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Abstract

This paper continues the work of Koon and Marsden [1997b] that began the
comparison of the Hamiltonian and Lagrangian formulations of nonholonomic
systems. Because of the necessary replacement of conservation laws with the
momentum equation, it is natural to let the value of momentum be a variable
and for this reason it is natural to take a Poisson viewpoint. Some of this
theory has been started in van der Schaft and Maschke [1994]. We build on
their work, further develop the theory of nonholonomic Poisson reduction, and
tie this theory to other work in the area. We use this reduction procedure
to organize nonholonomic dynamics into a reconstruction equation, a nonholo-
nomic momentum equation and the reduced Lagrange d’Alembert equations in
Hamiltonian form. We also show that these equations are equivalent to those
given by the Lagrangian reduction methods of Bloch, Krishnaprasad, Mars-
den and Murray [1996]. Because of the results of Koon and Marsden [1997b],
this is also equivalent to the results of Bates and Sniatycki [1993], obtained by
nonholonomic symplectic reduction.

Two interesting complications make this effort especially interesting. First
of all, as we have mentioned, symmetry need not lead to conservation laws
but rather to a momentum equation. Second, the natural Poisson bracket fails
to satisfy the Jacobi identity. In fact, the so-called Jacobiizer (the cyclic sum
that vanishes when the Jacobi identity holds), or equivalently, the Schouten
bracket, is an interesting expression involving the curvature of the underlying
distribution describing the nonholonomic constraints.

∗Research partially supported by the DOE contract DE-FG0395-ER25251.
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The Poisson reduction results in this paper are important for the future
development of the stability theory for nonholonomic mechanical systems with
symmetry, as begun by Zenkov, Bloch and Marsden [1997]. In particular, they
should be useful for the development of the powerful block diagonalization
properties of the energy-momentum method developed by Simo, Lewis and
Marsden [1991].
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1 Introduction

The General Setting. Many important problems in robotics, the dynamics of
wheeled vehicles and motion generation, involve nonholonomic mechanics, which
typically means mechanical systems with rolling constraints. Some of the important
issues are trajectory tracking, dynamic stability and feedback stabilization (includ-
ing nonminimum phase systems), bifurcation and control. Many of these systems
have symmetry, such as the group of Euclidean motions in the plane or in space and
this symmetry plays an important role in the theory.

Bloch, Krishnaprasad, Marsden and Murray [1996], hereafter denoted [BKMM],
applied the methods of geometric mechanics to the Lagrange-d’Alembert formula-
tion and extended the use of connections and momentum maps associated with a
given symmetry group to this case. The resulting framework, including the non-
holonomic momentum equation and nonholonomic mechanical connection, provides
a setting for studying nonholonomic mechanical control systems that may have a
nontrivial evolution of their nonholonomic momentum.
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The setting is a configuration space Q with a (nonintegrable) distribution D ⊂
TQ describing the constraints. For simplicity, we consider only homogeneous ve-
locity constraints. We are given a Lagrangian L on TQ and a Lie group G acting
on the configuration space that leaves the constraints and the Lagrangian invariant.
In many example, the group encodes position and orientation information. For ex-
ample, for the snakeboard, the group is SE(2) of rotations and translations in the
plane. The quotient space Q/G is called shape space.

The dynamics of such a system is described by a set of equations of the following
form:

g−1ġ = −Anh(r)ṙ + I−1(r)p (1.1)
ṗ = ṙTH(r)ṙ + ṙTK(r)p+ pTD(r)p (1.2)

M(r)r̈ = δ(r, ṙ, p) + τ. (1.3)

The first equation is a reconstruction equation for a group element g, the sec-
ond is an equation for the nonholonomic momentum p (strictly speaking p is the
body representation of the nonholonomic momentum map, which is not conserved
in general), and the third are equations of motion for the reduced variables r which
describe the “shape” of the system. The momentum equation is bilinear in (ṙ, p).
The variable τ represents the external forces applied to the system, and is assumed
to affect only the shape variables, i.e., the external forces are G-invariant. Note
that the evolution of the momentum p and the shape r decouple from the group
variables.

This framework has been very useful for studying controllability, gait selection
and locomotion for systems such as the snakeboard. It has also helped in the
study of optimality of certain gaits, by using optimal control ideas in the context
of nonholonomic mechanics (Koon and Marsden [1997a] and Ostrowski, Desai and
Kumar [1997]). Hence, it is natural to explore ways to develop similar framework
on the Hamiltonian side.

Bates and Sniatycki [1993], developed the symplectic geometry on the Hamilto-
nian side of nonholonomic systems, while [BKMM] explored the Lagrangian side.
It was not obvious how these two approaches were equivalent, especially how the
momentum equation, the reduced Lagrange-d’Alembert equations and the recon-
struction equation correspond to the developments in Bates and Sniatycki [1993].

Koon and Marsden [1997b], established the specific links between these two sides
and used the ideas and results of each to shed light on the other, deepening our un-
derstanding of both points of view. For example, in proving the equivalence of
Lagrangian reduction and symplectic reduction, we have shown where the momen-
tum equation lies on the Hamiltonian side and how this is related to the organization
of the dynamics of nonholonomic systems with symmetry into the three parts dis-
played above: a reconstruction equation for the group element g, an equation for
the nonholonomic momentum p and the reduced Hamilton equations for the shape
variables r, pr. Koon and Marsden [1997b] illustrate the basic theory with the snake-
board, as well as a simplified model of the bicycle (see Getz and Marsden [1995]).
The latter is an important prototype control system because it is an underactuated
balance system.
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However, on the Hamiltonian side, besides the symplectic approach, one can also
develop the Poisson point of view. Because of the momentum equation, it is natural
to let the value of momentum be a variable and for this a Poisson rather than a
symplectic viewpoint is more natural. Some of this theory has been started in van
der Schaft and Maschke [1994], hereafter denoted [VM]. We build on their work
and develop the theory of Poisson reduction for the nonholonomic systems with
symmetry. We use this Poisson reduction procedure to obtain specific formulas for
the nonholonomic Hamiltonian dynamics. We also show that the equations given
by Poisson reduction are equivalent to those given by the Lagrangian reduction via
a reduced constrained Legendre transform.

Two special features of nonholonomic systems make this study interesting. First,
as we have mentioned, symmetry need not lead to conservation laws but rather to a
momentum equation. Second, the natural Poisson bracket fails to satisfy the Jacobi
identity. In fact, the Jacobiizer (the cyclic sum that vanishes when the Jacobi
identity holds) is an interesting expression involving the curvature of the underlying
distribution describing the nonholonomic constraints. As is well known (see, for
example, Marsden and Ratiu [1994], §10.8), the failure of Jacobi’s identity may be
equivalently measured by the Schouten bracket of the Poisson tensor with itself.

These results are important for the future development of the stability theory
for nonholonomic mechanical systems with symmetry. Important progress towards
a stability theory for these systems has been made in Zenkov, Bloch and Mars-
den [1997]. However, additional insight will be required for the development of the
powerful block diagonalization properties of the energy-momentum method devel-
oped by Simo, Lewis and Marsden [1991]. This technique is very important for the
applicability of the energy-momentum method to complex systems.

Outline of the Paper. In Section 2, we first consider general nonholonomic
systems without symmetry assumptions. In this section,

1. we recall the basic ideas and results of [BKMM] on general nonholonomic
systems: in particular, how to describe constraints using Ehresmann connec-
tion and how to write the Lagrange d’Alembert equations of motion using the
curvature of this connection.

2. We review the Poisson formulation of nonholonomic systems in [VM].

3. With the help of the Ehresmann connection, we use the Poisson procedure to
write a compact formula for the equations of the nonholonomic dynamics.

4. We prove the equivalence of the Poisson and Lagrange-d’Alembert formula-
tions for the nonholonomic mechanics.

5. We develop a formula for the Jacobiizer that involves the curvature of the
Ehresmann connection.

6. We apply the Poisson procedure to the example of the snakeboard.
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In Section 3, we add the hypothesis of symmetry to the preceding development. In
this section,

1. we recall the basic ideas and results of [BKMM] on simple nonholonomic me-
chanical systems, especially on how it extend the Lagrangian reduction theory
of Marsden and Scheurle [1993a,b] to the context of nonholonomic systems.
We shall describe briefly how [BKMM] modifies the Ehresmann connection
associated with the constraints to a new connection, called the nonholonomic
connection, that also takes into account the symmetries, and how the reduced
equations, relative to this new connection, break up into two sets: a set of
reduced Lagrange-d’Alembert equations, and a momentum equation. When
the reconstruction equation is added, one recovers the full set of equations of
motion for the system.

2. We build on the work of [VM] and develop the Poisson reduction, using the
tools like the nonholonomic connection and nonholonomic momentum. We
write the equations of motion for the reduced constrained Hamiltonian dy-
namics using a reduced Poisson bracket. This Poisson reduction procedure
breaks the Hamiltonian nonholonomic dynamics into a reconstruction equa-
tion, a momentum equation and a set of reduced Hamilton equations.

3. We prove that the set of equations given by the Poisson reduction is equivalent
to those given by the Lagrangian reduction via a reduced Legendre transform.

4. We apply the Poisson reduction procedure to the example of the snakeboard.

In the conclusions, we give a few remarks on the future research directions.

2 General Nonholonomic Mechanical Systems

Following the approaches of [BKMM], we first consider mechanics in the presence
of homogeneous linear nonholonomic velocity constraints. For now, no symmetry
assumptions are made; we add such assumptions in the following section.

2.1 Review of the Lagrangian Approach

We start with a configuration space Q with local coordinates denoted qi, i = 1, . . . , n
and a distribution D on Q that describes the kinematic nonholonomic constraints.
The distribution is given by the specification of a linear subspace Dq ⊂ TqQ of the
tangent space to Q at each point q ∈ Q. Consistent with the fact that each Dq is a
linear subspace, we consider only homogeneous velocity constraints. The extension
to affine constraints is straightforward, as in [BKMM].

The dynamics of a nonholonomically constrained mechanical system is governed
by the Lagrange-d’Alembert principle. The principle states that the equations of
motion of a curve q(t) in configuration space are obtained by setting to zero the vari-
ations in the integral of the Lagrangian subject to variations lying in the constraint
distribution and that the velocity of the curve q(t) itself satisfies the constraints;
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that is, q̇(t) ∈ Dq(t). Standard arguments in the calculus of variations show that
this “constrained variational principle” is equivalent to the equations

−δL :=
(
d

dt

∂L

∂q̇i
− ∂L

∂qi

)
δqi = 0, (2.1)

for all variations δq such that δq ∈ Dq at each point of the underlying curve q(t).
These equations are often equivalently written as

d

dt

∂L

∂q̇i
− ∂L

∂qi
= λi,

where λi is a set of Lagrange multipliers (i = 1, . . . , n), representing the force of
constraint. Intrinsically, this multiplier λ is a section of the cotangent bundle over
q(t) that annihilates the constraint distribution. The Lagrange multipliers are often
determined by using the condition that q̇(t) lies in the distribution.

In Bloch and Crouch [1992] and Lewis [1996], the Lagrange-d’Alembert equations
are shown to have the form of a generalized acceleration condition

∇q̇ q̇ = 0

for a suitable affine connection on Q and the force of constraint λ is interpreted as a
generalized second fundamental form (as is well known for systems with holonomic
constraints; see Abraham and Marsden [1978], for example). In this form of the
equations, one can add external forces directly to the right hand sides so that the
equations take the form of a generalized Newton law. This form is convenient for
control purposes.

To explore the structure of the Lagrange-d’Alembert equations in more detail,
let {ωa}, a = 1, . . . , k be a set of k independent one forms whose vanishing describes
the constraints; i.e., the distribution D. One can introduce local coordinates qi =
(rα, sa) where α = 1, . . . n− k, in which ωa has the form

ωa(q) = dsa +Aa
α(r, s)drα

where the summation convention is in force. In other words, we are locally writing
the distribution as

D = {(r, s, ṙ, ṡ) ∈ TQ | ṡ+Aa
αṙ

α = 0}.

The equations of motion, (2.1) may be rewritten by noting that the allowed
variations δqi = (δrα, δsa) satisfy δsa +Aa

αδr
α = 0. Substitution into (2.1) gives

(
d

dt

∂L

∂ṙα
− ∂L

∂rα

)
= Aa

α

(
d

dt

∂L

∂ṡa
− ∂L

∂sa

)
. (2.2)

Equation (2.2) combined with the constraint equations

ṡa = −Aa
αṙ

α (2.3)
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gives a complete description of the equations of motion of the system; this procedure
may be viewed as one way of eliminating the Lagrange multipliers. Using this
notation, one finds that λ = λaω

a, where λa = d
dt

∂L
∂ṡa − ∂L

∂sa .
Equations (2.2) can be written in the following way:

d

dt

∂Lc

∂ṙα
− ∂Lc

∂rα
+Aa

α

∂Lc

∂sa
= − ∂L

∂ṡb
Bb

αβ ṙ
β, (2.4)

where

Lc(rα, sa, ṙα) = L(rα, sa, ṙα,−Aa
α(r, s)ṙα).

is the coordinate expression of the constrained Lagrangian defined by Lc = L|D and
where

Bb
αβ =

(
∂Ab

α

∂rβ
−
∂Ab

β

∂rα
+Aa

α

∂Ab
β

∂sa
−Aa

β

∂Ab
α

∂sa

)
. (2.5)

Letting dωb be the exterior derivative of ωb, a computation shows that

dωb(q̇, ·) = Bb
αβ ṙ

αdrβ

and hence the equations of motion have the form

−δLc =
(
d

dt

∂Lc

∂ṙα
− ∂Lc

∂rα
+Aa

α

∂Lc

∂sa

)
δrα = − ∂L

∂ṡb
dωb(q̇, δr).

This form of the equations isolates the effects of the constraints, and shows, in
particular, that in the case where the constraints are integrable (i.e., dω = 0), the
equations of motion are obtained by substituting the constraints into the Lagrangian
and then setting the variation of Lc to zero. However in the non-integrable case the
constraints generate extra (curvature) terms, which must be taken into account.

The above coordinate results can be put into an interesting and useful intrinsic
geometric framework. The intrinsically given information is the distribution and the
Lagrangian. Assume that there is a bundle structure πQ,R : Q → R for our space
Q, where R is the base manifold and πQ,R is a submersion and the kernel of TqπQ,R

at any point q ∈ Q is called the vertical space Vq. One can always do this locally.
An Ehresmann connection A is a vertical valued one form on Q such that

1. Aq : TqQ→ Vq is a linear map and

2. A is a projection: A(vq) = vq for all vq ∈ Vq.

Hence, TqQ = Vq⊕Hq where Hq = kerAq is the horizontal space at q, sometimes
denoted horq. Thus, an Ehresmann connection gives us a way to split the tangent
space to Q at each point into a horizontal and vertical part.
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If the Ehresmann connection is chosen in such a way that the given constraint
distribution D is the horizontal space of the connection; that is, Hq = Dq, then in
the bundle coordinates qi = (rα, sa), the map πQ,R is just projection onto the factor
r and the connection A can be represented locally by a vector valued differential
form ωa:

A = ωa ∂

∂sa
, ωa(q) = dsa +Aa

α(r, s)drα,

and the horizontal projection is the map

(ṙα, ṡa) �→ (ṙα,−Aa
α(r, s)ṙα).

The curvature of an Ehresmann connection A is the vertical valued two form
defined by its action on two vector fields X and Y on Q as

B(X,Y ) = −A([horX, horY ])

where the bracket on the right hand side is the Jacobi-Lie bracket of vector fields
obtained by extending the stated vectors to vector fields. This definition shows the
sense in which the curvature measures the failure of the constraint distribution to
be integrable.

In coordinates, one can evaluate the curvature B of the connection A by the
following formula:

B(X,Y ) = dωa(horX, horY )
∂

∂sa
,

so that the local expression for curvature is given by

B(X,Y )a = Ba
αβX

αY β

where the coefficients Ba
αβ are given by (2.5).

The Lagrange d’Alembert equations may be written intrinsically as

δLc = 〈FL,B(q̇, δq)〉,

in which δq is a horizontal variation (i.e., it takes values in the horizontal space)
and B is the curvature regarded as a vertical valued two form, in addition to the
constraint equations

A(q) · q̇ = 0.

Here 〈 , 〉 denotes the pairing between a vector and a dual vector and

δLc =
〈
δrα,

∂Lc

∂rα
− d

dt

∂Lc

∂ṙα
−Aa

α

∂Lc

∂sa

〉
.
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As shown in [BKMM], when there is a symmetry group G present, there is a
natural bundle one can work with and put a connection on, namely the bundle
Q→ Q/G. In the generality of the preceding discussion, one can get away with just
the distribution itself and can introduce the corresponding Ehresmann connection
locally. In fact, the bundle structure Q → R is really a “red herring”. The notion
of curvature as a TqQ/Dq valued form makes good sense and is given locally by the
same expressions as above. However, keeping in mind that we eventually want to
deal with symmetries and in that case there is a natural bundle, the Ehresmann
assumption is nevertheless a reasonable bridge to the more interesting case with
symmetries.

2.2 Review of the Poisson Formulation

The approach of [VM] starts on the Lagrangian side with a configuration space Q
and a Lagrangian L (possibly of the form kinetic energy minus potential energy,
i.e.,

L(q, q̇) =
1
2
〈〈q̇, q̇〉〉 − V (q),

where 〈〈 , 〉〉 is a metric on Q defining the kinetic energy and V is a potential energy
function.)

As above, our nonholonomic constraints are given by a distribution D ⊂ TQ.
We also let Do ⊂ T ∗Q denote the annihilator of this distribution. Using a basis ωa

of the annihilator Do, we can write the constraints as

ωa(q̇) = 0.

where a = 1, . . . , k.
As above, the basic equations are given by the Lagrange d’Alembert principle

and are written as
d

dt

∂L

∂q̇i
− ∂L

∂qi
= λaω

a
i ,

where λa is a set of Lagrange multipliers.
The Legendre transformation FL : TQ→ T ∗Q, assuming that it is a diffeomor-

phism, is used to define the Hamiltonian H : T ∗Q → R in the standard fashion
(ignoring the constraints for the moment):

H = 〈p, q̇〉 − L = piq̇
i − L.

Here, the momentum is p = FL(vq) = ∂L/∂q̇. Under this change of variables, the
equations of motion are written in the Hamiltonian form as

q̇i =
∂H

∂pi
. (2.6)

ṗi = −∂H
∂qi

+ λaωa
i , (2.7)

where i = 1, . . . , n, together with the constraint equations

ωa
i q̇

i = ωa
i

∂H

∂pi
= 0.
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The preceding constrained Hamiltonian equations can be rewritten as(
q̇i

ṗi

)
= J

( ∂H
∂qj

∂H
∂pj

)
+
(

0
λaω

a
i

)
, ωa

i

∂H

∂pi
= 0. (2.8)

Recall that the cotangent bundle T ∗Q is equipped with a canonical Poisson bracket
and is expressed in the canonical coordinates (q, p) as

{F,G}(q, p) =
∂F

∂qi
∂G

∂pi
− ∂F

∂pi

∂G

∂qi
=
(
∂F T

∂q
,
∂F T

∂p

)
J

( ∂G
∂q

∂G
∂p

)
.

Here J is the canonical Poisson tensor

J =
(

0n In
−In 0n

)
,

which is intrinsically determined by the Poisson bracket {, } as

J =
(

{qi, qj} {qi, pj}
{pi, qj} {pi, pj}

)
. (2.9)

On Lagrangian side, we saw that one can get rid of the Lagrangian multipliers.
On the Hamiltonian side, it is also desirable to model the Hamiltonian equations
without the Lagrange multipliers by a vector field on a submanifold of T ∗Q. In
[VM], it is done through a clever change of coordinates. We now recall how they do
this.

First, a constraint phase space M = FL(D) ⊂ T ∗Q is defined in the same way
as in Bates and Sniatycki [1993] so that the constraints on the Hamiltonian side are
given by p ∈ M. In local coordinates,

M =
{

(q, p) ∈ T ∗Q

∣∣∣∣ ωa
i

∂H

∂pi
= 0
}

Let {Xα} be a local basis for the constraint distribution D and let {ωa} be a local
basis for the annihilator D0. Let {ωa} span the complementary subspace to D such
that 〈ωa, ωb〉 = δab where δab is the usual Kronecker delta. Here a = 1, . . . , k and
α = 1, . . . , n− k. Define a coordinate transformation (q, p) → (q, p̃α, p̃a) by

p̃α = Xi
αpi, p̃a = ωi

api. (2.10)

[VM] shows that in the new (generally not canonical) coordinates (q, p̃α, p̃a), the
Poisson tensor becomes

J̃(q, p̃) =
(

{qi, qj} {qi, p̃j}
{p̃i, qj} {p̃i, p̃j}

)
. (2.11)

and the constrained Hamiltonian equations (2.8) transform into

q̇i

˙̃pα
˙̃pa


 = J̃(q, p̃)




∂H̃
∂qj

∂H̃
∂p̃β

∂H̃
∂p̃b


+




0

0

λa


 , ∂H̃

∂p̃a
(q, p̃) = 0. (2.12)
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where H̃(q, p̃) is the Hamiltonian H(q, p) expressed in the new coordinates (q, p̃).
Let (p̃α, p̃a) satisfy the constraint equations ∂H̃

∂p̃a
(q, p̃) = 0. Since

M =

{
(q, p̃α, p̃a)

∣∣∣∣∣ ∂H̃∂p̃a (q, p̃α, p̃a) = 0

}
,

[VM] uses (q, p̃α) as an induced local coordinates for M. It is easy to show that

∂H̃

∂qj
(q, p̃α, p̃a) =

∂HM
∂qj

(q, p̃α)

∂H̃

∂p̃β
(q, p̃α, p̃a) =

∂HM
∂p̃β

(q, p̃α)

where HM is the constrained Hamiltonian on M expressed in the induced coordi-
nates.

Now we are ready to eliminate the Lagrange multipliers. Notice that ∂H̃
∂p̃b

(q, p̃) =
0 on M, and by restricting the dynamics on M, we can disregard the last equations
involving λ in equations (2.12). In fact, we can also truncate the Poisson tensor J̃
in (2.11) by leaving out its last k columns and last k rows and then describe the
constrained dynamics on M expressed in the induced coordinates (qi, p̃α) as follows

(
q̇i

˙̃pα

)
= JM(q, p̃α)


 ∂HM

∂qj
(q, p̃α)

∂HM
∂p̃β

(q, p̃α)


 , (

qi

p̃α

)
∈ M. (2.13)

Here JM is the (2n − k) × (2n − k) truncated matrix of J̃ restricted to M and is
expressed in the induced coordinate.

The matrix JM defines a bracket {, }M on the constraint submanifold M as
follows

{FM, GM}M(q, p̃α) :=
(
∂F T

M
∂qi

∂F T
M

∂p̃α

)
JM(qi, p̃α)


 ∂GM

∂qj

∂GM
∂p̃β




for any two smooth functions FM, GM on the constraint submanifold M. Clearly
this bracket satisfies the first two defining properties of a Poisson bracket, namely,
skew symmetry and Leibniz rule, and it is shown in [VM] that it satisfies the Jacobi
identity if and only if the constraints are holonomic. Furthermore, the constrained
Hamiltonian HM is an integral of motion for the constrained dynamics on M due
to the skew symmetry of the bracket.

In section (2.5), we will develop a general formula for the Jacobiizer (the cyclic
sum that vanishes when the Jacobi identity holds) which is an interesting expression
involving the curvature of the underlying distribution that describes the nonholo-
nomic constraints. From this formula, one can see clearly that the Poisson bracket
defined here satisfies the Jacobi identity if and only if the constraints are holonomic.
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2.3 A Formula for the Constrained Hamilton Equations

In holonomic mechanics, it is well known that the Poisson and the Lagrangian
formulations are equivalent via a Legendre transform. And it is natural to ask
whether the same relation holds for the nonholonomic mechanics as developed in
[VM] and [BKMM]. But before we answer this question in the next section, we would
like to first use the general procedures of [VM] to write down a compact formula for
the nonholonomic equations of motion.

Theorem 2.1 Assume that we have same setup as in the preceding section. Let
qi = (rα, sa) be the local coordinates in which ωa has the form

ωa(q) = dsa +Aa
α(r, s)drα (2.14)

where Aa
α(r, s) is the coordinate expression of the Ehresmann connection described

in section 2.1. Then the nonholonomic constrained Hamilton equation of motion on
M can be written as

ṡa = −Aa
β

∂HM
∂p̃β

(2.15)

ṙα =
∂HM
∂p̃α

(2.16)

˙̃pα = −∂HM
∂rα

+Ab
α

∂HM
∂sb

− pbBb
αβ

∂HM
∂p̃β

(2.17)

where Bb
αβ are the coefficients of the curvature of the Ehresmann connection given

in equation (2.5). Here, pb should be understood as pb restricted to M and more
precisely should be denoted as (pb)M.

Proof As mentioned in section 2.1, no additional assumption is needed since one
can always choose local coordinates in which

ωa(q) = dsa +Aa
α(r, s)drα.

In this local coordinate system,

D = span{∂rα −Aa
α∂sa}. (2.18)

Then the new coordinates (rα, sa, p̃α, p̃a) of [VM] are defined by

p̃α = pα −Aa
αpa, p̃a = pa +Aα

apα (2.19)

and we can use (rα, sa, p̃α) as the induced coordinates on M.
Moreover, we can find the constrained Poisson structure matrix JM(rα, sa, p̃α)

by computing {qi, qj}, {qi, p̃α}, {p̃α, p̃β} and then restrict them to M. Recall that
JM is constructed out of the Poisson tensor J̃ in equation (2.11) by leaving out its
last k columns and last k rows and restricting its remaining elements to M.

Clearly
{qi, qj} = 0.

12



In addition, we have

{rβ, p̃α} = {rβ, pα −Aa
αpa} = {rβ, pα} − {rβ, Aa

αpa} = δβα

{sb, p̃α} = {sb, pα −Aa
αpa} = {sb, pα} − {sb, Aa

αpa} = −Ab
α,

where δβα is the usual Kronecker delta. It is also straightforward to find

{p̃α, p̃β} = {pα −Aa
αpa, pβ −Ab

βpb}
= −{pα, Ab

βpb} − {Aa
αpa, pβ} + {Aa

αpa, A
b
βpb}

=
∂Ab

β

∂rα
pb −

∂Ab
α

∂rβ
pb +

∂Aa
α

∂sb
paA

b
β −Aa

α

∂Ab
β

∂sa
pb

=

(
∂Ab

β

∂rα
− ∂Ab

α

∂rβ
+Aa

β

∂Ab
α

∂sa
−Aa

α

∂Ab
β

∂sa

)
pb

= −Bb
αβpb.

After restricting the above results to M, all other terms remain the same but the
last line should be understood as −Bb

αβ(pb)M. But for notational simplicity, we
keep writing it as −Bb

αβpb. Putting the above computations together, we can write
the nonholonomic equations of motion as follows


 ṡa

ṙα

˙̃pα


 =




0 0 −Aa
β

0 0 δαβ
(Ab

α)T −δβα −pcBc
αβ






∂HM
∂sb

∂HM
∂rβ

∂HM
∂p̃β


 (2.20)

which is the desired result. Notice that the order of the variables rα and sa have
been switched to make the block diagonalization of the constrained Poisson tensor
more apparent.

2.4 The Equivalence of Poisson and Lagrange-d’Alembert Formu-
lations

Now we are ready to state and prove the equivalence of the Poisson and Lagrange-
d’Alembert formulations.

Theorem 2.2 The Lagrange-d’Alembert equations

ṡa = −Aa
αṙ

α (2.21)
d

dt

∂Lc

∂ṙα
− ∂Lc

∂rα
+Aa

α

∂Lc

∂sa
= − ∂L

∂ṡb
Bb

αβ ṙ
β (2.22)

are equivalent to the constrained Hamilton equations

ṡa = −Aa
β

∂HM
∂p̃β

(2.23)

ṙα =
∂HM
∂p̃α

(2.24)

˙̃pα = −∂HM
∂rα

+Ab
α

∂HM
∂sb

− pbBb
αβ

∂HM
∂p̃β

(2.25)
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via a constrained Legendre transform which are given by

p̃α =
∂Lc

∂ṙα
ṙα =

∂HM
∂p̃α

. (2.26)

Proof Recall that

D = {(r, s, ṙ, ṡ) ∈ TQ | ṡ+Aa
αṙ

α = 0}.

And we can use (r, s, ṙ) as the induced coordinates for the submanifold D. Since
the constrained Lagrangian is given by

Lc(rα, sa, ṙα) = L(rα, sa, ṙα,−Aa
α(r, s)ṙα),

we have

∂Lc

∂ṙα
=
∂L

∂ṙα
− ∂L

∂sa
Aa

α = pα − paAa
α = p̃α. (2.27)

Hence, ∂Lc
∂ṙα = p̃α does define the right constrained Legendre transform between the

sub-manifolds D and M with the corresponding induced coordinates (rα, sa, ṙα) and
(rα, sa, p̃α).

Now notice that if E = ∂L
∂q̇i
q̇i − L, then restricting it to D we will get

ED =
(
∂L

∂ṙα
ṙα +

∂L

∂ṡa
ṡa
)∣∣∣∣

D
− Lc

=
∂Lc

∂ṙα
ṙα +Aa

α

∂L

∂ṡa
ṙα −Aa

α

∂L

∂ṡa
ṙα − Lc

=
∂Lc

∂ṙα
ṙα − Lc.

Hence, the constrained Hamiltonian is given by

HM = p̃αṙ
α − Lc. (2.28)

And it is straightforward to show that

∂HM
∂p̃α

= ṙα + p̃β
∂ṙβ

∂p̃α
− ∂Lc

∂ṙβ
∂ṙβ

∂p̃α
= ṙα

which gives the equation (2.24). Clearly, ṡa = −Aa
β ṙ

β together with equation (2.24)
gives equation (2.23).

Furthermore, we have

∂HM
∂rβ

= p̃α
∂ṙα

∂rβ
− ∂Lc

∂rβ
− ∂Lc

∂ṙα
∂ṙα

∂rβ
= −∂Lc

∂rβ
, (2.29)

and

∂HM
∂sb

= p̃α
∂ṙα

∂sb
− ∂Lc

∂sb
− ∂Lc

∂ṙα
∂ṙα

∂sb
= −∂Lc

∂sb
. (2.30)

Substituting the results of (2.29) and (2.30) into equation (2.22), we get the remain-
ing equation (2.25).
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2.5 A Formula for the Jacobiizer

Recall that in the proof of Theorem 2.1, we have obtained

{qi, qj}M = 0
{rβ, p̃α}M = δβα

{sb, p̃α}M = −Ab
α

{p̃α, p̃β}M = Bb
αβ(pb)M.

Since

(pb)M = (gbα − gbaAa
α)ṙα

= (gbα − gbaAa
α)
∂HM
∂p̃α

= Kβ
b p̃β,

where gbα and gba are the components of the kinetic energy metric and Kβ
b is defined

by the last equality, we have

{p̃α, p̃β}M = Bb
αβK

γ
b p̃γ .

Clearly

{{qi, qj}M, qk}M + cyclic = 0 (2.31)
{{qi, qj}M, p̃α}M + cyclic = 0 (2.32)

It is also straightforward to obtain

{{rγ , p̃α}M, p̃β}M + cyclic = Kγ
b B

b
αβ (2.33)

{{sa, p̃α}M, p̃β}M + cyclic = −Ba
αβ −Aa

γK
γ
bB

b
αβ . (2.34)

As for {{p̃α, p̃β}M}M + cyclic, it takes slightly more work to find

{{p̃α, p̃β}M, p̃γ}M + cyclic = p̃τK
τ
aB

a
δγK

δ
bB

b
αβ − p̃τ

(
∂Kτ

b

∂rγ
−Aa

γ

∂Kτ
b

∂sa

)
Bb

αβ

−p̃τKτ
b

(
∂Bb

αβ

∂rγ
−Aa

γ

∂Bb
αβ

∂sa

)
+ cyclic.

Notice that the right-hand side of the last equation involves the derivatives of
the curvature. However, by applying the following Bianchi-type identity

∂Bb
αβ

∂rγ
−Ac

γ

∂Bb
αβ

∂sc
+Ba

αβ

∂Ab
γ

∂sa
+ cyclic = 0,

we can rewrite the last equation using only the curvature but not its derivatives

{{p̃α, p̃β}M, p̃γ}M + cyclic = p̃τK
τ
aB

a
δγK

δ
bB

b
αβ − p̃τ

(
∂Kτ

b

∂rγ
−Aa

γ

∂Kτ
b

∂sa

)
Bb

αβ

+p̃τKτ
a

∂Aa
γ

∂sb
Bb

αβ + cyclic. (2.35)
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Equations (2.31) to (2.35) give the Jacobiizer of the Poisson bracket on M. Of
course, one can also use the formalism of Schouten bracket to do the computations
and obtain the same results.

Notice that from the formulas for the Jacobiizer, one can see clearly that if
the constraints is holonomic and hence the Ehresmann connection has zero curva-
ture, then the Jacobiizer is zero and the Jacobian identity holds. Conversely, if the
Jacobian identity holds, then we have

0 = Kγ
bB

b
αβ

0 = −Ba
αβ −Aa

γK
γ
b B

b
αβ .

Therefore, Ba
αβ = 0 and the constraint is holonomic.

2.6 Example: The Snakeboard

The snakeboard is a modified version of a skateboard in which the front and back
pairs of wheels are independently actuated. The extra degree of freedom enables
the rider to generate forward motion by twisting their body back and forth, while
simultaneously moving the wheels with the proper phase relationship. For details,
see [BKMM] and the references listed there.

The snakeboard is modeled as a rigid body (the board) with two sets of indepen-
dently actuated wheels, one on each end of the board. The human rider is modeled
as a momentum wheel which sits in the middle of the board and is allowed to spin
about the vertical axis. Spinning the momentum wheel causes a counter-torque to
be exerted on the board. The configuration of the board is given by the position
and orientation of the board in the plane, the angle of the momentum wheel, and
the angles of the back and front wheels. Let (x, y, θ) represent the position and
orientation of the center of the board, ψ the angle of the momentum wheel relative
to the board, and φ1 and φ2 the angles of the back and front wheels, also relative
to the board. Take the distance between the center of the board and the wheels to
be r. See figure 2.1.

ϕ1

ϕ2

ψ
θ(x, y)

r

Figure 2.1: The geometry of the snakeboard.

In [BKMM], a simplification is made which we shall also assume in this paper,
namely φ1 = −φ2, J1 = J2. The parameters are also chosen such that J +J0 +J1 +
J2 = mr2, where m is the total mass of the board, J is the inertia of the board, J0 is
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the inertia of the rotor and J1, J2 are the inertia of the wheels. This simplification
eliminates some terms in the derivation but does not affect the essential geometry
of the problem. Setting φ = φ1 = −φ2, then the configuration space becomes
Q = SE(2)×S1 ×S1 and the Lagrangian L : TQ→ R is the total kinetic energy of
the system and is given by

L =
1
2
m(ẋ2 + ẏ2) +

1
2
mr2θ̇2 +

1
2
J0ψ̇

2 + J0ψ̇θ̇ + J1φ̇
2.

The Constraints. The rolling of the front and rear wheels of the snakeboard is
modeled using nonholonomic constraints which allow the wheels to spin about the
vertical axis and roll in the direction that they are pointing. The wheels are not
allowed to slide in the sideways direction. The constraints are defined by

− sin(θ + φ)ẋ+ cos(θ + φ)ẏ − r cosφθ̇ = 0
− sin(θ − φ)ẋ+ cos(θ − φ)ẏ + r cosφθ̇ = 0

and can be simplified as

ẋ = −r cotφ cos θθ̇
ẏ = −r cotφ sin θθ̇.

Since the coordinate expressions of the Ehresmann connection Aa
α are zeroes except

A1
1 = r cotφ cos θ A2

1 = r cotφ sin θ,

the coefficients of the curvature of this connection are zeroes except

B1
13 = −B1

31 = −r csc2 φ cos θ
B2

13 = −B2
31 = −r csc2 φ sin θ.

Also, the constrained Lagrangian is given by

Lc = L(rα, sa, ṙα,−Aa
αṙ

α)

=
1
2
mr2 csc2 φθ̇2 +

1
2
J0ψ̇

2 + J0ψ̇θ̇ + J1φ̇
2

The Constrained Hamiltonian. The constrained Legendre transform on the
constraint D is given by

p̃θ =
∂Lc

∂θ̇
= mr2 csc2 φθ̇ + J0ψ̇

p̃ψ =
∂Lc

∂ψ̇
= J0ψ̇ + J0θ̇

p̃φ =
∂Lc

∂φ̇
= 2J1φ̇.
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Its inverse are

θ̇ =
sin2 φ

mr2 − J0 sin2 φ
(p̃θ − p̃ψ)

ψ̇ =
mr2p̃ψ − J0 sin2 φp̃θ

J0(mr2 − J0 sin2 φ)

φ̇ =
p̃φ
2J1

,

And we can find the corresponding constrained Hamiltonian on the submanifold
M via the inverse of the constrained Legendre transform in the following way

HM = p̃θθ̇ + p̃ψψ̇ + p̃φφ̇− (
1
2
mr2 csc2 φθ̇2 +

1
2
J0ψ̇

2 + J0ψ̇θ̇ + J1φ̇
2)

=
sin2 φ

2(mr2 − J0 sin2 φ)2
(p̃θ − p̃ψ)2 +

1
2J0

p̃2ψ +
1

4J1
p̃2φ.

The Equations of Motion. Now we can write the constrained Hamilton equa-
tions of motion using the constrained Poisson matrix as follow




ẋ
ẏ

θ̇

ψ̇

φ̇
˙̃pθ
˙̃pψ
˙̃pφ




=




0 0 0 0 0 −A1
1 0 0

0 0 0 0 0 −A2
1 0 0

0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1
A1

1 A2
1 −1 0 0 0 0 −pbBb

13

0 0 0 −1 0 0 0 0
0 0 0 0 −1 −pbBb

31 0 0







0
0
0
0

∂HM
∂φ

∂HM
∂p̃θ

∂HM
∂p̃ψ

∂HM
∂p̃φ




where A1
1 = r cotφ cos θ,A2

1 = r cotφ sin θ and

∂HM
∂φ

=
mr2 sinφ cosφ

(mr2 − J0 sin2 φ)2
(p̃θ − p̃ψ)2

∂HM
∂p̃θ

=
sin2 φ

mr2 − J0 sin2 φ
(p̃θ − p̃ψ)

∂HM
∂p̃ψ

=
mr2p̃ψ − J0 sin2 φp̃θ

J0(mr2 − J0 sin2 φ)
∂HM
∂p̃φ

=
1

2J1
p̃φ.

As for pbBb
13, notice first that

px =
∂L

∂ẋ
= mẋ py =

∂L

∂ẏ
= mẏ.
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Restricting them to M is the same as restricting them to D and then applying the
constrained Legendre transform, i.e.,

px = −mr cotφ cos θθ̇ = − mr sinφ cosφ
mr2 − J0 sin2 φ

(p̃θ − p̃ψ) cos θ

py = −mr cotφ sin θθ̇ = − mr sinφ cosφ
mr2 − J0 sin2 φ

(p̃θ − p̃ψ) sin θ.

Therefore,

pbB
b
13 = px(−r csc2 φ cos θ) + py(−r csc2 φ sin θ)

=
mr2 cotφ

mr2 − J0 sin2 φ
(p̃θ − p̃ψ).

After simplification, we have the constrained Hamilton equations

θ̇ =
sin2 φ

mr2 − J0 sin2 φ
(p̃θ − p̃ψ)

ψ̇ =
mr2p̃ψ − J0 sin2 φp̃θ

J0(mr2 − J0 sin2 φ)

φ̇ =
p̃φ
2J1

˙̃pθ = − mr2 cotφ
mr2 − J0 sin2 φ

(p̃θ − p̃ψ)
p̃φ
2J1

˙̃pψ = 0
˙̃pφ = 0

together with the constrained equations

ẋ = − r sinφ cosφ
mr2 − J0 sin2 φ

(p̃θ − p̃ψ) cos θ

ẏ = − r sinφ cosφ
mr2 − J0 sin2 φ

(p̃θ − p̃ψ) sin θ

3 Nonholonomic Mechanical Systems with Symmetry

Now we add the hypothesis of symmetry to the preceding development. Assume
that we have a configuration manifold Q, a Lagrangian of the form kinetic minus
potential, and a distribution D that describes the kinematic nonholonomic con-
straints. We also assume there is a symmetry group G (a Lie group) that leaves
the Lagrangian invariant, and that acts on Q (by isometries) and also leaves the
distribution invariant, i.e., the tangent of the group action maps Dq to Dgq (for
more details, see [BKMM].) Later, we shall refer this as a simple nonholonomic
mechanical system.
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3.1 Review of Lagrangian Reduction

We first recall how [BKMM] explains in general terms how one constructs reduced
systems by eliminating the group variables.

Proposition 3.1 Under the assumptions that both the Lagrangian L and the dis-
tribution D are G-invariant, we can form the reduced velocity phase space TQ/G
and the constrained reduced velocity phase space D/G. The Lagrangian L induces
well defined functions, the reduced Lagrangian

l : TQ/G→ R

satisfying L = l ◦ πTQ where πTQ : TQ → TQ/G is the projection, and the con-
strained reduced Lagrangian

lc : D/G→ R,

which satisfies L|D = lc ◦ πD where πD : D → D/G is the projection. Also,
the Lagrange-d’Alembert equations induce well defined reduced Lagrange-d’Alembert
equations on D/G. That is, the vector field on the manifold D determined by the
Lagrange-d’Alembert equations (including the constraints) is G-invariant, and so
defines a reduced vector field on the quotient manifold D/G.

This proposition follows from general symmetry considerations, but to compute
the associated reduced equations explicitly and to reconstruct the group variables,
one defines the nonholonomic momentum map Jnh, and extends the Noether Theo-
rem to nonholonomic system and synthesizes, out of the mechanical connection and
the Ehresmann connection, a nonholonomic connection Anh which is a connection
on the principal bundle Q→ Q/G.

The Nonholonomic Momentum Map. Let the intersection of the tangent to
the group orbit and the distribution at a point q ∈ Q be denoted

Sq = Dq ∩ Tq(Orb(q)).

Define, for each q ∈ Q, the vector subspace gq to be the set of Lie algebra elements
in g whose infinitesimal generators evaluated at q lie in Sq:

g
q = {ξ ∈ g | ξQ(q) ∈ Sq}.

We let gD denote the corresponding bundle over Q whose fiber at the point q is
given by gq. The nonholonomic momentum map Jnh is the bundle map taking TQ
to the bundle (gD)∗ (whose fiber over the point q is the dual of the vector space gq)
that is defined by

〈Jnh(vq), ξ〉 =
∂L

∂q̇i
(ξQ)i, (3.1)
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where ξ ∈ gq. Notice that the nonholonomic momentum map may be viewed as
encoding some of the components of the ordinary momentum map, namely the
projection along those symmetry directions that are consistent with the constraints.

[BKMM] extends the Noether Theorem to nonholonomic systems by deriving the
equation for the momentum map that replace the usual conservation law. It is proven
that if the Lagrangian L is invariant under the group action and that ξq is a section
of the bundle gD, then any solution q(t) of the Lagrange d’Alembert equations must
satisfy, in addition to the given kinematic constraints, the momentum equation:

d

dt

(
Jnh(ξq(t))

)
=
∂L

∂q̇i

[
d

dt
(ξq(t))

]i
Q

. (3.2)

When the momentum map is paired with a section in this way, we will just refer to
it as the momentum. Examples show that the nonholonomic momentum map may
or may not be conserved.

The Momentum Equation in Body Representation. Let a local trivializa-
tion (r, g) be chosen on the principal bundle π : Q → Q/G. Let η ∈ gq and
ξ = g−1ġ. Since L is G-invariant, we can define a new function l by writing
L(r, g, ṙ, ġ) = l(r, ṙ, ξ). Define Jnh

loc : TQ/G→ (gD)∗ by

〈
Jnh

loc(r, ṙ, ξ), η
〉

=
〈
∂l

∂ξ
, η

〉
.

As with connections, Jnh and its version in a local trivialization are related by the
Ad map; i.e.,

Jnh(r, g, ṙ, ġ) = Ad∗
g−1J

nh
loc(r, ṙ, ξ).

Choose a q-dependent basis ea(q) for the Lie algebra such that the first m ele-
ments span the subspace gq. In a local trivialization, one chooses, for each r, such
a basis at the identity element, say

e1(r), e2(r), . . . , em(r), em+1(r), . . . , ek(r).

Define the body fixed basis by

ea(r, g) = Adg · ea(r);

thus, by G invariance, the first m elements span the subspace gq. In this basis, we
have 〈

Jnh(r, g, ṙ, ġ), eb(r, g)
〉

=
〈
∂l

∂ξ
, eb(r)

〉
:= pb, (3.3)

which defines pb, a function of r, ṙ and ξ. Note that in this body representation,
the functions pb are invariant rather than equivariant, as is usually the case with
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the momentum map. It is shown in [BKMM] that in this body representation, the
momentum equation is given by

d

dt
pi =

〈
∂l

∂ξ
, [ξ, ei] +

∂ei
∂rα

ṙα
〉
, (3.4)

where the range of i is 1 to m. Moreover, the momentum equation in this represen-
tation is independent of, that is, decouples from, the group variables g.

The Nonholonomic Connection. Recall that in the case of simple holonomic
mechanical system, the mechanical connection A is defined by A(vq) = I(q)−1J(vq)
where J is the associated momentum map and I(q) is the locked inertia tensor of
the system. Equivalently the mechanical connection can also be defined by the fact
that its horizontal space at q is orthogonal to the group orbit at q with respect to
the kinetic energy metric. For more information, see for example, Marsden [1992]
and Marsden and Ratiu [1994].

As [BKMM] points out, in the principal case where the constraints and the orbit
directions span the entire tangent space to the configuration space, that is,

Dq + Tq(Orb(q)) = TqQ, (3.5)

the definition of the momentum map can be used to augment the constraints and
provide a connection on Q→ Q/G. Let Jnh be the nonholonomic momentum map
and define similarly as above a map Asym

q : TqQ→ Sq given by

Asym(vq) = (Inh(q)−1Jnh(vq))Q

(this defines the momentum “constraints”) where I
nh : gD → (gD)∗ is the locked

inertia tensor defined in a similar way as in holonomic systems.
Choose a complementary space to Sq by writing Tq(Orb(q)) = Sq ⊕ Uq. Let

Akin
q : TqQ → Uq be a Uq valued form that projects Uq onto itself and maps Dq to

zero. Then the kinematic constraints are defined by the equation

Akin(q)q̇ = 0.

This kinematic constraints equation plus the momentum ”constraints” equation can
be used to synthesis a nonholonomic connection Anh which is a principal connection
on the bundle Q→ Q/G and whose horizontal space at the point q ∈ Q is given by
the orthogonal complement to the space Sq within the space Dq. Moreover,

Anh(vq) = I
nh(q)−1Jnh(vq). (3.6)

In a body fixed basis, (3.6) can be written as

Adg(g−1ġ + Anh
loc(r)ṙ) = Adg(Inh

loc(r)
−1p).

Hence, the constraints can be represented in a nice way by

g−1ġ = ξ = −A(r)ṙ + Γ(r)p, (3.7)
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where A(r) is the abbreviation for Anh
loc(r) and Γ(r) = I

nh
loc(r)

−1.
Moreover, with the help of nonholonomic mechanical connection, the Lagrange-

d’Alembert principle may be broken up into two principles by breaking the variations
δq into two parts, namely parts that are horizontal with respect to the nonholonomic
connection and parts that are vertical (but still in D), and the reduced equations
break up into two sets: a set of reduced Lagrange-d’Alembert equations (which
have curvature terms appearing as ’forcing’), and a momentum equation, which
have a form generalizing the components of the Euler-Poincaré equations along the
symmetry directions consistent with the constraints. When one supplements these
equations with the reconstruction equations, one recovers the full set of equations
of motion for the system.

3.2 Poisson Reduction

Now let G be the symmetry group of the system and assume that the quotient
space M̄ = M/G of the G-orbit in M is a quotient manifold with projection map
ρ : M −→ M̄. Since G is a symmetry group, all intrinsically defined vector fields
push down to M. In this section, we will write the equations of motion for the
reduced constrained Hamiltonian dynamics using a reduced ”Poisson” bracket on
the reduced constraint phrase space M̄. Moreover, an explicit expression for this
bracket will be provided.

The crucial step here is how to represent the constraint distribution D in a way
that is both intrinsic and ready for reduction. The work in both [BKMM] and
Koon and Marsden [1997b] suggest that we should use the tools like nonholonomic
momentum p and the nonholonomic connection A in [BKMM] to describe D

Recall that in [BKMM], a body fixed basis

eb(g, r) = Adg · eb(r)

has been constructed such that the infinitesimal generators (ei(g, r))Q of its first m
elements at a point q span Sq = Dq ∩ Tq(Orb(q)). Assume that G is a matrix group
and edi is the component of ei(r) with respect to a fixed basis {ba} of the Lie algebra
g where (ba)Q = ∂ga , then

(ei(g, r))Q = gade
d
i ∂ga .

Since Dq is the direct sum of Sq and the horizontal space of the nonholonomic
connection A, it can be represented by

D = span{gadedi ∂ga ,−gabAb
α∂ga + ∂rα}. (3.8)

Before we state the theorem and do some computations, we want to make sure
that the readers understand the index convention used in this section:

1. The first batch of indices is denoted a, b, c, ... and range from 1 to k corre-
sponding to the symmetry direction (k = dim g).

2. The second batch of indices will be denoted i, j, k, ... and range from 1 to
m corresponding to the symmetry direction along constraint space (m is the
number of momentum functions).
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3. The indices α, β, ... on the shape variables r range from 1 to n − k (n − k =
dim (Q/G), i.e., the dimension of the shape space).

Then the induced coordinates (ga, rα, p̃i, p̃α) for the constraint submanifold M
are defined by

p̃i = gade
d
i pa = µde

d
i (3.9)

p̃α = pα − gabAb
αpa = pα − µbAb

α. (3.10)

Here µ is an element of the dual of the Lie algebra g∗ and µa is its coordinates
with respect to a fixed dual basis. Notice that p̃i are nothing but the corresponding
momentum functions on the Hamiltonian side.

We can find the constrained Poisson structure matrix JM(ga, rα, p̃i, p̃α) by com-
puting {ga, gb}, etc. and then restrict them to M. Recall that JM is constructed
out of the Poisson tensor J̃ in (2.11) by leaving out its last k columns and last k
rows and restricting its remaining elements to M.

Clearly
{ga, gb} = 0, {ga, rα} = 0, {rα, rβ} = 0.

And we also have

{ga, p̃i} = {ga, gbcecipb} = gac e
c
i

{ga, p̃α} = {ga, pα − gcbAb
αpc} = −gabAb

α

{rα, p̃i} = {rβ, gbcecipb} = 0
{rα, p̃β} = {rα, pβ − gcbAb

βpc} = δαβ

It is also straightforward to find

{p̃i, p̃j} = {gac ecipa, gbdedjpb}

= pb
∂gbc
∂gσ

ecig
σ
d e

d
j − pb

∂gbd
∂gτ

ecig
τ
c e

d
j

= pb

(
∂gbc
∂gσ

gσd − ∂gbd
∂gτ

gτc

)
ecie

d
j

= −pagabCb
cde

c
ie

d
j

= −µaCa
cde

c
ie

d
j ,

where Ca
cd is the structure coefficients of the Lie algebra g. Similarly, we have

{p̃i, p̃α} = {gac ecipa, pα − gbdAb
αpd}

= {gac ecipa, pα} − {gac ecipa, gbdAb
αpd}

= µa
∂eai
∂rα

+ µaCa
bde

b
iA

d
α
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and

{p̃α, p̃β} = {pα − gabAb
αpa, pβ − gcdAd

βpc}
= −{pα, gcdAd

βpc} − {gabAb
αpa, pβ} + {gabAb

αpa, g
c
dA

d
βpc}

= µb
∂Ab

β

∂rα
− µb

∂Ab
α

∂rβ
− µbCb

acA
a
αA

c
β

= −µbBb
αβ ,

where Bb
αβ are the coefficients of the curvature of the nonholonomic connection and

are given by

Bb
αβ =

∂Ab
α

∂rβ
−
∂Ab

β

∂rα
+ Cb

acA
a
αA

c
β.

Therefore the constrained Hamilton equations can be written as follows



ġa

˙̃pi
ṙα

˙̃pα


 =




0 gac e
c
j 0 −gacAc

β

−(gbce
c
i )

T −µaCa
bde

b
ie

d
j 0 µaF

a
iβ

0 0 0 δαβ
(gbcA

c
α)T −(µaF a

jα)T −δβα −µaBa
αβ







∂HM
∂gb

∂HM
∂p̃j

∂HM
∂rβ

∂HM
∂p̃β




(3.11)

where F a
iβ is defined by

F a
iβ =

∂eai
∂rβ

+ Ca
bde

b
iA

d
β (3.12)

Notice that the order of the variables rα and p̃i have been switched to make the
diagonalization of the constrained Poisson tensor more apparent.

Since G is the symmetry group of the system and the Hamiltonian H is G-
invariant, we have HM = hM̄. Hence

∂HM
∂gb

= 0

∂HM
∂p̃j

=
∂hM
∂p̃j

∂HM
∂rβ

=
∂hM
∂rβ

∂HM
∂p̃β

=
∂hM
∂p̃β

.

After the reduction by the symmetry group G, we have



ξb

˙̃pi
ṙα

˙̃pα


 =




0 ebj 0 −Ab
β

−(eci )
T −µaCa

bde
b
ie

d
j 0 µaF

a
iβ

0 0 0 δαβ
(Ac

α)T −µa(F a
jα)T −δβα −µaBa

αβ







0
∂hM̄
∂p̃j

∂hM̄
∂rβ

∂hM̄
∂p̃β


 (3.13)
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where ξb = (g−1)baġ
a.

The above computations prove the following theorem

Theorem 3.2 The momentum equation and the reduced Hamilton equations on the
reduced constraint submanifold M̄ can be written as follows

˙̃pi = −µaCa
bde

b
ie

d
j

∂hM̄
∂p̃j

+ µaF a
iβ

∂hM̄
∂p̃β

(3.14)

ṙα =
∂hM̄
∂p̃α

(3.15)

˙̃pα = −∂hM̄
∂rα

− µaF a
jα

∂hM̄
∂p̃j

− µaBa
αβ

∂hM̄
∂p̃β

. (3.16)

Adding in the following reconstruction equation

ξ̇b = −Ab
β

∂hM̄
∂p̃β

+ ebj
∂hM̄
∂p̃j

, (3.17)

we recover the full dynamics of the system.

Notice that equation (3.14) can be considered as the momentum equation on
the Hamiltonian side which corresponds to the momentum equation developed in
[BKMM]. It generalizes the Lie-Poisson equation to the nonholonomic case.

Moreover, if we now truncate the reduced Poisson matrix J̃ in equation (3.13)
by leaving out its first column and first row, the new matrix JM̄ given by

JM̄ =




−µaCa
bde

b
ie

d
j 0 µaF

a
iβ

0 0 δαβ
−µa(F a

jα)T −δβα −µaBa
αβ


 (3.18)

defines a bracket {, }M̄ on the reduced constraint submanifold M̄ as follows

{FM̄, GM̄}M̄(p̃i, rα, p̃α) :=

(
∂F T

M̄
∂p̃i

∂F T
M̄

∂rα
∂F T

M̄
∂p̃α

)
JM̄(p̃i, rα, p̃α)




∂GM̄
∂p̃j

∂GM̄
∂rβ

∂GM̄
∂p̃β




for any two smooth functions FM̄, GM̄ on the reduced constraint submanifold M̄
whose induced coordinates are (p̃i, rα, p̃α). Clearly this bracket satisfies the first two
defining properties of a Poisson bracket, namely, skew-symmetry and Leibniz rule.
Moreover, the reduced constrained Hamiltonian hM̄ is an integral of motion for the
reduced Hamiltonian dynamics on M̄ due to the skew symmetry of the reduced
bracket.
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3.3 The equivalence of Poisson and Lagrangian Reduction

Theorem 3.3 The equations (3.14) to (3.17) given by the Poisson reduction are
equivalent to the equations given by the Lagrangian reduction

ξb = −Ab
β ṙ

β + Γbipi = −Ab
β ṙ

β + ebjΩ
j (3.19)

ṗi =
∂l

∂ξb

(
Ca
bdξ

aedi +
∂eai
∂rβ

ṙβ
)

(3.20)

d

dt

(
∂lc
∂ṙα

)
− ∂lc
∂rα

= − ∂l

∂ξb
(Bb

αβ ṙ
β + F b

αiΩ
i), (3.21)

via a reduced Legendre transform

p̃α =
∂lc
∂ṙα

p̃i =
∂lc
∂Ωi

.

Proof Define the reduced constrained Lagrangian

lc(r, ṙ,Ω) = l(r, ṙ,−Aṙ + Ωe).

where Ω is the body angular velocity and e(r) is the body fixed basis at the identity
defined earlier. Notice first that

∂l

∂ṙα
=
∂L

∂ṙα
= pα.

Since
pb =

∂L

∂ġb
=
∂l

∂ξa
∂ξa

∂ġb
=
∂l

∂ξa
(g−1)ab ,

we have
∂l

∂ξa
= µa.

Hence,

∂lc
∂ṙα

=
∂l

∂ṙα
+
∂l

∂ξa
∂ξa

∂ṙα

=
∂l

∂ṙα
− ∂l

∂ξa
Aa

α

= pα − µaAa
α

= p̃α,

and
∂lc
∂Ωi

=
∂l

∂ξa
∂ξa

∂Ωi
=
∂l

∂ξa
eai = p̃i.

That is, p̃α = ∂lc
∂ṙα and p̃i = ∂lc

∂Ωi
do define the right reduced constrained Legendre

transform between the reduced constraint submanifolds D̄ and M̄ with the corre-
sponding reduced coordinates (rα, ṙα,Ωi) and (rα, p̃α, p̃i).
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To find the reduced constrained Hamiltonian hM, notice first that since E is
G-invariant, we have

E =
∂L

∂q̇i
q̇i − L

=
∂L

∂ġa
ġa +

∂L

∂ṙα
ṙα − L

=
∂l

∂ξa
ξa +

∂l

∂ṙα
ṙα − l

After restricting it to the submanifold D, we have

ED =
∂l

∂ξa
(−Aa

αṙ
α + Ωieai ) +

(
∂lc
∂ṙα

+Aa
α

∂l

∂ξa

)
ṙα − lc

=
∂l

∂ξa
Ωieai +

∂lc
∂ṙα

ṙα − lc

=
∂lc
∂Ωi

Ωi +
∂lc
∂ṙα

ṙα − lc

Therefore, we have

hM̄ = p̃iΩi + p̃αṙα − lc, (3.22)

via the Legendre transform (rα, ṙα,Ωi) −→ (rα, p̃α, p̃i). Differentiate hM̄ with re-
spect to p̃α and p̃j and use the Legendre transform, we have

∂hM̄
∂p̃α

= p̃i
∂Ωi

∂p̃α
+ p̃β

∂ṙβ

∂p̃α
+ ṙα − ∂lc

∂ṙβ

∂ṙβ

∂p̃α
− ∂lc
∂Ωi

∂Ωi

∂p̃α
= ṙα

which is equation (3.15). Also, we have

∂hM̄
∂p̃j

= Ωj + p̃i
∂Ωi

∂p̃j
+ p̃α

∂ṙα

∂p̃j
− ∂lc
∂ṙα

∂ṙα

∂p̃j
− ∂lc
∂Ωi

∂Ωi

∂p̃j
= Ωj ,

which, together with equation (3.19), gives equation (3.17). Moreover, since ∂l
∂ξb

=

gab
∂L
∂ġa = µb and p̃i = pi, we have

˙̃pi =
∂l

∂ξb

(
Ca
bdξ

aedi +
∂eai
∂rβ

ṙβ
)

= µa

(
Ca
bde

d
i

(
−Ab

β ṙ
β + ebjΩ

j
)

+
∂eai
∂rβ

ṙβ
)

= µa

(
Ca
bde

d
i

(
−Ab

β

∂hM̄
∂p̃β

+ ebj
∂hM̄
∂p̃j

)
+
∂eai
∂rβ

∂hM̄
∂p̃β

)

= µaC
a
bde

b
ie

d
j

∂hM̄
∂p̃j

+ µa

(
Ca
bde

b
iA

d
β +

∂eai
∂rβ

)
∂hM̄
∂p̃β

,

which is equation (3.14).
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Finally, differentiate hM̄ with respect to rα, we have

∂hM̄
∂rα

= p̃i
∂Ωi

∂r̃α
+ p̃β

∂ṙβ

∂rα
− ∂lc
∂rα

− ∂l̃c
∂ṙβ

∂ṙβ

∂rα
− ∂lc
∂Ωi

∂Ωi

∂rα
= − ∂lc

∂rα

which together with equation (3.21) gives

˙̃pα = −∂hM̄
∂rα

− µaF a
jα

∂hM̄
∂p̃j

− µaBa
αβ

∂hM̄
∂p̃β

which is equation (3.16).

Remark. Notice that equations (3.21) are the same as the reduced Lagrange-
d’Alembert equations in [BKMM]. The only difference is that in this paper, the
reduced constrained Lagrangian lc is a function of r, ṙ,Ω where in [BKMM] and
Koon and Marsden [1997b] it is considered as a function of r, ṙ, p. Since it is more
natural to use the body angular velocity as a variable on the Lagrangian side, the
formulation here looks better.

3.4 Example: The Snakeboard Revisited

Now we return to the snakeboard and discuss the role of the symmetry group G =
SE(2). Recall from our earlier discussion that the Lagrangian is

L(q, q̇) =
1
2
m(ẋ2 + ẏ2) +

1
2
mr2θ̇2 + +

1
2
J0ψ̇

2 + J0ψ̇θ̇ + J1φ̇
2
1, (3.23)

which is independent of the configuration of the board and hence it is invariant to
all possible group actions.

The Constraint Submanifold. The condition of rolling without slipping gives
rise to the constraint one forms

ω1(q) = − sin(θ + φ)dx+ cos(θ + φ)dy − r cosφdθ
ω2(q) = − sin(θ − φ)dx+ cos(θ − φ)dy + r cosφdθ,

which are invariant under the SE(2) action. The constraints determine the kine-
matic distribution Dq:

Dq = span{∂ψ, ∂φ, a∂x + b∂y + c∂θ},

where a = −2r cos2 φ cos θ, b = −2r cos2 φ sin θ, c = sin 2φ. The tangent space to the
orbits of the SE(2) action is given by

Tq(Orb(q)) = span{∂x, ∂y, ∂θ}

The intersection between the tangent space to the group orbits and the constraint
distribution is thus given by

Sq = Dq ∩ Tq(Orb(q)) = span{a∂x + b∂y + c∂θ}.
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The momentum can be constructed by choosing a section of S = D ∩ TOrb
regarded as a bundle over Q. Since Dq ∩ TqOrb(q) is one-dimensional, the section
can be chosen to be

ξqQ = a∂x + b∂y + c∂θ,

which is invariant under the action of SE(2) on Q. The nonholonomic momentum
is thus given by

p =
∂L

∂q̇i
(ξqQ)i

= maẋ+mbẏ +mr2cθ̇ + J0cψ̇.

The kinematic constraints plus the momentum are given by

0 = − sin(θ + φ)ẋ+ cos(θ + φ)ẏ − r cosφθ̇
0 = − sin(θ − φ)ẋ+ cos(θ − φ)ẏ + r cosφθ̇
p = −2mr cos2 φ cos θẋ− 2mr cos2 φ sin θẏ

+mr2 sin 2φθ̇ + J0 sin 2φψ̇.

Adding, subtracting, and scaling these equations, we can write (away from the point
φ = π/2),




cos θẋ+ sin θẏ
− sin θẋ+ cos θẏ

θ̇


+




− J0

2mr
sin 2φψ̇

0
J0

mr2
sin2 φψ̇


 =




−1
2mr

p

0
tanφ
2mr2

p


 . (3.24)

These equations have the form

g−1ġ +A(r)ṙ = Γ(r)p

where

A(r) = − J0

2mr
sin 2φex dψ +

J0

mr2
sin2 φeθ dψ

Γ(r) =
−1
2mr

ex +
1

2mr2
tanφ eθ.

These are precisely the terms which appear in the nonholonomic connection relative
to the (global) trivialization (r, g).

Since Γp = Ωe, we can rewrite the constraints using the angular momentum Ω
as follows



ξ1

ξ2

ξ3


 =




J0

2mr
sin 2φψ̇

0

− J0

mr2
sin2 φψ̇


+




−2r cos2 φΩ

0
sin 2φΩ


 . (3.25)
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The Reduced Constrained Hamiltonian. ¿From the Lagrangian L, we find
the reduced Lagrangian

l(r, ṙ, ξ) =
1
2
m((ξ1)2 + (ξ2)2) +

1
2
mr2(ξ3)2 +

1
2
J0ψ̇

2 + +J0ψ̇(ξ3) + J1φ̇
2,

where ξ = g−1ġ. After plugging in the constraints (3.25), we have the reduced
constrained Lagrangian

lc(r, ṙ,Ω) = − J2
0

2mr2
sin2 φψ̇2 + 2mr2 cos2 φΩ2 +

1
2
J0ψ̇

2 + +J1φ̇
2. (3.26)

Then the reduced constrained Legendre transform is given by

p =
∂lc
∂Ω

= 4mr2 cos2 φΩ

p̃ψ =
∂lc

∂ψ̇
= − J2

0

mr2
sin2 φψ̇ + J0ψ̇

p̃φ =
∂lc

∂φ̇
= 2J1φ̇.

And its inverse is

Ω =
p

4mr2 cos2 φ

ψ̇ =
mr2p̃ψ

J0(mr2 − J0 sin2 φ)

φ̇ =
p̃φ
2J1

Therefore, the reduced constrained Hamiltonian hM̄ is

hM̄ = pΩ + p̃ψψ̇ + p̃φφ̇− lc

=
sec2 φ

8mr2
p2 +

mr2

2J0(mr2 − J0 sin2 φ)
p2ψ +

1
4J1

p2φ

The Reduced Poisson Structure Matrix. Recall that in computing the re-
duced structural matrix, we only need to calculate {p̃α, p̃β}, etc. and then restrict
them to M̄. Since

p = −2r cos2 φ cos θpx − 2r cos2 φ sin θpy + sin 2φpθ

p̃ψ =
J0

2mr2
sin 2φ cos θpx +

J0

2mr2
sin 2φ sin θpy −

J0

mr2
sin2 φpθ + pψ

p̃φ = pφ,

we have

{p, p̃φ} = {−2r cos2 φµ1, pφ} + {sin 2φµ3, pφ} = 2r sin 2φµ1 + 2 cos 2φµ3. (3.27)
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Similarly, we find

{p̃ψ, p̃φ} =
J0

mr
cos 2φµ1 −

J0

mr
sin 2φµ3 (3.28)

{p, p̃ψ} = 0. (3.29)

As for µ1, µ2, µ3 (restricted to M̄), recall that

µ1 = cos θpx + sin θpy
= cos θ(mẋ) + sin θ(mẏ)
= −mr cotφθ̇

= −mr cotφ
(
− J0

mr2
sin2 φψ̇ +

tanφ
2mr2

p

)

=
J0

r
cosφ sinφψ̇ − 1

2r
p

=
mr sinφ cosφ
mr2 − J0 sin2 φ

p̃ψ − 1
2r
p.

We can also find µ2, µ3 in a similar way. Therefore


 µ1

µ2

µ3


 =




mr sinφ cosφ
(mr2 − J0 sin2 φ)

p̃ψ

0
mr2 cos2 φ

(mr2 − J0 sin2 φ)
p̃ψ


+




−1
2r
p

0
tanφ

2
p


 . (3.30)

So after substituting the constraints (3.30) into equations (3.27) to (3.29), we have

{p, p̃φ}M̄ = − tanφp+
2mr2 cos2 φ

mr2 − J0 sin2 φ
p̃ψ (3.31)

{p̃ψ, p̃φ}M̄ = − J0

2mr2
p− J0 sinφ cosφ

mr2 − J0 sin2 p̃φ
pψ (3.32)

{p, p̃ψ}M̄ = 0. (3.33)

Therefore the reduced Poisson structure matrix is given by


0 0 0 −2r cos2 φ 0 0 J0
2mr sin 2φ 0

0 0 0 0 0 0 0 0
0 0 0 sin 2φ 0 0 − J0

mr2
sin2 φ 0

2r cos2 φ 0 − sin 2φ 0 0 0 0 {p, p̃φ}M̄
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1

− J0
2mr sin 2φ 0 J0

mr2
sin2 φ 0 −1 0 0 {p̃ψ, p̃φ}M̄

0 0 0 −{p, p̃φ}M̄ 0 −1 −{p̃ψ, p̃φ}M̄ 0




where {p, p̃φ}M̄ and {p̃ψ, p̃φ}M̄ are given as above by (3.31) and (3.32).
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The Reduced Constrained Hamilton Equations. It is straightforward to find
that

∂hM̄
∂p

=
sec2 φ

4mr2
p

∂hM̄
∂ψ

= 0

∂hM̄
∂φ

=
sec2 φ tanφ

4mr2
p2 +

mr2 sin 2φ
2(mr2 − J0 sin2 φ)2

p̃2ψ

∂hM̄
∂p̃ψ

=
mr2

J0(mr2 − J0 sin2 φ)
p̃ψ

∂hM̄
∂p̃φ

=
1

2J1
p̃φ.

Then by using the formula in (3.13) and after some computations, we obtain the
momentum equation and the reduced constrained Hamilton equations as follows

ṗ =
(
− tanφp+

2mr2 cos2 φ
mr2 − J0 sin2 φ

p̃ψ

)
1

2J1
p̃φ (3.34)

ψ̇ =
mr2

J0(mr2 − J0 sin2 φ)
p̃ψ (3.35)

φ̇ =
1

2J1
p̃φ (3.36)

˙̃pψ = −
(
J0

mr2
p+

J0 sin 2φ
2(mr2 − J0 sin2 φ)

p̃ψ

)
1

2J1
p̃φ (3.37)

˙̃pφ = 0. (3.38)

Also, we can obtain the following reconstruction equations on the Hamiltonian side

ẋ = ξ1 cos θ − ξ2 sin θ =
(
− 1

2mr
p+

r sin 2φ
2(mr2 − J0 sin2 φ)

p̃ψ

)
cos θ (3.39)

ẏ = ξ1 sin θ − ξ2 cos θ =
(
− 1

2mr
p+

r sin 2φ
2(mr2 − J0 sin2 φ)

p̃ψ

)
sin θ (3.40)

θ̇ = ξ3 =
tanφ
2mr2

p− sin2 φ

mr2 − J0 sin2 φ
p̃ψ. (3.41)

Together, these two sets of equations give us the dynamics of the full constrained
systems but in a form that is suitable for control theoretical purposes.

4 Conclusions and Future Work

This paper has continued the work of Koon and Marsden [1997b] in comparing
the Hamiltonian and Lagrangian approaches to nonholonomic systems. This pa-
per, together with Koon and Marsden [1997b], builds on the recent advances made
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by Bates and Sniatycki [1993], van der Schaft and Maschke [1994], Bloch, Krish-
naprasad, Marsden and Murray [1996] and others in the study of nonholonomic
systems. It helps to lay a firm foundation for a gauge viewpoint of such systems.

[BKMM] has started this work on the Lagrangian side and generalized the use
of connections and momentum maps associated with a given symmetry group to
nonholonomic systems. It has shown how Ehresmann connections can be introduced
to write the kinematic constraints as the condition of horizontality with respect to
this connection and shown how the equations of motion can be written in terms
of base variables and that these equations involve the curvature of the connection.
It has also shown that the presence of symmetries in the nonholonomic case may
or may not lead to conservation laws and has developed the momentum equation,
which plays an important role in control problems for such systems. The process
of reduction and reconstruction for these systems is worked out by making use
of a nonholonomic connection which is obtained by synthesizing the mechanical
connection and constraint connection. Moreover, using the tools of Lagrangian
reduction, it developed the reduced Lagrange-d’Alembert equations.

This paper together with Koon and Marsden [1997b] extend this gauge view-
point of such systems to the Hamiltonian side, building on the works of Bates and
Sniatycki [1993] and [VM]. With the help of nonholonomic connections and mo-
mentum maps, the present paper develops the Poisson reduction of nonholonomic
systems with symmetry. It shows that Lagrangian reduction for nonholonomic me-
chanics is equivalent to both the symplectic reduction and the Poisson reduction via
a reduced constrained Legendre transform. But most importantly, it shows where
the momentum equation lies on the Hamiltonian side and how this is related to
the organization of the Hamiltonian dynamics of such systems into a reconstruction
equation, a momentum equation and the reduced Hamilton equations. We also ex-
plore the failure of the Jacobi identity when the constraints are nonholonomic and
show that the so-called Jacobiizer (the cyclic sum that vanishes when the Jacobi
identity holds) is an interesting expression involving the curvature of the underly-
ing distribution describing the nonholonomic constraints. Using this formula, one
sees clearly that the Poisson bracket satisfies the Jacobi identity if and only if the
constraints are holonomic.

Future work

Some interesting topics for future work include

A Deeper Understanding of the Geometry behind this Gauge Viewpoint
of Nonholonomic Systems. In studying the Lagrangian reduction by stages of
holonomic systems, Cendra, Marsden and Ratiu [1997] has developed an intrinsic ap-
proach to the Lagrangian reduction theory of Marsden and Scheurle [1993a,b]. Their
work is based on a deeper understanding of the geometry of the bundle (TQ)/G over
the shape space Q/G as a Whitney sum T (Q/G) ⊕ Ad(Q) where Ad(Q) is the ad-
joint bundle (i.e., the associated bundle with fiber g where the action on g is the
adjoint action). Extending this theory to the nonholonomic case will clarify further
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the geometry of Lagrangian reduction in [BKMM]. It will also shed light on the
geometry of the gauge Hamiltonian reductions for nonholonomic dynamics.

Stability, Stabilization and Bifurcation Theories for Nonholonomic Sys-
tems. Because of the momentum equation, it is natural to let the value of the
momentum be a variable and for this a Poisson rather than a symplectic viewpoint
is more natural. This approach may also allow one to extend to the nonholonomic
systems the block diagonalization procedure in the energy-momentum method de-
veloped by Simo, Lewis and Marsden [1991]. With the development of the Poisson
geometry in this paper, we hope that these results will lead to further progress on
the stability issues started by Zenkov, Bloch and Marsden [1997]. In this light,
the stability and stabilization of a simplified model of the bicycle (see Koon and
Marsden [1997b]) is an important problem to tackle.

Optimal Control and Numerical Methods. Closely related to the work men-
tioned above is the optimal control of the bicycle, which is an underactuated balance
system. Koon and Marsden [1997a] initiated the investigation of optimal control for
nonholonomic systems like the snakeboard, using the Lagrangian framework de-
veloped in [BKMM] and coupling it with the method of Lagrange multipliers and
Lagrangian reduction. Interestingly, Gregory and Lin [1992] has used the same
method of Lagrange multipliers to devise a general, accurate and efficient numerical
method to solve the constrained optimal control problem. Ostrowski, Desai and
Kumar [1997] has built on these advances to study the optimal gait selection for
nonholonomic locomotion systems. This kind of finite element method applied to
the variational problem in integral form developed in Gregory and Lin [1992] fits
well with the Lagrangian framework and gives good and interesting results in the
case of a relatively complicated problem, namely the optimal control of a snake-
board. We would like to use this Lagrangian approach to study the optimal control
of a simplified model of the bicycles,

Geometric Phases for Nonholonomic Systems. The geometric effect of holon-
omy plays an important role in the understanding of phase drifts and is a crucial
ingredient in problems of stabilization and tracking. The basic idea of holonomy is
that if the system undergoes cyclic motion in the shape space (this is sometimes the
control space), then it need not undergo cyclic motion in the configuration space.
The difference between the beginning and the end of the motion is given by a drift
in the group variables and this is the geometric phase. But the basic theory for
the holonomy is not as well developed in the case of nonholonomic systems as for
holonomic ones.

The geometric tools to further develop the theory for systems with nonholonomic
constraints are laid in Marsden, Montgomery and Ratiu [1990] and in [BKMM]. We
aim to develop the theory by combining the approaches in these two papers and also
by making the calculations more concrete and accessible. In particular, in [BKMM]
the notion of the nonholonomic connection is defined and this is what replaces the
mechanical connection in the case of holonomic constraints. What makes this theory
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more interesting is the presence of of the constraint distribution as well as the fact
that the momentum need not be conserved. A start on this problem is made in
Koon and Marsden [1997c].
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