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Abstract

This paper proves a symplectic reduction by stages theorem in the
context of geometric mechanics on symplectic manifolds with symmetry
groups that are group extensions. We relate the work to the semidirect
product reduction theory developed in the 1980’s by Marsden, Ratiu,
Weinstein, Guillemin and Sternberg as well as some more recent results
and we recall how semidirect product reduction finds use in examples,
such as the dynamics of an underwater vehicle.

We shall start with the classical cases of commuting reduction (first
appearing in Marsden and Weinstein [1974]) and present a new proof
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and approach to semidirect product theory. We shall then give an idea
of how the more general theory of group extensions proceeds (the de-
tails of which are given in Marsden, Misiolek, Perlmutter and Ratiu
[1998]). The case of central extensions is illustrated in this paper with
the example of the Heisenberg group. The theory, however, applies to
many other interesting examples such as the Bott-Virasoro group and
the KdV equation.
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1 Introduction and Background

The Problem Setting. Consider a Lie group M that acts on a symplectic
manifold (P,€)) by symplectic transformations and that this action has an
equivariant momentum map J; : P — m*, where m is the Lie algebra of M.
Let N be a normal subgroup of M. The problem is to carry out the symplectic
reduction of P by M in two steps, first a reduction of P by N and followed
by, roughly speaking, a reduction by the quotient group M/N.

This seemingly straightforward problem is remarkably subtle and when
properly understood, has a surprising number of consequences, applications



and links with other subjects. These include subjects as diverse as classifying
coadjoint orbits, applications to underwater vehicle dynamics, and links to in-
duced representations and quantization. We shall survey some of the literature
in this area below.

It is a great pleasure and honor to dedicate this paper to one of the giants in
this field, Victor Guillemin. We hope it will do justice to his love of symplectic
geometry and symmetry and in particular, his work with Shlomo Sternberg
on semidirect products.

Poisson Reduction. Perhaps the simplest context in which one can un-
derstand a result of this sort is that of “easy Poisson reduction”. That is,
assuming that the group actions are free and proper, one simply forms the
quotient manifold P/M with its natural quotient Poisson structure (see Mars-
den and Ratiu [1994] for an exposition of this standard theory). An easy result
that the reader can readily prove is that

P/M is Poisson diffeomorphic to (P/N)/(M/N).

A more ambitious task, which we undertake in this paper, is to keep track of
the symplectic leaves in this process.

We do not attempt to carry out a reduction by stages in the more sophis-
ticated context of Poisson reduction of Marsden and Ratiu [1986] (see also
Vanhaecke [1996]). This would be an interesting problem, but it is not ad-
dressed here.

Lagrangian Reduction by Stages. The companion paper of Cendra, Mars-
den and Ratiu [1998] carries out the analogue of this program for the reduction
of Lagrangian systems by stages (following the development of Lagrangian re-
duction of Cendra and Marsden [1987], Cendra, Ibort and Marsden [1987], and
Marsden and Scheurle [1993a,b]). In Lagrangian reduction, it is variational
principles that are reduced, as opposed to symplectic or Poisson structures. In
the context of Lagrangian reduction of semidirect products, this is closely con-
nected with the beautiful variational theory of the Euler—Poincaré equations;
see Holm, Marsden and Ratiu [1998a,b].

Symplectic Reduction. Recall that for a group G' (whose Lie algebra is
denoted g) acting on a symplectic manifold (P, 2) and with an Ad-equivariant
momentum map J : P — g%, the symplectic reduced space is defined by P, =
J1(n)/G,, where i € g* is a regular value of J, G, is the isotropy subgroup for
the coadjoint action of G on g*, and we assume that G, acts freely and properly
on the level set J=*(u). The reduced manifold is a symplectic manifold in a
natural way: the pull back of the given symplectic structure to the level set
of J equals the pull back of the reduced symplectic structure by the natural



projection map 7, : J7'(u) — P, to the quotient space. This is the well known
Marsden-Weinstein-Meyer symplectic reduction theorem (see, e.g., Abraham
and Marsden [1978] or Guillemin and Sternberg [1984] for expositions).

The regularity and free and proper assumptions can be somewhat weakened
(for example, to weakly regular values) as is well known. On the other hand,
we do not treat the singular case in this paper — it would of course be of
interest to do so, following Arms, Marsden and Moncrief [1981], Sjamaar and
Lerman [1991], Ortega and Ratiu [1998], and various subsequent papers.

We also need to keep in mind that one can discuss the reduction of dy-
namics; thus, if H is a Hamiltonian on P that is GG invariant, it induces a
Hamiltonian H,, on each of the reduced spaces, and the corresponding Hamil-
tonian vector fields Xy and Xy, are m,-related. The reverse of reduction is
reconstruction and this leads one to the theory of classical geometric phases
(Hannay-Berry phases); see Marsden, Montgomery and Ratiu [1990]. There
are of course many important results related to reduction and to the structure
of reduced spaces some of which we will encounter later; we refer to Abraham
and Marsden [1978] and Marsden [1992] for some of the general results and
for additional references.

The Organization of the Paper. The strategy of the paper is to proceed
step by step as follows:

1. The case of the direct product of two groups (commuting reduction).

2. The case of the semidirect product of a group with a vector space (the
Euclidean group, groups relevant for compressible flow, etc.).

3. The case of group extensions (when a given group has a normal sub-
group).

We do this in a way where the result at one step leads naturally to the approach
at the next step. We also mention a number of interesting examples along the
way. Many of the deeper and more extensive parts of the work will be left to
another paper, Marsden, Misiolek, Perlmutter, and Ratiu [1998].

2 Commuting Reduction

Theorems on reduction by stages have been given in various special instances
by a number of authors, starting with time-honored observations in mechanics
such as the following: When you want to reduce the dynamics of a rigid body
moving in space, first you can pass to center of mass coordinates (that is,
reduce by translations) and second you can pass to body coordinates (that is,
reduce by the rotation group). For other problems, such as a rigid body in
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a fluid (see Leonard and Marsden [1997]) this process is not so simple; one
does not simply pass to center of mass coordinates to get rid of translations.
This shows that the general problem of reducing by the Euclidean group is
a bit more subtle than one may think at first. In any case, such procedures
correspond to a reduction by stages result for semidirect products. But we
are getting ahead of ourselves; we need to step back and look first at an even
simpler case, namely the case of direct products.

The early version of Marsden and Weinstein [1974, p. 127] states that for
two commuting group actions, one could reduce by them in succession and
in either order and the result is the same as reducing by the direct product
group. One version of this result is the following theorem.

Theorem 2.1 (Commuting Reduction Theorem). Let P be a symplectic
manifold, K be a Lie group (with Lie algebra €) acting symplectically on P
and having an equivariant momentum map Jg : P — €. Assume that v € €
s a regqular value of Ji and that the action of K, is free and proper, so that
the symplectic reduced space P, = J;/'(v)/ K, is a smooth manifold. Let G be
another group (with Lie algebra g) acting on P with an equivariant momentum
map Jg : P — g*. Assume p is a reqular value for the G-action. Suppose that
the actions of G and K on P commute. Then Jg X Jk is a momentum map
for the action of G x K on P and

i If Jx is G-invariant and K is connected, then Jg is K-invariant and
Jo x Ik is equivariant. Moreover, G induces a symplectic action on P,,
and the map J, : P, — g induced by Jg is an equivariant momentum
map for this action.

ii The (symplectic) reduced space for the action of G on P, at u is sym-
plectically diffeomorphic to the reduction of P at the point (u,v) by the
action of G x K.

For example, in the dynamics of a rigid body with a fixed point and two
equal moments of inertia moving in a gravitational field, there are two com-
muting S* symmetry groups acting on the phase space T*SO(3). These actions
commute since one is given by (the cotangent lift of) left translation and the
other by right translation. The corresponding integrals of motion lead to the
complete integrability of the problem. One can reduce by the action of these
groups either together or one following the other with the same final reduced
space.

This result may be viewed in the general context discussed in the intro-
duction by taking M = G x K with the normal subgroup being chosen to be
either G or K, so that the quotient group of M is the other group.



Proof of the Commuting Reduction Theorem. It is instructive to build
up to the general reduction by stages theorem by giving direct proofs of some
simpler special cases; these special cases not only point the way to the gen-
eral case, but contain interesting constructions that are relevant to the cases
treated. The general case has some subtleties not shared by these simple cases,
which will be spelled out as we proceed.

i. First of all, note that the G-invariance of Jx implies that d (Jx,n)-&p =0
for all £ € g and n € €. However,

d(Jg, &) np = d{Jg, &) Xuem =1J6, &), (Jx,m)}
= —d <JK777> ' X<JG75> =-d <JK777> . £P = 07

from which we conclude K-invariance of Jg.
Also, for all z € P and (g,k) € G x K we have

(Jo xJk)((g,k) - 2) = Jalg-k-2), Ix(g-k-2))
=(9-Ja(2), k- Ik (2))
=(9,k) - (Ja x JK) (2), (2.1)

where we have used the invariance of J; and Jg.

Let the action of g € G on P be denoted by ¥, : P — P. Since these maps
commute with the action of K and leave the momentum map Jy invariant by
hypothesis, there are well defined induced maps W} : J i (v) — J(v) and
W,, : P, — P,, which then define actions of G on J'(v) and on P,.

Let 7, : J' (v) — P, denote the natural projection and i, : J;' (v) — P be
the inclusion. We have by construction, ¥, ,om, = 7TI,O\I/; and ¥, o1, = z'l,o\I/Z.
The symplectic form on the reduced space is characterized by Q2 = 7:€0,.
Therefore,

W, = (V) mpQ, = (U))*,Q =i, U Q =i, Q =710,

v g
Since 7, is a surjective submersion, we may conclude that
%
vy =Q,.

Thus, we have a symplectic action of G on P,.

Since Jg is invariant under K and hence under K, there is an induced
map J, : P, — g* satisfying J, om, = Jg 04,. We now check that this is
the momentum map for the action of G on P,. To do this, first note that for
all £ € g, the vector fields {p and £p, are m,-related. Denoting the interior
product of a vector field X and a form «a by ixa, we have

5 (iep, Q) = iepipQ =5, (1,Q) = i}, (d (Jg, ) = 7 (d (J,,, ).

6



Again, since m, is a surjective submersion, we may conclude that
ic, 0, =d(J,,§)

and hence J, is the momentum map for the G action on P,. Equivariance of
J, follows from that for Jg, by a diagram chasing argument as above, using
the relation J, om, = J5 o1, and the relations between the actions of G on P,
J'(v), and on P,.

ii. The equivariant momentum map for the action of the product group Gx K
is verified to be Jg x J : P — g* x . We begin with the inclusion map

g1 (Jox Jg) M, v) = It (v).
Composing this map with m, gives the map
m,05:(JaxJIg) Hu,v) — P,

This map takes values in J () because of the relation J, o m, = Jg o0 i,.
Using the same name, we get a map:

Uy O.j : (JG X JK)_I(:Mv V) - J;l(:u>

This map is equivariant with respect to the action of G, x K, on the domain
and G, on the range. Thus, it induces a map

[71',, Oj] . P(u,u) — (PV)M'

An argument like that in i shows that this map is symplectic.

We will show that this map is a diffeomorphism by constructing an inverse.
We begin with the map

¢ : J;l(:u) - P(u,u)

defined as follows. Choose an equivalence class [p], € J;'(u) C P, for p €
J I_(l(y). The equivalence relation is that associated with the map =, ; that is,
with the action of K,. For each such point, we have p € (Jg x Jg) (1, v)
since by construction p € Ji'(v) and also

Ja(p) = Je o w)(p) = I([pl,) = 1.

Hence, it makes sense to consider the class [p](,,.) € Pp.). The result is
independent of the representative, since any other representative of the same
class has the form k - p where k € K,. This produces the same class in P, )
since for this latter space, the quotient is by G, x K,. The map ¢ is therefore

well defined.
This map ¢ is GG, ~invariant, and so it defines a quotient map

[¢] : (PI/>/J - P(u,u)-

Chasing the definitions shows that this map is the inverse of the map [, o j]
constructed above. Thus, both are symplectic diffeomorphisms. W
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3 Semidirect Products

3.1 Summary

Background and Literature. In some applications one has two symmetry
groups that do not commute and thus the commuting reduction by stages
theorem does not apply. In this more general situation, it matters in what
order one performs the reduction.

The main result covering the case of semidirect products is due to Mars-
den, Ratiu and Weinstein [1984a,b] with important previous versions (more
or less in chronological order) due to Sudarshan and Mukunda [1974], Vino-
gradov and Kupershmidt [1977], Ratiu [1980], Guillemin and Sternberg [1980],
Ratiu [1981], [1982], Marsden [1982], Marsden, Weinstein, Ratiu, Schmidt and
Spencer [1983], Holm and Kupershmidt [1983] and Guillemin and Sternberg
[1984].

The general theory of semidirect products was motivated by several exam-
ples of physical interest, such as the Poisson structure for compressible fluids
and magnetohydrodynamics. These examples are discussed in the original pa-
pers. For some additional (very useful!) concrete applications of this theory,
we refer to the literature already cited and, for underwater vehicle dynamics,
to Leonard and Marsden [1997].

We shall first state the “classical” result and then shall give a more general
one concerning actions by semidirect products on general symplectic manifolds.

Statement of the Theorem. The semidirect product reduction theorem
states, roughly speaking, that for the semidirect product S = G©V where G
is a group acting on a vector space V' and S'is the semidirect product, one can
first reduce T*S by V and then by G and one gets the same result as reducing
by S. We will let s denote the Lie algebra of S so that s = g@©® V. Below we
shall review the relevant conventions and notations for semidirect products in
detail.

We now state the classical semidirect product reduction theorem precisely.

Theorem 3.1 (Semidirect Product Reduction Theorem). As above, let
S =GOV and choose 0 = (u,a) € g* x V* and reduce T*S by the action
of S at o giving the coadjoint orbit O, through o € s*. There is a symplectic
diffeomorphism between O, and the reduced space obtained by reducing T*G
by the subgroup G, (the isotropy of G for its action on V* at the point a € V*)
at the point p|g, where g, is the Lie algebra of G,,.

Remarks. Note that in the semidirect product reduction theorem, only a
and pu|g, are used. Thus, one gets, as a corollary, the interesting fact that the
semidirect product coadjoint orbits through o1 = (u1,a1) and o2 = (ug, as)
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are symplectically diffeomorphic whenever a; = ay = a and p1|g, = p12]g,. We
shall see a similar phenomenon in more general situations of group extensions
later.

Semidirect Product Actions. The preceding result is a special case of a
theorem we shall prove on reduction by stages for semidirect products acting on
a symplectic manifold. To state this more general result, consider a symplectic
action of S on a symplectic manifold P and assume that this action has an
equivariant momentum map Jg : P — s*. Since V' is a (normal) subgroup of
S, it also acts on P and has a momentum map Jy : P — V* given by

JV:i*VOJS,

where iy : V' — s is the inclusion v — (0,v) and 4}, : §* — V* is its dual.
We carry out the reduction of P by S at a regular value ¢ = (u,a) of the
momentum map Jg for S in two stages using the following procedure. First,
reduce P by V at the value a (assume it to be a regular value) to get the
reduced manifold P, = J;'(a)/V. Second, form the group G, consisting of
elements of GG that leave the point a fixed, using the action of G on V*. We
shall show shortly that the group G, acts on P, and has an induced equivariant
momentum map J, : P, — g, where g, is the Lie algebra of GG,. Third, reduce
P, at the point i, := plg, to get the reduced space (P,)u, = I (1a)/(Ga) -

Theorem 3.2 (Reduction by Stages for Semidirect Product Actions).
The reduced space (Py),, is symplectically diffeomorphic to the reduced space
P, obtained by reducing P by S at the point o = (u,a).

We recover the preceding theorem by choosing P = T%S. The commuting
reduction theorem for the case in which K is a vector space results from
semidirect product reduction when we take the action of G on K to be trivial.
This already suggests that there is a generalization of the semidirect product
reduction theorem to the case in which V' is replaced by a general Lie group.
We give this more general result later. Note that in the commuting reduction
theorem, what we called v is called a in the semidirect product reduction
theorem.

The original papers of Marsden, Ratiu and Weinstein [1984a,b] give a direct
proof of Theorem 3.1 along lines somewhat different than we shall present here.
The proofs we give in this paper have the advantage that they work for the
more general reduction by stages theorem.

Classifying Orbits. Combined with the cotangent bundle reduction the-
orem (see Marsden [1992] for an exposition and references), the semidirect
product reduction theorem is a very useful tool. For example, using these



techniques, one sees readily that the generic coadjoint orbits for the Euclidean
group are cotangent bundles of spheres with the associated coadjoint orbit
symplectic structure given by the canonical structure plus a magnetic term.
We shall discuss this example in detail later.

Reducing Dynamics. There is a method for reducing dynamics that is
associated with the geometry of the semidirect product reduction theorem.
In effect, one can start with a Hamiltonian on either of the phase spaces and
induce one (and hence its associated dynamics) on the other space in a natural
way. For example, in many applications, one starts with a Hamiltonian H,
on T*G that depends parametrically on a variable a € V*; this parametric
dependence identifies the space V* and hence V. The Hamiltonian, regarded
as a map H : T*"G x V* — R should be invariant on 7T*G under the action
of G on T*G x V*. This condition is equivalent to the invariance of the
corresponding function on T*S = T*G x V x V* extended to be constant in
the variable V' under the action of the semidirect product. This observation
allows one to identify the reduced dynamics of H, on 7@ reduced by G, with
a Hamiltonian system on s* or on the coadjoint orbits of s*. For example,
this observation is extremely useful in underwater vehicle dynamics (again,
see Leonard and Marsden [1997]).

3.2 Generalities on Semidirect Products

Now we embark on the proof of the semidirect product reduction theorem. We
begin by recalling some definitions and properties of semidirect products. Let
V' be a vector space and assume that the Lie group G acts (on the left) by
linear maps on V', and hence G also acts on its dual space V*. As sets, the
semidirect product S = G(@©V is the Cartesian product S = G x V and the
group multiplication is given by

(91,v1)(g2, v2) = (9192, v1 + G1v2),

where the action of ¢ € G on v € V is denoted simply as gv. The identity
element is (e,0) and the inverse of (g,v) is given by (g,v)™' = (¢!, —¢g'v).
The Lie algebra of S is the semidirect product Lie algebra s = g(@©® V. The
bracket is given by

[(§1,01), (&2, v2)] = ([€1,E2], §1v2 — o),

where we denote the induced action of g on V' by concatenation, as in & vs.
Below we will need the formulas for the adjoint and the coadjoint actions

for semidirect products. Denoting these and other actions by simple concate-

nation, they are given by (see, e.g.,, Marsden, Ratiu and Weinstein [1984a,b]):

(.97 1))(57 u) = (gga qgu — pv(.gg))
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and
(9,v) (1, a) = (gu + py(ga), ga),

where (g,v) € S =G XV, (§,u) €s =gxV, (u,a) € s = g*xV* and where
pv : @ — V is defined by p,(§) = &v, the infinitesimal action of £ on v. The
map pi : V* — g* is the dual of the map p,. The symbol ga denotes the (left)
dual action of G on V*, that is, the inverse of the dual isomorphism induced
by g € G on V. The corresponding (left) action on the dual space is denoted
by £a for a € V*, that is,

(€a,v) = —(a,&v) .

Lie-Poisson Brackets and Hamiltonian Vector Fields. For complete-
ness, we give the formula for the 4+ Lie-Poisson bracket of ), K : s* — R:

oF 0K 0F 0K 0K OF
F K S (T i A S E B
{ ) }:I:(lu’va) <:U’7 |:5,U’ 5M:|> <CL, 5,& Sa 6,& Sa >7 (3 )

where 0F'/ou € g, 0F/da € V are the functional derivatives. Also, one verifies
that the Hamiltonian vector field of H : s* — R is given by

. . 0H
Xu(p,a) =F (adaﬂ/auﬂ — PsH/5a D E 'a) . (32)

Symplectic Actions by Semidirect Products. Next we consider a sym-
plectic action of S on a symplectic manifold P and assume that this action has
an equivariant momentum map Jg : P — s§*. Since V' is a (normal) subgroup
of S, it also acts on P and has a momentum map Jy : P — V* given by

JV :i*VOJS>

where iy : V' — s is the inclusion v — (0,v) and ¢}, : §* — V* is its dual. We
think of this merely as saying that Jy is the second component of Jg.

We can regard G as a subgroup of S by g +— (g,0). Thus, G also has
an equivariant momentum map Jg : P — g that is the first component of
Js but this will play a secondary role in what follows. On the other hand,
equivariance of Jg under G implies the following relation for Jy :

Jv(gz) = gdv(2), (3.3)

where z € P and we denote the appropriate action of ¢ € G on an element
by concatenation, as before. To prove (3.3), one uses the fact that for the
coadjoint action of S on s§* the second component is just the dual of the given
action of G on V.
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3.3 The Reduction by Stages Construction

We carry out reduction of P by S at a regular value 0 = (p, a) of the momen-
tum map Jg for S in two stages (see figure 3.1).

e First, reduce P by V at the value a € V* (assume it to be a regular
value) to get the reduced manifold P, = J;,'(a)/V. Since the reduction
is by an Abelian group, the quotient is done by the whole of V. We will
denote the projection to the reduced by

To : Iy (@) — P

e Second, form the group G, consisting of elements of G that leave the
point a fixed using the induced action of G on V*. As we show below,
the group G, acts on P, and has an induced equivariant momentum map
Jo : P, — g, where g, is the Lie algebra of G,.

e Third, using this action of G, reduce P, at the point u, := p|g, to get
the reduced manifold (F,),, = J. (tta)/(Ga)

We next check these claims.

Inducing an Action. We first check that we get a symplectic action of G,
on the V-reduced space P,. We do this in the following lemmas.

Lemma 3.3. The group G, leaves the set J;;' (a) invariant.

Proof. Suppose that Jy(z) = a and that g € G leaves a invariant. Then by
the equivariance relation noted above, we have Jy(gz) = gJv(z) = ga = a.
Thus, G, acts on the set J;'(a). ¥

Lemma 3.4. The action of G, on J‘_/l(a) constructed in the preceding lemma,
induces an action W on the quotient space P, = J;; (a)/V .

Proof. If we let elements of the quotient space be denoted by [z],, regarded
as equivalence classes, then we claim that g[z], = [gz], defines the action. We
only need to show that it is well defined. Indeed, for any v € V we have
(2]l = [vz]a, so that identifying v = (e,v) and g = (g,0) in the semidirect
product, it follows that

lgvzla = [(9,0)(e,v)2]a = [(9, 9v)2la = [(e, gv)(g,0)2]a = [(9v)(92)]a = [92]a-

Thus, the action ¥* : (g, [2],) € Go X P, — [g2]a € P, of G, on the V-reduced
space P, is well defined. ¥
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Il @

V-orbits : A

reduction by S

reduction by V.

reduction by G, L @/V="P,

P(u,u) = ng(ua)/(Ga)pu

Figure 3.1: A schematic of reduction by stages for semidirect products.

The Induced Action is Symplectic. Our next task is to show that the
induced action just obtained is symplectic.

Lemma 3.5. The action V* of G, on the quotient space P, = J,'(a)/V
constructed in the preceding lemma, is symplectic.

Proof. Letm, : J;;'(a) — P, denote the natural projection and i, : J;,' (a) —
P be the inclusion. Denote by ¥, : P — P the action of g € G on P. The
preceding lemma states that (i, o ¥,)|Jy'(a) = ¥, 04, for any g € G,. By
construction, ¥g o7, = (7, 0 W,)|J;! (a). The characterization i) = m*Q, of
the reduced symplectic form 2, on P, yields then

T (U)Q, = Wi Q, = Wit = iU = 70 = w1 Q.
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Since 7, is a surjective submersion, we conclude that
(W) Q2 = Q.

Thus, we have a symplectic action of G, on P,. V¥

An Induced Momentum Map. We next check that the symplectic action
obtained in the preceding lemma has an equivariant momentum map. As we
shall see later, in more general cases, this turns out to be a critical step; in
fact, even for central extensions, the momentum map induced at this step need
not be equivariant—it is a special feature of semidirect products, about which
we shall have more to say later.

Lemma 3.6. The symplectic action W* on the quotient space P, = Ji,*(a)/V
has an equivariant momentum map.

Proof. We first show that the composition of the restriction Jg|J;' (a) with
the projection to g} induces a well defined map J, : P, — g}. To check this,
note that for 2 € J;,*(a), and ¢ € g,, equivariance gives

(Ts(v2),6) = (vIs(2),6) = {(e,v)Ts5(2). ) = (Is(2), (e,v)7'(£,0))..

Here, the symbol (e, v)7!(¢,0) means the adjoint action of the group element
(e,v)™1 = (e, —v) on the Lie algebra element (£,0). Thus, (e,v)71(&,0) =
(&,€v), and so, continuing the above calculation, and using the fact that
Jv(z) = a, we get

(Js(v2),§) = (Js(2), (£ €v)) = Ja(2),8) + (Jv(2), &v)
= <JG(Z)7£> - <§a,v> = <JG<Z>7£> :

In this calculation, the term (£a,v) is zero since § € g,. Thus, we have shown
that the expression

(Ja(l2]a), &) = (Ja(2),6)
for £ € g, is well defined. Here, [2], € P, denotes the V-orbit of z € J;'(a).
This expression may be written as

Joom, =1, 0Jg 01,

where ¢, : g, — ¢ is the inclusion map and ¢, : g* — g is its dual.

Next, we show that the map J, is the momentum map of the G,—action
on P,. Since the vector fields £p|(J}' (a)) and &p, are m,—related for all £ € g,,
we have

o (lep, Q) = e300 = 7 (16,Q) = 7 (d (Jg,€)) = 7, (d (o, €)) -
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Again, since m, is a surjective submersion, we may conclude that
icp, Qo = d (Js, )

and hence J, is the momentum map for the G, action on P,.

Equivariance of J, follows from that for Jg, by a diagram chasing argument
as above, using the identity J, o m, = ¢ o J5 07, and the relations between
the actions of G on J;,'(a) and of G, on P,. ¥

Proof of Theorem 3.2. Having established these preliminary facts, we are
ready to prove the main reduction by stages theorem for semidirect products.
Let 0 = (p,a). Start with the inclusion map

j:JI5' (o) = I, (a)

which makes sense since the second component of ¢ is a. Composing this map
with m,, we get the smooth map

Ta0j:Jg (o) = P

This map takes values in J; !(u,) because of the relation J,om, = tf o Jgoi,
and pi, = ¢ (p). Thus, we can regard it as a map

ma 0I5 (o) = I (1a)-

There is a smooth Lie group homomorphism ¢ : S, — (G,),, defined by
projection onto the first factor. The first component g of (g,v) € S, lies in
(Gq)pue because

(1, a) = (g,v)(1, a) = (gu + p,(ga), ga)

implies, from the second component, that g € G, and from the first component,
the identity ¢ipra = 0, and the G,—equivariance of the map ¢,, that g also
leaves i, invariant.

The map 7,07 is equivariant with respect to the action of S, on the domain
and (G,),, on the range via the homomorphism . Thus, 7, o j induces a
smooth map

[Waoj] N (Pa)ua'

Diagram chasing, as above, shows that this map is symplectic and hence an
immersion.

We will show that this map is a diffeomorphism by finding an inverse. We
begin with the construction of a map (see figure 3.2)

¢ ng(lua) — Py
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Figure 3.2: The maps in the proof of the semidirect product reduction theorem.

To do this, take an equivalence class [z], € J;*(1a) C P, for z € Ji'(a),
that is, the V—orbit of z. For each such point, we will try to choose some
v € V such that vz € J5' (). For this to hold, we must have

(1, a) = Jg(v2).

By equivariance, the right hand side equals

vJg(2) = (e,v)Jg(2),Jv(2))
= (e,v)(Je(2),a)
Ja(z) + pyla); a).
Thus, we require that
p=Ja(z) + p,(a).

That this is possible follows from the next lemma.

Lemma 3.7. If g° = {v € g* | v|g. = 0} denotes the annihilator of g, in g*,
we have

g, =1{ppalveV}

*

Proof. The identity we showed above, namely ¢}

pya = 0, shows that
g. 2 {palveVy

Now we use the following elementary fact from linear algebra. Let £ and F
be vector spaces, and Fy C F be a subspace. Let T': E — F* be a linear
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map whose range lies in the annihilator £ of Fy and such that every element
f € F that annihilates the range of T" is in Fy. Then T maps onto Fy. !

In our case, we choose =V, =g, Fy = g4, and we let T : V — g* be
defined by T'(v) = pi(a). To verify the hypothesis, note that we have already
shown that the range of T lies in the annihilator of g,. Let £ € g annihilate
the range of T. Thus, for all v € V,

0= <§a p;k)a> = <pv§a CL> = <€'Ua CL> = - <'U7 §a> ’

and so £ € g, as required. Thus, the lemma is proved. V¥

We apply the lemma to p— Jg(2), which is in the annihilator of g, because
2] € I (pa) and hence X (Jg(p)) = pta- Thus there is a v such that p —
Ja(z) = pa.

The above argument shows how to construct v so that vz € Jg'(0). We
define the map

¢ [ela € 35 (1a) = [v2]6 € P,

where v € V has been chosen as above and [vz], is the S,—equivalence class
in P, of vz.

To show that the map ¢ so constructed is well defined, we replace z by
another representative uz of the same class [z],; here u is an arbitrary ele-
ment of V. Then one chooses v; so that Jg(viuz) = 0. Now we must show
that [vz], = [11uz],. In other words, we must show that there is a group ele-
ment (g, w) € S, such that (g, w)(e,v)z = (e,v1)(e,u)z. This will hold if we
can show that (g,w) := (e,v1)(e,u)(e,v)"" € S,. However, by construction,
Js(vz) = 0 = Jg(v1uz); in other words, we have

o= (n,a) = (e,v)Is(2) = (e, v1)(e, u)I5(2).

Thus, by isolating Jg(2), we get (e,v)"'o = (e,u)"*(e,v;) ' and so the

element (g, w) = (e,v1)(e,u)(e,v)~! belongs to S,. Thus, the map ¢ is well
defined.

The strategy for proving smoothness of ¢ is to choose a local trivialization
of the V bundle J;'(a) — J;%(1,) and define a local section which takes
values in the image of Jg'(o) under the embedding j. Smoothness of the
local section follows by using a complement to the kernel of the linear map
v — pi(a) that defines the solution v of the equation pf(a) = p—Jg(z). Using
such a complement depending smoothly on the data creates a uniquely defined
smooth selection of a solution.

'We are phrasing things this way so that the basic framework will also apply in the infinite
dimensional case, with the understanding that at this point one would invoke arguments
used in the Fredholm alternative theorem. In the finite dimensional case, the result may be
proved by a dimension count.
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Next, we must show that the map ¢ is (G,),, invariant. To see this, let
[2]la € J;1(pa) and let gy € (G,),,. Choose v € V so that vz € Jg'(0) and
let u € V be chosen so that ugez € Jg'(0). We must show that [vz], =
[ugoz],. Thus, we must find an element (g,w) € S, such that (g, w)(e,v)z =
(e,u)(go,0)z. This will hold if we can show that (g, w) := (e, u)(go,0)(e,v) ™! €
Sy. Since 0 = Jg(vz) = Jg(ugoz), by equivariance of Jg we get,

o= (e,v)Jg(z) = (e,u)(g0,0)Is(2).

Isolating Jg(2), this implies that (e,v)™ o = (go,0) (e, u) ‘o which means
that indeed (g, w) = (e,u)(go,0)(e,v)* € S,. Hence ¢ is (G,),,invariant,
and so induces a well defined map

[Cb] : (Pa)ua — Fs.

Chasing the definitions shows that [¢] is the inverse of the map [m, o j].

Smoothness of [¢] follows from smoothness of ¢ since the quotient by the
group action, 7, is a smooth surjective submersion. Thus, both [r, o j] and ¢
are symplectic diffeomorphisms. W

In this framework, one can also, of course, reduce the dynamics of a given
invariant Hamiltonian as was done for the case of reduction by TS by stages.

Remarks.

1. Choose P = T*S in the preceding theorem, with the cotangent action of
S on T*S induced by left translations of S on itself. Reducing 7*S by
the action of V' gives a space naturally isomorphic to T*G—this may be
checked directly, but we will detail the real reason this is so in the next
section. Thus, the reduction by stages theorem gives as a corollary, the
semidirect product reduction Theorem 3.1.

2. The original proof of this result in Marsden, Ratiu and Weinstein [1984a,b]
essentially used the map [¢] constructed above to obtain the required
symplectic diffeomorphism. However, the generalization presented here
to obtain reduction by stages for semidirect product actions, required an
essential modification of the original method.

3. In the following section we shall give some details for reduction by stages
for SE(3), the Euclidean group of R3. This illustrates the classical
Semidirect Product Reduction Theorem 3.1. We now briefly describe
two examples which require the more general result of Theorem 3.2.
First, consider a pseudo-rigid body in a fluid; that is, a body which can
undergo linear deformations and moving through perfect potential flow,
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as in Leonard and Marsden [1997]. Here the phase space is P = T* GE(3)
(where GE(3) is the semidirect product GL(3) @ R?) and the symmetry
group we want to reduce by is SE(3); it acts on GE(3) on the left by
composition and hence on T* GE(3) by cotangent lift. According to the
general theory, we can reduce by the action of R? first and then by SO(3).
This example has the interesting feature that the center of mass need
not move uniformly along a straight line, so the first reduction by trans-
lations is not trivial. The same thing happens for a rigid body moving
in a fluid.

A second, more sophisticated example is a fully elastic body, in which
case, P is the cotangent bundle of the space of all embeddings of a
reference configuration into R?® (as in Marsden and Hughes [1983]) and
we take the group again to be SE(3) acting by composition on the left.
Again, one can perform reduction in two stages.

We comment that the reduction by stages philosophy is quite helpful in
understanding the dynamics and stability of underwater vehicle dynam-
ics, as in Leonard and Marsden [1997].

. The next level of generality is the case of the semidirect product of
two nonabelian groups. Namely, in the preceding case we replace the
vector space (thought of as an Abelian group) V' by a general Lie group
N, with G acting on N by group homomorphisms. Already this case
is quite interesting and nontrivial. We shall not discuss this situation
in detail here, leaving it for Marsden, Misiotek, Perlmutter and Ratiu
[1998]. However, later on we shall briefly discuss the even more general
case of group extensions, of which this is a special case.

. An example involving the semidirect product of two nonabelian groups is
the following. We consider the semidirect product SU(2) ® SU(2) where
the first factor acts on the second by conjugation. Each factor acts on
C? =~ R* in the obvious way and therefore the semidirect product does
as well. The cotangent lift of this action gives a symplectic action on the
cotangent bundle T*R*. We can then study the reduction of this action
by stages, reducing first by the normal subgroup SU(2) and then by the
relevant quotient group.

We believe that this example is related to the fact that the Laplace (also
known as Runge-Lenz) vector, a conserved quantity in addition to the
usual angular momentum for the Kepler problem, is connected with an
SO(4) symmetry (modern references are Moser [1970], Souriau [1973],
Bates [1988], and Guillemin and Sternberg [1990]).
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4 Cotangent Bundle Reduction by Stages for
Semidirect Products

In this section we will couple the semidirect product reduction theorem with
cotangent bundle reduction theory in order to study the reduced spaces for the
right cotangent lifted action of G®V on T* (G® V) in more detail. To carry
this out, we first construct a mechanical connection on the bundle G®V — G
and prove that this connection is flat. This will allow us to identify (equiv-
ariantly) the first (V-reduced) space with (T*G, Qcan). We will then be in a
position to apply the cotangent bundle reduction theory again to complete the
orbit classification.

4.1 Flatness of the First Connection

As in Section 3, let S = G®V be the semidirect product of a Lie group G
and a vector space V' with multiplication
(g:v)(h,w) = (gh,v + gw), (4.1)

where g, h € G and v,w € V. Recall that the Lie algebra of S is the semidirect
product s = g@® V with the commutator

[(57 U>7 (777 w)] = ([57 7]]7 gw - WU) ) (42>

where £,n € gand v,w € V. In what follows it is convenient to explicitly intro-
duce the homomorphism ¢ : G — Aut(V') defining the given G-representation
on V.

The Mechanical Connection. For the construction that follows we will
recall the relevant definitions and basic properties of mechanical connections
and locked inertia tensor (see Marsden [1992]).

Let (-,-)g and (-, -)y be two inner products on the Lie algebra g and on the
vector space V', respectively. Then

((§,0), (n,w))s = (€, Mg + (v, W)y, (4.3)

for any (&, v),(n,w) € s defines an inner product on s. Extend it to a right—
invariant Riemannian metric on S by

(X, u), (Y, w0)) (g0) = {Tigw) Big)-1 (X, 1), Tigw) Rigwy-1 (Y, w))s, (4.4)

where (g,v) € S, (X,u), (Y,w) € T(y.)S, and Ry, is right translation on S.?
The derivative of R, . is readily computed from (4.1) to be

T(vi)R(hvw)(Ya u) = (Y ) h> u+ Tg¢w(Y))> (45)

2Qur choice of right translations is motivated by infinite dimensional applications to
diffeomorphism groups etc. Of course, there is a left invariant analogue.
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where (Y, w) € T(4.,)S, Y -h =TyR,(Y), Ry, is the right translation on G, and
¢v : G — V is given by ¢“(g) = gw.

Since, by construction, the Riemannian metric (4.4) is also right V-invariant,
the mechanical connection A" on S is defined by the formula

Al (X, 0) = (I 0 v ) (X, 0), dm) (46)

where I(,,) : V — V* is the locked inertia tensor® and Jy : T*S — V* is the
momentum map for the action of V on T™*S.

The Flatness Calculation. The “reason” why the first reduced space is so
simple is that the mechanical connection A" is flat. However, the proof of this
is unexpectedly tricky. We begin by explicitly determining the locked inertia
tensor and the mechanical connection.

Given u € V, from (4.1) we find the infinitesimal generator for the right
V—action on S:

us(9,0) = 1 ((9,0) (e.1u)) = (0,u). (4.7

t=0

Thus, the locked inertia tensor has the expression

Ligy (u)(w) = (us(g,v), ws(g,v)) (g
= <gu>gU>V = (¢(g)*¢(g)u, w>V> (48)

for any (g,v) € S and any u,v € V. Similarly, for any (X,u) € T{,,)S and
any w € V, we get from (4.4), (4.5), and (g,v)™' = (g7, —g~'v),

(Iv (X, u), Y g) » w) = (X, 1), ws(9,0)) (g
<T(gv R(gv (X, u) T(g U)R (O gw)>
(X - u, u—=Tye* (X)), (0, gw))s
=

-1

A(g)" (u—Ty0" (X)), w)v. (4.9)

However, taking the derivative relative to h at e in the direction £ € g in the
identity ¢9 "*(hg) = ¢"(h) yields

T,07 *(T.R,E) = T.¢"(€) = v,

that is,

1

T,¢% " = T.¢" o T,Ry-. (4.10)

3The locked inertia tensor (see, for example, Marsden [1992]) for the isometric action of
a Lie group K on a manifold M is, for each x € M, the linear map I, : € — ¥ defined in
terms of the Riemannian inner product (,) by I.(£,1) = (Eam(x), nar(z)).
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Therefore

Iv (X, ), )g) = 0(9)" (u = To¢" (T Ry-1 X))
(g)*(u — (X - g_l)v). (4.11)

=¢
Combining formulas (4.6), (4.8), and (4.11), we get

Al (Xou) = g ! (u — (X - g_l)v). (4.12)

(g,v

The following formula which was proved along the way will be useful later on:

Ty Rigy1(X,u) = (X - g7 u— (X -g o). (4.13)

Theorem 4.1. The mechanical connection AV defined on the principal V-
bundle S — G by formula (4.6) is flat.

Remarks. If one’s goal is simply to pick a connection on the the principal
V-bundle S — G in order to realize the first reduced space as T*G with
the canonical structure, then one may use the trivial connection associated
with the product structure S = G©®V, so that the connection form is simply
projection to V. This connection has the needed equivariance properties to
realize the reduced space as T*G and identifies the resulting action of G, as
the right action on T*G. On the other hand, in more general situations in
which the bundles may not be trivial, it is the mechanical connection which
is used in the construction and so it is of interest to use it here as well. In
particular, in the second stage of reduction, one needs a connection on the
(generally) nontrivial bundle G — G/G, and such a connection is naturally
induced by the mechanical connection.

Proof of Theorem 4.1. To calculate the curvature of A" it suffices to
compute the exterior derivative dAY. For this purpose, we shall extend
(X, u), (Y,w) € Tiy,)S to right invariant vector fields (X, ) and (Y, w) on
S. Concretely, if we define, £ = X - g7} ( =Y - ¢! € g, we have by (4.5) and
(4.13)

22



Therefore, by (4.12) we get
d v

(X, u) [(AV(Y, U_J)H =7 . A(oxptgg,wrm)(?v w)(expt&, v + tu)
d
= % o A&xptﬁg,v—l—tu) (C ’ (eXp tgg)> w + tCU)
— di g exp(—t€) (w + t¢u — ¢ (v + tu))
tli=o
= —g " ¢(w — (o). (4.14)
and similarly )
(V. w) [(AY(X,)] = —g7¢(u — €0). (4.15)

Since
(X, @), (V,w)](g,v) = =[(§ u—&v), (¢, w—Cv)]- (g,0)
= _([gvdv gw - Cu - [57 g]U) ' (g,’U)
from (4.5) and (4.12) it follows that

A}g,v) ([(X7 ?_L), (Y7 w)](Q? U)) = _A&m) (([57 g]? gw - Cu - [57 g]U) ' (97 U))
=~ Al (& ¢ 9, fw = Cu)
= —g7'(§w — Cu—[£,(Jv). (4.16)

Using (4.14), (4.15), and (4.16), we get

dAY, ) (X, w), (Y, w)) = (X, u) [AY (Y, )] = (V,w) [AY (X, u)]
— Al (X, 3), (Y, @)))
=—g "&(w—Cv) + g7 C(u— Ew)
+ g7 (€w — Cu—[¢,¢Jv) = 0.

This proves that the curvature is zero. W

Remark. The connection A" is not S-invariant. In contrast, the same con-
struction for central extensions yields an invariant but nonflat mechanical con-
nection, as we shall see shortly.

4.2 Cotangent Bundle Structure of the Orbits

We now establish the extent to which coadjoint orbits are cotangent bundles
(possibly with magnetic terms). We will illustrate the methods with SE(3).
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The Structure Theorem. The strategy is to combine the reduction by
stages theorem with the cotangent bundle reduction theorem. We shall re-
cover below a result of Ratiu [1980, 1981, 1982] regarding the embedding of
the semidirect product coadjoint orbits into cotangent bundles with magnetic
terms but will provide a different proof based on connections. We consider
here the lifted action of S on T*S (see Theorem 3.1).

Theorem 4.2. Let S = GOV be as above. Let a € Jy(T*S) and reduce
T*S by the action of V at a. There is a right G,—equivariant symplectic
diffeomorphism between

(T*8), = I, (a))V ~ (T*G, ), (4.17)

where Q, = Qecan 1S the canonical symplectic form. Furthermore, let o =
(u,a) € s* X V* and reduce T*S by the action of S at o obtaining the coadjoint
orbit O, through o. Then there is a symplectic diffeomorphism

Oy = 3, (1)/ (G), (4.18)

a

where f1, = plgqe. Letting (T*G),, be the reduced space for the action of G, on
T*G, there is a symplectic embedding

(TG pa — (T* (G/ (Ga)ua> ’Qua) )

where Q,, = Qean—7" B, with B,,, a closed two form on G/ (Ga)ua. The image
of this embedding covers the base G/(G,), . This embedding is a diffeomor-

phism onto T™ (G/ (G‘l)ua) if Go is Abelian, in which case G/(Gy),, = G/G,.

Proof. The fact that the spaces in (4.17) are symplectomorphic is a conse-
quence of the standard cotangent bundle reduction theorem for abelian sym-
metry groups (see Abraham and Marsden [1978] and Marsden [1992]) com-
bined with Theorem 4.1. As these references show, the symplectomorphism is
induced by the shift map

hor : J;! (a) — J3,1(0), hor (p(g.0)) = Plg) — (a, A(, )

(g,v

To show the equivariance it only suffices to check that (again using concate-
nation notation for actions)

hor (pg.0) - (h,0)) = (hor(p(g.w)) - (h,0), (4.19)
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for any h € G,. However, if (X,u) € TignhwS, formulas (4.12), (4.5), and
ha = a imply

which proves (4.19).

The fact that the map in (4.18) is a symplectomorphism follows from The-
orem 3.1 and the G,—equivariance in (4.17). The rest of the theorem is a
direct consequence of the cotangent bundle reduction theorem once we com-
pute the p,—component of the curvature the mechanical connection A% on
G — G/(G4)p,- This connection is constructed analogously to A" using the
metric on G induced from (4.4).

The two form B, is then obtained by dropping the exterior derivative of
Afe to the quotient G/ (Ga),,- W

4.3 Calculation of A% and d.A%

We derive formulas for the connection and its curvature in a special case in
which these formulas are particularly nice. We assume that AdgT o Ad, leaves
g, invariant, where AdgT : g — g is the transpose (adjoint) of Ad, relative to
the given metric () o on g. This assumption holds, in particular, when (,) g I8
Ad-invariant.

Theorem 4.3. Under the preceding assumption, we have
A% =P, 0 0"
and
dA(9)(Xy, Yy) = —Pu ([TyLy1 Xy, Ty Ly Yy))

where 6% is the left-invariant Maurer-Cartan form on G (given by 6%(X,) =

TyLy1X,) and P, - g — g, is orthogonal projection relative to the metric (, )g.

Proof. We first compute the locked inertia tensor for the right action of
G, on G. Let (,), denote the right invariant extension of the inner product
(,)g to an inner product on T,G, so that (,), = (,>g and let &, € g,. By
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definition, the locked inertia tensor is given by

L,(&)(n) = (&c(9),16(9))g
TeLg§, TeLyn)y

{

=

= (Ady &, Adgn).
= (Ad] 0 Ady &, ).

= (P, 0 Ad] 0 Ady)(€), ).

Thus,
I4(€) = ((Pa 0 Ady 0 Ady)(E),)e € gy (4.20)

Next, we compute J((Xg,-) ) € g;:

(30X ),):€) = (X €al9)) = (Xy - €
= (X, g‘l Ady€).
— (Ad] X, g7%,).
= ((P, oAdToAd)( P AR

We conclude that

J((Xg,-),) = ((Pg 0 Adj o Ady) (97" - X,), ). - (4.21)

By hypothesis, AdgToAdg leaves g, invariant, and since it is symmetric, it
also leaves its orthogonal complement invariant and so it commutes with the
orthogonal projection P,. Thus, we get

J((Xy, '>g) = <(Pa © AdgT © Adg)(Pa(g_l - Xy)), '>e : (4.22)
Therefore, combining (4.20) and (4.22), we get

A% (9)(Xg) = (17" 0 (X))
== (]P)a o HL)(XQ)

~ To compute dA%(g)(X,,Y,) extend X,V to left invariant vector fields
X, Y. Then,

dA% (9)(X,,Y,) = X [A%(Y)] - [AG“(X)]—AG“(Q)([X,YD
);

= —P.(g7' X, 97" Y] (4.23)

since the first two terms vanish. W
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4.4 Example: SE(3)

Following the earlier results of this section, we will use reduction by stages
theory in the context of cotangent bundle reduction to classify the coadjoint
orbits of SE(3). We will also make use of mechanical connections and their
curvatures to compute the the coadjoint orbit symplectic forms.

We begin by defining a right invariant metric on SE(3). Identify

s¢(3) ~50(3) ® R

and define the natural inner product at the identity (see (4.3))
1
<(X> a)a (K b)>e,o = _§tr(XY) + (CL, b)a

where (-, -) denotes the Euclidean inner product. Right invariance of the metric
and (4.13) gives

((Xa,aa), (Ya,b4))(a0)
= <(XA : A_l, as — (XA . A_l)Oé), (YA . A_l, bA - (YA : A_l)a»([’o)
_ —%tr(XA ALY AT 4 (X A Y, (Ve - A D)
— ((XA . A_l)a, bA) — ((YA . A_I)Oé, CLA) + (CLA, bA) (424)

The mechanical connection for the principal R? bundle SE(3) — SO(3), is
given by (4.12):

AV(A, a)(XA,aA) = A! (CLA — (XA . A‘l)a)

and from Theorem 4.1, curvAY = dAY = 0.

We first reduce by the R? cotangent lifted action. Let a € R**. By the
cotangent bundle reduction theorem, we have Jz;(a)/R% = T*(SE(3)/R?) =
T*(SO(3)) with symplectic form €, = Qcan. Next, suppose a = 0. Then
G, = SO(3). Reduction by the SO(3) action gives now coadjoint orbits in
SO(3) Thus O(a:O,u) = Sﬁ

Assume a # 0. Depending on whether = 0 or u # 0, we will now consider
two cases. Suppose g = 0, then the group SE(3),/R3 ~ SO(3), ~ S! now
acts on the first reduced space. Note that SO(3)/SO(3), ~ 52 is the sphere
through a € R®. Thus, reducing by this SO(3), action at u, = 0 gives, by
another application of the cotangent bundle reduction theorem for Abelian
groups, (T%52, Qean).-

Next consider the case p # 0. Thus, after the first reduction, by the R?
action at the point a # 0, we have P, = (T*SO(3), Qcan) as before. Next, we
form the group G, = SO(3), which acts by cotangent lift on 7*SO(3). Now,
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consider the bundle SO(3) — SO(3)/SO(3), ~ S2. This S! bundle inherits a
metric from the bundle SE(3) — SO(3), which is SO(3) invariant.

Let us now investigate the connection and curvature on this bundle. It is
convenient to use the Lie algebra isomorphism z — 7 : R® — s0(3) defined by
the cross product: Tu = x X u. We then define the metric

@) = (2.) = —50(3T)
and for X4, Y4 € T4SO(3),
(Xa,Viba = —%tr(XA ALY, A,
The Lie algebra of SO(3), ~ S* is span{a}, so for u,v € R, we have

uso3)(A4) = % Aexp(tua) = Aua, (4.25)
t=0

so that by right invariance and the identity AaA~! = Aa we get

(I(A)ua,va) = (Aua, Ava),
= uv(Aa, Aa) 4
= uv{AGA™, AaA™Y);
= uv(;ﬁ, ZQL>[ = (ua,va). (4.26)

We conclude that I(A)(ua) = ua and that I7'(A)(va) = va. Next, taking
u € R, the SO(3), momentum map J : 7*SO(3) — span{a} = R is given by

J((Xa,-)a) (@a) = (Xa, uso()(A)) ,
= <XA7AU‘/\CL>A
= (X4 - A7, AauA™),
= <AdA71(XA . A_l),6>1u
= (A™' Xy, ua)g,

so that )
J((X4,-)a) ||a||2<A_1 - X 4,0)a. (4.27)
Therefore,
1 ~ ~
AT (A)(Xa) = (I3 0 T) ((Xa, )a) = ||a||2<A_1 X4, @) 13, (4.28)
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To find the curvature of A%, we compute d A% (A)(Xa,Ya). Let X4 =
T-AY,=75-A¢€T4SO(3). Denote by X,Y the right invariant vector fields
whose values at [ are T and ¥ respectively. -

Then (4.28) and the identities A™'ZTA = A~'z, (Z,9); = (z,y), imply

d

ViAS (X)) = S| AR (X)((expt)4) -a
t=0
d PR ~ .
=7 A% ((exp t))A)(T - (expty)A) - @
t=0
d 1 . o~ N4~
== 5 (A7 exp(—ty)Z(expty)A, @) - a
dt],—o |lal]
d 1
= — A_l 477 .
#oy A D) @
= || 1”2 (AN (z x y),a) - a. (4.29)
a
Similarly
— 1
.x¢ﬂﬂyﬂ:—WWﬂA*@xy%@a (4.30)
a
Finally,

1 i g o~
= _||a||2<A 1[:17,y]A, a)[CL
1

= —W(A_l(:c X y),a)d (4.31)

so that (4.29), (4.30), and (4.31)

dA“(A)(Xa, Ya) = XalA% (V)] = Ya[A% (X)] - A%([X,Y])(4)
1
= —W(A_l([lf X y), a)/a\, (432)
a
where X, =7+ A, Ya=7y-A € T4SO(3). Note that this equation agrees with
the result of Theorem 4.3. This two—form on SO(3) clearly induces a two form
B on the sphere S? of radius ||a|| by
1

TP}
lal]

Given p € s0(3)* = R3, its restriction to s0(3), = R equals (p,a). There-
fore, in this case B, = (i, a)B, that is,

B(Aa)(x x Aa,y X Aa) = (AN (z x y),a)a. (4.33)

B, (r x Aa,y x Aa) = _(|Tla’||a2) (AN (z x y),a). (4.34)
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Invoking the cotangent bundle reduction theorem we can conclude:
Theorem 4.4. The coadjoint orbits of SE(3) are of the following types.
® Oa=0,) (S 1)
® Oz =0y = (T*S2, Qcan)
® Oaro o) = (T*S2, Qo — 7°B,,)

where w,, is the orbit symplectic form on the sphere Sﬁ of radius |||, pa is
the orthogonal projection of u to span{a}, m : T*S? — 52 is the cotangent
bundle projection, Qean is the canonical symplectic structure on T*S2, and the
two—form By, on the sphere S? of radius ||a|| is given by formula (4.34).

5 Reduction by Stages for Group Extensions

We now embark on extending the preceding theory to the case of arbitrary
group extensions. Some results in this general direction are those of Lands-
man [1995], Sjamaar and Lerman [1991], and Ziegler [1996]. The results in
Landsman [1995] make many interesting links with quantization. Duval, El-
hadad, Gotay, Sniatycki and Tuynman [1991] give a nice interpretation of
semidirect products in the context of BRST theory and quantization and ap-
ply it to the pseudo rigid body. The results in Sjamaar and Lerman [1991]
deal with general extensions, but only at zero levels of the momentum map
and only for compact groups. Unfortunately this does not cover the case of
semidirect products and their proofs do not seem to generalize, so it overlaps
very little with the work here. Ziegler [1996] (see also Baguis [1998]) makes
a lot of nice links with the orbit method and symplectic versions of Mackey’s
induced representations, amongst other things.

5.1 The Heisenberg Group

To motivate the more general theory for group extensions, we first consider
one of the basic examples, namely the Heisenberg group (see for example,
Guillemin and Sternberg [1984]). While this example is quite simple, it il-
lustrates nicely what some of the issues are in the general theory that were
not encountered in the theory for semidirect products. Thus, we present this
example in a direct way before presenting the general construction.

Definitions and Cocycles. We start with the commutative group R? with
its standard symplectic form w, the usual area form on the plane. It is easy
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to show that w satisfies the group cocycle law so that we can centrally extend
R? by R to form the group H = R? ® R with multiplication

(u,a)(v, 8) = (u+v,a+ B+ w(u,v)). (5.1)

The identity element is (0,0) and the inverse of (u, ) is given by (u,a)™! =
(—u, —a). We compute the corresponding Lie algebra cocycle, C', from the Lie
algebra bracket as follows. Conjugation is given by

(uv O./)(’U, ﬁ)(_uv —Oé) = ('Uv B+ 2“)(“7 U))

Thus,
Ad(u,a) (Y, b) = (Y, b+ QW(U, Y))

and
[(X,a), (Y.D)] = (0,2w(X,Y)),

where (X, a),(Y,b) € h = R? @ R. Using this, we read off the Lie algebra
cocycle,
C(X,Y) =2w(X,Y).

Coadjoint Orbits. Identify b* with R? via the Euclidean inner product.
The previous formulas imply then

Ad*(0)-1 (1, v) = (@ + 2vdu, v),

where p,u € R?, a,v € R, and J(uy,us) = (uz, —uy) is the matrix of the
standard symplectic structure on R2. Therefore, the coadjoint orbits of the
Heisenberg group are:

® O = {(1,0)}
() O(M,V#O) = R2 X {l/}

The Mechanical Connection. Next, consider the right principal R bundle
H — R2. Following the exposition in the case of semidirect products, we con-
struct a right H invariant metric on H from which we can derive a mechanical
connection on the R bundle. Set

(X, a), (Y,0)) = (X,Y) + ab, (5.2)

for (X, a), (Y,b) € h and where the Euclidean inner product, (-,-) in R? is used
in the first summand. If (X(y.a), G(u,a)) € T(ua)H, then

Ttwe) Bw,p) (X (wa)s Gun)) = (X(wa) Gue) + @ (X(wa)s v) € Tiua)w,sH
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and, in particular,
T(u,a)R(u,a)*l(X(u,a)a a'(u,a)) = (X(u,oe)a A(y,a) — W(X(u,oz)a U)) S b
Thus, the right invariant metric on H is given by
<(X(u,a)> a(u,a))a ()/iu,a)a b(u,a))>(u7a) = (X(u,a)> Y'(u,oz)) + a'(u,oe) b(u,a)
- a(u,a)w(nu,a)v U) - b(u,a)w(X(u,a)u u) + W(X(u,a)u u)w(yr(u,a)u u)

Given a € R, the infinitesimal generator for the right R action on H is

apg(v,a) = % . (v,@)(0,ta) = (0,a).

Combining these formulas yields the expression of the associated locked inertia
tensor:

Lip,0)(a)(b) = (an (v, @), b (v, @)) (v,0) = ab (5.3)
For any (X(u.a), O(ua)) € Tuwe)H and b € R, we get
<J]R (((X(u,a)a a'(u,a))a '>(u,a)) >b> = <(X(u,a)> a(u,a))> (Oa b)>(u7a)
= (a(uu) — w(X(u,a), u)) b. (5.4)
Thus, the mechanical connection has the expression
A(u, a)(X(uu), a(uﬂ)) = a(u,a) — w(X(uﬂ), u) (5.5)
Proceeding as in the previous section, an easy calculation shows that
dA(U, a)(<X(u,a)7 a(u,a))u (}/Eu,a)u b(u,a))) = QW(X(u,oz)u }/iu,a))- (56)

This two—form induces a closed two—form B, the curvature form, on the quo-
tient H/R ~ R? by
B(u)(X,Y) = 2w(X,Y),

for u, X,Y € R%

The First Reduced Space. Reducing T*H by the central R action at a
point ¥ € R* = R gives

J2'(v)/R ~ (T*R*,Q — 7*B,),

where ~ is a symplectic diffeomorphism equivariant with respect to the re-
maining R? action and B, = vB, that is,

B,(X,Y)=2vw(X,Y), (5.7)
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for u, X,Y € R%

We now have a first reduced space and an action on it by cotangent lift.
It remains to compute the reduced spaces for this action. To do this we will
need to use non—equivariant reduction, since the momentum map for this re-
maining action is no longer equivariant. Equivariance is lost precisely because
of the presence of the magnetic term in the first reduced space. This lack of
equivariance is the first major difference with the semidirect product case.

Calculation of the Momentum Map. Given a cotangent lifted action of
G on (T*Q, Qean — 7" B) where B is a closed two form on (), suppose that there
is a linear map & — ¢ from g to functions on @ such that for all £ € g, we have
i, B = d¢* (where iz denotes the interior product). In these circumstances,
a momentum map is verified to be J = Jean — T, where g 1 T7Q) — @ is
cotangent bundle projection.

In the case of the Heisenberg group, let ¢, be the momentum map for the
translation action of R? on (R?, 2vw), that is,

¢V(x7 y) = 21/(y7 —LL’) (58>

where we identified R?" and R? by means of the Euclidean inner product. De-
note coordinates on T*R? by (z, y, p., py). Again using the above identification
of R? with its dual, the canonical momentum is given by

Jcan(xayapxapy) = (pmapy) (59)

and hence the momentum map of the lifted R? action on the first reduced
space (T*R?, Qean — 2vmgow) is the map J, : T*R? — R? given by

J (2,9, 02, 0y) = (px — 2vy, py + 2v2). (5.10)
This formula shows that for p = (p1, p2) € R,
I p) = {(2,9,02,1y) | P = 20y + p1,py = —2vT + pa}. (5.11)

Clearly the map (z,y) € R?* — (2,y,p.,p,) € J, '(p) defined by these equa-
tions for p,,p, is a diffeomorphism. The level sets of J, are therefore two-
dimensional planes. We will next compute the subgroup that we quotient these
sets by to complete the second stage reduction.

It is a well known result of Souriau that one can modify the action with
a cocycle so that the momentum map becomes equivariant relative to this
new affine action on the dual of the Lie algebra (see, e.g., Marsden and Ratiu
[1994]). This affine G action on g* with respect to which the momentum map
becomes equivariant is given by

g-p=Adyp+0o(g) (5.12)

where ¢(g) is the group 1-cocycle associated with the non-equivariance of the
momentum map.
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Lemma 5.1. Let i € R2. The isotropy subgroup for p, using this affine action,
is (0,0) if v # 0 and is R? if v = 0.

Proof. Recalling the definition of the group one-cocycle o” : R? — R?" = R?
(see Marsden and Ratiu [1994], Section 12.4) and using the fact that the
coadjoint action of R? is trivial (since R? is Abelian), we get

(0" (a,b), (&1,62))

= (J.((a,0) (2, y, 2 py)), (§1,62)) — (Ad{, -1 T (2, ¥, Do Dy, (€1, €2))
Ju(a+ 2,04y, pe,py), (61,2)) — (T2, Y, Da, Dy), (61, €2))
(P2 = 20(b+ ), py + 2v(a+ ), (&1,8)) — (e — 2y, py + 2v2), (61, 62))
= 2v((=b,a), (&,&)),

that is,

(
(
(

c”(a,b) = 2v(—=b,a). (5.13)
Therefore, the affine action is
(CL, b) ) (p17 p2) = (p17 p2) + 21/(_67 CL) (514>

and the isotropy of (p1,ps) consists of all (a,b) € R? such that (pi,ps) =
(p1, p2) + 2v(—b,a), from which the conclusion follows trivially. M

The Second Reduced Space. First consider the case v = 0. The first
reduced space is (T*R?, Q). Thus, reduction by the remaining R? action
gives single points.

For the case v # 0 reduction at any point p is a plane since we quotient
the set

J,1p) = {(2,9,pe,1y) | Po =20y + p1,py = —2vz + pa}.

by the identity. We next calculate the reduced symplectic forms on these
planes. This is done by restricting the symplectic form on T*R? to the level
sets of J,.

Proposition 5.2. The coadjoint orbit symplectic form for the orbit through
the pOZTLt (Vv (ph P2)) is given by wou,p(x7 y)(X7 Y) = QI/CU(X, Y)

Proof. Let (z,y) be coordinates of the coadjoint orbit through (v, (p1, p2)).
The embedding of the plane J;*(p) into T*R? is given by

w : (l’,y) = (xaya2Vy+p17—2V$+p2)-
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We then have

wrea (2, y)(X,Y)

0 0 0 0
= Qcan(¢(zv y)) (Xla + Xga—y + 2VX2apm — 21/X18—py,
vl v voavd oy 2} prrtdd e (X, Y)
ox dy Opz Opy

=X 20 — Y] - 2uXo + Xy - (—20Y]) — Yo - (—2v X))
— i dA, (2, y) (X, Y)
=dvw(z,y)(X,Y) = 2vw(x,y)(X,Y)
= 2vw(z,y)(X,Y), (5.15)

where we have used the fact that roy =id. H

Although one can check it directly in this case, the fact that the reduction
by stages procedure gives the coadjoint orbits of the Heisenberg group is a
consequence of the general theory of the next subsection.

5.2 The Main Steps in the General Construction

The Setup. We start with a symplectic manifold (P, 2) and a Lie group M
that acts on P and has an Ad"-equivariant momentum map Jy; : P — m*,
where m is the Lie algebra of M. We shall denote this action by ® : M x P — P
and the mapping associated with a group element m € M by ®,, : P — P.
Assume that NV is a normal subgroup of M and denote its Lie algebra by
n. Let 7 : n — m denote the inclusion and let * : m* — n* be its dual,
which is the natural projection given by restriction of linear functionals. The
equivariant momentum map for the action of the group N on P is given by

In(z) =" (Ju(2)) (5.16)

as is well known and easily verified. Let v € n* be a regular value of Jy and
let N, be the isotropy subgroup of v for the coadjoint action of N on its Lie
algebra. We suppose that the action of NV, (and in fact that of M) is free and
proper and form the first symplectic reduced space:

P, =Jy'(v)/N,.

Since N is a normal subgroup, the adjoint action of M on its Lie algebra
m leaves the subalgebra n invariant, and so it induces a dual action of M on
n*. By construction, the inclusion map ¢ : n — m is equivariant with respect
to the action of M on the domain and range. Thus, the dual i* : m* — n* is
equivariant with respect to the dual action of M.
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Because N is a subgroup of M, the adjoint action of N on n coincides with
the restriction of the action of M on n to the subgroup N. Dualizing this, we
obtain:

Lemma 5.3. The restriction of the action of M on n* to the subgroup N
coincides with the coadjoint action of N on n*.

Let M, denote the isotropy subgroup of v € n* for the action of M on n*.
It follows from the preceding lemma and normality of N in M that

N, = M, N N. (5.17)

To see that M, "N C N,, let n € M, N N so that, regarded as an element of
M, it fixes v. But since the action of N on n* induced by the action of M on
n* coincides with the coadjoint action by the above lemma, this means that n
fixes v using the coadjoint action. The other inclusion is obvious.

Caution. In the case of semidirect products, where we can regard n* as a
subspace of m*, the action of a group element n € N regarded as an element
of M on the space m* need not leave the subspace w* invariant. That is, its
coadjoint action regarded as an element of M need not restrict to the coadjoint
action regarded as an element of N. Rather than restricting, one must project
the actions using the map *, as we have described. Thus, one has to be careful
about the space in which one is computing the isotropy of an element v.

Induced Actions of Quotient Groups. It is an elementary fact that the
intersection of a normal subgroup N with another subgroup is normal in that
subgroup, so we get:

Lemma 5.4. The subgroup N, C M s normal in M,.

Thus, we can form the quotient group M, /N,.. In the context of semidirect
products, with the second factor being a vector space V', M, /N, reduces to
GG, where we have written v = a, as before. However, if the second factor is
nonabelian, M,, /N, need not be G,. (It is another group G* that is computed
in Marsden, Misiolek, Perlmutter and Ratiu [1998]).

Lemma 5.5. There is a well defined symplectic action of M, /N, on the re-
duced space P,. This action will be denoted V,,.

Proof. First of all, using equivariance of J,; and ¢*, we note that the action
of M, on P leaves the set J3'(v) invariant. The action of a group element
m € M, on this space will be denoted ®%, : J'(v) — Iy (v).
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It is a general fact that when a group K acts on a manifold ), and L C K
is a normal subgroup, then the quotient group K/L acts on the quotient space
Q/L. If 1, : Q@ — @Q/L denotes the projection, ¥y : Q — @) denotes the given
action of a group element k£ € K, and \If[Lk] : @Q/L — @Q/L denotes the quotient
action of an element [k] € K/L, then we have

\If[Lk] omy =7 o Wy,

that is, the projection onto the quotient is equivariant with respect to the two
actions via the group projection.

These general considerations show that the group M, /N, has a well defined
action on the space P,. The action of a group element [m| € M, /N, will be
denoted by ¥y, : P, — P,. We shall now show that this action is symplectic.

Let 7, : J5'(v) — P, denote the natural projection and i, : Jy'(v) — P
be the inclusion. By the equivariance of the projection, we have,

v
\Il[m],l/ Oy = Ty O (I)mu

for all m € M,,. Since the action ®” is the restriction of the action ® of M,
we get
b, 04, =1,097,
for each m € M,,.
Recall from the reduction theorem that i)€2 = 7€,. Therefore,

TV = (9,,) 10, = (P),)",Q = i, 8, Q = i;Q = m)Q,.
Since , is a surjective submersion, we may conclude that
Y

m|,v

Q, =Q,.

Thus, we have a symplectic action of M, /N, on P,. W

An Induced Momentum Map. We now generalize the argument given
for the case of the semidirect products to show that there is a momentum
map for the action of M, /N, on P, that we just defined. The Heisenberg
example already shows that we should not expect this momentum map to be
equivariant in general.

Before doing this, we prepare the following elementary but useful lemma.

Lemma 5.6. Let M be a Lie group and let N be a normal subgroup with
corresponding Lie algebras m and n. Forn € N and for £ € m, we have

Ad,é—€€n
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Proof Let I, : M — M denote the inner automorphism for n € N, defined
by

I,(m) = nmn '

Since the map Ad,, is the derivative of the inner automorphism with respect
to m at the identity, we get

Adie—¢ = S [Tafexp(t€))]exp(—18
- ¢  (oleplt ) exp(—1¢
_ %tzon[exp(tg))n_lexp(—tg)]. (5.18)

Since N is a normal subgroup, exp(t£))n~"'exp(—t£) is a curve in N (passing
through the point n=! at ¢t = 0), so the result is some element in n. M

The next task is to establish the manner in which the momentum map
Jy : P — m* induces a map J, : P, — (m,/n,)*.

Lemma 5.7. Suppose N, is connected. Then a map J, : P, — (m,/n,)" is
well defined by the relation
(r)oJ,om, =kloJyoi,—v (5.19)
where
r,: M, — M,/N,
1s the canonical projection,

’
r,rm, — m,/n,

15 the induced Lie algebra homomorphism,
k,:m, —m

1s the inclusion,
m, Iy (v) — P,
1s the projection,
i, I (V) — P
is the inclusion, and v is some chosen extension of v|n, to m,. Equivalently,
we have

(Ju([2]), [€]) = Tn(2),€) — (7,6) (5.20)

where z € I3 (v), € € m,, v € n*, [2] = m,(2) denotes the equivalence class
of z in P, = I (v)/N, and [£] = r,(€) denotes the equivalence class of € in
m,/n,.
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Figure 5.1: Some of the maps involved in reduction by stages.

Proof. It may be helpful to refer to Figure 5.1

First of all, we show that the definition is independent of the representative
of [¢]. To do this, it suffices to show that the right hand side of (5.20) vanishes
when £ € n,. However, for £ € n, we have

<JM(Z)7£> = <JN(Z>7£> = <V7§>7

since Jy(z) = v. Therefore, in this case,

<JM(Z>7£> - <177£> = <JN(Z)7£> - <V7£> = <V7§>_ <V7§> =0.

Next, we must show that the right hand side is independent of the represen-
tative of [z]. Let n € N,. We must show that

<JM(nZ>7£> - <177£>

is independent of n. This is clearly equivalent to showing that

(Jar(nz),&) = (Ju(2),€)

for all n € N,. By equivariance of J,;, this in turn is equivalent to

(I (2), Ad; 1 €) = (Tu(2), €)

for all n € N,; i.e., the vanishing of f(n), where

fn) = (Iu(z),Ad, € = &) = (v,Ad " € =€)

by Lemma 5.6, for z € Jy(v) and £ € m,, fixed and for n € N,,.
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To show that f vanishes, first of all, note that f(e) = 0. Second, we note
that the differential of f at the identity in the direction n € n, is given by

df(e)-n = (v,—ad,§) = — (ad;r, &) = 0

since Jy(2) = v and since ad;v = 0 because € n,,.
Next, we show that f(niny) = f(ny) + f(ns). To do this, we write

flmng) = (v, Ady € =€) = (v Ady, A, TE = Ady €+ A,y € =€)
However,
(v, Adgt Ady € = AL €) = (Adi v, Al € —€) = (v Ady € =€)

This calculation shows that f(nins) = f(n1) + f(n2) as we desired.
Differentiating this relation with respect to n; at the identity gives

df(nz) o Tel, = df(e) =0

and hence df = 0 on N,. Since N, is connected we conclude that f = 0,
which is what we desired to show. W

Verifying J, is a Momentum Map. Now we show that J, is a momentum
map, ignoring questions of equivariance for the moment. We shall compute its
cocycle shortly.

Proposition 5.8. The map J, in the preceding lemma is a momentum map
for the action of M, /N, on P,.

Proof. We first observe that J, does depend on the extension v of v|n,. If
v1 and Dy are two such extensions then (7; — »)|n, = 0 and so it equals
(r)*(p) for p € (m,/n,)". Formula (5.19) shows that the difference of the two
corresponding momentum maps equals p (which is precisely the ambiguity in
the definition of the momentum map; recall that momentum maps are defined
only up to the addition of constant elements in the dual of the Lie algebra).

Secondly, we compute the infinitesimal generator given by [{] = 7(§) €
m, /n,. Since

exp, 7€) = 1, (exp ).

where exp,, : m,/n, — M, /N, is the exponential map of the Lie group M, /N,
and exp is that of M,, we get for 2 € J3'(v) using the definition of the
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M, /N,~action on P,,

[€lp([z]) = =] exp, tr,(€) - m(2)

t=0

= — r,(expt) - m,(2)

t=0

= % -, Wu(exp tg ' Z)

= I.m, (€p(2)), (5.21)

that is,
€lp, ([2]) = T2 (§p(2))- (5.22)

Thirdly, denote by JS, : P — R, the map J5,(2) = (Jp(2),&) and similarly
for Ji' : P — R and note that (5.19) can be written as

T () = Ty () = (9, 6).
Taking the z—derivative of this relation in the direction v € T,J ' (v), we get
dJ (1,(2)) - Tom,(v) = dJ5,(2) - v (5.23)

Letting (2, denote the symplectic form on B,, for z € J3'(v), £ € m,, v €
T.J\ (v), we get from (5.22) and (5.23)

0, ([2]) (€], ([2]), Tem (v) = Qo (0 (2)) (Tem (Ep(2)), Temu (v))
(

= (m8%) (2) (€p(2), v)
= (i) (2)(€p(2),0) = dJ5 () - v
= dJE(m,(2)) - Tom, (v), (5.24)

which proves that J, given by (5.19) is a momentum map for the M, /N,—
actionon P,. W

Computing the Cocycle of J,. We are now ready to analyze the extent
to which we have a lack of equivariance of J,, by computing the associated
cocycle.

Proposition 5.9. The (m, /n,)" ~valued one—cocycle @ of the momentum map
J, s determined by

where (r)* : (m,/n,)" — m* is the dual of r/,.
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Proof. Since
Ady, (my () = 7, (Ady, €) (5.25)

for any m € M, £ €m,, and z € J'(v), we have

(I ([m][z]) = Adj-r 3o ([2), [€])
= <JV([ 2]), [€]) = (Ju([2]), Adpy 1 [€])
(I (m2), &) = (7, 6) = (Ju([2]), [Adp-1 £])
= (Ady, 1 Jn(2),§) = (7,€) = (Ju(2), Ady 1 ) + (7, Ad 1 €)
= (7, Ady, 16 §)
= (Ad )- (5.26)

Note that if £ € n,,, then Ad,,-1 £ € n,, since N, is a normal subgroup of M,,.
Therefore, denoting by mv the action of m € M, C M on v € n*, we have

(Ad?, 1 7, &) = (7, A1 €)
= <I/, Admfl f)
= (mv,§) = (v, §), (5.27)

since m € M,. This shows that
Ad:(nfl V—VUeE ng

where n? = {\ € m* | A|n, = 0} is the annihilator of n, in m*.
However, since r], : m, — m, /n, is surjective, its dual (r/,)* : (m,/n,)* —
m’ is injective and it is easy to verify that

()" ((my/n,)") C ny.
Since
dim ((r))* ((m,/n,)*)) = dim (m,/n,) = dimm, — dimn, = dimn?

it follows that
(ry)* ((m, /n,)") = ny. (5.28)

(We take the expedient view that in infinite dimensions, this needs to be proven
on a case by case basis.) Because of (5.28) it follows that there is a unique
w(m) € (m,/n,)* such that
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Let mq, my € M,,. Dualizing relation (5.25) we get

(r,’/)*(w(mlmg)) Ad(m1m2 AV =V

=Ad 1 Ad) v - Ad) v A T
= Ad) - (Ad 7= 7) + A7 -
= Ad 71( o) (@(mz)) + (r;>*(w(m1))

= (1)) (@(m)) + (r)" (Ad,, -1 w(m2))
= (r)" (w(7’n)+Ad[m1 1w(m2)) (5.29)

Injectivity of (r)* implies that
w(mimg) = @w(my) + Adj,, ;- @ (ma). (5.30)
In particular, if m € M, and n € N,, this relation yields
w(nm) = w(n) + Adp,- @w(m) = @w(n) + w(m),
since [n] = e. Now we show that w(n) = 0. Indeed, if £ € m,,

((r,)(@(n),§) = (A, v = 2,8)
= (7,Adp1 € - &)
= (r,Ad,1 & =), (5.31)

since by Lemma 5.6, Ad,-1 £ — & € n,. However, we already showed in the
previous lemma that for IV, connected

(v, Ady-1 € — &) = 0.

Thus, for any n € N,, m € M,, we have w(nm) = w(m), which proves that
w(n) does depend on [m] and not on m. Denoting this map by the same letter
w: M,/N, — (m,/n,)" the formula (5.30) shows that it is a one-cocycle on
M,/N,. ®

Computation of the Isotropy Group. As we discussed with the Heisen-
berg example, in the case of non-equivariant momentum maps reduction may
be carried out by modifying the coadjoint action with a cocycle. Namely, for

A€ (m,/n,)",
we consider the modified action

[m]A = Adj,;-1 A + @([m]).
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Given o € m* define v = ojn € n* and p € (m,/n,)" by

(r,)"(p) = olm, — 7,

where 7 is an arbitrary extension of v|n, to m,. This is makes sense since, for
1 € n,, the right hand side satisfies

<U‘m1/_ﬂ777> = <U777>_ <17777> = <V777>_ <V777> :0,

that is, o|v — 7 € n2. Observe that p depends on the choice of extension ¥ of
V.

Proposition 5.10. (M, /N,), =1, (M)olm, ) -
Proof. Note that [m] € (M,/N,), if and only if

()" (p) = (r,)"([m]p) = (1,)" (Ad[,y-1 p + = ([m]))
= Ady, 1 (r)"p + (r) (@ ([m]))
=Ad;, i(ojm, —v)+Ad, v — v =Ad}, -1 (0]m,) — D
= (Adj,-1 0) [m, — 7, (5.32)

since m € M,,. This is equivalent to

<Uv 5) - <ﬁ7 £> = <p7 [£]>
([ml,, [€])
(A1 0) Imy, &) — (7, 6), (5.33)

for all £ € m,,, which says that
(Ad; —10) |m, = o|m,,

that is m € (M,)
if me (M,)

o|m,- Lherefore, we showed that [m] € (M, /N, ), if and only

ofm, which proves the statement. W

5.3 The Main Reduction by Stages Theorem

Having established these preliminary facts, we can state the main reduction
by stages theorem for group extensions. So far, we have reduced P by the
action of N at the point v to obtain P,. Now P, can be further reduced by the
action of M, /N, at a regular value p € (m,/n,)*. Let this second reduced
space be denoted by

P, = JJT/II,,/NL, (P)/(Mu/Nu)p
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where, as usual, (M, /N,), is the isotropy subgroup for the action of the group
M, /N, on the dual of its Lie algebra.

Assume that o € m* is a given regular element of J); so that we can form
the reduced space

Py =3y (0) /M,

where M, is the isotropy subgroup of ¢ for the action of M on m*. We also
require that the relation

(r,)"(p) = ko — 7.
holds. We assume that the following condition holds:

Hypothesis. For all 01,09 € m* such that
O1lm, = 02|m, and o1]q = 02y,
there exists n € N, such that o9 = Ad;,—1 07.

This hypothesis holds for semidirect products, central extensions, and,
more generally semidirect products with cocycles.
With this assumption, we can state the main theorem.

Theorem 5.11 (Reduction by Stages for Group Extensions). Using
the notations and hypotheses introduced above, there is a (natural) symplectic
diffeomorphism between

P, and P,,

We have set things up so that the proof now proceeds just as in the case
of semidirect products. We refer the reader to Marsden, Misiolek, Perlmutter
and Ratiu [1998] for details as well as for further exploration of (amongst other
things):

1. the case of the semidirect product of two nonabelian groups

2. the use of the cotangent bundle reduction theorem in the group extension
context

3. the interpretation of cocycles as curvatures of mechanical connections

4. exploration of specific examples such as the Bott-Virasoro group and
applications to the KdV equation.
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