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Low’s well known action principle for the Maxwell-Vlasov equations

of ideal plasma dynamics was originally expressed in terms of a mix-

ture of Eulerian and Lagrangian variables. By imposing suitable con-

straints on the variations and analyzing invariance properties of the

Lagrangian, as one does for the Euler equations for the rigid body and

ideal fluids, we first transform this action principle into purely Eulerian

variables. Hamilton’s principle for the Eulerian description of Low’s

action principle then casts the Maxwell-Vlasov equations into Euler-

Poincaré form for right invariant motion on the diffeomorphism group

of position-velocity phase space, R
6. Legendre transforming the Eule-

rian form of Low’s action principle produces the Hamiltonian formu-

lation of these equations in the Eulerian description. Since it arises

from Euler-Poincaré equations, this Hamiltonian formulation can be

written in terms of a Poisson structure that contains the Lie-Poisson

bracket on the dual of a semidirect product Lie algebra. Because of

degeneracies in the Lagrangian, the Legendre transform is dealt with

using the Dirac theory of constraints. Another Maxwell-Vlasov Poisson

structure is known, whose ingredients are the Lie-Poisson bracket on

the dual of the Lie algebra of symplectomorphisms of phase space and

the Born-Infeld brackets for the Maxwell field. We discuss the relation-

ship between these two Hamiltonian formulations. We also discuss the

general Kelvin-Noether theorem for Euler–Poincaré equations and its

meaning in the plasma context.

1 Introduction

Reduction of action principles. Due to their wide applicability, the Maxwell-
Vlasov equations of ideal plasma dynamics have been studied extensively. In
1958 Low [1] wrote down an action principle for them in preparation for study-
ing stability of plasma equilibria. Low’s action principle is expressed in terms
of a mixture of Lagrangian particle variables and Eulerian field variables.

Following the initiative of Arnold [2] and its later developments (see Mars-
den and Ratiu [3] for background), we start with a purely Lagrangian de-
scription of the plasma and investigate the invariance properties of the cor-
responding action. Using this set up and recent developments in the theory
of the Euler-Poincaré equations (Poincaré [4], [5]) due to Holm, Marsden and
Ratiu [6], we are able to cast Low’s action principle into a purely Eulerian
description.

In this paper, we start with the standard form of Hamilton’s variational
principle (in the Lagrangian representation) and derive the new Eulerian ac-
tion principle by a systematic reduction process, much as one does in the
corresponding derivation of Poisson brackets in the Hamiltonian formulation
of the Maxwell-Vlasov equations starting with the standard canonical brackets
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and proceeding by symmetry reduction (as in Marsden and Weinstein [7]). In
particular, the Eulerian action principle we obtain in this way is different from
the ones found in Ye and Morrison [8] by ad hoc procedures. We also mention
that the method of reduction of variational principles we develop naturally
justifies constraints on the variations of the so called “Lin constraint” form,
well known in fluid mechanics.

The methods of this paper are based on reduction of variational principles,
that is, on Lagrangian reduction (see Cendra et al. [9], [10] and Marsden and
Scheurle [11], [12]). These methods have also been useful for systems with
nonholonomic constraints. This has been demonstrated in the work of Bloch,
Krishnaprasad, Marsden and Murray [13], who derived the reduced Lagrange
d’Alembert equations for nonholonomic systems, which also have a constrained
variational structure. The methods of the present paper should enhance the
applicability of the Lagrangian reduction techniques for even wider classes of
continuum systems.

Passage to the Hamiltonian formulation. The Hamiltonian structure
and nonlinear stability properties of the equilibrium solutions for the Maxwell-
Vlasov system have been thoroughly explored. Some of the key references are
Iẃınski and Turski [14], Morrison [15], Marsden and Weinstein [7] and Holm,
Marsden, Ratiu and Weinstein [16]. See also the introduction and bibliography
of Marsden, Weinstein et al. [17] for a guide to the history and literature of
this subject.

In our approach, Lagrangian reduction leads to the Euler-Poincaré form
of the equations, which is still in the Lagrangian formulation. Using this set
up, one may pass from the Lagrangian to the Hamiltonian formulation of the
Maxwell-Vlasov equations by Legendre transforming the action principle in the
Eulerian description at either the level of the group variables (the level that
keeps track of the particle positions), or at the level of the Lie algebra variables.
One must be cautious in this procedure because the relevant Hamiltonian and
Lagrangian are degenerate. We deal with this degeneracy by using a version
of the Dirac theory of constraints.

Legendre transforming at the group level leads to a canonical Hamiltonian
formulation and the latter leads to a new Hamiltonian formulation of the
Maxwell-Vlasov equations in terms of a Poisson structure containing the Lie-
Poisson bracket on the dual of a semidirect product Lie algebra. This new
formulation leads us naturally to the starting point for Hamiltonian reduction
used by Marsden and Weinstein [7] (see also Morrison [15] and Kaufman and
Dewar [18]).

Stability and asymptotics. The new Hamiltonian formulation of the Maxwell-
Vlasov system places these equations into a framework in which one can use the
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energy-momentum and energy-Casimir methods for studying nonlinear stabil-
ity properties of their relative equilibrium solutions. This is directly in line
with Low’s intended program, since the study of stability was Low’s original
motivation for writing his action principle. Sample references in this direction
are Holm, Marsden, Weinstein and Ratiu [16], Morrison [19], Morrison and
Pfirsch [20], Wan [21], Batt and Rein [22] and Batt, Morrison and Rein [23].
Other historical references for the Lagrangian approach to the Maxwell-Vlasov
equations include Sturrock [24], Galloway and Kim [25] and Dewar [26].

The Eulerian formulation of Low’s action principle also casts it into a
form that is amenable to asymptotic expansions and creation of approximate
theories (such as guiding center theories) possessing the same mathematical
structure arising from the Euler-Poincaré setting. See, for example, Holm
[27] for applications of this approach of Hamilton’s principle asymptotics in
geophysical fluid dynamics.

Comments on the Maxwell-Vlasov system. The rest of this paper will
be concerned with variational principles for the Maxwell-Vlasov system of
equations for the dynamics of an ideal plasma. These equations have a long
history dating back at least to Jeans [28], who used them in a simpler form
known as the Poisson-Vlasov system to study structure formation on stellar
and galactic scales. Even before Jeans, Poincaré [4], [29] had investigated the
stability of equilibrium solutions of the Poisson-Vlasov system for the purpose
of determining the stability conditions for steller configurations. The history of
the efforts to establish stellar stability conditions using the Poisson-Vlasov sys-
tem is summarized by Chandrasekhar [30]. The Poisson-Vlasov system is also
used to describe the self-consistent dynamics of an electrostatic collisionless
plasma, whereas the Maxwell-Vlasov system is used to describe the dynamics
of a collisionless plasma evolving self-consistently in an electromagnetic field.

Organization of the paper. The paper is organized as follows. Section
2 introduces the Maxwell-Vlasov equations. In section 3 we state the Euler-
Poincaré theorem for Lagrangians depending on parameters along with the
associated Kelvin-Noether theorem. This general theorem plays a key role
in our analysis. Section 5 reformulates these equations in a purely Eulerian
form and shows how they satisfy the Euler-Poincaré theorem. The following
section reviews some aspects of the Legendre transformation for degenerate
Lagrangians. Section 4 reprises Low’s action principle for the Maxwell-Vlasov
equations. Section 7 casts the Euler-Poincaré formulation of the Maxwell-
Vlasov equations into Hamiltonian form possessing a Poisson structure that
contains a Lie-Poisson bracket. In Section 8 we summarize our conclusions.
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2 The Maxwell-Vlasov equations

The Maxwell-Vlasov system of equations describes the single particle distribu-
tion for a set of charged particles of one species moving self-consistently in an
electromagnetic field. In this description, the Boltzmann function f(x,v, t) is
viewed as the instantaneous probability density function for the particle dis-
tribution, i.e., given a region Ω of phase space, the probability of finding a
particle in that region is

∫

Ω

dx dvf(x,v, t), (2.1)

where x and v are the current positions and velocities of the plasma particles.
Thus, if the phase-space domain Ω is the whole (x,v) space, the value of this
integral at a certain time t is normalized to unity.

As is customary, we assume that the particles of the plasma obey dynamical
equations and that the plasma density f is advected as a scalar along the
particle trajectories in phase space, i.e.,

∂f

∂t
+ ẋ · ∇xf + v̇ · ∇vf = 0. (2.2)

In this equation, and in the sequel, an overdot refers to a time derivative along
a phase space trajectory, and ∇x and ∇v denote the gradient operators with
respect to position and velocity respectively. For pressureless motion in the
electromagnetic field of the charged particle distribution, the acceleration of a
particle is given by

ẍ = −
q

m

[

∇xΦ +
∂A

∂t
− v × (∇x ×A)

]

, (2.3)

where (q/m) denotes the charge to mass ratio of an individual particle, Φ is
the electric potential, and A is the magnetic vector potential. Substituting
this expression for v̇ in equation (2.2) yields

∂f

∂t
+ v · ∇xf −

q

m

[

∇xΦ +
∂A

∂t
− v × (∇x × A)

]

· ∇vf = 0 . (2.4)

This is the Vlasov equation (also called the collisionless Boltzmann, or Jeans
equation). The system is completed by the Maxwell equations with sources:

∇x · E = ρ, ∇x × B =
∂E

∂t
+ j, (2.5)

where E and B are the electric and magnetic field variables respectively, ρ is
the charge density and j is the current density. These quantities are expressed
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in terms of the Boltzmann function f and the Maxwell scalar and vector
potentials Φ and A by:

E = −∇xΦ −
∂A

∂t
, B = ∇x × A,

ρ(x, t) = q

∫

dv f(x,v, t), j(x, t) = q

∫

dv vf(x,v, t). (2.6)

By their definitions, E and B satisfy the kinematic Maxwell equations

∇x · B = 0, ∇x × E = −
∂B

∂t
. (2.7)

Equations (2.4) - (2.7) comprise the Maxwell-Vlasov equations. When
A is absent, the field is electrostatic and one obtains the Poisson-Vlasov equa-
tions. The Poisson-Vlasov system can also be used to describe a self gravi-
tating collisionless fluid, and so it forms a model for the evolution of galactic
dynamics, see, e.g., Binney and Tremaine [31].

Note that the integral in (2.1) is independent of time (as the region and the
function f evolve), since the vector field defining the motion of particles (see
equation (2.3)) is divergence free with respect to the standard volume element
on velocity phase space. Thus, one may interpret f either as a density or as a
scalar. For our purposes later, we will need to be careful with the distinction,
since the volume preserving nature of the flow of particles will be a consequence
of our variational principle and will not be imposed at the outset.

3 The Euler-Poincaré equations, Semidirect Prod-

ucts, and Kelvin’s Theorem

The general Euler-Poincaré equations. Here we recall from Holm, Mars-
den and Ratiu [6] the general form of the Euler-Poincaré equations and their
associated Kelvin-Noether theorem. In the next section, we will immediately
specialize these statements for a general invariance group G to the case of
plasmas when G is the diffeomorphism group, Diff(TR

3). We shall state the
general theorem for right actions and right invariant Lagrangians, which is
appropriate for the Maxwell-Vlasov situation. The notation is as follows.

• There is a right representation of the Lie group G on the vector space
V and G acts in the natural way from the right on TG× V ∗: (vg, a)h =
(vgh, ah).

• ρv : g → V is the linear map given by the corresponding right action of
the Lie algebra on V : ρv(ξ) = vξ, and ρ∗v : V ∗ → g∗ is its dual. The g–
action on g∗ and V ∗ is defined to be minus the dual map of the g–action
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on g and V respectively and is denoted by µξ and aξ for ξ ∈ g, µ ∈ g∗,
and a ∈ V ∗. For v ∈ V and a ∈ V ∗, it will be convenient to write:

v � a = ρ∗va i.e., 〈v � a, ξ〉 = 〈a, vξ〉 = −〈v, aξ〉 ,

for all ξ ∈ g. Note that v � a ∈ g∗.

• Let Q be a manifold on which G acts trivally and assume that we have
a function L : TG× TQ× V ∗ → R which is right G–invariant.

• In particular, if a0 ∈ V ∗, define the Lagrangian La0 : TG× TQ → R by
La0(vg, uq) = L(vg, uq, a0). Then La0 is right invariant under the lift to
TG× TQ of the right action of Ga0 on G×Q.

• Right G–invariance of L permits us to define l : g × TQ× V ∗ → R by

l(vgg
−1, uq, ag

−1) = L(vg, uq, a).

Conversely, this relation defines for any l : g × TQ × V ∗ → R a right
G–invariant function L : TG× TQ× V ∗ → R.

• For a curve g(t) ∈ G, let ξ(t) := ġ(t)g(t)−1 and define the curve a(t) as
the unique solution of the linear differential equation with time depen-
dent coefficients ȧ(t) = −a(t)ξ(t) with initial condition a(0) = a0. The
solution can be equivalently written as a(t) = a0g(t)

−1.

Theorem 3.1 The following are equivalent:

i Hamilton’s variational principle holds:

δ

∫ t2

t1

La0(g(t), ġ(t), q(t), q̇(t))dt = 0 , (3.1)

for variations of g and q with fixed endpoints.

ii (g(t), q(t)) satisfies the Euler–Lagrange equations for La0 on G×Q.

iii The constrained variational principle1

δ

∫ t2

t1

l(ξ(t), q(t), q̇(t), a(t))dt = 0 , (3.2)

holds on g ×Q, upon using variations of the form

δξ =
∂η

∂t
− adξη =

∂η

∂t
− [ξ, η], δa = −aη, (3.3)

where η(t) ∈ g vanishes at the endpoints and δq(t) is unrestricted except
for vanishing at the endpoints.

1Strictly speaking this is not a variational principle because of the constraints imposed

on the variations. Rather, this principle is more like the Lagrange d’Alembert principle used

in nonholonomic mechanics.
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iv The following system of Euler–Poincaré equations (with a parameter)
coupled with Euler-Lagrange equations holds on g × TQ× V ∗:

∂

∂t

δl

δξ
= −ad∗

ξ

δl

δξ
+
δl

δa
� a , (3.4)

and
∂

∂t

∂l

∂q̇i
−

∂l

∂qi
= 0 . (3.5)

The strategy of the proof is simple: one just determines the form of the
variations on the reduced space g×Q× V ∗ that are induced by variations on
the unreduced space TG × TQ and includes the relation of a(t) to a0. One
then carries the variational principle to the quotient. See Holm, Marsden and
Ratiu [6] for details. Here we have included the extra factor of Q which is
needed in the present application; this will be the space of potentials for the
Maxwell field. This extra factor does not substantively alter the arguments.

The Kelvin-Noether Theorem. We start with a Lagrangian La0 depend-
ing on a parameter a0 ∈ V ∗ as above and introduce a manifold C on which G
acts. We assume this is also a right action and suppose we have an equivariant
map K : C × V ∗ → g∗∗.

In the case of continuum theories, the space C is chosen to be a loop space
and 〈K(c, a), µ〉 for c ∈ C and µ ∈ g∗ will be a circulation. This class of
examples also shows why we do not want to identify the double dual g∗∗ with
g.

Define the Kelvin-Noether quantity I : C × g × TQ× V ∗ → R by

I(c, ξ, q, q̇, a) =

〈

K(c, a),
δl

δξ
(ξ, q, q̇, a)

〉

. (3.6)

Theorem 3.2 (Kelvin-Noether) Fixing c0 ∈ C, let ξ(t), q(t), q̇(t), a(t) sat-
isfy the Euler-Poincaré equations and define g(t) to be the solution of ġ(t) =
ξ(t)g(t) and, say, g(0) = e. Let c(t) = g(t)−1c0 and I(t) = I(c(t), ξ(t), q(t), q̇(t), a(t)).
Then

d

dt
I(t) =

〈

K(c(t), a(t)),
δl

δa
� a

〉

. (3.7)

The proof of this theorem is relatively straightforward; we refer to Holm,
Marsden and Ratiu [6]. We shall express the relation (3.7) explicitly for
Maxwell-Vlasov plasmas at the end of section 7.
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4 An action for the Maxwell-Vlasov equations

A typical element of TR
3 ∼= R

3 × R
3 will be denoted z = (x,v). We let

πs : TR
3 → R

3 and πv : TR
3 → R

3 be the projections πs(z) = x and πv(z) = v
onto the first and second factors, respectively.

Spaces of fields. We let Diff(TR
3) denote the group of C∞- diffeomophisms

from TR
3 onto itself. An element ψ ∈ Diff(TR

3) maps plasma particles hav-
ing initial position and velocity (x0,v0) to their current position and velocity
(x,v) = ψ(x0,v0). This is the particle evolution map. We shall sometimes
abbreviate (x0,v0) = z0, (x,v) = z, etc. The spatial components of ψ(x0,v0)
are written as x(x0,v0) and the velocity components as v(x0,v0). We shall
also use the following notation:

• V = C∞(R3,R) is the space of electric potentials Φ(x);

• A is the space of magnetic potentials A(x);

• F = C∞(TR
3,R) is the space of plasma densities f(x,v);

• F0 = C∞
0 (TR

3,R) is the space of plasma densities with compact support;

• D0 = C∞
0 (R3,R) is a space of test functions, denoted ϕ(x).

The test functions ϕ(x) are used to localize the variational principle. Thus,
once one obtains Euler-Lagrange equations depending on f0 and ϕ0, if their
validity can be naturally extended for any f0 and ϕ0, which will happen in our
case, then we shall consider those extended equations to be the Euler-Lagrange
equations of the system. We will usually be interested in the Euler-Lagrange
equations for f0 > 0 and ϕ0 = 1.

The Lagrangian and the action. For each choice of the initial plasma
distribution function f0 and the test function ϕ0, we define the Lagrangian

Lf0,ϕ0
(ψ, ψ̇,Φ, Φ̇,A, Ȧ) =

∫

dx0dv0f0(x0,v0)

(

1

2
m|ẋ(x0,v0)|

2

+
1

2
m|ẋ(x0,v0) − v(x0,v0)|

2 (4.1)

+ qẋ(x0,v0) ·A(x(x0,v0)) − qΦ(x(x0,v0))

)

+
1

2

∫

drϕ0(r)

(

|∇rΦ +
∂A

∂t
(r)|2 − |∇r × A(r)|2

)

.

This Lagrangian is the natural generalization of that for an N -particle sys-
tem, with terms corresponding to kinetic energy, electric and magnetic field
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energy, the usual magnetic coupling term with coupling constant q (the elec-
tric charge), and a constraint that ties the Eulerian fluid velocity v to ẋ, the
material derivative of the Lagrangian particle trajectory. Here x and v are
Lagrangian phase space variables, while A and Φ are Eulerian field variables.
Thus, there should be no confusion created by the slight abuse of notation in
abbreviating ∂A/∂t and ∂Φ/∂t as Φ̇ and Ȧ, respectively, in the arguments of
the Lagrangian. This Lagrangian is inspired by Low [1]. However, we have
added the term

1

2
m|ẋ(x0,v0) − v(x0,v0)|

2 ,

which allows v to be varied independently in the variational treatment.
Consider the action

S =

∫

dt Lf0,ϕ0
(ψ, ψ̇,Φ, Φ̇,A, Ȧ) ,

defined on the family of curves (ψ(t),Φ(t),A(t)) satisfying the usual fixed-
endpoint conditions (ψ(ti),Φ(ti),A(ti)) = (ψi,Φi,Ai), i = 1, 2. One now
applies the standard techniques of the calculus of variations. In particular,
integration by parts can be performed since f0 and ϕ0 have compact sup-
port. Moreover, once the Euler-Lagrange equations have been obtained, their
validity can be easily extended in a natural way for f0 > 0 and ϕ0 = 1.

Derivation of the equations. To write the equations of motion, we need
some additional notation. Consider the evolution map ψt(x0,v0) = (x,v) so
that ψt relates the initial positions and velocities of fluid particles to their
positions and velocities at time t. Let u be the corresponding vector field:

u(x,v) := ψ̇t ◦ ψ
−1
t (x,v) =: ẋ

∂

∂x
+ v̇

∂

∂v
,

so the components of u are (ẋ, v̇). Recall that the transport of f0 as a scalar
is given by f(x,v, t) = f0 ◦ ψ

−1
t (x,v), which satisfies

∂f

∂t
+ u · ∇zf = 0, (4.2)

where ∇z = (∇x,∇v) is the six dimensional gradient operator in (x,v) space.
Let Jψ be the Jacobian determinant of the mapping ψ ∈ Diff(TR

3), that is,
the determinant of the Jacobian matrix ∂(x,v)/∂(x0,v0).

Define F (x,v, t) to be f0, transported as a density:

F (x(x0,v0),v(x0,v0), t)Jψ(x0,v0) = f0(x0,v0),

so that
∂F

∂t
+ ∇z · (Fu) = 0. (4.3)
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Taking variations in our Lagrangian (4.1) and making use of the preceding
equation for F , we obtain the following equations (taking ϕ0 = 1)

δx : mẍ +m(ẍ − v̇) = −q∇xΦ − q
∂A

∂t
+ qẋ × (∇x ×A),

δv : ẋ − v = 0,

δΦ : ∇x ·

(

∇xΦ +
∂A

∂t

)

= −q

∫

dvF (x,v, t),

δA : ∇x × (∇x × A) = −
∂

∂t

(

∇xΦ +
∂A

∂t

)

+ q

∫

dv vF (x,v, t).

(4.4)

The second equation in (4.4) treats the Eulerian velocity v as a Lagrange
multiplier, and ties its value to the fluid velocity ẋ, hence v̇ = ẍ as well. The
first two variational equations in the set (4.4) provide the desired relation for
particle acceleration and the last two equations are the Maxwell equations
with source terms. Thus, Hamilton’s principle with Low’s action provides
the equations for self-consistent particle motion in an electromagnetic field, as
required, and the description is completed by substituting

(

v,−
q

m

[

∇xΦ +
∂A

∂t
− v × (∇x × A)

])

for the components of u in the transport equation (4.2) to give the Vlasov
equation (2.4).

5 The Maxwell-Vlasov system as Euler-Poincaré

equations

We will now specialize the general Euler-Poincaré theorem to the case of plas-
mas. The Lagrangian Lf0,ϕ0

(ψ, ψ̇,Φ, Φ̇,A, Ȧ) in equation (4.1) has a right
Diff(TR

3)- symmetry. Let η ∈ Diff(TR
3), F ∈ F and define the action of η

on F by Fη = (F ◦ η)Jη where, as above, Jη is the Jacobian determinant of η.
The symmetry of Lf0,ϕ0

(ψ, ψ̇,Φ, Φ̇,A, Ȧ) is the property

Lf0η,ϕ0
(ψη, ψ̇η,Φ, Φ̇,A, Ȧ) = Lf0,ϕ0

(ψ, ψ̇,Φ, Φ̇,A, Ȧ),

for all η ∈ Diff(TR
3).

Ingredients for Euler-Poincaré. Now we apply the general Euler-Poincaré
theorem 3.1, taking G = Diff(TR

3) and Q = V×A and the parameter a0 = f0.
As we have explained before, ϕ0 is an auxiliary quantity that will ultimately
take the value unity. In the general Euler-Poincaré theorem 3.1 we take

δu =
∂w

∂t
− aduw, δa = −£wa, (5.1)
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where w ∈ g is a vector field on TR
3, £w is the Lie derivative and aduw =

−[u,w] defines aduw in terms of the Lie bracket of vector fields, [u,w]. The
Euler-Poincaré equations (3.4) are

∂

∂t

δl

δu
= −ad∗

u

δl

δu
+
δl

δa
� a, (5.2)

where ad∗

u
is the dual of adu and δl/δu is a 1-form density. The 1-form density

(δl/δa) � a is defined by

〈

δl

δa
� a,w

〉

= −

∫

δl

δa
· £wa. (5.3)

When the quantities a are tensor fields, δl/δa will be elements of the dual
space under the natural pairing.

We shall apply this result to obtain the Maxwell-Vlasov system (2.4)-(2.7)
as Euler-Poincaré equations. We begin by recording a formula that will be
needed later. Let u,w be two elements of g, the Lie algebra of vector fields
for the diffeomorphism group on a manifold M. Choose the 1-form density
c ∈ g∗, and let the pairing 〈c,u〉 : g∗ × g → R be given by:

〈c,u〉 =

∫

M

dz c · u =

∫

M

dz cju
j, (5.4)

where cj and uj, j = 1 . . . n, are components of c and u in R
n and dz is the

volume form on M. Then we can write the desired formula,

〈ad∗

u
c,w〉 =

∫

dz ad∗

u
c · w =

∫

dz c · aduw

= −

∫

dz ci

(

uj
∂wi

∂zj
− wj

∂ui

∂zj

)

=

∫

dzwi
(

cj
∂uj

∂zi
+ ci(∇ · u) + (u · ∇)ci

)

= 〈£uc,w〉 . (5.5)

Here £uc is the Lie derivative of the the 1-form density c with respect to
the vector field u, zj is the coordinate chart and cj, u

j, wj are the compo-
nents of vectors in R

n. Unless otherwise stated, we sum repeated indices over
their range, i, j = 1, . . . , n where n is the dimension of M. We assume that
the vector fields and 1-form densities are defined so that integration by parts
gives no contribution at the boundary (inclusion of nonzero boundary terms
is straightforward). Formula (5.5) for ad∗

u
c will be useful later.

By definition, u = (ẋ, v̇); we will denote us = ẋ, the spatial part of the
phase space velocity field.
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The reduced action. We may transform the action (4.1) into the Eulerian
description as the reduced action

Sred =

∫

dt l(u,Φ, Φ̇,A, Ȧ)

=

∫

dt

∫

dxdvF (x,v, t)

(

1

2
m|us|

2 +
1

2
m|us − v|2 − qΦ + qus · A

)

+
1

2

∫

dt

∫

dx
∣

∣

∣
∇xΦ +

∂A

∂t

∣

∣

∣

2

− |∇x × A|2. (5.6)

We vary this action with respect to us, F , Φ and A:

δSred =

∫

dt

∫

dxdv

{

F

[

(

mus +m(us − v) + qA
)

· δus − qδΦ + us · δA

]

+ δF

[

1

2
m|us|

2 +
1

2
m|us − v|2 − qΦ + qus · A

]}

(5.7)

+

∫

dt

∫

dx
(

∇xΦ +
∂A

∂t

)

·
(

∇xδΦ + δ
∂A

∂t

)

− (∇x ×A)·(∇x × δA) .

Stationary variations in Φ and A yield:

∇x ·

(

∇xΦ +
∂A

∂t

)

= − q

∫

dvF (x,v, t),

∇x × (∇x ×A) = −
∂

∂t

(

∇xΦ +
∂A

∂t

)

+ q

∫

dvF (x,v, t)us . (5.8)

Thus, Maxwell’s equations for the electromagnetic field of the plasma are re-
covered by requiring δl = 0 for all variations of the field potentials Φ and A.
To continue toward the Euler-Poincaré form of the Maxwell-Vlasov equations,
one must determine the forms of the variations δus and δF in (5.7).

According to the general theory, variations in the particle evolution map
ψ lead to variations in the phase space velocity δu of the form

δu =
∂w

∂t
+ [u,w] ≡

∂w

∂t
− aduw . (5.9)

This Euler-Poincaré form of the variations may also be verified by a direct
tensorial calculation, which is given in Holm, Marsden and Ratiu [6]. The
spatial part of this equation gives the variation of the spatial part of the field
u.

Variations of the field ψ also induce variations of the density F , in the
same way as the parameter variations are induced in the general theory for
the Euler-Poincaré equations, see equation (5.1). Either from that equation,
or by direct calculations, these variations are computed to be

δF = −∇z · (Fw), (5.10)
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which is equivalent to the formula

δ(Fdxdv) = −£w(Fdxdv).

Computation of the variations. With these formulae for δu and δF in
place, we compute

δSred =

∫

dt

∫

dxdvF

[

(

mus +m(us − v) + qA
)

·
( ∂

∂t
w + [u,w]

)

]

− ∇z · (Fw)

(

1

2
(m|us|

2 +m|us − v|2) + qus ·A − qΦ

)

. (5.11)

Integrating by parts and dropping boundary terms gives

δSred =

∫

dt

∫

dxdv w ·

[

−
∂

∂t

(

Fm(us + (us − v) +
q

m
A)

)

− ad∗

u

(

Fm(us + (us − v) +
q

m
A)

)

+F∇z

(

1

2
m|us|

2 +
1

2
m|us − v|2 + qus · A − qΦ

) ]

. (5.12)

Expanding the ad∗ term using formula (5.5) results in

δSred =

∫

dt

∫

dxdv w ·

[

−
∂F

∂t
m

(

us + (us − v) +
q

m
A

)

−Fm
∂

∂t

(

us + (us − v) +
q

m
A

)

− (u · ∇z)

(

Fm
(

us + (us − v) +
q

m
A

)

)

−Fm
(

us + (us − v) +
q

m
A

)

(∇z · u)

−
(

Fm
(

usj + (usj − vj) +
q

m
Aj

))

∇zu
j

+F∇z

(

1

2
m|us|

2 +
1

2
m|us − v|2 + qus · A − qΦ

) ]

. (5.13)
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We expand the products to obtain

δSred =

∫

dt

∫

dxdv w ·

{

−m
(

us + (us − v) +
q

m
A

)

(

∂F

∂t
+ u · ∇zF

)

−Fm
(

us + (us − v) +
q

m
A

)

(∇z · u)

−Fm

[

( ∂

∂t
+

(

u · ∇z

)

)(

us + (us − v) +
q

m
A

)

+
q

m
∇zΦ

]

−Fm
(

usj + (usj − vj) +
q

m
Aj

)

∇zu
j + Fmusj∇zu

j
s + FqAj∇zusj

+Fm(usj − vj)∇z(u
j
s − vjs) + Fqusj∇zA

j

}

. (5.14)

Consider the last two lines of equation (5.14). Upon writing w = (w1,w2),
where w1,w2 ∈ R

3, these lines reduce to:

− Fm(us + (us − v)) · (w1 · ∇x + w2 · ∇v)u

+ Fm(us + (us − v)) · (w1 · ∇x + w2 · ∇v)us

− FqA · (w1 · ∇x + w2 · ∇v)u + FqA · (w1 · ∇x + w2 · ∇v)us

+ Fqus · (w1 · ∇x + w2 · ∇v)A− Fm(us − v) · (w1 · ∇x + w2 · ∇v)v

= Fqus (w1 · ∇x)A − Fm(us − v) · w2. (5.15)

The first three lines cancel to zero because they only involve spatial velocity
projections, where u = us. The last line follows upon using ∇xv = 0 and
∇vA = 0; which hold, respectively, because v is an independent coordinate
and A is a function of space alone. Similarly, and under the additional ob-
servation that ∇zΦ = (∇xΦ, 0) because the potential Φ also does not depend
on velocity, the other three lines of equation (5.14) are purely spatial, i.e.,
the projection onto the last three coordinates would give zero, and hence the
contribution to the variation of the action δSred from w2 comes only from the
calculation in equation (5.15). Stationarity of the action under the velocity
components of the variation, w2, then implies:

Fm(us − v) = 0, i.e., us = v. (5.16)

Consequently, in equation (5.14) we can write u as (v, a) where a is yet to
be determined, and we can also replace us − v with zero. On doing this, the
contribution to the variation of the action from w1 becomes

δSred =

∫

dt

∫

dxdv w1 ·

[

− (mv + qA)

(

∂F

∂t
+ ∇z · (Fu)

)

−F

(

m
∂v

∂t
+m(v · ∇x)v +m(a · ∇v)v

+ q
∂A

∂t
+ q∇xΦ + qv × (∇x × A)

)]

. (5.17)



Maxwell-Vlasov system in Euler-Poincaré form 16

Here, we have used standard vector identities in obtaining the result

w · qF
(

usj∇zA
j
s − (u · ∇z)A

)

= qFw1 · (v × (∇x × A)) . (5.18)

Referring to the continuity equation (4.3) for F and using the identities ∂v/∂t =
0 and ∇xv = 0 reduces equation (5.17) to:

δSred = −

∫

dt

∫

dxdvw1 · F

(

ma + q∇xΦ + q
∂A

∂t
− qv × (∇x × A)

)

.

Therefore, δSred = 0 implies that

ma = − q∇xΦ − q
∂A

∂t
+ qv × (∇x × A). (5.19)

Now consider what the invariance of the Boltzmann function f implies. By
equation (4.2) and substitution for u = (v, a), we obtain

∂f

∂t
+ v · ∇xf −

q

m

[ (

∇xΦ +
∂A

∂t

)

− v × (∇x ×A)

]

· ∇vf = 0, (5.20)

and so, along with equations (5.8), we have recovered the full Maxwell-Vlasov
system from stationarity of the action (5.6) entirely in the Eulerian description.

6 The Generalized Legendre Transformation.

Introduction. Before passing to the Hamiltonian description of the Maxwell-
Vlasov equations, we pause to explain the theoretical background of how one
does this when there are degeneracies. This section can be skipped if one is
willing to simply take on faith that one should do the Legendre transformation
slowly and carefully when there are degeneracies.

As explained in Marsden and Ratiu [3], one normally thinks of passing from
Euler–Poincaré equations on a Lie algebra g to Lie–Poisson equations on the
dual g∗ by means of the Legendre transformation. In some situations involving
the Euler-Poincaré equations, one starts with a Lagrangian on g × V ∗ and
performs a partial Legendre transformation, in the variable ξ only, by writing

µ =
δl

δξ
, h(µ, a) = 〈µ, ξ〉 − l(ξ, a). (6.1)

Since
δh

δµ
= ξ +

〈

µ,
δξ

δµ

〉

−

〈

δl

δξ
,
δξ

δµ

〉

= ξ , (6.2)
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and δh/δa = −δl/δa, we see that the Euler-Poincaré equations (3.4) for ξ ∈ g

and ȧ(t) = −a(t)ξ(t) imply the Hamiltonian semidirect-product Lie–Poisson
equations for µ ∈ g∗. Namely,

∂

∂t
µ = −ad∗

(δh/δµ)µ−
δh

δa
� a = {µ, h}LP ,

∂

∂t
a = −a

δh

δµ
= {a, h}LP , (6.3)

with (+) Lie-Poisson bracket on g∗ × V ∗ given by

{g, h}LP = −

〈

µ, ad(δh/δµ)
δg

δµ

〉

+

〈

a,
δg

δa

δh

δµ
−
δh

δa

δg

δµ

〉

. (6.4)

If the Legendre transformation (6.1) is invertible, then one can also pass Lie–
Poisson equations to the Euler–Poincaré equations together with the equations
ȧ(t) = −a(t)ξ(t).

It is important in this paper to give a detailed explanation that incorpo-
rates the degeneracy of the parameter dependent system together with the role
of symmetry. Unlike the examples considered in Holm, Marsden and Ratiu [6]
such as compressible flow or MHD, in the case of the Maxwell-Vlasov system
or even the Vlasov-Poisson system, the Lagrangian La0 corresponding to the
action in equation (5.6) is degenerate, since it does not depend on the vari-
ables Φ̇ and v̇. In other words, the degeneracy and corresponding constraints
that appear in Vlasov plasmas are more serious than for fluids or the heavy
top, etc. To deal with this degeneracy, we shall use the generalized Legendre
transformation in the context of Lagrangian submanifolds, as described in Tul-
czyjew [32]. This is also related to the Dirac theory of constraints (see Dirac
[33]). In particular, we shall take special care to ensure that the Hamiltonian
formulation of the Maxwell-Vlasov system preserves the constraints associated
with the degeneracy of its Lagrangian.

The general construction. Let Q be a manifold and π : T ∗Q→ Q be the
cotangent bundle of Q. Then TT ∗Q is a symplectic manifold with a symplectic
form that can be written in two distinct ways as the exterior derivative of two
intrinsic one forms. These two one forms are denoted λ and χ and are given
in coordinates by:

λ = ṗdq + pdq̇ (6.5)

and
χ = ṗdq − q̇dp, (6.6)

where (q, p) are coordinates for T ∗Q and (q, p, q̇, ṗ) are the corresponding co-
ordinates for TT ∗Q. For the intrinsic definitions of these forms, see Tulczyjew
[32].

Let L : J → R be a Lagrangian defined on a submanifold J ⊂ TQ called
the Lagrangian constraint. The Legendre transformation is a procedure to
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obtain a Hamiltonian H : K → R defined on a submanifold K ⊂ T ∗Q, called
the Hamiltonian constraint. The Euler-Lagrange equations are:

λ = dL on J , (6.7)

while the Hamilton equations are

χ = −dH on K . (6.8)

The abbreviated expressions (6.7) and (6.8) stand for

λ = d(L ◦ Tπ) on (Tπ)−1(J) , (6.9)

and
χ = −d(H ◦ τ−1) on (τ)−1(K) , (6.10)

where τ is the canonical projection τ : TT ∗Q→ T ∗Q, given in coordinates by
τ(q, p, q̇, ṗ) = (q, p). The map Tπ is given by Tπ(q, p, q̇, ṗ) = (q, q̇).

Both the Euler-Lagrange and Hamilton equations define the same La-
grangian submanifold D of TT ∗Q. The Lagrangian and Hamiltonian L and H
are the generating functions with respect to the one forms λ and χ respectively.

The generalized Legendre transformation consists of the following
steps:

Step 1. For each (q, p) ∈ T ∗Q define

K(q, p) =

{

(q, q̇) ∈ TqQ

∣

∣

∣

∣

∂

∂q̇
(pq̇ − L(q, q̇)) = 0

}

, (6.11)

and let
K = {(q, p) ∈ T ∗Q | K(q, p) 6= ∅} . (6.12)

Assumption. Assume that for each (q, p) ∈ K, the submanifold K(q, p) is
connected. This implies that the stationary value

statq̇(pq̇ − L(q, q̇)) (6.13)

of pq̇−L(q, q̇) on K(q, p) is uniquely defined; that is, it does not depend on q̇.

Step 2. Define H : K → R as follows:

H(q, p) = statq̇(pq̇ − L(q, q̇) . (6.14)
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The generalized Legendre transformation with parameters and sym-
metry. Now we adapt this methodology to the case of parameter dependent
Lagrangians with symmetry. Let La0 : TG × TQ → R be a Lagrangian de-
pending on a parameter a0 ∈ V ∗. Assume that G acts on V ∗ on the right
and denote by ag the action of g ∈ G on a ∈ V ∗. Assume also the following
invariance property:

Lah(gh, ġh, q, q̇) = La(g, ġ, q, q̇), (6.15)

for all g, h ∈ G, all (q, q̇) ∈ TQ and all a ∈ V ∗. A typical element of T ∗G×T ∗Q
will be denoted (g, αg, q, νq) or simply (g, α, q, ν). For each a0 ∈ V ∗ and (g, α) ∈
T ∗G, define

Ka0(g, α, q, ν) =

{

(g, ġ, q, q̇)

∣

∣

∣

∣

∂

∂ġ

(

αġ + νq̇ − La0 (g, ġ, q, q̇)
)

= 0

and
∂

∂q̇

(

αġ + νq̇ − La0 (g, ġ, q, q̇)
)

= 0

}

. (6.16)

One can immediately check for any a0 ∈ V ∗, h ∈ G and (g, α, q, ν) ∈ T ∗G ×
T ∗Q that Ka0h(gh, αh, q, ν) = Ka0(g, α, q, ν)h. Define

Ka0 = {(g, α, q, ν) | Ka0(g, α, q, ν) 6= ∅} . (6.17)

Then one can easily prove for any h ∈ G that Ka0h = Ka0h. Define

K = {(g, α, q, ν, a) | Ka(g, α, q, ν) 6= ∅} . (6.18)

Then K ⊂ T ∗G × T ∗Q × V ∗ is an invariant subset under the action of G
given by (g, α, q, ν, a)h = (gh, αh, q, ν, ah). Now for each a0 ∈ V ∗ we define
Ha0 : Ka0 → R by

Ha0(g, α, q, ν) = αġ + νq̇ − La0(g, ġ, q, q̇) , (6.19)

for any (g, ġ, q, q̇) ∈ Ka0(g, α, q, ν). Then, according to the general theory
explained above, Hamilton’s equations are, for each a0 ∈ V ∗, −dHa0 = χ on
Ka0 , where

χ = α̇dg − ġdα+ ν̇dq − q̇dν. (6.20)

One can also easily prove, using the previous equalities, that Ha0(g, α, q, ν)
has the following invariance property,

Ha0h(gh, αh, q, ν) = Ha0(g, α, q, ν). (6.21)

Let s∗ be the dual of the semidirect product Lie algebra s = gsV . Then
define K ⊂ s∗ × T ∗Q by

K = {(α, q, ν, a) ∈ s∗ × T ∗Q | (e, α, q, ν, a) ∈ K} ,
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and the Hamiltonian hK : K → R by hK(α, a, q, ν) = Ha(e, α, q, ν). Thus, hK
is the restriction to K ⊂ s∗ of the right invariant Hamiltonian H : K → R

given by H(g, α, q, ν, a) = Ha(g, α, q, ν). Then, by a natural generalization
of semidirect product theory to include constrained Hamiltonian systems, we
have that Hamilton’s equations on K ⊂ s∗ generated by hK give the evolution of
the system on K determined by the Poisson-Hamilton equations ḟ = {f, hK}
on the Poisson submanifold K ⊂ s∗ × T ∗Q, where the Poisson structure is
defined in a natural way. More precisely, we have the Dirac brackets on K
(see for instance Dirac [33] or Marsden and Ratiu [3]) which, by reduction, give
the brackets on K. This is the abstract procedure underlying the computations
we do in the specific case of plasmas given in the next section.

7 Hamiltonian formulation

We now pass to the corresponding Hamiltonian formulation of the Maxwell-
Vlasov system (2.4)-(2.5) in the Eulerian description by taking the Legendre
transform of the reduced action (5.6).

The role of the general theory. From the geometrical point of view, we
simply apply the generalized Legendre transformation described abstractly in
§6 to the degenerate Lagrangian

Lf0,ϕ0
(ψ, ψ̇,Φ, Φ̇,A, Ȧ).

This Lagrangian is degenerate because it does not depend on the variables Φ̇
and v̇. The theory described in §6 may be applied to this action on T (F×V×
A). The action of the group Diff(TR

3) on the factor F for this Lagrangian is
given as before, while the actions on the factors V and A are trivial. It is easy to
see that the Hamiltonian constraint for each f0 isKf0 ⊂ T ∗(Diff(TR

3)×V×A),
defined by the conditions

Ψ =
δL

δΦ̇
= 0 and mv =

δL

δv̇
= 0.

These conditions impose constraints, which for consistency must be dynami-
cally preserved.

Calculation of the transformed equations. We will perform the calcu-
lations in detail, working with the reduced Lagrangian rather than the La-
grangian

Lf0,ϕ0
(ψ, ψ̇,Φ, Φ̇,A, Ȧ)

and setting ϕ0 = 1 as usual.
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We start with the action (5.6) for the Maxwell-Vlasov system in the Eule-
rian description,

Sred(u,Φ, Φ̇,A, Ȧ) =
∫

dt

∫

dxdv F (x,v, t)

(

1

2
m|us|

2 +
1

2
m|us − v|2 − qΦ + qus · A

)

+
1

2

∫

dt

∫

dx
∣

∣

∣
∇xΦ +

∂A

∂t

∣

∣

∣

2

− |∇x × A|2. (7.1)

This leads immediately to

δl

δȦ
= ∇xΦ +

∂A

∂t
= −E, (7.2)

and so (minus) the electric field variable E is the field momentum density
canonically conjugate to the magnetic potential. Let us define the material
momentum density in six dimensions,

m ≡
δl

δu
. (7.3)

We write m = (ms,mv), where ms is the projection of m onto the first three
cordinate positions, and mv is the projection onto the last three places. We
think of ms and mv also as vectors in six dimensions. From the Lagrangian
we see that

ms = F
(

mus +m(us − v) + qA
)

and mv = 0. (7.4)

Proceeding with the Legendre transform of our action (7.1) results in a
corresponding (reduced) Hamiltonian function written in terms of the veloci-
ties,

h =

∫

dxdv F
(

m|us|
2 −

1

2
m|v|2 + qΦ

)

+ mv · a

+
1

2

∫

dx
(

|E|2 + |∇x × A|2 + 2E · ∇xΦ
)

, (7.5)

where a denotes the projection of u onto its last three entries. Transforming
this to the momentum variables gives

h =

∫

dxdv
1

4Fm
|ms +mFv − qFA|2 −

1

2
mF |v|2 + qFΦ + mv · a

+
1

2

∫

dx
(

|E|2 + |∇x ×A|2 + 2E · ∇xΦ
)

. (7.6)
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The variation of this Hamiltonian with respect to m, a,E,A, F and Φ is given
by

δh =

∫

dxdv

[

u · δm + mv · δa− qFus · δA + qFδΦ

−

(

1

2
m|us|

2 +
1

2
m|us − v|2 + qus · A − qΦ

)

δF

]

+

∫

dx (E + ∇xΦ) · δE − (∇x · E)δΦ + ∇x × (∇x × A) · δA.(7.7)

This expression allows one to read off the evolution equations for the electro-
magnetic field:

∂A

∂t
=−

δh

δE
= −E −∇xΦ, i.e., E = −∇xΦ −

∂A

∂t
,

δh

δΦ
=0 = −∇x · E + q

∫

dvF, i.e., ∇x · E = q

∫

dvF := ρ,

∂E

∂t
=
δh

δA
= ∇x × (∇x × A) − q

∫

dvFus, i.e.,
∂E

∂t
= ∇x × B − j .(7.8)

Note that the constraint δh/δΦ = 0 (Gauss’ law) arises from the absence of Φ̇
dependence in l.

The general theory of §6 shows that F is an element of the second factor
of the semidirect product and so its evolution is given by Lie dragging as a
density. Likewise, f is Lie dragged as a scalar and mi satisfies a Lie-Poisson
evolution equation:

∂F

∂t
= −∇z · (Fu),

∂f

∂t
= −u · ∇zf,

∂mi

∂t
= −

∂

∂zj
miu

j −mj
∂

∂zi
uj − F

∂

∂zi
δh

δF
. (7.9)

The first two of these equations reflect the assumptions that were made in the
definitions of f and F , whilst the last equation encodes the dynamics for the
system. We first consider the case where the momentum component i takes
the values 4, 5, 6. In this case,

−
∂mi

∂t
= msj

∂

∂zi
uj + mvj

∂

∂zi
uj − F

∂

∂zi

(1

2
m|us|

2+
1

2
m|us − v|2+qus · A − qΦ

)

= mvj
∂

∂zi
uj + Fm(usj − vj)

∂uj

∂zi
− Fm(usj − vj)

∂

∂zi
(ujs − vjs)

− qFusj
∂Aj

s

∂zi
+ Fq

∂

∂zi
Φ, (7.10)
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where i = 4, 5, 6. In the second line of equation (7.10), we have substituted
for ms from equation (7.4) and rearranged terms. Here mv = 0, because l
does not depend on v̇. Setting mv = 0 initially in equation (7.10) ensures that
mv ≡ 0 persists throughout the ensuing motion; for potentials Φ and A that
are independent of v, and provided the constraint holds that us = v, as in
equation (5.16). Likewise, the Gauss’ law constraint imposed by δh/δΦ = 0
also persists during the ensuing motion, as seen from the last equation of (7.8)
and the first equation of (7.9), provided the constraint us = v holds and F
vanishes in the limit as |v| → ∞ .

The spatial part of the evolution equation of m will produce the required
single-particle dynamics. From equation (7.9), we have

∂mi

∂t
= −

∂

∂zj
miu

j −mj
∂

∂zi
uj − F

∂

∂zi
δh

δF
. (7.11)

Setting i = 1, 2, 3, in equation (7.11), then substituting for δh/δF and using
the relations

ms = F (mus +m(us − v) + qA), mv ≡ 0,

and
∇vΦ = 0, ∇vA = 0,

yields the spatial components of the motion equation,

∂msi

∂t
= −

∂

∂zj
msiu

j − msj
∂

∂zi
uj

−F
∂

∂zi

(

1

2
m|us|

2 +
1

2
m|us − v|2 + qus · A− qΦ

)

. (7.12)

Substituting for ms and then using the continuity relation ∂F/∂t+∇z ·(Fu) =
0 gives

m
∂usi
∂t

+ q
∂Asi

∂t
= − uj

∂

∂zj
musi − ujs

∂

∂zj
qAsi − qAj

∂

∂zi
uj − q

∂Φ

∂zi

+ q
∂

∂zi
(us · A) −

1

2
m

∂

∂zi
|us − v|2. (7.13)

Rearranging this equation results in

m

(

∂

∂t
+ uj

∂

∂zj

)

us = qE + qus × (∇x × A) −
1

2
m

∂

∂zi
|us − v|2. (7.14)

We may now evaluate this on the constraint set us = v and thereby obtain
the Lorentz force,

ma = q(E + v × B), (7.15)
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where a is the acceleration of a fluid parcel (the last three components in
u = va). As we have seen, in this Hamiltonian formulation of the Maxwell-
Vlasov equations in the Eulerian description, the acceleration a in u is a vector
Lagrange multiplier which imposes mv = 0. Equation (7.15) provides an ex-
pression for this Lagrange multiplier in terms of known dynamical variables
and as a consequence we regain the equation for the acceleration of a charged
particle in an electromagnetic field. The momentum constraint mv = 0 re-
mains invariant when the electromagnetic potentials are independent of the
phase space velocity coordinate v and the velocity constraint us = v holds.
Perhaps not unexpectedly, one finds that ∇z · u = 0. Also, (minus) the elec-
tric field is canonically conjugate to the vector potential, and the electrostatic
potential Φ plays the role of a Lagrange multiplier which imposes Gauss’s
law. Thus, our Hamiltonian formulation augments the usual Maxwell-Vlasov
description of plasma dynamics by self-consistently deriving the particle ac-
celeration by the Lorentz force ma = q(E + v × B) instead of assuming it a
priori.

The Poisson Hamiltonian structure. The general theory outlined briefly
in §6 also leads to the Poisson bracket structure for the Maxwell-Vlasov theory
on the Hamiltonian side. However, our Hamiltonian description has a redun-
dancy, namely the information for the particle trajectories can be recovered
from the spatial plasma density. Explicitly, if we let H(f) = (1/2)|v|2 +Φf (x)
be the single particle Hamiltonian determined by the plasma density f , then
the flow of this Hamiltonian function can be identified with the particle evolu-
tion map ψ. We can also think of this as a constraint on the level of equations
of motion, as the Hamiltonian vector field of H(f) must equal the time deriva-
tive of the map ψ, i.e., the particle velocity field in phase space. In other
words, as is well known, the particle dynamics is completely determined by
the plasma density dynamics. This may be regarded as a constraint on the
system that leads to the elimination of the forward map as a dynamical vari-
able. This “redundancy” is of course one of the sources of degeneracy of the
Lagrangian and Hamiltonian structures.

Thus, the constraint of explicitly enforcing this consistency condition leads
to a further “reduction” which again may be handled by the Dirac theory of
constraints to arrive at the Hamiltonian structure in terms of the variables
F (or equivalently f in view of the canonical nature of the particle transfor-
mations) and the electromagnetic potentials. The resulting Poisson bracket
structure is given by the Lie-Poisson structure for the f ’s plus the canonical
structure for the electromagnetic potentials, which was the starting point for
Marsden and Weinstein [7], who carried out the reduction of this bracket with
respect to the action of the electromagnetic gauge group to obtain the final
Maxwell-Vlasov bracket on the space with variables f , E and B. This proce-
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dure was motivated by and corrected a bracket found by ad hoc methods in
Morrison [15]. We need not repeat this construction.

The Kelvin-Noether theorem. A final result worth mentioning is a Kelvin’s
theorem for the Maxwell-Vlasov particle dynamics. These dynamics, given in
the last equation in (7.9), may be rewritten as

(

∂

∂t
+ £u

)(

1

F
midz

i

)

+ d
δh

δF
= 0, (7.16)

so that
d

dt

∮

γ(t)

1

F
midz

i = 0, (7.17)

for a loop γ(t) which follows the particle trajectories in phase space. The
Kelvin circulation integral in phase space,

I =

∮

γ(t)

1

F
midz

i, (7.18)

may be evaluated on the invariant constraint manifold mv = 0 as

I =

∮

γ(t)

(musi + qAi)dx
i. (7.19)

We recognize this integral as the Poincaré invariant for the single particle
motion in phase space.

The above result follows from the abstract Kelvin-Noether theorem by
letting C := {γ : S1 → TR

3 | γ continuous} be the space of continuous loops
in single particle velocity phase space and letting the group Diff(TR

3) act on
C on the right by (η, γ) ∈ Diff(TR

3)×C 7→ γ ◦η ∈ C. The quantity K is chosen
to be

〈K(γ, F ), a〉 =

∮

γ

1

F
a . (7.20)

The abstract Kelvin-Noether theorem for the Maxwell-Vlasov equations in
Euler-Poincaré form then reproduces the version of Kelvin’s theorem given in
(7.17).

8 Conclusion

In this paper we have cast Low’s mixed Eulerian-Lagrangian action princi-
ple for Maxwell-Vlasov theory into a purely Eulerian description. In this
description we find that Maxwell-Vlasov dynamics are governed by the Euler-
Poincaré equations for right invariant motion on the diffeomorphism group of
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R
n (n = 6 for three dimensional Maxwell-Vlasov motion). These equations

were recently discovered by Holm, Marsden and Ratiu [6] who investigated the
class of Hamilton’s principles which are right invariant under the subgroup of
the diffeomorphisms which leaves invariant a set T of tensor fields in the Eu-
lerian variables. The Maxwell-Vlasov motions invariant under this subgroup
are the steady Eulerian solutions, which, thus, are identified as relative equi-
libria. This identification of steady Eulerian Maxwell-Vlasov solutions as right
invariant equilibria places these solutions into the Hamiltonian framework re-
quired for investigating their nonlinear stability characteristics using, e.g., the
energy-Casimir method (see Holm et al. [16]). It was this stated goal that
first motivated Low to write his Lagrangian for Maxwell-Vlasov dynamics.

Thus, our formulation of a purely Eulerian action principle and its asso-
ciated Euler-Poincaré equations and Hamiltonian framework advances Low’s
original intention of using his action principle for studying stability of plasma
equilibria by placing the entire Maxwell-Vlasov equations (including the par-
ticle dynamics, field dynamics and probability distribution dynamics) into one
self-consistent Hamiltonian picture in the Eulerian description. (As we dis-
cussed, Low used mixed aspects of both Eulerian and Lagrangian phase space
descriptions in his action principle.)

Our Eulerian Hamilton’s principle for Maxwell-Vlasov dynamics is con-
strained, and all of the corresponding Lagrange multipliers have been resolved.
This Hamilton’s principle is thus available for further approximations, e.g., by
Hamilton’s principle asymptotics (see, e.g., Holm [27]).

In summary, we have taken an existing action, due to Low [1], for the
Maxwell-Vlasov system of equations and demonstrated how to rederive this
system as Euler-Poincaré equations. The Euler-Poincaré form emerges from
Hamilton’s principle for a system whose configuration space is a group and
whose action is right invariant under a subgroup. This situation commonly
appears in the Eulerian description of continuum mechanics. In the case of
continuum mechanics, the dynamics takes place on the group of diffeomor-
phisms and the Eulerian variables are invariant under a subgroup of the dif-
feomorphism group. (This subgroup corresponds to steady Eulerian flows with
non-zero velocity and vorticity.) We showed that this situation also occurs for
the Maxwell-Vlasov equations of plasma dynamics in the Eulerian description,
by showing that the variations considered take the appropriate form, and then
deriving the Maxwell-Vlasov equations from the Hamilton’s principle for the
right invariant action (5.6) in Eulerian variables. We then passed to the Hamil-
tonian formulation of this system and found its Lie-Poisson structure.

As discussed in the introduction, the Euler-Poincaré form of the dynamics
is naturally adapted for applying Lagrange-D’Alembert methods for geomet-
rical constraints and control as in Bloch et al. [13]. In future work, our
Euler–Poincaré form of the Maxwell-Vlasov system shall be implemented to
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describe the control features of a plasma driven by an external antenna, fol-
lowing the lines of inquiry begun in the oscillation center approximation for
plasmas by Similon et al. [34].
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