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Abstract

In this paper we analyze an alternative formula-
tion of the rigid body equations, their relationship with
the discrete rigid body equations of Moser–Veselov and
their formulation as an optimal control problem. In
addition we discuss a general class of discrete optimal
control problems.
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1 Introduction

The main goal of this paper is to give an alterna-
tive formulation of rigid body equations which is based
on the use of the maximum principle, to establish its
connection with the Moser–Veselov [1991] discrete rigid
body equations, and through this, with problems in nu-
merical analysis.

There has been much interest in recent years in
structured algorithms (such as symplectic methods)
for integrating Hamiltonian systems and, in particu-
lar, rigid body mechanics – see for example McLachlan
and Scovel [1995], Marsden and Wendlandt [1997], and
Marsden, Patrick, and Shkoller [1997] and references
therein. A particular feature of the rigid body equa-
tions is that the discrete form is still integrable in a
precise sense, as shown by Moser and Veselov [1991]
(see also Deift, Li, and Tomei [1992]).
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Our formulation of the equations will be shown to
be useful not only for understanding the discrete rigid
body equations, but for understanding integrability on
the full phase space (not just the reduced dynamics).
Also of interest is understanding the variational formu-
lation of the discrete equations and the link with the
smooth case. In our setting, this is reflected by the use
of the maximum principle.

Our work is related to the study of optimal control
problems on adjoint orbits of Lie groups, defined using
the so-called normal metric and a right-invariant gen-
eralization of it; see Brockett [1994], Bloch and Crouch
[1996], and Bloch, Brockett, and Crouch [1997].

If the flow is generated by the geodesic spray of a
bi-invariant metric, we obtain a pair of coupled double
bracket equations which are explicitly soluble. These
equations are quite different from the double bracket
equations discussed in Brockett [1989], Bloch, Brockett,
and Ratiu [1990, 1992] and Bloch, Flaschka and Ratiu
[1990]. A related paper of interest on explicitly soluble
optimal control problems is that of Faybusovich [1988].

Specifically, we study the generalized rigid body
equations and show that they arise from coupled double
bracket equations and can be written in the form

Q̇ = QΩ

Ṗ = PΩ, (1.1)

where Ω = J−1M and M = PQT − QPT . Here, Q de-
notes the configuration of the body in the body frame,
M is the body angular momentum and J is the (body
fixed) inertia tensor. We shall also give a discrete ver-
sion of these equations and show how they arise from a
discrete optimal control problem.



2 The Geodesic Sprays for Left and Right

Invariant Metrics

In this section we review the classical rigid body
equations and a novel alternative formulation. We
shall also compare the left and right invariant geodesic
sprays, derive the conservation of momentum in each
case, and discuss the duality between these equations.

We recall that the rigid body equations on SO(3)
(or, generally, on SO(n), or any compact Lie group
which is the intersection of the normal and compact
real forms of a complex semisimple Lie group—see e.g.
Ratiu [1980]) may be written (in the left trivialization
of T ∗SO(n)) as

Q̇ = QΩ

Ṁ = [M, Ω] , (2.1)

where Q ∈ SO(n) denotes the configuration space vari-
ables (the attitude of the body), Ω ∈ so(n) is the body
angular velocity, and M := J(Ω) = ΛΩ+ΩΛ ∈ so(n) is
the body angular momentum. Here J : so(n) → so(n)
is the symmetric positive definite operator defined by
J(Ω) = ΛΩ + ΩΛ, where Λ is a diagonal matrix sat-
isfying Λi + Λj > 0 for all i 6= j. These equations
are the geodesic spray on TSO(n), left trivialized as
SO(n) × so(n), relative to the left invariant metric
whose expression at the identity is

〈M1, M2〉 = −
1

4
trace(M1J

−1(M2)) . (2.2)

For Ω ∈ so(n), and Q, P ∈ SO(n), consider the follow-
ing equations for left invariant vector fields:

Q̇ = QΩ

Ṗ = PΩ . (2.3)

Proposition 2.1 If Ω := J−1(M) and M = QT P −
PT Q, then the equations (2.3) imply the rigid body
equations (2.1).

Proof Differentiating M = QT P −PT Q and using the
equations (2.3) gives the second of equations (2.1). �

For this reason, equations (2.3) are called the sym-

metric rigid body equations on SO(n) × SO(n).

Proposition 2.2 For the left invariant geodesic spray
(2.1) on TSO(n) (that is, the generalized rigid body
equations), the spatial angular momentum is given by
m = PQT − QPT and it is conserved along the rigid
body flow.

Proof Observe that m is obtained from the left invari-
ant body angular momentum M by m = QMQT and
is thus the spatial angular momentum. Differentiating
along (2.3) we find ṁ = 0. �

Consider the right invariant Riemannian metric on
SO(n) whose value at the identity is given by (2.2). The
geodesic spray of this metric on TSO(n), right trivial-
ized as SO(n) × so(n), is given by

Q̇ = ωQ

ṁ = [ω, m] . (2.4)

For ω ∈ so(n), consider the right invariant vector fields

Q̇ = ωQ

Ṗ = ωP . (2.5)

As before, it is easy to check that

Proposition 2.3 If ω := J−1(m) and m = PQT −
QPT , then the equations (2.5) imply the geodesic spray
equations (2.4).

Equations (2.5) are thus called the right invariant

symmetric rigid body equations on SO(n)×SO(n).
In this case it follows that the body angular momentum
is M := QT mQ = QT P −PT Q and that it is conserved
along the flow of (2.4).

Given the geodesic spray (2.4) of the right invariant
metric on SO(n), we may solve (in a neighborhood of
m = 0) for the variable P in the expression

m = PQT − QPT .

Locally,

P =
(

esinh−1 m/2
)

Q, (2.6)

since around m = 0 we have

m = esinh−1 m/2 − e− sinh−1 m/2 .

For so(n) however, sinh is many to one, so the two
representations (2.5) and (2.6) are not entirely equiv-
alent. A similar calculation may be done in the left
invariant case.

3 Optimal Control

We begin this section by noting the following result
obtained by Bloch and Crouch [1996].

Proposition 3.1 The optimal control problem

min
u∈so(n)

1

4

∫

〈u, J(u)〉dt (3.1)

subject to Q̇ = uQ, yields the equations (2.5).

The optimal controls in this case are given by

u = J−1(PQT − QPT ) (3.2)

There is a similar result for the left invariant case. We
now show how both the left and right invariant sym-
metric rigid body equations arise from a rather general
optimal control problem that includes the one above as
a special case (see Bloch and Crouch [1996]).

Let u(n) denote the Lie algebra of the unitary group
U(n).



Theorem 3.2 Let Q be a p× q complex matrix and let
u ∈ u(p) and V ∈ u(q). Let Ju and JV be constant
symmetric positive definite operators on the space of
complex p × p and q × q matrices respectively and let
〈·, ·〉 denote the trace inner product 〈A, B〉 = traceA∗B,
where A∗ is the adjoint (transpose conjugate).

Consider the optimal control problem over u(p) ×
u(q)

min
u,V

1

4

∫

{〈u, Juu〉 + 〈V, JV V 〉}dt (3.3)

subject to

Q̇ = uQ − QV. (3.4)

Then the optimal controls are given by

u = J−1
u (PQ∗ − QP ∗)

V = J−1
V (P ∗Q − Q∗P ) . (3.5)

and the optimal evolution of the states Q and costates
P is given by

Q̇ = J−1
u (PQ∗ − QP ∗)Q − QJ−1

V (P ∗Q − Q∗P )

Ṗ = J−1
u (PQ∗ − QP ∗)P − PJ−1

V (P ∗Q − Q∗P ).

(3.6)

We remark that this result does not preclude the
existence of conjugate points.

Note also that Ju and JV are in general different
operators acting on different spaces. In certain case
(see the rigid body below) the spaces and the operators
may be taken to be the same.

We have the immediate corollary:

Corollary 3.3 For Ju and JV equal to the identity, the
optimal control equations for the problem (3.3) subject
to (3.4) are

Q̇ = PQ∗Q + QQ∗P − 2QP ∗Q

Ṗ = 2PQ∗P − QP ∗P − PP ∗Q . (3.7)

Further, in the general case we have

Corollary 3.4 The equations (3.6) are given by the
double double bracket equations

˙̂
Q = [Q̂, Ĵ−1[P̂ , Q̂]]

˙̂
P = [P̂ , Ĵ−1[P̂ , Q̂]] . (3.8)

where Ĵ is the operator diag(Ju, JV ),

Q̂ =

[

0 Q
−Q∗ 0

]

∈ u(p + q), (3.9)

Q is a complex (real) p × q matrix of full rank, Q∗ is
its adjoint, and similarly for P .

This problem was motivated by optimal control
problem on adjoint orbits of compact Lie groups as dis-
cussed in Brockett [1994].

Let g be a complex semisimple Lie algebra, k its
compact real form, and K the corresponding compact
group. In this case a natural drift free control system
on an adjoint orbit of K takes the form

ẋ = [x, u], (3.10)

for x, u ∈ k. Then we may consider the following gener-
alization of the functional suggested by Brockett [1994]

η(x, u) =

∫ tf

0

(

1

2
‖u‖2 − V (x)

)

dt (3.11)

where ‖ · ‖ = 〈·, ·〉1/2 is the norm induced on k by the
negative of the restriction of the Killing form κ(·, ·) on
g to k and V is a smooth function on k. The pairing
between vectors x in g and dual vectors p in g∗ is written
〈p, x〉 = −κ(x, p). For details see Bloch, Brockett and
Crouch [1997].

This general optimal control problem gives the
geodesic flow on complex and real Grassmannians of
q–planes in (n + 1)–space Gq,n+1(C) or Gq,n+1(R).

The complex Grassmannian is given by

U(n + 1)/U(q) × U(p), q + p = n + 1, q ≤ p (3.12)

and the real Grassmannian by

SO(n+1)/SO(q)×SO(p), q+p = n+1, q ≤ p (3.13)

where U(n) is the unitary group and SO(n) the special
orthogonal group. In either case let k = k0 ⊕ m be the
vector space direct sum decomposition corresponding to
K/K0 (K = U(n + 1) or SO(n + 1) and K0 = U(q) ×
U(p) or SO(q)×SO(p)). We may thus represent a point
in the complex (resp. real) Grassmannian by a matrix

Q̂ =

[

0 Q
−Q∗ 0

]

∈ m, (3.14)

where Q is a complex (resp. real) p × q matrix of full
rank and Q∗ is its adjoint. A point in k0 may be repre-
sented by the matrix

K̂ =

[

K1 O
O K2

]

(3.15)

where K1 ∈ u(p) (resp. so(p)) and K2 ∈ u(q) (resp.
so(q)). Define P̂ to be a similarly partitioned matrix.
Then tangent vectors to the Grassmannian may be rep-
resented by matrices of the form [Q̂, K̂].

Since tangent vectors are given by brackets, just
as in the case of orbits, a normal metric may be de-
fined and the geodesic equations on the real or complex
Grassmannian are given by (see Bloch, Brockett, and
Crouch [1997])

˙̂
Q = [Q̂, [P̂ , Q̂]]

˙̂
P = [P̂ , [P̂ , Q̂]] , (3.16)



where Q̂ is given by (3.9) and similarly for P̂ .
In fact the formalism developed here can be com-

bined with the work of Thimm [1981] to give an explicit
proof of complete integrability of the geodesic flow on
symmetric spaces such as the real and complex Grass-
mannians. In particular, it is possible to derive ex-
plicitly a complete set of commuting flows and to prove
their involutivity. This is the subject of Bloch, Brockett
and Crouch [1997]. We consider the case of integrability
of the rigid body below.

The rigid body equations may be given as a singular
case of the double double bracket equations discussed
earlier for the general optimal control problem. Let

Q̂ =

[

0 Q
−QT 0

]

(3.17)

as before and similarly for P̂ , where these matrices are
now taken to lie in so(2n) with the nonzero blocks in
SO(n).

Then we get both the left and right symmetric rigid
body equations simultaneously from our general opti-
mal control problem as follows:

Corollary 3.5 The symmetric rigid body equations on
SO(n) × SO(n) are given by the double double bracket
equations (3.6) or (3.8) if Q, P ∈ SO(n). To obtain
the equations in their left invariant form set JV = J
and J−1

u = 0. To obtain the equations in their right
invariant form set Ju = J and J−1

V = 0.

One sees that the equations (3.6) are literally the
sum of the left and right invariant symmetric rigid body
equations.

4 Moser–Veselov Discretization

We recall now the Moser–Veselov [1991] discrete
rigid body equations. Discretize the configuration ma-
trix and set

Ωk = QT
k Qk−1 (4.1)

Mk = ΩT
k Λ − ΛΩk . (4.2)

Then the Moser–Veselov discrete rigid body equa-
tions are given by:

Mk+1 = ΩkMkΩT
k . (4.3)

These equations can be obtained by a discrete vari-
ational principle (see Moser and Veselov [1991]): one
considers the stationary points of the functional

S =
∑

k

Tr(QkΛQT
k+1) (4.4)

on sequences of orthogonal n × n matrices. The sta-
tionary points of this functional (with fixed endpoints)
are easily obtained by the use of Lagrange multipliers.

We now show how to exhibit these equations in the
spirit of our left invariant symmetric rigid body equa-
tions. Set

Mk = QT
k−1Pk − PT

k Qk−1 . (4.5)

and similarly set

mk = PkQT
k−1 − Qk−1P

T
k . (4.6)

Then

Mk+1 = QT
k Pk+1 − Pk+1Qk = QT

k mk+1Qk .

Since m is conserved, this equals

QT
k mkQk = QT

k Qk−1MkQT
k−1Qk. (4.7)

Setting now Ωk = QT
k Qk−1 we obtain Mk+1 =

ΩkMkΩT
k and thus we have precisely the Moser–Veselov

equations.
One can consider in general discrete versions of me-

chanical systems. A key notion is that of the discrete
Lagrangian which is a map L : Q × Q → R. The im-
portant point here is that the velocity phase space TQ
of Lagrangian mechanics is replaced by Q × Q. What
is particularly interesting about our smooth version of
the rigid body equations is that the covering equations
are naturally on Q × Q, even in this smooth setting.

In the discrete setting, the action integral of La-
grangian mechanics is replaced by an action sum S =
∑

k L(Qk+1, Qk) where Qk ∈ Q, the sum is over dis-
crete time, and the equations are obtained by a discrete
action principle which minimizes the discrete action.

Mechanical integrators derived from this approach
conserve momentum and are symplectic. Remarkably,
methods of this type can even be used to integrate
PDE’s (see Marsden, Patrick and Shkoller [1997]).

5 Discrete Optimal Control Problems

One can obtain the Moser Veselov equations as a
special case of a general class of discrete optimal control
equations. We state some results here – the proofs will
appear in a forthcoming publication.

Let Ω denote a suitable class of control functions
and let 〈 , 〉 = aT b denote a pairing between vectors.

Proposition 5.1 The optimal control problem

min
uk

N
∑

k=0

g(xk, uk) (5.1)

subject to xk+1 = f(xk, uk) for uk ∈ Ω, yields the opti-
mal control equations

pk =
∂H

∂xk
(pk+1, xk, u∗

k)T

xk+1 =
∂H

∂pk+1
(pk+1, xk, u∗

k)T (5.2)



where

H(pk+1, xk, uk) = 〈pk+1, f(xk, uk)〉 − g(xk, uk) ,

H(pk+1, xk, u∗

k) = maxu∈Ω H(pk+1, xk, u) . (5.3)

We can then obtain the discrete rigid body/ Moser
Veselov equations as follows:

Proposition 5.2 Let V =
∑

k Tr(ΛUk) where Λ is a
positive definite diagonal matrix and Uk ∈ SO(n). The
optimal control problem

min
uk

V (5.4)

subject to Qk+1 = QkUk for Qk ∈ SO(n), yields the
optimal control equations

Qk+1 = QkUk

Pk+1 = PkUk (5.5)

where
UkΛ − ΛUT

k = PT
k Qk − QT

k Pk . (5.6)

For Mk = QT
k Pk − PT

k Qk and Ωk = QT
k+1Qk = UT

k we
obtain the Moser Veselov equations

Mk+1 = ΩkMkΩT
k .

Note that V =
∑

k Tr(QkΛQk+1), the Moser
Veselov functional, but that the functional is linear in
the controls. Note also that the discretization here is
slightly different from that in the previous section.

6 Parameterized Equations

It is a remarkable fact that the dynamic rigid body
equations on SO(n) and indeed on any semisimple Lie
group are integrable (Mishchenko and Fomenko [1976]).
A key observation in this regard, due to Manakov, was
that one could write the generalized rigid body equa-
tions as Lax equations with parameter:

d

dt
(M + µΛ2) = [M + µΛ2, Ω + µΛ] . (6.1)

The nontrivial coefficients of µ in the traces of the
powers of M + µΛ2 then yield the right number of in-
dependent integrals in involution to prove integrability
of the flow on a generic adjoint orbit of SO(n) (iden-
tified with the corresponding coadjoint orbit). Moser
and Veselov [1991] show that there is a corresponding
formulation of the discrete rigid body equations with
parameter.

Our formulation of the rigid body equations, which
treats configuration and momentum variables symmet-
rically, provides an approach to analyzing integrability
of the full rigid body equations (kinematics and dynam-
ics). Another approach may be found in Mischenko and
Fomenko [1978].

It is possible in our setting also to write the full rigid
body equations with parameter and thus to investigate
integrability of the full flow and its discretized counter-
part. We indicate briefly how to do this. Integrability
will be discussed in full in a forthcoming paper. Let

J(Ω) = ΛΩ + ΩΛ (6.2)

be as in Section 2. We then consider the equations with
parameter:

Q̇µ = Qµ(Ω + µΛ)

Ṗµ = Pµ(Ω + µΛ) (6.3)

Setting
Mµ = P−1

µ Qµ − Q−1
µ Pµ (6.4)

we find
Ṁµ = [Mµ, Ω + µΛ] (6.5)

A remarkable feature of the double bracket formu-
lation discussed here is that it is particularly useful for
analyzing the integrability of the full rigid body equa-
tions. As discussed above, the Manakov parameter for-
mulation gives us the integrals on the orbit (for the
dynamics). We may expand the number of integrals by
including the spatial momenta as follows.

Consider the equation

[P̂ , Q̂] =

[

QPT − PQT 0
0 QT P − PT Q

]

. (6.6)

In the left invariant formulation, the lower right block
is the body momentum while the upper left block is
(minus) the spatial momentum.

We can then write down integrals of the motion in a
similar fashion to those we wrote down for biinvariant
flows on Grassmannians in Bloch, Brockett and Ratiu
[1997]. They group in a pleasing fashion into the Man-
akov integrals and the spatial momenta.

Consider the left invariant setting. To obtain the
Manakov integrals set Ĵ = diag(0, J) as before. The
Manakov integrals are then given by

Tr
(

[P̂ , Q̂] + µĴ
)k

. (6.7)

The spatial momenta are given by

Tr
(

πU

(

[P̂ , Q̂]
)

A
)

, (6.8)

where A runs through a basis of spatial momenta and
πU is projection onto the upper left block.

Because of this upper/lower structure it is not hard
to show involution of the spatial and body integrals.
We will carry out the details in a forthcoming paper. In
addition we will discuss integrability in the discrete case
and its connection with the work Moser and Veselov
[1991] and Deift, Li and Tomei [1992].
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