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Abstract

This paper presents a geometric-variational approach to continuous and dis-
crete mechanics and field theories. Using multisymplectic geometry, we show
that the existence of the fundamental geometric structures as well as their
preservation along solutions can be obtained directly from the variational prin-
ciple. In particular, we prove that a unique multisymplectic structure is ob-
tained by taking the derivative of an action function, and use this structure to
prove covariant generalizations of conservation of symplecticity and Noether’s
theorem. Natural discretization schemes for PDEs, which have these important
preservation properties, then follow by choosing a discrete action functional.
In the case of mechanics, we recover the variational symplectic integrators of
Veselov type, while for PDEs we obtain covariant spacetime integrators which
conserve the corresponding discrete multisymplectic form as well as the discrete
momentum mappings corresponding to symmetries. We show that the usual
notion of symplecticity along an infinite-dimensional space of fields can be natu-
rally obtained by making a spacetime split. All of the aspects of our method are
demonstrated with a nonlinear sine-Gordon equation, including computational
results and a comparison with other discretization schemes.
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1 Introduction

The purpose of this paper is to develop the geometric foundations for multisym-
plectic-momentum integrators for variational partial differential equations (PDEs).
These integrators are the PDE generalizations of symplectic integrators that are
popular for Hamiltonian ODEs (see, for example, the articles in Marsden, Patrick
and Shadwick [1996], and especially the review article of McLachlan and Scovel
[1996]) in that they are covariant spacetime integrators which preserve the geometric
structures of the system.

Because of the covariance of our method which we shall describe below, the
resulting integrators are spacetime localizable in the context of hyperbolic PDEs,
and generalize the notion of symplecticity and symmetry preservation in the context
of elliptic problems. Herein, we shall primarily focus on spacetime integrators;
however, we shall remark on the connection of our method with the finite element
method for elliptic problems, as well as the Gregory and Lin [1991] method in
optimal control.

Historically, in the setting of ODEs, there have been many approaches devised for
constructing symplectic integrators, beginning with the original derivations based on
generating functions (see de Vogelaere [1956]) and proceeding to symplectic Runge-
Kutta algorithms, the shake algorithm, and many others. In fact, in many areas
of molecular dynamics, symplectic integrators such as the Verlet algorithm and
variants thereof are quite popular, as are symplectic integrators for the integration
of the solar system. In these domains, integrators that are either symplectic or
which are adaptations of symplectic integrators, are amongst the most widely used.

A fundamentally new approach to symplectic integration is that of Veselov [1988],
[1991] who developed a discrete mechanics based on a discretization of Hamilton’s
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principle. Their method leads in a natural way to symplectic-momentum integrators
that includes the shake and Verlet integrators as special cases (see Wendlandt and
Marsden [1997]). In addition, Veselov integrators often have amazing properties
with regard to preservation of integrable structures, as has been shown by Moser
and Veselov [1991]. This aspect has yet to be exploited numerically, but it seems to
be quite important.

The approach we take in this paper is to develop a Veselov-type discretization for
PDE’s in variational form. The relevant geometry for this situation is multisymplec-
tic geometry (see Gotay, Isenberg, and Marsden [1997] and Marsden and Shkoller
[1997]) and we develop it in a variational framework. As we have mentioned, this
naturally leads to multisymplectic-momentum integrators. It is well-known that
such integrators cannot in general preserve the Hamiltonian exactly (Ge and Mars-
den [1988]). However, these integrators have, under appropriate circumstances, very
good energy performance in the sense of the conservation of a nearby Hamiltonian
up to exponentially small errors, assuming small time steps, due to a result of Neish-
tadt [1984]. See also Dragt and Finn [1979], and Simo and Gonzales [1993]. This
is related to backward error analysis; see Sanz-Serna and Calvo [1994], Calvo and
Hairer [1995], and the recent work of Hyman, Newman and coworkers and references
therein. It would be quite interesting to develop the links with Neishtadt’s analysis
more thoroughly.

An important part of our approach is to understand how the symplectic nature
of the integrators is implied by the variational structure. In this way we are able to
identify the symplectic and momentum conserving properties after discretizing the
variational principle itself. Inspired by a paper of Wald [1993], we obtain a formal
method for locating the symplectic or multisymplectic structures directly from the
action function and its derivatives. We present the method in the context of ordinary
Lagrangian mechanics, and apply it to discrete Lagrangian mechanics, and both
continuous and discrete multisymplectic field theory. While in these contexts our
variational method merely uncovers the well-known differential-geometric structures,
our method forms an excellent pedagogical approach to those theories.

Outline of paper.

§2 In this section we sketch the three main aspects of our variational approach in
the familiar context of particle mechanics. We show that the usual symplectic
2-form on the tangent bundle of the configuration manifold arises naturally
as the boundary term in the first variational principle. We then show that
application of d2 = 0 to the variational principle restricted to the space of
solutions of the Euler-Lagrange equations produces the familiar concept of
conservation of the symplectic form; this statement is obtained variationally
in a non-dynamic context; that is, we do not require an evolutionary flow.
We then show that if the action function is left invariant by a symmetry
group, then Noether’s theorem follows directly and simply from the variational
principle as well.

§3 Here we use our variational approach to construct discretization schemes for

3



mechanics which preserve the discrete symplectic form and the associated dis-
crete momentum mappings.

§4 This section defines the three aspects of our variational approach in the multi-
symplectic field-theoretic setting. Unlike the traditional approach of defining
the canonical multisymplectic form on the dual of the first jet bundle and then
pulling back to the Lagrangian side using the covariant Legendre transform,
we obtain the geometric structure by staying entirely on the Lagrangian side.
We prove the covariant analogue of the fact that the flow of conservative sys-
tems consists of symplectic maps; we call this result the multisymplectic form
formula. After variationally proving a covariant version of Noether’s theorem,
we show that one can use the multisymplectic form formula to recover the
usual notion of symplecticity of the flow in an infinite-dimensional space of
fields by making a spacetime split. We demonstrate this machinery using a
nonlinear wave equation as an example.

§5 In this section we develop discrete field theories from which the covariant in-
tegrators follow. We define discrete analogues of the first jet bundle of the
configuration bundle whose sections are the fields of interest, and proceed to
define the discrete action sum. We then apply our variational algorithm to this
discrete action function to produce the discrete Euler-Lagrange equations and
the discrete multisymplectic forms. As a consequence of our methodology, we
show that the solutions of the discrete Euler-Lagrange equations satisfy the
discrete version of the multisymplectic form formula as well as the discrete ver-
sion of our generalized Noether’s theorem. Using our nonlinear wave equation
example, we develop various multisymplectic-momentum integrators for the
sine-Gordon equations, and compare our resulting numerical scheme with the
energy-conserving methods of Li and Vu-Quoc [1995] and Guo, Pascual, Ro-
driguez, and Vazquez [1986]. Results are presented for long-time simulations
of kink-antikink solutions for over 5000 soliton collisions.

§6 This section contains some important remarks concerning the variational inte-
grator methodology. For example, we discuss integrators for reduced systems,
the role of grid uniformity, and the interesting connections with the finite-
element methods for elliptic problems. We also make some comments on
future work.

2 Lagrangian Mechanics

Hamilton’s Principle. We begin by recalling a problem going back to Euler,
Lagrange and Hamilton in the period 1740–1830. Consider an n-dimensional con-
figuration manifold Q with its tangent bundle TQ. We denote coordinates on Q by
qi and those on TQ by (qi, q̇i). Consider a Lagrangian L : TQ→ R. Construct the
corresponding action functional S on C2 curves q(t) in Q by integration of L along
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the tangent to the curve. In coordinate notation, this reads

S
(
q(t)

)
≡
∫ b

a
L

(
qi(t),

dqi

dt
(t)
)
dt. (2.1)

The action functional depends on a and b, but this is not explicit in the notation.
Hamilton’s principle seeks the curves q(t) for which the functional S is stationary
under variations of q(t) with fixed endpoints; namely, we seek curves q(t) which
satisfy

dS
(
q(t)

)
· δq(t) ≡ d

dε

∣∣∣∣
ε=0

S
(
qε(t)

)
= 0 (2.2)

for all δq(t) with δq(a) = δq(b) = 0, where qε is a smooth family of curves with
qε = q and (d/dε)|ε=0qε = δq. Using integration by parts, the calculation for this is
simply

dS
(
q(t)

)
· δq(t) =

d

dε

∣∣∣∣
ε=0

∫ b

a
L

(
qiε(t),

dqiε
dt

(t)
)
dt

=
∫ b

a
δqi
(
∂L

∂qi
− d

dt

∂L

∂q̇i

)
dt+

∂L

∂q̇i
δqi
∣∣∣∣b
a

. (2.3)

The last term in (2.3) vanishes since δq(a) = δq(b) = 0, so that the requirement
(2.2) for S to be stationary yields the Euler-Lagrange equations

∂L

∂qi
− d

dt

∂L

∂q̇i
= 0. (2.4)

Recall that L is called regular when the symmetric matrix [∂2L/∂q̇i∂q̇j ] is every-
where nonsingular. If L is regular, the Euler-Lagrange equations are second order
ordinary differential equations for the required curves.

The standard geometric setting. The action (2.1) is independent of the choice
of coordinates, and thus the Euler-Lagrange equations are coordinate independent
as well. Consequently, it is natural that the Euler-Lagrange equations may be
intrinsically expressed using the language of differential geometry. This intrinsic
development of mechanics is now standard, and can be seen, for example, in Arnold
[1978], Abraham and Marsden [1978], and Marsden and Ratiu [1994].

The canonical 1-form θ0 on the 2n-dimensional cotangent bundle of Q, T ∗Q
is defined by

θ0(αq)wαq ≡ αq · TπQwαq , αq ∈ T ∗qQ, wαq ∈ TαqT ∗Q,

where πQ : T ∗Q → Q is the canonical projection. The Lagrangian L intrinsically
defines a fiber preserving bundle map FL : TQ → T ∗Q, the Legendre transfor-
mation, by vertical differentiation:

FL(vq)wq ≡
d

dε

∣∣∣∣
ε=0

L(vq + εwq).
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We define the Lagrange 1-form on TQ, the Lagrangian side, by pull-back θL ≡
FL∗θ0, and the Lagrange 2-form by ωL = −dθL. We then seek a vector field XE

(called the Lagrange vector field) on TQ such that XE ωL = dE, where the
energy E is defined by E(vq) ≡ FL(vq)vq − L(vq).

If FL is a local diffeomorphism then XE exists and is unique, and its integral
curves solve the Euler-Lagrange equations (2.4). In addition, the flow Ft of XE

preserves ωL; that is, F ∗t ωL = ωL. Such maps are symplectic, and the form ωL
is called a symplectic 2-form. This is an example of a symplectic manifold: a
pair (M,ω) where M is a manifold and ω is closed nondegenerate 2-form.

Despite the compactness and precision of this differential-geometric approach,
it is difficult to motivate and, furthermore, is not entirely contained on the La-
grangian side. The canonical 1-form θ0 seems to appear from nowhere, as does
the Legendre transform FL. Historically, after the Lagrangian picture on TQ was
constructed, the canonical picture on T ∗Q emerged through the work of Hamilton,
but the modern approach described above treats the relation between the Hamil-
tonian and Lagrangian pictures of mechanics as a mathematical tautology, rather
then what it is—a discovery of the highest order.

The variational approach. More and more, one is finding that there are advan-
tages to staying on the “Lagrangian side”. Many examples can be given, but the
theory of Lagrangian reduction (the Euler-Poincaré equations being an instance) is
one example (see, for example, Marsden and Ratiu [1994] and Holm, Marsden and
Ratiu [1998a,b]); another, of many, is the direct variational approach to questions
in black hole dynamics given by Wald [1993]. In such studies, it is the variational
principle that is the center of attention.

We next show that one can derive in a natural way the fundamental differential
geometric structures, including momentum mappings, directly from the variational
approach. This development begins by removing the boundary condition δq(a) =
δq(b) = 0 from (2.3). Equation (2.3) becomes

dS
(
q(t)

)
· δq(t) =

∫ b

a
δqi
(
∂L

∂qi
− d

dt

∂L

∂q̇i

)
dt+

∂L

∂q̇i
δqi
∣∣∣∣b
a

, (2.5)

where the left side now operates on more general δq (this generalization will be
described in detail in Section (4)), while the last term on the right side does not
vanish. That last term of (2.5) is a linear pairing of the function ∂L/∂q̇i, a function
of qi and q̇i, with the tangent vector δqi. Thus, one may consider it to be a 1-form
on TQ; namely the 1-form (∂L/∂q̇i)dqi. This is exactly the Lagrange 1-form, and
we can turn this into a formal theorem/definition:

Theorem 2.1 Given a Ck Lagrangian L, k ≥ 2, there exists a unique Ck−2 map-
ping DELL : Q̈→ T ∗Q, defined on the second order submanifold

Q̈ ≡
{
d2q

dt2
(0)
∣∣∣∣ q a C2 curve in Q

}
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of TTQ, and a unique Ck−1 1-form θL on TQ, such that, for all C2 variations qε(t),

dS
(
q(t)

)
· δq(t) =

∫ b

a
DELL

(
d2q

dt2

)
· δq dt+ θL

(
dq

dt

)
· δ̂q
∣∣∣∣b
a

, (2.6)

where

δq(t) ≡ d

dε

∣∣∣∣
ε=0

qε(t), δ̂q(t) ≡ d

dε

∣∣∣∣
ε=0

d

dt

∣∣∣∣
t=0

qε(t).

The 1-form so defined is a called the Lagrange 1-form.

Indeed, uniqueness and local existence follow from the calculation (2.3), and the
coordinate independence of the action, and then global existence is immediate. Here
then, is the first aspect of our method:

Using the variational principle, the Lagrange 1-form θL is the “boundary
part” of the the functional derivative of the action when the boundary is
varied. The analogue of the symplectic form is the (negative of) the
exterior derivative of θL.

For the mechanics example being discussed, we imagine a development wherein θL
is so defined and we define ωL ≡ −dθL.

Lagrangian flows are symplectic. One of Lagrange’s basic discoveries was that
the solutions of the Euler-Lagrange equations give rise to a symplectic map. It is a
curious twist of history that he did this without the machinery of either differential
forms, of the Hamiltonian formalism or of Hamilton’s principle itself. (See Marsden
and Ratiu [1994] for an account of some of this history.)

Assuming that L is regular, the variational principle then gives coordinate in-
dependent second order ordinary differential equations, as we have noted. We tem-
porarily denote the vector field on TQ so obtained by X, and its flow by Ft. Our
further development relies on a change of viewpoint: we focus on the restriction of
S to the subspace CL of solutions of the variational principle. The space CL may be
identified with the initial conditions, elements of TQ, for the flow: to vq ∈ TQ, we
associate the integral curve s 7→ Fs(vq), s ∈ [0, t]. The value of S on that curve is
denoted by St, and again called the action. Thus, we define the map St : TQ→ R
by

St(vq) =
∫ t

0
L(q(s), q̇(s)) ds, (2.7)

where (q(s), q̇(s)) = Fs(vq). The fundamental equation (2.6) becomes

dSt(vq)wvq = θL
(
Ft(vq)

)
· d
dε

∣∣∣∣
ε=0

Ft(vεq)− θL(vq) · wvq ,

where ε 7→ vεq is an arbitrary curve in TQ such that v0
q = vq and (d/dε)|0vεq = wvq .

We have thus derived the equation

dSt = F ∗t θL − θL. (2.8)
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Taking the exterior derivative of (2.8) yields the fundamental fact that the flow of
X is symplectic:

0 = ddSt = d(F ∗t θL − θL) = −F ∗t ωL + ωL

which is equivalent to

F ∗t ωL = ωL.

This leads to the following:

Using the variational principle, the fact that the evolution is symplectic
is a consequence of the equation d2 = 0, applied to the action restricted
to the space of solutions of the variational principle.

In passing, we note that (2.8) also provides the differential-geometric equations
for X. Indeed, one time derivative of (2.8) and using (2.7) gives dL = LXθL, so that

X ωL = −X dθL = −LXθL + d(X θL) = d(X θL − L) = dE,

if we define E ≡ X θL − L. Thus, we quite naturally find that X = XE .
Of course, this set up also leads directly to Hamilton-Jacobi theory, which was

one of the ways in which symplectic integrators were developed (see McLachlan and
Scovel [1996] and references therein.) However, we shall not pursue the Hamilton-
Jacobi aspect of the theory here.

Momentum maps. Suppose that a Lie group G, with Lie algebra g, acts on Q,
and hence on curves in Q, in such a way that the action S is invariant. Clearly, G
leaves the set of solutions of the variational principle invariant, so the action of G
restricts to CL, and the group action commutes with Ft. Denoting the infinitesimal
generator of ξ ∈ g on TQ by ξTQ, we have by (2.8),

0 = ξTQ dSt = ξTQ (F ∗t θL − θL) = F ∗t (ξTQ θL)− ξTQ θL. (2.9)

For ξ ∈ g, define Jξ : TQ → R by Jξ ≡ ξTQ θL. Then (2.9) says that Jξ is an
integral of the flow of XE . We have arrived at a version of Noether’s theorem (rather
close to the original derivation of Noether):

Using the variational principle, Noether’s theorem results from the in-
finitesimal invariance of the action restricted to space of solutions of
the variational principle. The conserved momentum associated to a Lie
algebra element ξ is Jξ = ξ θL, where θL is the Lagrange one-form.

Reformulation in terms of first variations. We have just seen that symplec-
ticity of the flow and Noether’s theorem result from restricting the action to the
space of solutions. One tacit assumption is that the space of solutions is a mani-
fold in some appropriate sense. This is a potential problem, since solution spaces for
field theories are known to have singularities (see, e.g., Arms, Marsden and Moncrief
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[1982]). More seriously there is the problem of finding a multisymplectic analogue
of the statement that the Lagrangian flow map is symplectic, since for multisym-
plectic field theory one obtains an evolution picture only after splitting spacetime
into space and time and adopting the “function space” point of view. Having the
general formalism depend either on a spacetime split or an analysis of the associated
Cauchy problem would be contrary to the general thrust of this article. We now
give a formal argument, in the context of Lagrangian mechanics, which shows how
both these problems can be simultaneously avoided.

Given a solution q(t) ∈ CL, a first variation at q(t) is a vector field V on Q
such that t 7→ F Vε ◦ q(t) is also a solution curve (i.e. a curve in CL). We think of
the solution space CL as being a (possibly) singular subset of the smooth space of
all putative curves C in TQ, and the restriction of V to q(t) as being the derivative
of some curve in CL at q(t). When CL is a manifold, a first variation is a vector at
q(t) tangent to CL. Temporarily define α ≡ dS − θL where by abuse of notation θL
is the one form on C defined by

θL
(
q(t)

)
δq(t) ≡ θL(b)δq(b)− θL(a)δq(a).

Then CL is defined by α = 0 and we have the equation

dS = α+ θL,

so if V and W are first variations at q(t), we obtain

0 = V W d2S = V W dα+ V W dθL. (2.10)

We have the identity

dα(V,W )
(
q(t)

)
= V

(
α(W )

)
−W

(
α(V )

)
− α([V,W ]), (2.11)

which we will use to evaluate (2.10) at the curve q(t). Let F Vε denote the flow of V ,
define qVε (t) ≡ F Vε

(
q(t)

)
, and make similar definitions with W replacing V . For the

first term of (2.11), we have

V
(
α(W )

)(
q(t)

)
=

d

dε

∣∣∣∣
ε=0

α(W )(qVε ),

which vanishes, since α is zero along qVε for every ε. Similarly the second term
of (2.10) at q(t) also vanishes, while the third term of vanishes since α

(
q(t)

)
= 0.

Consequently, symplecticity of the Lagrangian flow Ft may be written

V W dθL = 0,

for all first variations V and W . This formulation is valid whether or not the solution
space is a manifold, and it does not explicitly refer to any temporal notion. Similarly,
Noether’s theorem may be written in this way. Summarizing,
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Using the variational principle, the analogue of the evolution is symplec-
tic is the equation d2S = 0 restricted to first variations of the space of
solutions of the variational principle. The analogue of Noether’s theorem
is infinitesimal invariance of dS restricted to first variations of the space
of solutions of the variational principle.

The variational route to the differential-geometric formalism has obvious ped-
agogical advantages. More than that, however, it systematizes searching for the
corresponding formalism in other contexts. We shall in the next sections show how
this works in the context of discrete mechanics, classical field theory and multisym-
plectic geometry.

3 Veselov Discretizations of Mechanics

The discrete Lagrangian formalism in Veselov [1988], [1991] fits nicely into our vari-
ational framework. Veselov uses Q×Q for the discrete version of the tangent bundle
of a configuration space Q; heuristically, given some a priori choice of time interval
∆t, a point (q1, q0) ∈ Q×Q corresponds to the tangent vector (q1− q0)/∆t. Define
a discrete Lagrangian to be a smooth map L : Q × Q = {q1, q0} → R, and the
corresponding action to be

S ≡
n∑
k=1

L(qk, qk−1). (3.1)

The variational principle is to extremize S for variations holding the endpoints q0

and qn fixed. This variational principle determines a “discrete flow” F : Q × Q →
Q×Q by F (q1, q0) = (q2, q1), where q2 is found from the discrete Euler-Lagrange
equations (DEL equations):

∂L

∂q1
(q1, q0) +

∂L

∂q0
(q2, q1) = 0. (3.2)

In this section we work out the basic differential-geometric objects of this discrete
mechanics directly from the variational point of view, consistent with our philosophy
in the last section.

A mathematically significant aspect of this theory is how it relates to integrable
systems, a point taken up by Moser and Veselov [1991]. We will not explore this
aspect in any detail in this paper, although later, we will briefly discuss the reduc-
tion process and we shall test an integrator for an integrable pde, the sine-Gordon
equation.

The Lagrange 1-form. We begin by calculating dS for variations that do not fix
the endpoints:

dS(q0, · · · , qn) · (δq0, · · · , δqn)
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=
n−1∑
k=0

(
∂L

∂q1
(qk+1, qk)δqk+1 +

∂L

∂q0
(qk+1, qk)δqk

)

=
n∑
k=1

∂L

∂q1
(qk, qk−1)δqk +

n−1∑
k=0

∂L

∂q0
(qk+1, qk)δqk

=
n∑
k=1

(
∂L

∂q1
(qk, qk−1) +

∂L

∂q0
(qk+1, qk)

)
δqk

+
∂L

∂q0
(q1, q0)δq0 +

∂L

∂q1
(qn, qn−1)δqn. (3.3)

It is the last two terms that arise from the boundary variations (i.e. these are the
ones that are zero if the boundary is fixed), and so these are the terms amongst
which we expect to find the discrete analogue of the Lagrange 1-form. Actually,
interpretation of the boundary terms gives the two 1-forms on Q×Q

θ−L (q1, q0) · (δq1, δq0) ≡ ∂L

∂q0
(q1, q0)δq0, (3.4)

and

θ+
L (q1, q0) · (δq1, δq0) ≡ ∂L

∂q1
(q1, q0)δq1, (3.5)

and we regard the pair (θ−, θ+) as being the analogue of the one form in this situa-
tion.

Symplecticity of the flow. We parameterize the solutions of the variational
principle by the initial conditions (q1, q0), and restrict S to that solution space.
Then Equation (3.3) becomes

dS = θ−L + F ∗θ+
L . (3.6)

We should be able to obtain the symplecticity of F by determining what the equation
ddS = 0 means for the right-hand-side of (3.6). At first, this does not appear to
work, since ddS = 0 gives

F ∗(dθ+
L ) = −dθ−L , (3.7)

which apparently says that F pulls a certain 2-form back to a different 2-form. The
situation is aided by the observation that, from (3.4) and (3.5),

θ−L + θ+
L = dL, (3.8)

and consequently,

dθ−L + dθ+
L = 0. (3.9)
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Thus, there are two generally distinct 1-forms, but (up to sign) only one 2-form. If
we make the definition

ωL ≡ dθ−L = −dθ+
L ,

then (3.7) becomes F ∗ωL = ωL. Equation (3.4), in coordinates, gives

ωL =
∂2L

∂qi0∂q
j
1

dqi0 ∧ dqj1,

which agrees with the discrete symplectic form found in Veselov [1988], [1991].

Noether’s Theorem. Suppose a Lie group G with Lie algebra g acts on Q, and
hence diagonally on Q×Q, and that L is G-invariant. Clearly, S is also G-invariant
and G sends critical points of S to themselves. Thus, the action of G restricts to
the space of solutions, the map F is G-equivariant, and from (3.6),

0 = ξQ×Q dS = ξQ×Q θ−L + ξQ×Q (F ∗θ+
L ),

for ξ ∈ g, or equivalently, using the equivariance of F ,

ξQ×Q θ−L = −F ∗(ξQ×Q θ+). (3.10)

Since L is G-invariant, (3.8) gives ξQ×Q θ−L = −ξQ×Q θ+
L , which in turn con-

verts (3.10) to the conservation equation

ξQ×Q θ+
L = F ∗(ξQ×Q θ+). (3.11)

Defining the discrete momentum to be

Jξ ≡ ξQ×Q θ+
L ,

we see that (3.11) becomes conservation of momentum. A virtually identical deriva-
tion of this discrete Noether theorem is found in Marsden and Wendlant [1997].

Reduction. As we mentioned above, this formalism lends itself to a discrete ver-
sion of the theory of Lagrangian reduction (see Marsden and Scheurle [1993a,b],
Holm, Marsden and Ratiu [1998a] and Cendra, Marsden and Ratiu [1998]). This
theory is not the focus of this article, so we shall defer a brief discussion of it until
the conclusions.

4 Variational Principles for Classical Field Theory

Multisymplectic geometry. We now review some aspects of multisymplectic
geometry, following Gotay, Isenberg and Marsden [1997] and Marsden and Shkoller
[1997].

We let πXY : Y → X be a fiber bundle over an oriented manifold X. Denote
the first jet bundle over Y by J1(Y ) or J1Y and identify it with the affine bundle
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over Y whose fiber over y ∈ Yx := π−1
XY (x) consists of Aff(TxX,TyY ), those linear

mappings γ : TxX → TyY satisfying

TπXY ◦ γ = Identity on TxX.

We let dimX = n+ 1 and the fiber dimension of Y be N . Coordinates on X are
denoted xµ, µ = 1, 2, . . . , n, 0, and fiber coordinates on Y are denoted by yA, A =
1, . . . , N . These induce coordinates vAµ on the fibers of J1(Y ). If φ : X → Y is a
section of πXY , its tangent map at x ∈ X, denoted Txφ, is an element of J1(Y )φ(x).
Thus, the map x 7→ Txφ defines a section of J1(Y ) regarded as a bundle over X.
This section is denoted j1(φ) or j1φ and is called the first jet of φ. In coordinates,
j1(φ) is given by

xµ 7→ (xµ, φA(xµ), ∂νφA(xµ)), (4.1)

where ∂ν = ∂/∂xν .
Higher order jet bundles of Y , Jm(Y ), then follow as J1(· · ·(J1(Y )). Analogous

to the tangent map of the projection πY,J1(Y ), TπY,J1(Y ) : TJ1(Y ) → TY , we may
define the jet map of this projection which takes J2(Y ) onto J1(Y )

Definition 4.1 Let γ ∈ J1(Y ) so that πX,J1(Y )(γ) = x. Then

JπY,J1(Y ) : Aff(TxX,TγJ1(Y ))→ Aff(TxX,TπY,J1(Y ) · TγJ1(Y )).

We define the subbundle Y ′′ of J2(Y ) over X which consists of second-order jets so
that on each fiber

Y ′′x = {s ∈ J2(Y )γ | JπY,J1(Y )(s) = γ}.

In coordinates, if γ ∈ J1(Y ) is given by (xµ, yA, vAµ), and s ∈ J2(Y )γ is given
by (xµ, yA, vAµ, wAµ, κAµν), then s is a second-order jet if vAµ = wAµ. Thus,
the second jet of φ ∈ Γ(πXY ), j2(φ), given in coordinates by the map xµ 7→
(xµ, φA, ∂νφA, ∂µ∂νφA), is an example of a second-order jet.

Definition 4.2 The dual jet bundle J1(Y )? is the vector bundle over Y whose
fiber at y ∈ Yx is the set of affine maps from J1(Y )y to Λn+1(X)x, the bundle of
(n+ 1)-forms on X. A smooth section of J1(Y )? is therefore an affine bundle map
of J1(Y ) to Λn+1(X) covering πXY .

Fiber coordinates on J1(Y )? are (p, pAµ), which correspond to the affine map given
in coordinates by

vAµ 7→ (p+ pA
µvAµ)dn+1x, (4.2)

where dn+1x = dx1 ∧ · · · ∧ dxn ∧ dx0.
Analogous to the canonical one- and two-forms on a cotangent bundle, there exist

canonical (n+ 1)- and (n+ 2)-forms on the dual jet bundle J1(Y )?. In coordinates,
these forms are given by

Θ = pA
µdyA ∧ dnxµ + pdn+1x and Ω = dyA ∧ dpAµ ∧ dnxµ − dp ∧ dn+1x. (4.3)
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A Lagrangian density L : J1(Y ) → Λn+1(X) is a smooth bundle map over X.
In coordinates, we write

L(γ) = L(xµ, yA, vAµ)dn+1x. (4.4)

The corresponding covariant Legendre transformation for L is a fiber preserving
map over Y , FL : J1(Y )→ J1(Y )?, expressed intrinsically as the first order vertical
Taylor approximation to L:

FL(γ) · γ′ = L(γ) +
d

dε

∣∣∣∣
ε=0

L(γ + ε(γ′ − γ)) (4.5)

where γ, γ′ ∈ J1(Y )y. A straightforward calculation shows that the covariant Leg-
endre transformation is given in coordinates by

pA
µ =

∂L

∂vAµ
, and p = L− ∂L

∂vAµ
vAµ. (4.6)

We can then define the Cartan form as the (n + 1)-form ΘL on J1(Y ) given
by

ΘL = (FL)∗Θ, (4.7)

and the (n+ 2)-form ΩL by

ΩL = −dΘL = (FL)∗Ω, (4.8)

with local coordinate expressions

ΘL =
∂L

∂vAµ
dyA ∧ dnxµ +

(
L− ∂L

∂vAµ
vAµ

)
dn+1x,

ΩL = dyA ∧ d
(

∂L

∂vAµ

)
∧ dnxµ − d

[
L− ∂L

∂vAµ
vAµ

]
∧ dn+1x.

(4.9)

This is the differential-geometric formulation of the multisymplectic structure.
Subsequently, we shall show how we may obtain this structure directly from the
variational principle, staying entirely on the Lagrangian side J1(Y ).

The multisymplectic form formula. In this subsection we prove a formula that
is the multisymplectic counterpart to the fact that in finite-dimensional mechanics,
the flow of a mechanical system consists of symplectic maps. Again, we do this by
studying the action function.

Definition 4.3 Let U be a smooth manifold with (piecewise) smooth closed bound-
ary. We define the set of smooth maps

C∞ = {φ : U → Y | πXY ◦ φ : U → X is an embedding}.

For each φ ∈ C∞, we set φX := πXY ◦φ and UX := πXY ◦φ(U) so that φX : U → UX
is a diffeomorphism. .
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We may then define the infinite-dimensional manifold C to be the closure of C∞
in either a Hilbert space or Banach space topology. For example, the manifold C
may be given the topology of a Hilbert manifold of bundle mappings, Hs(U, Y ), (U
considered a bundle with fiber a point) for any integer s ≥ (n + 1)/2, so that the
Hilbert sections φ ◦ φ−1

X in Y are those whose distributional derivatives up to order s
are square-integrable in any chart. With our condition on s, the Sobolev embedding
theorem makes such mappings well defined. Alternately, one may wish to consider
the Banach manifold C as the closure of C∞ in the usual Ck-norm, or more generally,
in a Holder space Ck+α-norm. See Palais [1968] and Ebin and Marsden [1970] for
a detailed account of manifolds of mappings. The choice of topology for C will not
play a crucial role in this paper.

Definition 4.4 Let G be the Lie group of πXY -bundle automorphisms ηY covering
diffeomorphisms ηX , with Lie algebra g. We define the action Φ : G × C → C by

Φ(ηY , φ) = ηY ◦ (φ ◦ φ−1
X ) ◦ η−1

X .

Furthermore, if φ ◦ φ−1
X ∈ Γ(πUX ,Y ), then Φ(ηY , φ) ∈ Γ(πηX(UX),Y ). The tangent

space to the manifold C at a point φ is the set TφC defined by

{V ∈ C∞(X,TY ) | πY,TY ◦ V = φ,&TπXY ◦ V = VX , a vector field on X} .
(4.10)

Of course, when these objects are topologized as we have described, the definition
of the tangent space becomes a theorem, but as we have mentioned, this functional
analytic aspect plays a minor role in what follows.

Given vectors V,W ∈ TφC we may extend them to vector fields V,W on C by
fixing vector fields v, w ∈ TY such that V = v ◦ (φ ◦ φ−1

X ) and W = w ◦ (φ ◦ φ−1
X ),

and letting Vρ = v ◦ (ρ ◦ ρ−1
X ) and Wρ = w ◦ (ρ ◦ ρ−1

X ). Thus, the flow of V on C
is given by Φ(ηλY , ρ) where ηλY covering ηλX is the flow of v. The definition of the
bracket of vector fields using their flows, then shows that

[V,W](ρ) = [v, w] ◦ (ρ ◦ ρ−1
X ).

Whenever it is contextually clear, we shall, for convenience, write V for v◦(φ ◦ φ−1
X ).

Definition 4.5 The action function S on C is defined as follows:

S(φ) =
∫
UX

L(j1(φ ◦ φ−1
X )) for all φ ∈ C. (4.11)

Let λ 7→ ηλY be an arbitrary smooth path in G such that η0
Y = e, and let V ∈ TφC

be given by

V =
d

dλ

∣∣∣∣
λ=0

Φ(ηλY , φ), and VX =
d

dλ

∣∣∣∣
λ=0

ηλX ◦ φ. (4.12)
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Definition 4.6 We say that φ is a stationary point, critical point, or ex-
tremum of S if

d

dλ

∣∣∣∣
λ=0

S(Φ(ηλY , φ)) = 0. (4.13)

Then,

dSφ · V =
d

dλ

∣∣∣∣
λ=0

∫
ηλX◦φX(U)

L(Φ(ηλY , φ)) (4.14)

=
d

dλ

∣∣∣∣
λ=0

∫
φX(U)

j1(φ ◦ φ−1
X )∗j1(ηλY )∗ΘL,

where we have used the fact that L(z) = z∗ΘL for all holonomic sections z of J1(Y )
(see Corollary 4.2 below), and that

j1(ηY ◦ φ ◦ φ−1
X ◦ η−1

X ) = j1(ηY ) ◦ j1(φ ◦ φ−1
X ) ◦ η−1

X .

Using the Cartan formula, we obtain that

dSφ · V =
∫
UX

j1(φ ◦ φ−1
X )∗Lj1(V )ΘL

=
∫
UX

j1(φ ◦ φ−1
X )∗[j1(V ) ΩL]

+
∫
∂UX

j1(φ ◦ φ−1
X )∗[j1(V ) ΘL]. (4.15)

Hence, a necessary condition for φ ∈ C to be an extremum of S is that the first
term in (4.15) vanish. One may readily verify that the integrand of the first term in
(4.15) is equal to zero whenever j1(V ) is replaced by W ∈ TJ1(Y ) which is either
πY,J1(Y )-vertical or tangent to j1(φ ◦ φ−1

X ) (see Marsden and Shkoller [1997]), so that
using a standard argument from the calculus of variations, j1(φ ◦ φ−1

X )∗[W ΩL] must
vanish for all vectors W on J1(Y ) in order for φ to be an extremum of the action.
We shall call such elements φ ∈ C covering φX , solutions of the Euler-Lagrange
equations.

Definition 4.7 We let

P = {φ ∈ C | j1(φ ◦ φ−1
X )∗[W ΩL] = 0 for all W ∈ TJ1(Y )}. (4.16)

In coordinates, (φ ◦ φ−1
X )A is an element of P if

∂L

∂yA
(j1(φ ◦ φ−1

X ))− ∂

∂xµ

(
∂L

∂vAµ
(j1(φ ◦ φ−1

X )
)

= 0 in UX .

We are now ready to prove the multisymplectic form formula, a generalization
of the symplectic flow theorem, but we first make the following remark. If P is
a submanifold of C, then for any φ ∈ P, we may identify TφP with the set {V ∈
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TφC | j1(φ ◦ φ−1
X )∗Lj1(V )[W ΩL] = 0 for all W ∈ TJ1(Y )} since such vectors

arise by differentiating d
dε |ε=0j

1(φε ◦ φεX−1)∗[W ΩL] = 0, where φε is a smooth
curve of solutions of the Euler-Lagrange equations in P (when such solutions exist).
More generally, we do not require P to be a submanifold in order to define the first
variation solution of the Euler-Lagrange equations.

Definition 4.8 For any φ ∈ P ,we define the set

F = {V ∈ TφC | j1(φ ◦ φ−1
X )∗Lj1(V )[W ΩL] = 0 for all W ∈ TJ1(Y )}. (4.17)

Elements of F solve the first variation equations of the Euler-Lagrange equations.

Theorem 4.1 (Multisymplectic form formula) If φ ∈ P, then for all V and
W in F , ∫

∂UX

j1(φ ◦ φ−1
X )∗[j1(V ) j1(W ) ΩL] = 0. (4.18)

Proof. We define the 1-forms α1 and α2 on C by

α1(φ) · V :=
∫
UX

j1(φ ◦ φ−1
X )∗[j1(V ) ΩL]

and
α2(φ) · V :=

∫
∂UX

j1(φ ◦ φ−1
X )∗[j1(V ) ΘL],

so that by (4.15),

dSφ · V = α1(φ) · V + α2(φ) · V for all V ∈ TφC. (4.19)

Recall that for any 1-form α on C and vector fields V,W on C,

dα(V,W ) = V [α(W )]−W [α(V )]− α([V,W ]). (4.20)

We let φε = ηεY ◦ φ be a curve in C through φ, where ηεY is a curve in G through the
identity such that

W =
d

dε
|ε=0η

ε
Y and W ∈ F ,

and consider equation (4.19) restricted to all V ∈ F .
Thus,

d(α2(V ))(φ) ·W =
d

dε

∣∣∣∣
ε=0

(α2(V )(φε))

=
d

dε

∣∣∣∣
ε=0

∫
∂UX

j1(φ ◦ φ−1
X )∗j1(ηεY )[j1(V ) ΘL]

=
∫
∂UX

j1(φ ◦ φ−1
X )∗Lj1(W )[j

1(V ) ΘL]

17



= −
∫
∂UX

j1(φ ◦ φ−1
X )∗[j1(W ) d(j1(V ) ΘL)]

+
∫
∂UX

j1(φ ◦ φ−1
X )∗d[j1(W ) j1(V ) ΘL],

where the last equality was obtained using Cartan’s formula. Using Stoke’s theorem,
noting that ∂∂U is empty, and applying Cartan’s formula once again, we obtain that

d(α2(φ)(V )) ·W =
∫
∂UX

j1(φ ◦ φ−1
X )∗[j1(W ) j1(V ) ΩL]

−
∫
∂UX

j1(φ ◦ φ−1
X )∗[j1(W ) Lj1(V )ΘL],

and

d(α2(φ)(W )) · V =
∫
∂UX

j1(φ ◦ φ−1
X )∗[j1(V ) j1(W ) ΩL]

−
∫
∂UX

j1(φ ◦ φ−1
X )∗[j1(V ) Lj1(W )ΘL].

Also, since [j1(V ), j1(W )] = j1([V,W ]), we have

α2(φ)([V,W ]) =
∫
∂UX

j1(φ ◦ φ−1
X )∗[j1(V ), j1(W )] ΘL.

Now
[j1(V ), j1(W )] ΘL = Lj1(V )(j

1(W ) ΘL)− j1(W ) Lj1(V )ΘL,

so that

dα2(φ)(V,W ) = 2
∫
∂UX

j1(φ ◦ φ−1
X )∗[j1(V ) j1(W ) ΩL]

+
∫
∂UX

j1(φ ◦ φ−1
X )∗[j1(V ) Lj1(W )ΘL − Lj1(V )(j

1(W ) ΘL)].

But

Lj1(V )(j
1(W ) ΘL) = d(j1(V ) j1(W ) ΘL) + j1(V ) d(j1(W ) ΘL)

and
j1(V ) Lj1(W )ΘL = j1(V ) d(j1(W ) ΘL) + j1(V ) j1(W ) ΩL.

Hence, ∫
∂UX

j1(φ ◦ φ−1
X )∗[j1(V ) Lj1(W )ΘL − Lj1(V )(j

1(W ) ΘL)]

=
∫
∂UX

j1(φ ◦ φ−1
X )∗(j1(V ) j1(W ) ΩL)

−
∫
∂UX

j1(φ ◦ φ−1
X )∗d(j1(V ) j1(W ) ΘL).
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The last term once again vanishes by Stokes theorem together with the fact that
∂∂U is empty, and we obtain that

dα2(φ)(V,W ) = 3
∫
∂UX

j1(φ ◦ φ−1
X )∗(j1(V ) j1(W ) ΩL). (4.21)

We now use (4.20) on α1. A similar computation as above yields

d(α1(φ) · V ) ·W =
∫
UX

j1(φ ◦ φ−1
X )∗Lj1(W )[j

1(V ) ΩL]

which vanishes for all φ ∈ P and W ∈ F . Similarly, d(α1(φ) ·W ) · v = 0 for all
φ ∈ P and V ∈ F . Finally, α1(φ) = 0 for all φ ∈ P.

Hence, since

0 = ddS(φ)(V,W ) = dα1(φ)(V,W ) + dα2(φ)(V,W ),

we obtain the formula (4.18). ¥

Symplecticity revisited. Let Σ be a compact oriented connected boundaryless
n-manifold which we think of as our reference Cauchy surface, and consider the space
of embeddings of Σ into X, Emb(Σ, X); again, although it is unnecessary for this
paper, we may topologize Emb(Σ, X) by completing the space in the appropriate
Ck or Hs-norm.

Let B be an m-dimensional manifold. For any fiber bundle πBK : K → B, we
shall, in addition to Γ(πBK), use the corresponding script letter K to denote the
space of sections of πBK . The space of sections of a fiber bundle is an infinite-
dimensional manifold; in fact, it can be precisely defined and topologized as the
manifold C of the previous section, where the diffeomorphisms on the base manifold
are taken to be the identity map, so that the tangent space to K at σ is given simply
by

TσK = {W : B → V K |πK,TK ◦W = σ},
where V K denotes the vertical tangent bundle of K. We let πK,L(V K,Λm(B)) :
L(V K,Λm(B)) → K be the vector bundle over K whose fiber at k ∈ Kx, x =
πBK(k), is the set of linear mappings from VkK to Λm(B)x. Then the cotangent
space to K at σ is defined as

T ∗σK = {π : B → L(V K,Λm(B)) | πK,L(V K,Λn+1(B)) ◦ π = σ}.

Integration provides the natural pairing of T ∗σK with TσK:

〈π, V 〉 =
∫
B
π · V.

In practice, the manifold B will either be X or some (n+ 1)-dimensional subset of
X, or the n-dimensional manifold Στ , where for each τ ∈ Emb(Σ, X), Στ := τ(Σ).
We shall use the notation Yτ for the bundle πΣτ ,Y , and Yτ for sections of this bundle.
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For the remainder of this section, we shall set the manifold C introduced earlier to
Y.

The infinite-dimensional manifold Yτ is called the τ-configuration space, its
tangent bundle is called the τ-tangent space, and its cotangent bundle T ∗Yτ is
called the τ-phase space. Just as we described in Section 2, the cotangent bundle
has a canonical 1-form θτ and a canonical 2-form ωτ . These differential forms are
given by

θτ (ϕ, π) · V =
∫

Στ

π(TπYτ ,T ∗Yτ · V ) and ωτ = −dθτ , (4.22)

where (ϕ, π) ∈ Yτ , V ∈ T(ϕ,π)T
∗Yτ , and πYτ ,T ∗Yτ : T ∗Yτ → Yτ is the cotangent

bundle projection map.
An infinitesimal slicing of the bundle πXY consists of Yτ together with a vector

field ζ which is everywhere transverse to Yτ , and covers ζX which is everywhere
transverse to Στ . The existence of an infinitesimal slicing allows us to invariantly
decompose the temporal from the spatial derivatives of the fields. Let φ ∈ Y,
ϕ := φ|Στ , and let iτ : Στ → X be the inclusion map. Then we may define the map
βζ taking j1(Y)τ to j1(Yτ )× Γ(πΣτ ,V Yτ ) over Yτ by

βζ(j1(φ) ◦ iτ ) = (j1(ϕ), ϕ̇) where ϕ̇ := Lζφ. (4.23)

In our notation, j1(Y)τ is the collection of restrictions of holonomic sections of
J1(Y ) to Στ , while j1(Yτ ) are the holonomic sections of πΣτ ,J1(Y ). It is easy to see
that βζ is an isomorphism; it then follows that βζ is an isomorphism of j1(Y)τ with
TYτ , since j1(ϕ) is completely determined by ϕ. This bundle map is called the jet
decomposition map, and its inverse is called the jet reconstruction map. Using this
map, we can define the instantaneous Lagrangian.

Definition 4.9 The instantaneous Lagrangian Lτ,ζ : TYτ → R is given by

Lτ,ζ(ϕ, ϕ̇) =
∫

Στ

i∗τ [ζX L(β−1
ζ (j1(ϕ), ϕ̇)] (4.24)

for all (ϕ, ϕ̇) ∈ TYτ .

The instantaneous Lagrangian Lτ,ζ has an instantaneous Legendre transform

FLτ,ζ : TYτ → T ∗Yτ ; (ϕ, ϕ̇) 7→ (ϕ, π)

which is defined in the usual way by vertical fiber differentiation of Lτ,ζ (see, for
example, Abraham and Marsden [1978]). Using the instantaneous Legendre trans-
formation, we can pull-back the canonical 1- and 2-forms on T ∗Yτ .

Definition 4.10 Denote, respectively, the instantaneous Lagrange 1- and 2-forms
on TYτ by

θLτ = FL∗τ,ζθτ and ωLτ = −dθLτ . (4.25)
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Alternatively, we may define θLτ using Theorem 2.1, in which case no reference to
the cotangent bundle is necessary.

We will show that our covariant multisymplectic form formula can be used
to recover the fact that the flow of the Euler-Lagrange equations in the bundle
πEmb(Σ,X),∪τ∈Emb(Σ,X)TYτ is symplectic with respect to ωLτ . To do so, we must relate
the multisymplectic Cartan (n + 2)-form ΩL on J1(Y ) with the symplectic 2-form
ωLτ on TYτ .

Theorem 4.2 Let ΘLτ be the canonical 1-form on j1(Y)τ given by

ΘLτ (j1(φ) ◦ iτ ) · V =
∫

Στ

i∗τ j
1(φ)∗[V ΘL], (4.26)

where j1(φ) ◦ iτ ∈ j1(Y)τ , V ∈ Tj1(φ)◦iτ j
1(Y)τ .

(a) If the 2-form ΩLτ on j1(Y)τ is defined by ΩLτ := −dΘLτ , then for V,W ∈
Tj1(φ)◦iτ j

1(Y)τ ,

ΩLτ (j1(φ) ◦ iτ )(V,W ) =
∫

Στ

i∗τ j
1(φ)∗[W V ΩL]. (4.27)

(b)Let the diffeomorphism sX : Σ× R→ X be a slicing of X such that for λ ∈ R,

Σλ := sX(Σ× {λ}) and Σλ := τλ(Σ),

where τλ ∈ Emb(Σ, X) is given by τλ(x) = sX(x, λ). For any φ ∈ P, let V,W ∈
TφY ∩ F so that for each τ ∈ Emb(Σ, X), j1Vτ , j

1Wτ ∈ Tj1(φ)◦iτ j
1(Y)τ , and let

τλ1 , τλ2 ∈ Emb(Σ, X). Then

ΩLτλ1
(j1Vτλ1

, j1Wτλ1
) = ΩLτλ2

(j1Vτλ2
, j1Wτλ2

). (4.28)

Proof. Part (a) follows from the Cartan formula together with Stokes theorem
using an argument like that in the proof of Theorem 4.1.

For part (b), we recall that the multisymplectic form formula on Y states that
for any subset UX ⊂ X with smooth closed boundary and vectors V,W ∈ TφY ∩F ,
φ ∈ Y, ∫

∂UX

j1(φ)∗[j1(V ) j1(W ) ΩL] = 0. (4.29)

Let
UX = ∪λ∈[λ1,λ2]Σλ.

Then ∂UX = Σλ1 − Σλ2 , so that (4.29) can be written as

0 =
∫

Σλ2

j1(φ ◦ iτλ2
)∗[j1Vτλ2

j1Wτλ2
ΩL]

−
∫

Σλ1

j1(φ ◦ iτλ1
)∗[j1Vτλ1

j1Wτλ1
ΩL]

= ΩLτλ1
(j1Vτλ1

, j1Wτλ1
)− ΩLτλ2

(j1Vτλ2
, j1Wτλ2

),

which proves (4.28). ¥
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Theorem 4.3 The identity ΘLτ = β∗ζ θ
L
τ holds.

Proof. Let W ∈ Tj1(φ)◦iτ j
1(Y)τ , which we identify with w ◦ φ ◦ iτ , where w is a

πX,J1(Y )-vertical vector. Choose a coordinate chart which is adapted to the slicing
so that ∂0|Yτ = ζ. With w = (0,WA,WA

µ ), we see that

ΘLτ ·W =
∫

Στ

∂L

∂vA0
(φB, φB,µ)WAdnx0.

Now, from (4.24) we get

θLτ (ϕ, ϕ̇) =
∂Lτ,ζ
∂ẏA

dyA

=
∫

Στ

∂

∂ẏA
i∗τ [∂0 L(xµ, φA, φA,µ)dn+1x⊗ dyA]

=
∫

Στ

∂L

∂vA0
(φB, φB,µ)dyA ⊗ dnx0,

where we arrived at the last equality using the fact that ẏA = vA0 in this adapted
chart. Since (Tβζ · W )A = WA, we see that ΘLτ · W = θLτ · (Tβζ · W ), and this
completes the proof. ¥

Let the instantaneous energy Eτ,ζ associated with Lτ,ζ be given by

Eτ,ζ(ϕ, ϕ̇) = FLτ,ζ(ϕ̇) · ϕ̇− Lτ,ζ(ϕ, ϕ̇), (4.30)

and define the “time”-dependent Lagrangian vector field XEτ,ζ by

XEτ,ζ ωLτ = dEτ,ζ .

Since ∪τ∈Emb(Σ,X)TYτ over Emb(Σ, X) is infinite-dimensional and wLτ is only weakly
nondegenerate, the second-order vector field XEτ,ζ does not, in general, exist. In
the case that it does, we obtain the following result.

Corollary 4.1 Assume XEτ,ζ exists and let Fτ be its semiflow, defined on some
subset D of the bundle ∪τ∈Emb(Σ,X)TYτ over Emb(Σ, X). Fix τ̄ so that Fτ̄ (ϕ1, ϕ̇1) =
(ϕ2, ϕ̇2) where (ϕ1, ϕ̇1) ∈ TYτ1 and (ϕ2, ϕ̇2) ∈ TYτ2. Then F ∗τ̄ ω

L
τ2 = ωLτ1.

Proof. This follows immediately from Theorem 4.2(b) and Theorem 4.3 and the
fact that βζ induces an isomorphism between j1(Y)τ and TYτ . ¥

Example: nonlinear wave equation. To illustrate the geometry that we have
developed, let us consider the scalar nonlinear wave equation given by

∂2φ

∂x02 −4φ−N
′(φ) = 0, φ ∈ Γ(πXY ), (4.31)
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where 4 is the Laplace-Beltrami operator and N is a real-valued C∞ function of
one variable. For concreteness, fix n=1 so that the spacetime manifold X := R2,
the configuration bundle Y := πR2,R, and the first jet bundle J1(Y ) := πR2,R3 .

Equation (4.31) is governed by the Lagrangian density

L =
{

1
2

[
∂φ

∂x0

2

− ∂φ

∂x1

2]
+N(φ)

}
dx1 ∧ dx0. (4.32)

Using coordinates (x0, x1, φ, φ,0, φ,1) for J1(Y ), we write the multisymplectic 3-form
for this nonlinear wave equation on R2 in coordinates as

ΩL = −dφ ∧ dφ,0 ∧ dx1 − dφ ∧ dφ,1 ∧ dx0 −N ′(φ)dφ ∧ dx1 ∧ dx0

+φ,0dφ,0 ∧ dx1 ∧ dx0 − φ,1dφ,1 ∧ dx1 ∧ dx0; (4.33)

a short computation verifies that solutions of (4.31) are elements of P, or that
j1(φ ◦ φ−1

X )∗[W ΩL] = 0 for all W ∈ TJ1(Y ) (see Marsden and Shkoller [1997]).
We will use this example to demonstrate that our multisymplectic form formula

generalizes the notion of symplecticity given by Bridges [1997]. Since the Lagrangian
(4.32) does not explicitly depend on time, it is convenient to identify sections of Y
as mappings from R2 into R, and similarly, sections of J1(Y ) as mappings from R2

into R3. Thus, for φ ∈ Γ(πXY ), j1(φ)(xµ) := (φ(xµ), φ,0(xµ), φ,1(xµ)) ∈ R3, and if
we set pµ := φ,µ, then (4.31) can be reformulated to

J0j
1φ,0 + J1j

1φ,1 := 0 1 0
−1 0 0
0 0 0

 φ
p0

p1


,0

+

 0 0 −1
0 0 0
1 0 0

 φ
p0

p1


,1

=

 N ′(φ)
−p0

p1

 . (4.34)

To each degenerate matrix Jµ, we associate the contact form ωµ on R3 given by
ωµ(u1, u2) = 〈Jµu1, u2〉, where u1, u2 ∈ R3 and 〈·, ·〉 is the standard inner product
on R3. Bridges obtains the following conservation of symplecticity:

∂

∂x0

[
ω0(j1(φ,0), j1(φ,1))

]
+

∂

∂x1

[
ω1(j1(φ,0), j1(φ,1))

]
= 0. (4.35)

This result is interesting, but has somewhat limited scope in that the vector
fields in (4.35) upon which the contact forms act are not general solutions to the
first variation equations; rather, they are the specific first variation solutions φ,µ.
Bridges obtains this result by crucially relying on the multi-Hamiltonian structure
of (4.31); in particular, the vector (N ′(φ),−p0, p1) on the right-hand-side of (4.34)
is the gradient of a smooth multi-Hamiltonian function H(φ, p0, p1) (although the
multi-Hamiltonian formalism is not important for this article, we refer the reader to
Marsden and Shkoller [1997] for the Hamiltonian version of our covariant framework,
and to Bridges [1997]). Using equation (4.34), it is clear that

H,0 = ω0(j1(φ,0), j1(φ,1)) and H,1 = −ω1(j1(φ,0), j1(φ,1))

so that (4.35) follows from the relation H,0,1 = H,1,0.
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Proposition 4.1 The multisymplectic form formula is an intrinsic generalization
of the conservation law (4.35); namely, for any V,W ∈ F that are πX,J1(Y )-vertical,

∂

∂x0

[
ω0(j1(V ), j1(W ))

]
+

∂

∂x1

[
ω1(j1(V ), j1(W ))

]
= 0. (4.36)

Proof. Let j1(V ) and j1(W ) have the coordinate expressions (V, V 0, V 1) and
(W,W 0,W 1), respectively. Using (4.33), we compute

j1(W ) j1(V ) ΩL =
(
VW 0 − V 0W

)
dx+

(
VW 1 − V 1W

)
dt,

so that with Theorem 4.1 and the definition of ωµ, we have, for UX ⊂ X,∫
∂UX

ω0(j1(V ), j1(W ))dx− ω1(j1(V ), j1(W ))dt = 0,

and hence by Green’s theorem,∫
UX

{
∂

∂x0

[
ω0(j1(V ), j1(W ))

]
+

∂

∂x1

[
ω1(j1(V ), j1(W ))

]}
dx1 ∧ dx0 = 0.

Since UX is arbitrary, we obtain the desired result. ¥
In general, when V is πXY -vertical, j1(V ) has the coordinate expression (V, V,µ+

∂V/∂φ ·φ,µ, but for the special case that V = φ,µ, j1(φµ) = (j1φ),µ, and Proposition
4.1 gives

∂

∂x0
[φ0φ,0,1 − φ1φ,0,0]− ∂

∂x1
[φ0φ,1,1 − φ1φ,0,1] = 0,

which simplifies to the trivial statement that

φ,0N(φ),1 − φ,1N(φ),0 = 0.

The variational route to the Cartan form. We may alternatively define the
Cartan form by beginning with equation (4.14). Using the infinitesimal generators
defined in (4.12), we obtain that

dSφ · V =
d

dλ

∣∣∣∣
λ=0

S(Φ(ηλY , φ))

=
∫
ηλX(UX)

d

dλ

∣∣∣∣
λ=0

L(j1(Φ(ηλY , φ)))

=
∫
UX

d

dλ

∣∣∣∣
λ=0

L(j1(Φ(ηλY , φ)))

+
∫
UX

LVX

[
L(j1(φ ◦ φ−1

X ))
]
. (4.37)

Using the natural splitting of TY , any vector V ∈ TφC may decomposed as

V = V h + V v, where V h = T (φ ◦ φ−1
X ) · VX and V v = V − V h, (4.38)

where we recall that VX = TπXY · V .
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Lemma 4.1 For any V ∈ TφC,

dSφ · V h =
∫
∂UX

VX [L(j1(φ ◦ φ−1
X ))], (4.39)

and

dSφ · V v =
∫
UX

d

dλ

∣∣∣∣
λ=0

L(j1(Φ(ηλY , φ))) (4.40)

Proof. The equality (4.40) is obvious, since the second term in (4.37) clearly
vanishes for all vertical vectors. For vectors V h, the first term in (4.37) vanishes;
indeed, using the chain rule, we need only compute that

d

dλ

∣∣∣∣
λ=0

ηλY ◦ φ ◦ ηλX
−1

= V h − T (φ ◦ φ−1
X ) · VX ,

which is zero by (4.38). We then apply the Cartan formula to the second term in
(4.37) and note that dL is an (n+ 2)-form on the (n+ 1)-dimensional manifold UX
so that we obtain (4.39). ¥

Theorem 4.4 Given a smooth Lagrangian density L : J1(Y ) → Λn+1(X), there
exist a unique smooth section DELL ∈ C∞(Y ′′,Λn+1(X) ⊗ T ∗Y )) and a unique
differential form ΘL ∈ Λn+1(J1(Y )) such that for any V ∈ TφC, and any open
subset UX such that UX ∩ ∂X = ∅,

dSφ · V =
∫
UX

DELL(j2(φ ◦ φ−1
X )) · V +

∫
∂UX

j1(φ ◦ φ−1
X )∗[j1(V ) ΘL]. (4.41)

Furthermore,

DELL(j2(φ ◦ φ−1
X )) · V = j1(φ ◦ φ−1

X )∗[j1(V ) ΩL] in UX . (4.42)

In coordinates, the action of the Euler-Lagrange derivative DELL on Y ′′ is given by

DELL(j2(φ ◦ φ−1
X )) =

[
∂L

∂yA
(j1(φ ◦ φ−1

X ))− ∂2L

∂xµ∂vAµ
(j1(φ ◦ φ−1

X ))

− ∂2L

∂yB∂vAµ
(j1(φ ◦ φ−1

X )) · (φ ◦ φ−1
X )B,µ

− ∂2L

∂vBν∂vAµ
(j1(φ ◦ φ−1

X )) · (φ ◦ φ−1
X )B,µν

]
dyA ∧ dn+1x, (4.43)

while the form ΘL matches the definition of the Cartan form given in (4.9) and has
the coordinate expression

ΘL =
∂L

∂vAµ
dyA ∧ dnxµ +

(
L− ∂L

∂vAµ
vAµ

)
dn+1x. (4.44)
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Proof. Choose UX := φX(U) small enough so that it is contained in a coordinate
chart, say O1. In these coordinates, let V = (V µ, V A) so that along φ ◦ φ−1

X , our
decomposition (4.38) may be written as

VX = V µ ∂

∂xµ
and V v = (V v)A

∂

∂yA
:=

(
V A − V µ∂(φ ◦ φ−1

X )
∂xµ

)
∂

∂yA
,

and equation (4.40) gives

dSφ · V v =
∫
UX

[
∂L

∂yA
(j1(φ ◦ φ−1

X )) · (V v)A +
∂L

∂vAµ
(j1(φ ◦ φ−1

X )) · ∂(V v)A

∂xµ

]
dn+1x,

(4.45)

where we have used the fact that in coordinates along j1(φ ◦ φ−1
X ),

{j1(V )}Aµ = ∂µ[(V v)A(j1(φ ◦ φ−1
X ))].

Integrating (4.45) by parts, we obtain

dSφ · V v =
∫
UX

{[
∂L

∂yA
(j1(φ ◦ φ−1

X ))− ∂

∂xµ
∂L

∂vAµ
(j1(φ ◦ φ−1

X ))
]
· V A

}
dn+1x

+
∫
∂UX

{
∂L

∂vAµ
(j1(φ ◦ φ−1

X )) · V Adnxµ

+
∂L

∂vAµ
(j1(φ ◦ φ−1

X ))
∂(φ ◦ φ−1

X )A

∂xµ
· V µdn+1x

}
. (4.46)

Additionally, from equation (4.39), we obtain the horizontal contribution

dSφ · V h =
∫
∂UX

(V µ∂µ) (Ldn+1x), (4.47)

so combining equations (4.46) and (4.47), we get

dSφ · V =
∫
UX

{[
∂L

∂yA
(j1(φ ◦ φ−1

X ))− ∂

∂xµ
∂L

∂vAµ
(j1(φ ◦ φ−1

X ))
]
dn+1x⊗ dyA

}
· V

+
∫
∂UX

V

{
∂L

∂vAµ
(j1(φ ◦ φ−1

X ))dyA ∧ dnxµ

+

[
L− ∂L

∂vAµ
(j1(φ ◦ φ−1

X ))
∂(φ ◦ φ−1

X )A

∂xµ

]
dn+1x

}
.

The integrands above show that (4.43) and (4.44) hold. The second term in (4.48)
may be re-expressed as ∫

∂UX

j1(φ ◦ φ−1
X )∗[j1(V ) ΘL], (4.48)
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since πY,J1(Y )-vertical vectors are in the kernel of ΘL.
Now, if we choose another coordinate chart O2, the coordinate expressions of

DELL and ΘL must agree on the overlap O1 ∩O2 since the left-hand-side of (4.41)
is intrinsically defined. Thus, we have uniquely defined DELL and ΘL for any UX
such that UX ∩ ∂X = ∅.

Finally, (4.42) holds, since ΩL = dΘL is also intrinsically defined and both
sides of the equation yield the same coordinate representation, the Euler-Lagrange
equations in UX . ¥

Remark To prove Theorem 4.4 for the case UX = X, we must modify the proof
to take into account the boundary conditions which are prescribed on ∂X.

Corollary 4.2 The (n + 1)-form ΘL defined by the variational principle satisfies
the relationship

L(j1(z)) = z∗ΘL

for all holonomic sections z ∈ Γ(πX,J1(Y )).

Proof. This follows immediately by substituting (4.42) into (4.41) and integrating
by parts using Cartan’s formula. ¥

Remark We have thus far focused on holonomic sections of J1(Y ), those that are
the first jets of sections of Y , and correspondingly, we have restricted the general
splitting of TY given by

TY = image γ ⊕ V Y for any γ ∈ Γ(J1(Y )),

to TY = Tφ ⊕ V Y , φ ∈ Γ(Y ) as we specified in (4.38). For general sections
γ ∈ Γ(J1(Y )), the horizontal bundle is given by image γ, and the Frobenius theorem
guarantees that γ is locally holonomic if the connection is flat, or equivalently if the
curvature of the connection Rγ vanishes. Since this is a local statement, we may
assume that Y = U × RN , where U ⊂ Rn+1 is open, and that πXY is simply the
projection onto the first factor. For φ ∈ Γ(Y ), and γ ∈ Γ(J1(Y )), γ(x, φ(x)) :
Rn+1 → RN is a linear operator which is holonomic if φ′(x) = γ(x, φ(x)), where
φ′(x) is the differential of φ, and this is the case whenever the operator φ′′(x) is
symmetric. Equivalently, the operator

Sγ(x, y) · (v, w) := D1γ(x, y) · (v, w) +D2γ(x, y) · (γ(x, y) · v, w)

is symmetric for all v, w ∈ Rn+1. One may easily verify that the local curvature is
given by

Rγ(x, y) · (v, w) := Sγ(x, y) · (v, w)− Sγ(x, y) · (w, v)

and that γ = j1(φ) locally for some φ ∈ Γ(Y ), if and only if Rγ = 0.

27



The variational route to Noether’s Theorem. Suppose the Lie group G acts
on C and leaves the action S invariant so that

S(Φ(ηY , φ)) = S(φ) for all ηY ∈ G. (4.49)

This implies that for each ηY ∈ G, Φ(ηY , φ) ∈ P whenever φ ∈ P. We restrict
the action of G to P, and let ξC be the corresponding infinitesimal generator on C
restricted to points in P; then

0 = (ξC dS)φ =
∫
∂UX

j1(φ ◦ φ−1
X )∗[j1(ξ) ΘL]

=
∫
UX

j1(φ ◦ φ−1
X )∗[j1(ξ) ΩL],

since Lj1(ξ)ΘL = 0 by (4.49) and Corollary 4.2.
We denote the covariant momentum map on J1(Y ) by J L ∈ L(g,Λn(J1(Y ))

which we define as

j1(ξ) ΩL = dJ L(ξ). (4.50)

Using (4.50), we find that
∫
UX

d[j1(φ ◦ φ−1
X )∗J L(ξ)] = 0, and since this must

hold for all infinitesimal generators ξC at φ ∈ C, the integrand must also vanish so
that

d[j1(φ ◦ φ−1
X )∗J L(ξ)] = 0, (4.51)

which is precisely a restatement of the covariant Noether Theorem.

5 Veselov-type Discretizations of Multisymplectic Field
Theory

5.1 General Theory

We now generalize the Veselov discretization given in Section (3) to multisymplectic
field theory, by discretizing the spacetime X. For simplicity we restrict to the
discrete analogue of dimX = 2; i.e. n = 1. Thus, we take X = Z×Z = {(i, j)} and
the fiber bundle Y to be X ×F for some smooth manifold F .

Notation. The development in this section is aided by a small amount of notation
and terminology. Elements of Y over the base point (i, j) are written as yij and the
projection πXY acts on Y by πXY (yij) = (i, j). The fiber over (i, j) ∈ X is denoted
Yij . A triangle ∆ of X is an ordered triple of the form

∆ =
(
(i, j), (i, j + 1), (i+ 1, j + 1)

)
.

The first component (i, j) of ∆ is the first vertex of the triangle, denoted ∆1,
and similarly for the second and third vertices. The set of all triangles in X is
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denoted X∆. By abuse of notation the same symbol is used for a triangle and the
(unordered) set of its vertices. A point (i, j) ∈ X is touched by a triangle if it is
a vertex of that triangle. If U ⊆ X, then (i, j) ∈ U is an interior point of U if
U contains all three triangles of X that touch (i, j). The interior intU of U is
the collection of the interior points of U . The closure clU of U is the union of all
triangles touching interior points of U . A boundary point of U is a point in U
and clU which is not an interior point. The boundary of U is the set of boundary
points of U , so that

∂U ≡ (U ∩ clU) \ intU

Generally, U properly contains the union of its interior and boundary, and we call
U regular if it is exactly that union. A section of Y is a map φ : U ⊆ X → Y
such that πXY ◦ φ = idU .

x
(i,j)

y

yi,j
y 1i+  j+1

i j+1

(i+ ,j+ )1 1

(i,j+ )1

Figure 5.1: Depiction of the heuristic interpretation of an element of J1Y when X is
discrete.

Multisymplectic phase space. We define the first jet bundle1 of Y to be

J1Y ≡
{

(yij , yi j+1, yi+1 j+1)
∣∣ (i, j) ∈ X, yij , yi j+1, yi+1 j+1 ∈ F

}
≡ X∆ ×F3.

Heuristically (see Figure (5.1)), X corresponds to some grid of elements xij in con-
tinuous spacetime, say X̃, and

(
yij , yi j+1, yi+1 j+1

)
∈ J1Y corresponds to j1φ(x̄),

where x̄ is “inside” the triangle bounded by xij , xi j+1, xi+1 j+1, and φ is some smooth
section of X̃ ×F interpolating the field values yij , yi j+1, yi+1 j+1. The first jet ex-
tension of a section φ of Y is the map j1φ : X∆ → J1Y defined by

j1φ(∆) ≡
(
∆, φ(∆1), φ(∆2), φ(∆3)

)
.

1Using three vertices is the simplest choice for approximating the two partial derivatives of the
field φ, but may not lead to a good numerical scheme. Later, we shall also use four vertices together
with averaging to define the partial derivatives of the fields.
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Given a vector field Z on Y , we denote its restriction to the fiber Yij by Zij , and
similarly for vector fields on J1Y . The first jet extension of a vector field Z on
Y is the vector field j1Z on J1Y defined by

j1Z(y∆1 , y∆2 , y∆3) ≡
(
Z∆1(y∆1), Z∆2(y∆2), Z∆3(y∆3)

)
,

for any triangle ∆.

(i − 1, j − 1)

(i, j − 1)

(i − 1, j)

(i, j)

(i + 1, j) (i + 1, j + 1)

(i, j + 1)

Figure 5.2: The triangles which touch (i, j).

The variational principle. Let us posit a discrete Lagrangian L : J1Y → R.
Given a triangle ∆, define the function L∆ : F3 → R by

L∆(y1, y2, y3) ≡ L(∆, y1, y2, y3),

so that we may view the Lagrangian L as being a choice of a function L∆ for each
triangle ∆ of X. The variables on the domain of L∆ will be labeled y1, y2, y3,
irrespective of the particular ∆. Let U be regular and let CU be the set of sections
of Y on U , so CU is the manifold F |U |. The action will assign real numbers to
sections in CU by the rule

S(φ) ≡
∑

∆;∆⊆U
L ◦ j1φ(∆). (5.1)

Given φ ∈ CU and a vector field V , there is the 1-parameter family of sections

(F Vε φ)(i, j) ≡ F Vijε (φ(i, j)),

where F Vij denotes the flow of Vij on F . The variational principle is to seek
those φ for which

d

dε

∣∣∣∣
ε=0

S(F Vε φ) = 0

for all vector fields V .
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The discrete Euler-Lagrange equations. The variational principle gives cer-
tain field equations, the discrete Euler-Lagrange field equations (DELF equa-
tions), as follows. Focus upon some (i, j) ∈ intU , and abuse notation by writing
φ(i, j) ≡ yij . The action, written with its summands containing yij explicitly, is (see
Figure (5.2))

S = · · ·+ L(yij , yi j+1, yi+1 j+1) + L(yi j−1, yij , yi+1 j) + L(yi−1 j−1, yi−1 j , yij) + · · ·

so by differentiating in yij , the DELF equations are

∂L

∂y1
(yij , yi j+1, yi+1 j+1) +

∂L

∂y2
(yi j−1, yij , yi+1 j) +

∂L

∂y3
(yi−1 j−1, yi−1 j , yij) = 0,

for all (i, j) ∈ intU . Equivalently, these equations may be written∑
l;∆;(i,j)=∆l

∂L∆

∂yl
(y∆1 , y∆2 , y∆3) = 0, (5.2)

for all (i, j) ∈ intU .

The discrete Cartan form. Now suppose we allow nonzero variations on the
boundary ∂U , so we consider the effect on S of a vector field V which does not
necessarily vanish on ∂U . For each (i, j) ∈ ∂U find the triangles in U touching
(i, j). There is at least one such triangle since (i, j) ∈ clU ; there are not three such
triangles since (i, j) 6∈ intU . For each such triangle ∆, (i, j) occurs as the lth vertex,
for one or two of l = 1, 2, 3, and those lth expressions from the list

∂L

∂y1
(yij , yi j+1, yi+1 j+1)Vij(yij),

∂L

∂y2
(yi j−1, yij , yi+1 j)Vij(yij),

∂L

∂y3
(yi−1 j−1, yi−1 j , yij)Vij(yij),

yielding one or two numbers. The contribution to dS from the boundary is the
sum of all such numbers. To bring this into a recognizable format, we take our cue
from discrete Lagrangian mechanics, which featured two 1-forms. Here the above
list suggests the three 1-forms on J1Y , the first of which we define to be

Θ1
L(yij , yi j+1, yi+1 j+1) · (vyij , vyi j+1 , vyi+1 j+1)

≡ ∂L

∂y1
(yij , yi j+1, yi+1 j+1) · (vyij , 0, 0),

Θ2
L and Θ3

L being defined analogously. With these notations, the contribution to dS
from the boundary can be written θL(φ) · V , where θL is the 1-form on the space of
sections CU defined by

θL(φ) · V ≡
∑

∆;∆∩∂U 6=∅

 ∑
l;∆l∈∂U

[
(j1φ)∗(j1V Θl

L)
]

(∆)

 . (5.3)
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In comparing (5.3) with (4.41), the analogy with the multisymplectic formalism of
Section (4) is immediate.

The discrete multisymplectic form formula. Given a triangle ∆ in X, we
define the projection π∆ : CU → J1Y by

π∆(φ) ≡ (∆, y∆1 , y∆2 , y∆3).

In this notation, it is easily verified that (5.3) takes the convenient form

θL =
∑

∆;∆∩∂U 6=∅

 ∑
l;∆l∈∂U

π∗∆Θl
L

 . (5.4)

A first-variation at a solution φ of the DELF equations is a vertical vector field V
such that the associated flow F V maps φ to other solutions of the DELF equations.
Set Ωl

L = −dΘl
L. Since

Θ1
L + Θ2

L + Θ3
L = dL, (5.5)

one obtains

Ω1
L + Ω2

L + Ω3
L = 0,

so that only two of the three 2-forms Ωl
L, l = 1, 2, 3 are essentially distinct. Exactly

as in Section (2), the equation d2S = 0, when specialized to two first-variations V
and W now gives, by taking one exterior derivative of (5.4),

0 = dθL(φ)(V,W ) =
∑

∆;∆∩∂U 6=∅

 ∑
l;∆l∈∂U

V W π∗∆Ωl
L

 ,

which in turn is equivalent to

∑
∆;∆∩∂U 6=∅

 ∑
l;∆l∈∂U

[
(j1φ)∗(j1V j1W Ωl

L)
]

(∆)

 = 0. (5.6)

Again, the analogy with the multisymplectic form formula for continuous space-
time (4.18) is immediate.

The discrete Noether theorem. Suppose that a Lie group G with Lie algera g

acts on F by vertical symmetries in such a way that the Lagrangian L is G-invariant.
Then G acts on Y and J1Y in the obvious ways. Since there are three Lagrange 1-
forms, there are three momentum maps J l, l = 1, 2, 3, each one a g∗-valued function
on triangles in X, and defined by

J lξ ≡ ξJ1Y Θl
L,
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for any ξ ∈ g. Invariance of L and (5.5) imply that

J1 + J2 + J3 = 0,

so, as in the case of the 1-forms, only two of the three momenta are essentially
distinct. For any ξ, the infinitesimal generator ξY is a first-variation, so invariance
of S, namely ξY dS = 0 , becomes ξY θL = 0. By left insertion into (5.3), this
becomes the discrete version of Noether’s theorem:

∑
∆;∆∩∂U 6=∅

 ∑
l;∆l∈∂U

J l(∆)

 = 0. (5.7)

Time

Space

j=
j=j=

0
1 2

i

i- 1

i+1

Figure 5.3: Symplectic flow and conservation of momentum from the discrete Noether
theorem when the spatial boundary is empty and the temporal boundaries agree.

Conservation in a space and time split. To understand the significance of (5.6)
and (5.7) consider a discrete field theory with space a discrete version of the circle
and time the real line, as depicted in Figure (5.3), where space is split into space
and time, with “constant time” being constant j and the “space index” 1 ≤ i ≤ N
being cyclic. Applying (5.7) to the region {(i, j) | j = 0, 1, 2} shown in the Figure,
Noether’s theorem takes the conservation form

N∑
i=1

J1(yi0, yi1, yi+1 1) = −
N∑
i=1

(
J2(yi1, yi2, yi+1 2) + J3(yi1, yi2, yi+1 2)

)
=

N∑
i=1

J1(yi1, yi2, yi+1 2).

Similarly, the discrete multisymplectic form formula also takes a conservation form.
When there is spatial boundary, the discrete Noether theorem and the discrete
multisymplectic form formulas automatically account for it, and thus form nontrivial
generalizations of these conservation results.
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Furthermore, as in the continuous case, we can achieve “evolution type” sym-
plectic systems (i.e. discrete Moser-Veselov mechanical systems) if we define Q as
the space of fields at constant j, so Q ≡ FN , and take as the discrete Lagrangian

L̃([q0
j ], [q

1
j ]) ≡

N∑
i=1

L(q0
i , q

1
i , q

1
i+1).

Then the Moser-Veselov DEL evolution-type equations (3.2) are equivalent to the
DELF equations (5.2), the multisymplectic form formula implies symplecticity of
the Moser-Veselov evolution map, and conservation of momentum gives identical
results in both the “field” and “evolution” pictures.

Example: nonlinear wave equation. To illustrate the discretization method
we have developed, let us consider the Lagrangian (4.32) of Section (4), which
describes the nonlinear sine-Gordon wave equation. This is a completely integrable
system with an extremely interesting hierarchy of soliton solutions, which we shall
investigate by developing for it a variational multisymplectic-momentum integrator;
see the recent article by Palais [1997] for a wonderful discussion on soliton theory.

To discretize the continuous Lagrangian, we visualize each triangle ∆ as having
base length h and height k, and we think of the discrete jet (y∆1 , y∆2 , y∆3) as
corresponding to the continuous jet

∂φ

∂x0
(ȳij) =

yi j+1 − yij
h

,
∂φ

∂x1
(ȳij) =

yi+1 j+1 − yi j+1

k
,

where ȳij is a the center of the triangle 2. This leads to the discrete Lagrangian

L =
1
2

(
y2 − y1

h

)2

− 1
2

(
y3 − y2

k

)2

+N

(
y1 + y2 + y3

3

)
,

with corresponding DELF equations

yi+1 j − 2 yij + yi−1 j

k2
− yi j+1 − 2 yij + yi j−1

h2

+
1
3
N ′
(
yij + yi j+1 + yi+1 j+1

3

)
+

1
3
N ′
(
yi j−1 + yij + yi+1 j

3

)
+

1
3
N ′
(
yi−1 j−1 + yi−1 j + yij

3

)
= 0. (5.8)

When N = 0 (wave equation) this gives the explicit method

yi+1 j =
h2

k2
(yi+1 j − 2 yij + yi−1 j) + 2 yij − yi j−1,

which is stable whenever the Courant stability condition is satisfied.
2Other discretizations based on triangles are possible; for example, one could use the value yij

for insertion into the nonlinear term instead of ȳij .

34



Extensions: Jets from rectangles and other polygons. Our choice of discrete
jet bundle is obviously not restricted to triangles, and can be extended to rectangles
or more general polygons (left of Figure( 5.4)). A rectangle is a quadruple of the
form,

∆ =
(
(i, j), (i, j + 1), (i+ 1, j + 1), (i+ 1, j)

)
,

a point is an interior point of a subset U of rectangles if U contains all four rect-
angles touching that point, the discrete Lagrangian depends on variables y1, · · · , y4,
and the DELF equations become

∂L

∂y1
(yij , yi j+1, yi+1 j+1, yi+1 j) +

∂L

∂y2
(yi j−1, yij , yi+1 j , yi+1 j−1)

+
∂L

∂y3
(yi−1 j−1, yi−1 j , yij , yi j−1) +

∂L

∂y4
(yi−1 j , yi−1 j+1, yi j+1, yij) = 0.

The extension to polygons with even higher numbers of sides is straightforward; one
example is illustrated on the right of Figure( 5.4). The motivation for consideration

(i−1, j +1)

(i, j +1)

(i +1, j)

(i, j −1)

(i −1, j−1)

(i +1, j +1)

(i−1, j)

(i +1, j −1)

Figure 5.4: On the left, the method based on rectangles; on the right, a possible method
based on hexagons.

of these extensions is enhancing the stability of the triangle-based method in the
nonlinear wave example just above.

Example: nonlinear wave equation, rectangles. Think of each rectangle ∆
as having length h and height k, and each discrete jet (y∆1 , y∆2 , y∆3 , y∆4) being
associated to the continuous jet

∂φ

∂x0
(p) =

yi j+1 − yij
h

,
∂φ

∂x1
(p) =

1
2

(
yi+1 j − yi j

k
+
yi+1 j+1 − yi j+1

k

)
,

where p is a the center of the rectangle. This leads to the discrete Lagrangian

L =
1
2

(
y2 − y1

h

)2

− 1
2

(
y4 − y1

2k
+
y3 − y2

2k

)2
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+N

(
y1 + y2 + y3 + y4

4

)
. (5.9)

If, for brevity, we set

ȳij ≡
yij + yi j+1 + yi+1 j+1 + yi+1 j

4
,

then one verifies that the DELF equations become[
1
2
yi+1 j − 2 yij + yi−1 j

k2
+

1
4
yi+1 j+1 − 2 yi j+1 + yi−1 j+1

k2

+
1
4
yi+1 j−1 − 2 yi j−1 + yi−1 j−1

k2

]
−
[
yi j+1 − 2 yij + yi j−1

h2

]

+
1
4

[
N ′(ȳij) +N ′(ȳi j−1) +N ′(ȳi−1 j−1) +N ′(ȳi−1 j)

]
= 0,

which, if we make the definitions

∂2
hyij ≡ yi j+1 − 2 yij + yi j−1, ∂2

kyij ≡ yi+1 j − 2 yij + yi−1 j ,

N̄ ′(ȳij) ≡
1
4

[
N ′(ȳij) +N ′(ȳi j−1) +N ′(ȳi−1 j−1) +N ′(ȳi−1 j)

]
,

is (more compactly)

1
k2

[
1
4
∂2
kyi j+1 +

1
2
∂2
kyij +

1
4
∂2
kyi j−1

]
− 1
h2
∂2
hyij + N̄ ′(ȳij) = 0. (5.10)

These are implicit equations which must be solved for yi j+1, 1 ≤ i ≤ N , given yi j ,
yi j−1, 1 ≤ i ≤ N ; rearranging, an iterative form equivalent to (5.10) is

−
(

h2

2(h2 + 2k2)

)
yi+1 j+1 + yi j+1 −

(
h2

2(h2 + 2k2)

)
yi−1 j+1

=
h2

h2 + 2k2

(
(yi+1 j − 2 yij + yi−1 j)

+
1
2

(yi+1 j−1 − 2 yi j−1 + yi−1 j−1)
)

+
2k2

h2 + 2k2
(2 yij − yi j−1)

+
h2k2

2(h2 + 2k2)
(
N ′(ȳij) +N ′(ȳi j−1) +N ′(ȳi−1 j−1) +N ′(ȳi−1 j)

)
.

In the case of the sine-Gordon equation the values of the field ought to be considered
as lying in S1, by virtue of the vertical symmetry y 7→ y + 2π. Soliton solutions
for example will have a jump of 2π and the method will fail unless field values at
close-together spacetime points are differenced modulo 2π. As a result it becomes
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important to calculate using integral multiples of small field-dependent quantities,
so that it is clear when to discard multiples of 2π, and for this the above iterative
form is inconvenient. But if we define

∂1
hyij ≡ yi j+1 − yij , ∂1

kyij ≡ yi+1 j − yij ,

then there is the following iterative form, again equivalent to (5.10)

yi j+1 = yij + ∂1
hyi j , and

−
(

h2

2(h2 + 2k2)

)
∂1
hyi+1 j + ∂1

hyi j −
(

h2

2(h2 + 2k2)

)
∂1
hyi−1 j

=
h2

h2 + 2k2
(3∂2

kyij + ∂2
kyi j−1) +

2k2

h2 + 2k2
∂1
hyij

+
h2k2

2(h2 + 2k2)
N̄ ′(ȳij). (5.11)

One can also modify (5.9) so as to treat space and time symmetrically, which
leads to the discrete Lagrangian

L =
1
2

(
y2 − y1

2h
+
y3 − y4

2h

)2

− 1
2

(
y4 − y1

2k
+
y3 − y2

2k

)2

+N
(
y1 + y2 + y3 + y4

4

)
,

and one verifies that the DELF equations become

1
k2

[
1
4
∂2
kyi j+1 +

1
2
∂2
kyij +

1
4
∂2
kyi j−1

]
− 1
h2

[
1
4
∂2
hyi+1 j +

1
2
∂2
hyij +

1
4
∂2
hyi−1 j

]
+ N̄ ′(ȳij) = 0, (5.12)

an equivalent iterative form of which is

yi j+1 = yij + ∂1
hyi j , and

−
(

h2 − k2

2(h2 + k2)

)
∂1
hyi+1 j + ∂1

hyi j −
(

h2 − k2

2(h2 + k2)

)
∂1
hyi−1 j

=
h2

2(h2 + k2)
(3∂2

kyij + ∂2
kyi j−1)

+
h2

2(h2 + k2)
(2∂1

hyij + ∂1
hyi+1 j + ∂1

hyi−1 j)

+
h2k2

2(h2 + k2)
N̄ ′(ȳij). (5.13)
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Figure 5.5: Top left: the wave forms for a two soliton kink and antikink collision us-
ing (5.12). Top right: the energy error. Bottom left: the wave form at time t ≈ 11855.
Bottom right: the portion of the bottom left graph for spatial grid points 1 . . . 16.

5.2 Numerical checks.

While the focus of this article is not the numerical implementation of the integrators
which we have derived, we have, nevertheless, undertaken some preliminary numeri-
cal investigations of our multisymplectic methods in the context of the sine-Gordon
equation with periodic boundary conditions.

The rectangle-based multisymplectic method. The top half of Figure (5.5)
shows a simulation of the collision of “kink” and “antikink” solitons for the sine-
Gordon equation, using the rectangle-based multisymplectic method (5.12). In the
bottom half of that figure we show the result of running that simulation until the
solitons have undergone about 460 collisions; shortly after this the simulation stops
because the iteration (5.13) diverges. The anomalous spatial variations in the wave-
form of the bottom left of Figure (5.5) have period 2 spatial grid divisions and
are shown in finer scale on the bottom right of that figure. These variations are
reminiscent of those found in Ablowitz, Herbst and Schober [1996] for the com-
pletely integrable discretization of Hirota, where the variations are attributed to
independent evolution of waveforms supported on even vs. odd grid points. Obser-
vation of (5.12) indicates what is wrong: the nonlinear term N contributes to (5.12)
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in a way that will average out these variations, and consequently, once they have
begun, (5.12) tends to continue such variations via the linear wave equation. In
Ablowitz et. al., the situation is rectified when the number of spatial grid points
is not even, and this is the case for (5.12) as well. This is indicated on the left
of Figure (5.6), which shows the waveform after about 5000 soliton collisions when
N = 255 rather than N = 256. Figure (5.7) summarizes the evolution of energy
error3 for that simulation.

Initial data. For the two-soliton-collision simulations, we used the following initial
data: h = k/8 (except h = k/16 where noted), where k = 40/N and N = 255 spatial
grid points (except Figure (5.5) where N = 256). The circle that is space should
be visualized as having circumference L = 40. Let κ = 1 − ε where ε = 10−6,
L̃ = L/4 = 10,

P = 2
∫ 1/κ

0

1√
1− y2

√
1− κ2y2

dy ≈ 15.90, c =

√
1− L̃2

κ2P 2
≈ .7773,

and

φ̃(x) ≡ 2 arcsin
(

sn
(

x

κ
√

1− c2
;κ
))

.

Then φ̃(x − ct) is a kink solution if space has a circumference of L̃. This kink and
an oppositely moving antikink (but placed on the last quarter of space) made up
the initial field, so that yi0 = φ(40(i− 1)/N), i = 1, . . . , N , where

φ(x) ≡


φ(x) 0 ≤ x < L/4
2π L/4 ≤ x < 3L/4
2π − φ(x− 3L/4) 3L/4 ≤ x < L

,

while yi1 = yi0 + φ̇(40(i− 1)/N)h where

φ̇(x) ≡


(φ(x− hc)− φ(x))/h 0 ≤ x < L/4
0 L/4 ≤ x < 3L/4
−(φ(x− hc)− φ(x))/h 3L/4 ≤ x < L

.

3The discrete energy that we calculated was

N∑
i=1

(
1

2

( yi j+1 − yij
2h

+
yi+1 j+1 − yi+1 j

2h

)2

+
1

2

( yi+1 j − yij
2k

+
yi+1 j+1 − yi j+1

2k

)2

−N (ȳij)

)
.
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Figure 5.6: On the left, the final wave form (after about 5000 soliton collisions at t ≈
129133) obtained using the rectangle-based multisymplectic method (5.12). On the right,
the final waveform (at t ≈ 129145) from the energy-conserving method (5.14) of Vu-Quoq
and Li. In both simulations, temporal drift is occurring. For this reason the waveforms are
inverted with respect to one another; moreover, the separate solitons are drifting at slightly
different rates, as indicated by the off-center waveforms.
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Figure 5.7: On the left, the energy error corresponding to our multisymplectic method
(5.13) for 5000 solition collisions; the three graphs correspond to the minimum, average,
and maximum energy error over consecutive 5000 time step regions. On the right, the final
energy error (i.e. the energy error after about 5000 soliton collisions), which can be compared
with the initial energy error plot in the top left of Figure (5.5).
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Comparison with energy-conserving methods. As an example of how our
method compares with an existing method, we considered the energy-conserving
method of Vu-Quoc and Li [1993], page 354:

1
k2

[
1
4
∂2
kyi j+1 +

1
2
∂2
kyij +

1
4
∂2
kyi j−1

]
− 1
h2
∂2
hyij

+
1
2

(
N(yi j+1)−N(yij)

yi j+1 − yij
+
N(yij)−N(yi j−1)

yij − yi j−1

)
= 0. (5.14)

This has an iterative form similar to (5.13) and is quite comparable with (5.10)
and (5.12) in terms of the computation required. Our method seems to preserve the
soliton waveform better than (5.14), as is indicated by comparison of the left and
right Figure (5.6).

In regards to the closely related papers Vu-Quoc and Li [1993] and Li and Vu-
Quoc [1995], we could not verify in our simulations that their method conserves
energy, nor could we verify their proof that their method conserves energy. So, as
a further check, we implemented the following energy-conserving method of Guo,
Pascual, Rodriguez, and Vazquez [1986]:

∂2
kyij − ∂2

hyij +
N(yi j+1)−N(yi j−1)

yi j+1 − yi j−1
, (5.15)

which conserves the discrete energy

N∑
j=1

(
1
2

(yi j+1 − yij)(yij − yi j−1)
h2

+
1
2

(
yi+1 j − yij

k

)2

−N(yij)

)
.

This method diverged after just 345 soliton collisions. As can be seen from (5.15),
the nonlinear potential N enters as a difference over two grid spacings, which sug-
gests that halving the time step might result in a more fair comparison with the
methods (5.12) or (5.14). With this advantage, method (5.15) was able to simulate
5000 soliton collisions, with a waveform degradation similar to the energy-conserving
method (5.14), as shown at the bottom right of Figure (5.8). The same figure also
shows that, although the energy behavior of (5.15) is excellent for short time simula-
tions, it drifts significantly over long times, and the final energy error has a peculiar
appearance. Figure (5.9) shows the time evolution of the waveform through the
soliton collision that occurs just before the simulation stops. Apparently, at the
soliton collisions, significant high frequency oscillations are present, and these are
causing the jumps in the energy error in the bottom left plot of Figure (5.8). This
error then accumulates due to the energy-conserving property of the method. In
these simulations, so as to guard against the possibility that this behavior of the
energy was due to inadequately solving the implicit equation (5.15), we imposed a
minimum limit of 3 iterations in the corresponding iterative loop, whereas this loop
would otherwise have converged after just 1 iteration.
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Figure 5.8: A long-time simulation using the energy-conserving method (5.15) of Guo et al.
Above left: the initial energy error. Above right: the average energy error over consecutive
5000 time step regions (the maximum and minimum closely parallel the average). Below
left: the final energy error. Below right: the final waveform at t ≈ 129149.

Comparison with the triangle-based multisymplectic method. The dis-
crete second derivatives in the method (5.15) are the same as in the triangle-
based multisymplectic method (5.8); these derivatives are simpler than either our
rectangle-based multisymplectic method (5.12) or the energy-conserving method of
Vu-Quoc and Li (5.14). To explore this we implemented the triangle-based multi-
symplectic method (5.8). Even with the less complicated discrete second derivatives
our triangle-based multisymplectic method simulated 5000 soliton collisions with
comparable energy 4 and waveform preservation properties as the rectangle-based
multisymplectic method (5.12), as shown in Figure (5.11). Figure (5.10) shows the
time evolution of the waveform through the soliton collision just before the sim-
ulation stops, and may be compared to Figure (5.9). As can be seen, the high
frequency oscillations that are present during the soliton collisions are smaller and
more smooth for the triangle-based multisymplectic method than for the energy-

4The discrete energy that we calculated was

N∑
i=1

(
1

2

( yi j+1 − yij
h

)2

+
1

2

( yi+1 j − yij
2k

)2

−N(ȳij)

)
.
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Figure 5.9: The soliton collision at time t ≈ 129130, after the energy-conserving
method (5.15) of Guo et al. has simulated about 5000 soliton collisions. The solitons collide
beginning at the top left and proceed to the top right, then to the bottom left, and finally
to the bottom right. The vertical scales are not constant and visually exaggerate the high
frequency oscillations, which are small on the scale 0 to 2π.
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Figure 5.10: Similar to the above plot but for our triangle-based multisymplectic
method (5.8).
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conserving method (5.15). A similar statement is true irrespective which of the two
multisymplectic or two energy conserving methods we tested, and is true all along
the waveform, irrespective of whether or not a soliton collision is occurring.
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.14
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Figure 5.11: A simulation of 5000 soliton collisions using the triangle-based multisymplectic
method (5.8). Above left: The initial energy error. Above right: The minimum, average
and maximum energy as in the left of Figure (5.7). Below left: the final waveform (at
t ≈ 129130). Below right: the final energy error.

Summary. Our multisymplectic methods are finite difference methods that are
computationally competitive with existing finite difference methods. Our methods
show promise for long-time simulations of conservative partial differential equations,
in that, for long-time simulations of the sine-Gordon equation, our method 1) had
superior energy-conserving behavior, even when compared with energy-conserving
methods; 2) better preserved the waveform than energy-conserving methods; and 3)
exhibited superior stability, in that our methods excited smaller and more smooth
high frequency oscillations than energy-conserving methods. However, further nu-
merical investigation is certainly necessary to make any lasting conclusions about
the long-time behavior of our integrator.

The programs. The programs that were used in the preceding simulations are
“C” language implementations of the various methods. A simple tridiagonal LUD
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method was used to solve the linear equations (e.g. the left side of (5.13)), as in
Vu-Quoc and Li [1993], page 379. An 8th order extrapolator was used to provide
a seed for the implicit step. All calculations were performed in double precision
while the implicit step was terminated when the fields ceased to change to single
precision; the program’s output was in single precision. The extrapolation usually
provided a seed accurate enough so that the methods became practically explicit, in
that for many of the time-steps the first or second run through the iterative loops
solving the implicit equations solved those equations to single precision. However,
in the absence of a regular spacetime grid the expenses of the extrapolation and
solving the linear equation would grow. Our programs are freely available at URL
http://www.cds.caltech.edu/cds.

6 Concluding Remarks

Here we make a few miscellaneous comments and remark on some work planned for
the future.

Lagrangian reduction. As mentioned in the text, it is useful to have a discrete
counterpart to the Lagrangian reduction of Marsden and Scheurle [1993a,b], Holm,
Marsden and Ratiu [1998a] and Cendra, Marsden and Ratiu [1998]. We sketch
briefly how this theory might proceed. This reduction can be done for both the case
of “particle mechanics” and for field theory.

For particle mechanics, the simplest case to start with is an invariant (say left)
Lagrangian on the tangent bundle of a Lie group: L : TG → R. The reduced
Lagrangian is l : g → R and the corresponding Euler–Poincaré equations have a
variational principle of Lagrange d’Alembert type in that there are constraints on
the allowed variations. This situation is described in Marsden and Ratiu [1994].

The discrete analogue of this would be to replace a discrete Lagrangian L :
G×G→ R by a reduced discrete Lagrangian ` : G→ R related to L by

`(g1g
−1
2 ) = L(g1, g2)

In this situation, the algorithm from G × G to G × G reduces to one from G to
G and it is generated by ` in a way that is similar to that for L. In addition, the
discrete variational principle for L which states that one should find critical points
of

L(g1, g2) + L(g2, g3)

with respect to g2 to implicitly define the map (g1, g2) 7→ (g2, g3), reduces naturally
to the following principle: Find critical points of `(g)+`(h) with respect to variations
of g and h of the form gξ := Lgξ and ξh = Rhξ where Lg and Rh denote left and
right translation and where ξ ∈ g. In other words, one sets to zero, the derivative
of the sum `(ggε) + `(gεh) with respect to ε at ε = 0 for a curve gε in G that passes
through the identity at ε = 0. This defines (with caveats of regularity as before)
a map of G to itself, which is the reduced algorithm. This algorithm can then
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be used to advance points in G × G itself, by advancing each component equally,
reproducing the algorithm on G×G. In addition, this can be used with the adjoint
or coadjoint action to advance points in g or g∗ to approximate the Euler–Poincaré
or Lie–Poisson dynamics.

These equations for a discrete map, say φ` : G→ G generated by ` onG are called
the discrete Euler–Poincaré equations as they are the discrete analogue of the
Euler–Poincaré equations on g. Notice that, at least in theory, computation can be
done for this map first and then the dynamics on G×G is easily reconstructed by
simply advancing each pair as follows: (g1, g2) 7→ (hg1, hg2), where h = φ`(g−1

1 g2).
If one identifies the discrete Lagrangians with generating functions (as explained

in Wendlandt and Marsden [1997]) then the reduced Lagrangian generates the re-
duced algorithm in the sense of Ge and Marsden [1988], and this in turn is closely
related to the Lie–Poisson–Hamilton–Jacobi theory.

Next, consider the more general case of TQ with its discretization Q × Q with
a group action (assumed to be free and proper) by a Lie group G. The reduction
of TQ by the action of G is TQ/G, which is a bundle over T (Q/G) with fiber
isomorphic to g. The discrete analogue of this is (Q × Q)/G which is a bundle
over (Q/G) × (Q/G) with fiber isomorphic to G itself. The projection map π :
(Q × Q)/G → (Q/G) × (Q/G) is given by [(q1, q2)] 7→ ([q1], [q2]) where [ ] denotes
the relevant equivalence class. Notice that in the case in which Q = G this bundle
is “all fiber”. The reduced discrete Euler-Lagrange equations are similar to those in
the continuous case, in which one has shape equations couples with a version of the
discrete Euler–Poincaré equations.

Of course all of the machinery in the continuous case can be contemplated here
too, such as stability theory, geometric phases, etc. In addition, it would be useful
to generalize this Lagrangian reduction theory to the multisymplectic case. All of
these topics are planned for other papers.

Role of uniformity of the grid. Consider an autonomous, continuous La-
grangian L : TQ→ R where, for simplicity, Q is an open submanifold of Euclidean
space. Imagine some not necessarily uniform temporal grid (t0, t1, · · · ) of R, so that
t0 < t1 < t2 < · · · . In this situation, it is natural to consider the discrete action

S =
n∑
k=1

Lk(qk, qk−1) ≡
n∑
k=1

L
(
qk + qk−1

2
,
qk − qk−1

tk − tk−1

)
(tk − tk−1). (6.1)

This action principle deviates from the action principle (3.1) of Section 3 in that the
discrete Lagrangian density depends explicitly on k. Of course nonautonomous con-
tinuous Lagrangians also yield k-dependent discrete Lagrangian densities, irrespec-
tive of uniformity of the grid. Thus, nonuniform temporal grids or nonautonomous
Lagrangians give rise to discrete Lagrangian densities which are more general those
those we have considered in Section (3). For field theories, the Lagrangian in the
action (5.1) depends on the spacetime variables already, through its explicit depen-
dence on the triangle ∆. However, it is only in the context of a uniform grid that we
have experimented numerically and only in that context that we have discussed the
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significance of the discrete multisymplectic form formula and the discrete Noether
theorem.

Using (6.1) as an example, will now indicate why the issue of grid uniformity
may not be serious. The DEL equations corresponding to the action (6.1) are

∂Lk
∂q1

(qk, qk−1) +
∂Lk+1

∂q2
(qk+1, qk) = 0, k = 1, 2, , · · · , (6.2)

and this gives evolution maps Fk+1,k : Q×Q→ Q×Q defined so that

Fk+1,k(qk, qk−1) = (qk+1, qk), k = 1, 2, · · ·
when (6.2) holds. For the canonical 1-forms corresponding to (3.4) and (3.5) we
have the k-dependent one forms

θ−L,k(q1, q0) · (δq1, δq0) ≡ ∂Lk
∂q0

(q1, q0)δq0, (6.3)

and

θ+
L,k(q1, q0) · (δq1, δq0) ≡ ∂Lk

∂q1
(q1, q0)δq1, (6.4)

and Equations (3.7) and (3.9) become

F ∗k+1,k(dθ
+
L,k) = −dθ−L,k+1, dθ−L,k + dθ+

L,k = 0 (6.5)

respectively. Together, these two equations give

F ∗k+1,k(dθ
+
L,k) = dθ+

L,k+1, (6.6)

and if we set

Fk ≡ Fk,k−1 ◦ Fk−1,k−2 ◦ · · · ◦ F2,1

then (6.6) chain together to imply F ∗k (dθ+
L,1) = dθ+

L,k. This appears less than
adequate since it merely says that the pull back by the evolution of a certain 2-form
is, in general, a different 2-form. The significant point to note, however, is that this
situation may be repaired at any k simply by choosing Lk = L1. It is easily verified
that the analogous statement is true with respect to momentum preservation via
the discrete Noether theorem.

Specifically, imagine integrating a symmetric autonomous mechanical system in
a timestep adaptive way with Equations (6.2). As the integration proceeds, various
timesteps are chosen, and if momentum is monitored it will show a dependence on
those choices. A momentum-preserving symplectic simulation may be obtained by
simply choosing the last timestep to be of equal duration to the first. This is the
highly desirable situation which gives us some confidence that grid uniformity is
a nonissue. There is one caveat: symplectic integration algorithms are evolutions
which are high frequency perturbations of the actual system, the frequency being
the inverse of the timestep, which is generally far smaller than the time scale of any
process in the simulation. However, timestep adaptation schemes will make choices
on a much larger time scale than the timestep itself, and then drift in the energy
will appear on this larger time scale. A meaningful long-time simulation cannot
be expected in the unfortunate case that the timestep adaptation makes repeated
choices in a way that resonates with some process of the system being simulated.
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The sphere. The sphere cannot be generally uniformly subdivided into spherical
triangles; however, a good approximately uniform grid is obtained as follows: start
from an inscribed icosahedron which produces a uniform subdivision into twenty
spherical isosceles triangles; these are further subdivided by halving their sides and
joining the resulting points by short geodesics.

Elliptic PDEs. The variational approach we have developed allows us to examine
the multisymplectic structure of elliptic boundary value problems as well. For a
given Lagrangian, we form the associated action function, and by computing its first
variation, we obtain the unique multisymplectic form of the elliptic operator. The
multisymplectic form formula contains information on how symplecticity interacts
with spatial boundaries. In the case of two spatial dimensions, X = R2, Y = R3,
we see that equation (4.36) gives us the conservation law

divX = 0,

where the vector X = (ω0(j1V, j1W ), ω1(j1V, j1W )).
Furthermore, using our generalized Noether theory, we may define momentum-

mappings of the elliptic operator associated with its symmetries. It turns out that for
important problems of spatial complexity arising in, for example, pattern formation
systems, the covariant Noether current intrinsically contains the constrained toral
variational principles whose solutions are the complex patterns (see Marsden and
Shkoller [1997]).

There is an interesting connection between our variational construction of multi-
symplectic-momentum integrators and the finite element method (FEM) for elliptic
boundary value problems. FEM is also a variationally derived numerical scheme,
fundamentally differing from our approach in the following way: whereas we form
a discrete action sum and compute its first variation to obtain the discrete Euler-
Lagrange equations, in FEM, it is the original continuum action function which is
used together with a projection of the fields and their variations onto appropriately
chosen finite-dimensional spaces. One varies the projected fields and integrates such
variations over the spatial domain to recover the discrete equations. In general, the
two discretization schemes do not agree, but for certain classes of finite element bases
with particular integral approximations, the resulting discrete equations match the
discrete Euler-Lagrange equations obtained by our method, and are hence naturally
multisymplectic.

To illustrate this concept, we consider the Gregory and Lin method of solving
two-point boundary value problems in optimal control. In this scheme, the discrete
equations are obtained using a finite element method with a basis of linear inter-
polants. Over each one-dimensional element, letN1 andN2 be the two linear interpo-
lating functions. As usual, we define the action function by S(q) =

∫ T
0 L(q(t), q̇(t))dt.

Discretizing the interval [0, T ] into N+1 uniform elements, we may write the action
with fields projected onto the linear basis as

S(q) =
N−1∑
k=0

∫ k+1

k
L({N1φk +N2φk+1}, {Ṅ1φk + Ṅ2φk+1})dt.
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Since the Euler-Lagrange equations are obtained by linearizing the action and hence
the Lagrangian, and as the functions Ni are linear, one may easily check that by
evaluating the integrals in the linearized equations using a trapezoidal rule, the
discrete Euler-Lagrange equations given in (3.3) are obtained. Thus, the Gregory
and Lin method is actually a multisymplectic-momentum algorithm.

Applicability to fluid problems. Fluid problems are not literally covered by the
theory presented here because their symmetry groups (particle relabeling symme-
tries) are not vertical. A generalization is needed to cover this case and we propose
to work out such a generalization in a future paper, along with numerical implemen-
tation, especially for geophysical fluid problems in which conservation laws such as
conservation of enstrophy and Kelvin theorems more generally are quite important.

Other types of integrators. It remains to link the approaches here with other
types of integrators, such as volume preserving integrators (see, eg, Kang and Shang
[1995], Quispel [1995]) and reversible integrators (see, eg, Stoffer [1995]). In partic-
ular since volume manifolds may be regarded as multisymplectic manifolds, it seems
reasonable that there is an interesting link.

Constraints. One of the very nice things about the Veselov construction is the
way it handles constraints, both theoretically and numerically (see Wendlandt and
Marsden [1997]). For field theories one would like to have a similar theory. For
example, it is interesting that for fluids, the incompressibility constraint can be
expressed as a pointwise constraint on the first jet of the particle placement field,
namely that its Jacobian be unity. When viewed this way, it appears as a holonomic
constraint and it should be amenable to the present approach. Under reduction by
the particle relabeling group, such a constraint of course becomes the divergence
free constraint and one would like to understand how these constraints behave under
both reduction and discretization.
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