices. The equation (7) is
said to be equivariant under Γ if for every γ ∈ Γ the
equation

γf(u) = f(γu)

holds. This implies that if u is a solution of (7), then
so is γu(t).

Adopting the same philosophy for the KLE concept
leads to the conclusion that if ϕn and λn are the em-
pirical eigenvectors and corresponding eigenvalues gen-
erated from a set of experiments {u(k)} of a dynamical
system equivariant under a group Γ then a necessary
condition for the system generating {u(k)} to be er-
godic is that each of the finite dimensional eigenspaces
corresponding to a given empirical eigenvalue be invari-
ant under Γ. This can easily be checked experimentally.
An alternative approach is to assume that a system is
ergodic and use its known symmetries to increase the
size of the ensemble, generating a symmetric data set
{γu(k)} from the available measured ensemble {u(k)}.
This approach has been advocated by Sirovich in [4].

Because of the nature of a stall cell phenomena, we
are interested in rotational symmetry, (called homo-
geneity in the turbulence literature). In this case the
averaged two point correlation R(x, y) is homogeneous
meaning that it depends only on the difference of the
two coordinates, and the eigenfunctions of the integral
equation (6) are Fourier modes. Thus, homogeneity
completely determines the form of the empirical eigen-
functions, whereas ordering of the eigenvalues depends
on the Fourier spectrum of the data involved.

In the case of a stall cell where we have a square
like spatial structure the disadvantage of making a
Galerkin truncation of corresponding ensemble of data
onto Fourier modes is that to capture how the stall
cell propagates and evolves one needs to include a large
number of modes. A natural remedy for this is to try
to capture the dynamics with a family of propagating
curves. We will concentrate on that approach in the
next section.

5 Centering

Starting with this section and throughout the paper
we will concentrate on systems with rotational symme-
try. Thus we will consider systems governed by the
following type of PDE

∂u

∂t
+ ω

∂u

∂x
= D(u) (8)

for u : [0, 2π] × (0,∞) → R, with periodic boundary
conditions, u(0, t) = u(2π, t), and where D(·) is a non-
linear operator that may involve higher order spatial
derivatives. In general these PDEs have a traveling
(rotating) wave solution and we would like to obtain as
few as possible modes necessary to accurately approxi-
mate shape of a propagating wave. To accomplish this,
we have to separate the movement of a solution u(x, t)
from the evolution of a wave shape.

First, we define a center of each member of an avail-
able ensemble {u(k)}

Definition 5.1 Let f(x) be a periodic function defined
on [0, 2π] with period 2π, f(x) = f(x + 2π). Define the
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center C of a wave f(x) to be the number c satisfying
∫ C

0

f(x)2dx =
∫ 2π

C

f(x)2dx.

In order to extract the propagating wave we position
all data snapshots so that their centers are at the same
point. For simplicity and without loss of generality, we
have chosen to place data snapshots centers at π so that∫ π

0

f(x− d)2dx =
∫ 2π

π

f(x− d)2dx.

We call this procedure the centering of a wave. It is
performed using the following iterative procedure.

1. Start with snapshot ut(x) = u(x, t)

2. Compute a center C of the wave ut(x)

3. Shift the wave ut(x) to the right by |π − C|

4. Find the center of ut(x)

5. If converged (C = π), then stop, else go to 3

Suppose that we have an ensemble {u(k)} of scalar
fields, each being a function u(k) = u(k)(x) defined for
the x ∈ [0, 2π]. To find a good representation of the
members of {u(k)}, we center each member of an en-
semble to obtain a centered data ensemble {(uc)(k)}
and then project each (uc)(k) onto candidate basis func-
tions. Because we assumed that the u’s belong to a
Hilbert space L2([0, 2π]), this also holds for the uc’s.

Performing KLE on the centered data set, we find a
basis {ϕn} for L2([0, 2π]) that gives a finite-dimensional
centered data representation of the form

ûc(x, t) =
N∑

n=1

an(t)ϕn(x) + ūc(x).

The original ensemble is then approximated as

û(x, t) =
N∑

n=1

an(t)ϕ(x + d(t)) + ūc(x + d(t)).

6 The Reduced Order Model

Suppose we have a system governed by the PDE (8).
The original attempt was to find an approximate solu-
tion in the form of a truncated series expansion given
by

û(x, t) =
N∑

n=1

an(t)ϕn(x + d(t)) + ūc(x + d(t)), (9)

where the ϕn(x) are trial functions obtained after per-
forming KLE on the centered data ensemble {(uc)(k)}.
This way the original infinite dimensional system is
again approximated by an N dimensional system.

To ensure that the original PDE is satisfied as
closely as possible by (9) we choose time dependent
coefficients an(t) so that the residual error produced by
using (9) instead of the exact solution is minimized. At
any time t we want the residual

r(x, t) =
∂û(x, t)

∂t
+ ω

∂û(x, t)
∂x

−D(û(x, t)) (10)

to be orthogonal to a chosen number of trial functions,
i.e.,

〈r(x, t), ϕi(x + d(t))〉 = 0, i = 1, . . . , N.

Substituting (9) into (10) yields,

r(x, t) =
N∑

n=1

ȧn(t)ϕn(x + d(t)) +

(ḋ + ω)

(
N∑

n=1

an(t)ϕ′
n(x + d(t)) + ūc′(x + d(t))

)
−

D

(
N∑

n=1

an(t)ϕn(x + d(t)) + ūc′(x + d(t))

)

Applying the orthogonality condition and using the or-
thonormality property of the set of trial functions re-
sults in a reduced order model which is a system of N
ordinary differential equations

ȧi(t) = (ḋ + ω)
N∑

n=1

an(t)βin − 〈αn, ϕi(x + d(t))〉 +

(ḋ + ω)
〈
ūc′(x + d(t)), ϕi(x + d(t))

〉
(11)

where

βin = 〈ϕi(x + d(t)), ϕ′
n(x + d(t))〉 ,

αn = D

(
N∑

n=1

an(t)ϕn(x + d(t)) + ūc(x + d(t))

)
.

The initial conditions for the resulting system of ODEs
are determined by a second application of the Galerkin
approach. We force the residual of the initial conditions
r0(x) = u(x, 0) − û(x, 0) to be orthogonal to the first
N basis functions and we obtain a system of N linear
equations.

ai(0) = 〈u(0, x) − ūc(x + d0), ϕi(x + d0)〉 .

Centering separates the evolution of the wave shape and
movement of the wave. The system of ODEs (11) and
(6) model the the evolution of the wave shape. We as-
sume that propagation of the wave can be represented
by the movement of its center, and a single ODE model-
ing movement of the wave center can be extracted from
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d(t) obtained by centering. In the case when d(t) de-
pends linearly on time, and that holds for all the exam-
ples we have considered, waves rotate with a constant
speed and an ODE modeling d(t) is

d(t) = d0 + ḋ(t)t, ḋ(t) = −ω. (12)

Note that to solve the system of ODEs (11), (6), and
(12) one needs to select the set of trial functions {ϕn},
the initial conditions of the original system u(x, 0), and
the initial condition for d(t). We choose trial functions
generated by the KLE performed on the “centered”
data snapshots, and propose determining d0 by cen-
tering the first data snapshot.

7 Computational Results

In this section we will apply model reduction by
centering and KLE to the equation modeling the un-
steady axial flow in the compression system introduced
in [2]. The rotating stall is treated as a large-scale phe-
nomenon, and is a feature of the average flow. The av-
eraging volume is extended over rotor and stator rows
and many blades, and the role of velocity fluctuation in
deep stall instability is emphasized.

∂u

∂t
+ ω

∂u

∂x
= f(u) − 〈f(u)〉 + γ

∂2u

∂x2
, (13)

where u is the axial velocity, t is time, x is angular vari-
able, ω is the velocity of stall cell rotation, f(u) is the
compression system characteristic function, and 〈f(u)〉
is the annulus average of the characteristic function

〈f(u)〉 =
1
2π

∫ 2π

0

f(u)dx. (14)

This is a non dimensional reaction-diffusion type equa-
tion, with cubic nonlinearity. The steady state, nonuni-
form solutions of the equation (13) are the stall cells
that rotate around the annulus with the average veloc-
ity being one half of the rotor velocity. The numerical
existence of such solutions has been shown in [2].

In this section we will show the results of simula-
tion of the equation (13) carried out with ω = 0.5 and
γ = 0.01. The evolution of a small sinusoidal distur-
bance superimposed on the uniform flow for the mean
flow Φ = 0.3 is shown in the Figure 1. Figure 2 shows
a comparison of the mean snapshot of the original data
ensemble and the mean snapshot of the centered data
ensemble. The square wave shape appears immediately
in the shape of a mean snapshot of the centered data en-
semble, whereas the mean snapshot of the original data
ensemble gives no helpful information about the shape
of the rotating wave. Figure 3 shows a comparison of
the first two standard and centered KL modes. The
first two centered modes contain more than 96% of the
energy of the data ensemble. The first two KL modes
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Figure 1: Stall cell evolution, Φ = 0.3 .

contain a bit more than 67% of the original data ensem-
ble energy. Because the square wave develops rather
quickly, most of the data snapshots are just rotated
versions of a square shape, meaning that even though
the system does not exhibit strict SO(2) symmetry, the
KL modes obtained are just Fourier modes. Figure 4
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Figure 2: Mean data of original data snapshots and cen-
tered data snapshots
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Figure 3: First and second KL and centered KL mode.

shows one of the used data snapshots and its recon-
structions ru(x, t) using the first five KL modes and its
reconstructions ruc(x, t) using only the first two cen-
tered KL modes. It is clear that we are outperforming
the classical method by the use of centering.

Once we extracted centered KL modes, and ob-
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Figure 4: Original snapshot of u(x,t) and its reconstruc-
tions by 5 KL modes ru(x, t) and by 2 centered
KL modes ruc(x, t).

tained time varying ODEs that model the deviation of
the PDE solution around the mean square wave, we
would like to justify our model. Thus, we simulate the
original PDE using u(x, 0) =

∑2
i=1 a

0
iϕi(x + d0) as an

initial condition.
We project the results of the simulation onto previ-

ously extracted centered KL modes to obtain a set of
ODEs modeling the wave shape evolution, and we sim-
ulate them. We also simulate our time varying ODE
using a0

1, a
0
2, and d0 as initial conditions, and denote the

computed modal coefficients as ao
i (t). In Figure 5 we

compare the obtained modal coefficients. Our reduced
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Figure 5: Modal coefficients comparison.

order model predicts system behavior rather well.

8 Conclusions

In this paper we considered systems governed by
PDE that have a traveling (rotating) wave solution and
we showed how to obtain as few as possible modes nec-
essary to accurately approximate the shape of a prop-
agating wave. We accomplished this by separating the
movement of a solution u(x, t) and the evolution of a
wave shape.

In order to extract the propagating wave we posi-
tion all data snapshots in such a way that their centers
lie at the same point. For simplicity and without loss of

generality we have chosen to place data snapshots cen-
ters at π, and we call this procedure the centering of a
wave. It is performed using simple iterative procedure.

To demonstrate the method’s performance we ap-
plied it to a PDE modeling a deep stall cell phenomena
(13). It was obvious that we are obtaining more infor-
mation from the available data by centering, and that
we reduce the order of the models needed significantly.
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