TRACKING IMPLICIT TRAJECTORIES

Neil H. Getz and Jerrold E. Marsden

Memorandum No. CPAM 629
17 February 1995

CENTER FOR PURE AND APPLIED MATHEMATICS

Department of Mathematics
University of California at Berkeley
Berkeley, CA 94720

Tracking Implicit Trajectories®

Neil H. Getz
Electrical Engineering and Computer Sciences
University of California at Berkeley
Berkeley, California 94720
getzOeecs.berkeley.edu

Jerrold E. Marsden
Control and Dynamical Systems
California Institute of Technology

Pasadena, California 91125
marsden@cds.caltech.edu

February 17, 1995

Abstract

Output tracking of implcitly defined reference trajectories is examined.
A continuous-time nonlinear dynamical system is constructed that pro-
duces explicit estimates of time-varying implicit trajectories. We prove
that incorporation of this “dynamic inverter” into a tracking controller
provides exponential output tracking of the implicitly defined trajectory
for nonlinear control systems having vector relative degree and well-behaved
internal dynanmics.

Key Words. dynamic, inversion, implicit, tracking, inverse kinematic problem,
nonlinear control, robot control, singular perturbations

*Presented at IFAC Symposium on Nonlinear Control System Design, Tahoe City, June
26-28, 1995.

Tracking Implicit Trajectories

1 Introduction

In this article we will consider the problem of output tracking where the ref-
erence output which we wish to track is defined implicitly. We will rely upon
a continuous time dynamical technique for inverting nonlinear maps, and will
refer to this technique as dynamic inversion [GM94]. We will join dynamic in-
version to a tracking controller in order to provide an explicit estimator for the
reference output.

We will first give a brief review of the essential elements of dynamic inversion.
Dynamic inversion is then incorporated into a tracking controller for tracking
of the implicit reference trajectory. An example of output tracking for a simple
robot arm illustrates application of the theory.

2 Dynamic Inversion

Dynamic inversion is a methodology for using continuous time dynamics to pro-
vide an estimate of time-varying roots of time dependent maps. The methodol-
ogy also provides a framework in which to view and generalize certain elements
of extant dynamical methods for inverting nonlinear maps using for instance
gradient flows, neural networks, and the techniques of [NTV91]. In dynamic
inversion one associates with a map F'(,t) a dynamical system ¢ = ®(0,) with
the crucial property that an isolated root 6. (¢) is exponentially attractive. Dy-
namic inversion depends intimately upon the notion of a dynamic inverse which
we now define.

Definition 1 Let F : R" x Ry — R™ (0,1) — F(0,t) be continuous in 6 and
piecewise continuous int. Let 0. (t) be a continuous isolated solution of F'(6,1) =
0. A map G :R"x Ry = R (w,t) = G(w,t) is called a dynamic inverse
of F on the ball B, := {z € R"|||z|| < r}, r > 0, if (1) the map G(F(6,1),1)
is Lipschitz in w and piecewise continuous in t, and (2) there is a fived real
number G, with 0 < § < 0o, such that

TG (F (4 0.(),0)) > Bl (1)
for all z € B,. A

Remark 1 If G(w,t) is a dynamic inverse of F(0,¢) with constant 3, then for
any g € Ry, pG(w,t) is a dynamic inverse of F(#,t) with constant uf3.

Sufficient conditions for the existence of a dynamic inverse for all t € R, are
mild as shown by the following lemma, proof of which may be found in [GM94].

Lemma 1 Let 6.(t) be continuous isolated solution of F(0,t) = 0. Assume
F(0,t) is C* in 0 and piecewise continuous in t. Let DiF(0.(t),t) be non-
singular for all t. Let D1 F(0.(t),t) and D1 F(0.(t),)=" be bounded uniformly

N.H. Getz and J.E. Marsden

in t. For all = € By, let DIF(z + 0.(t),t) be bounded uniformly in t. Un-
der these conditions, for any particular time t1 > 0, there exists an wnterval
[to,12] C Ry with to < 11 < l2, and a ball B, such that for any particular
0, € By, G(w,t) := D1 F(0,,t1)~' -w is a dynamic inverse of F(6,t) on B, for
allt € [to,tz]. (]

An important special class of dynamic inverses is the class in which G is of the
form G(w,8,t), where @ is the solution of a dynamical system which estimates
6. Thus G inherits part of its time dependence from its §-dependence. In this
case we say that G(w,0,t) is a state dependent dynamic inverse of F' on

B, if
G (2 4+ 0.(0),0) 2 4 0.(1),1) 2 B3 (2)

for all z € B,.
The dynamic inversion theorem below ties the dynamic inverse to dynamical

estimation of a continuous isolated solution of F(#,¢t) = 0. This theorem is
proven in [GM94].

Theorem 1 (Dynamic Inversion Theorem) Let 0.(1) be a continuous iso-
lated solution of F(0,t) = 0, with ' : R" x Ry = R"; (0,t) — F(0,t). Assume
that G : R x R” x Ry = R™ (w,0,t) — G(w,0,t), is a state-dependent dy-
namic inverse of F(0,t) on By, for some finite 3 > 0. Let F : R" x Ry — R™;
(0,t) — E(0,1) be locally Lipshitz in 0 and piecewise continuous in t. Assume
that for some fized € (0,00), E(0,t) satisfies

|2+ o.).0) - b.0)]|, < wlells (3)
for all z € B,. Let 6(t) denote the solution to the system
with initial condition 6(0) satisfying 0(0) — 0.(0) € B.. Then
10(t) = 0« ()] < |6(0) — 0. (0)[] ™ (17 =)* (5)
for all t € Ry, and in particular if p > k/5, then 6(t) converges to 0.(t)
exponentially. a

The map E(6,t) in Theorem 1 is usually chosen to be a - and ¢-dependent
estimator for 8,. We will show one way of constructing such an estimator below.

Though a dynamic inverse need not be linear, a linear one is often easy to
obtain as indicated by Lemma 1. Let G(w,6,t) := D1 F(6,¢{)=% - w. It follows
from Lemma 1 and Theorem 1 that if p is sufficiently large, ||6(0) — 6. (0)|] is
sufficiently small, and G(w, 6(0), 0) is a dynamic inverse of F(6,t) around ¢t = 0,
then G(w,0,t) is a dynamic inverse of F(0,t) for all t > 0. Example 1 will
illustrate application of Lemma 1 and Theorem 1 to the estimation of 6, (t).

Tracking Implicit Trajectories

Example 1 Assume that the assumptions of Lemma 1 hold. We may obtain
an estimator E(6,t) for 0, by differentiating F'(6.(¢),¢) = 0,

Dy F (0.(t),t) 0.(t) + D2F(04,t) = 0, (6)
solving for 9*, and replacing 8, by 8 to get
E(0,t) ;= =D F(0,t)" Dy F(8,1). (7)

Assume that r has been chosen sufficiently small, and that Dy F(6,t) is suffi-
ciently bounded so that F(0,t) satisfies (3) for all z € B,. Let

G(w,0,t) == Dy F(0,6)"" - w (8)

and assume that r is small enough that G is a dynamic inverse of F' on B,.
If (6(0) — 0.(0)) € By, and p is sufficiently large, then by Theorem 1 the ap-
proximation error z(t) := 0(t) — 0. (t) using (4) will decay exponentially to zero.

A

Example 2 shows how one may invert a time-varying matrix dynamically.
See [GM95] for a more comprehensive handling of dynamic matrix inversion as
well as polar decomposition.

Example 2 Consider the problem of estimating the inverse I', of a time-dependent
matrix A(t). Assume that A(t) is C! in ¢ and nonsingular.

In order for I'. to be the inverse of A(t), I, must satisfy A(¢)" — I = 0.
Accordingly we let

FM(rt) .= AT — I (9)

We may obtain an estimator EM(1t) for I, by differentiating AN I.—1=0
with respect to ¢, solving for I, and replacing all occurrences of I', by I' to get

EM(It)y=—-TAQ)T. (10)

For a dynamic inverse consider (D F™(I',¢))~! . w. Differentiating FM with
respect to I gives

DiFM (I 1) = A(t) (11)
whose inverse is Ix. So a choice of dynamic inverse 1s
GM(w, Ty=T-w (12)

for I' sufficiently close to I'yx. The dynamic inverter for this problem then takes
the form

I' = —uGM(FM(I,t),) + EM(I1)

= —ul (AQ)L = I) = TA@)T (13)

N.H. Getz and J.E. Marsden

and we choose as initial conditions I'(0) sufficiently close to A=1(0). Theorem 1
guarantees that for sufficiently large p, equation (13) will produce an estimator
I" which converges exponentially to Iy at a rate determined by our choice of p.

A

We may now call upon insights from Example 2 in order to obtain a dynamic
inverse dynamically while simultaneously using that dynamic inverse to estimate

0.(1).

Example 3 Suppose that we wish to solve F(#,t) = 0, 6 € R". Let the
assumptions of Lemma 1 hold. We wish to estimate 8, while providing a time-
dependent linear dynamic inverse of F(6,t) based on knowledge of Dy F(6,1).
Assume that we have a representation of Dy F(6,t) that is C* in and C*
in t. Let I" denote our estimator for DyF(0,8)71. ‘We may then estimate
04(t) as follows: Differentiate I'(6.,t) = 0, solve for 6, and substitute I" for
D1 F(0.(t),t)~! and @ for 6, to obtain an estimator for @, in terms of I', ¢, and
t’

E(I,0,t) := —I'DyF(6,1). (14)

Assume that F(I',0,t) is C! in its arguments. Using E(I,6,t) = [E;i(I,0,1)]icp,
by (10) we may estimate I, with

EM(I6,t) .= T iDlF(a,t) r (15)
dt 6=E(I,0,t)
where
%DlF(g’t) 6=E(I'0,t) - ZZ:; aDlﬁL@z('g’t)Ei(F’ b0+ al)%t(g’t)
In this case
FM(r0,t) .= DyF(0,0) — I. (16)

Let GM(w,I") := I' - w as in Example 2. Theorem 1 now tells us that we may
estimate 6. (t) with the system of coupled nonlinear differential equations

(D)=l b O] [P ron =T o] ot

with guaranteed exponential convergence of (I, 6) to (I, 6). A

Tracking Implicit Trajectories

3 Tracking Implicit Trajectories

We now apply dynamic inversion to the problem of output tracking where the
reference signal is defined implicitly. The problem we wish to solve is this:
Find an input u to a control system such that for all initial states in some ball
about the origin, the output y of the dynamical system converges to a desired
implicitly defined output function 8, (t). For simplicity we will assume that the
nonlinear system we control has the same number of inputs as outputs.

Let k:={1,2, ..., k}. Consider the following nonlinear control system:
g; = €§+1a Zemajerm_l
gr = u
yi = &, iem

with 5} € R, where & = [¢],... M7 € R™. Let p := 1 + ...+ rp, with
EeRP e R" P input u € R™, output y € R™. Assume f is a smooth RP
valued function of €, i, u, and ¢. Multi-input, multi-output systems having well-
defined vector relative degree [r1, ..., r,,] may be put into the form 17 through
a state-dependent change of coordinates [Isi89]. We refer to the evolution of 7
as the internal dynamics of (17).

Let yq(t) € R™ satisfy yg(t) € C77 L. Let

llyally = max sup {|y% (D)., ly5” ()]}
TEM R,

Let BY be the open k-ball in the || - ||y norm. Assume that if output y € BY
implies ||n|| is bounded.

Let F : R™ x R, — R™ be such that 6,(¢) € BY is a continuous isolated
solution of F(6,t) = 0. Assume that F(6,t) is smooth in ¢ and ¢. Let {3;},¢ €
{0, ... ,r— 1} be chosen to be the coefficients of the polynomial s" + ij_ol Bist
such that all roots of the polynomial have strictly negative real parts. If we
had direct access to 9£i),i € {0,...,7}, where 9£k) denotes the k' derivative of
f. with respect to time, and 9&0) := #,, then the choice of input u; = HY’) —
SRl Be(El — 9£k_1)), 1 € m would cause y to track #, with exponentially
decaying error.

We will join the dynamic inverter of Example 3 to the control system (17)
using singular perturbation theory to prove stability of the combination.

Let EY := 0. In a similar manner to the manner in which E*(I,0,t) was
obtained, we may obtain an estimator for 9£k) for any k& > 1 by the following
recursive procedure: (1) Differentiate (d*~1/dt*=1)(F(0.,t) = 0) with respect
to £. (2) Replace I, 0. and plk—1) by their estimators I', 8, and E*~1(I",0,1)
respectively.

N.H. Getz and J.E. Marsden

Consider the dynamic inverter

[§] = —uG(F(I,0,1),T) + E(T,0,1), (18)
where
[P =[]
cwsa-[527]

with EM(I',0,t) defined as in (15). The following theorem asserts that the
concatenation of the dynamic inverter (18) with the control system (17) can be
used for exponentially convergent tracking of implicit trajectories.

Theorem 2 (Implicit Tracking Theorem) Let
wi = E]N(I,60,6) = Br(&, — BFHIL6,0)) (19)
k=1

fori € m, where E® = 6, and F?,j € m are defined as above, and where 6§ and I’
are the solutions to (18). If (6(0)—6,(0)), (I'(0) = I%(0)), and (¢1(0)—6%~"(0)),
i € m, j €y, are sufficiently small, then y(t), the output of (17), converges
ezponentially to 0, ().

Proof: First note that if 0(¢) = 0.(1) € BY then
rq;—1

w=00 =3 el —o00) iem (20)
k=1

and (17) has exponentially stable error tracking dynamics with ||5|| bounded.
Second, by Theorem 1, (18) has exponentially stable estimation error dynamics
for e sufficiently small. Third, let ¢ := 1/u so that the dynamic inverter becomes

e[g] = —G(F(I,0,t), ')+ ¢E(I,0,1). (21)

When ¢ = 0,
0=—G(F(I0,t),T)+0 (22)

which implies that (I',#) = (I's, 6.). Thus, if ||5]] is bounded under application
of (19), then by Theorem 8.3 of [Kha92] regarding exponential stablility of

Tracking Implicit Trajectories

T

Figure 1: A two-link robot arm with joint angles 8 = (61, 62), joint torques
T = (11, 72), end-effector position z, desired end-effector position x4, link lengths
l1 and [5, and link masses m; and ms.

singularly perturbed systems, 5} t) — Hi‘z»_l)(t) exponentially for all i € m,

J € r;, and e sufficiently small. Consequently, y(t) — 0.(¢) exponentially.
Boundedness of [|n]| requires only that [|y() — 0.(t)]| be sufficiently small,

but because the exponential stability of the tracking error is independent of 7,

and because the derivative estimators are C! in # and I', we need only assure

ourselves that the errors (6(0) — #.(0)), (I'(0) — I'+(0)), and (E’;(O) - H(j_l)(O)),

*7

i €m, (j € ri), are sufficiently small. This is true by hypothesis. a

4 A Robot Control Example

The control of robotic manipulators provides a natural setting and motivation
for the tracking of implicitly defined trajectories. In this section we will apply
the controller described above to the problem of output tracking for a simple
model of the two-link planar robot arm of Figure 1.

The links of the robot arm are assumed rigid and of length /; and l5. The
masses of each link are assumed to be point masses m; and ms located at the
distal ends of link 1 and link 2 respectively. The actual and desired positions of
the end-effector at time ¢ are #(t) and z4(¢) respectively. We wish to make the
end-effector (end of the second link) track a prescribed trajectory #4(¢) in the
Euclidean plane. The configuration-space of the arm is parameterized by 6 € T2
where T? is the two-torus. For our purposes we may view T2 through a single
chart from R? since neither joint of the arm will ever undergo a full circular

N.H. Getz and J.E. Marsden

motion. We will assume that we may exert a control torque at each joint and
will denote the vector of input torques by 7 € R2. The forward-kinematics map
F :R? = R?% 6 — F(0) maps the configuration space to the Euclidean plane.
Let ¢; := cos(6;), cij 1= cos(#; + 0;), s; :=sin(f;), and s;; := sin(0; + 6;) with
i,j € {1,2}. For the two-link arm the forward-kinematics map is

licy +lzc12

7o) = [lis1 + 12812] ' (23)
The workspace of the robot arm is defined as {x € R? : « = F(0),0 € T?},
the image of the configuration space through the forward-kinematics map. We
choose the output of the system to be . We wish to determine a 7 such that
the end-effector position z(t) = F(6(t)) converges to the desired end-effector
position z4(t).

In this example we will use # to denote the actual joint angles of the robot
arm, @, to denote the inverse kinematic solution of F(#,¢) = 0, and f to denote
the estimator for 6..

For each z in the interior of the workspace, there exist two configurations
0 satisfying F(0) = . Letting F(0,t) := F() — z4(t) the inverse-kinematics
problem is to find 0, satisfying F(6,t) = 0. For robotic manipulators this prob-
lem typically has multiple solutions. For certain configurations, kinematics may
be inverted by inspection, but in general the problem is difficult and computa-
tionally expensive, making algorithms for inverse-kinematics an active area of
current research. In the case of our two-link robotic arm, closed form solutions
for the inverse kinematics exist (see [Cra89], p.122). For demonstration pur-
poses we will use dynamic inversion to invert the kinematics and we will use the
closed form to check our results. Aslong as x4 is kept away from the boundary of
the workspace, the two possible inverse kinematic solutions of F'(#,¢) = 0 never
intersect. We will choose one, by our choice of initial conditions for dynamic
inversion, and track it.

The equations of motion for the two link manipulator (see [Cra89], Section

6.8) are

M(0)6 +V(6,6)+ K(6) =1 (24)

where

Mi1(8) = Bms + 2l lamacs + 13 (my + my)

Miy = Moy = BBms + l1lamacs

Mss = [2ma,

; —mzlllQSQég — 2777@1112829.19.2
0,0) = :

V(’) |: mzlllQSQG% ’

and

K(0) = malagers + (m1 + ma)liger
N malagers ’

Tracking Implicit Trajectories

The matrix M (#) is a positive definite symmetric mass matrix, V (6, 9) is
the vector of centrifugal and Coriolis forces on the manipulator, and K (6) is the
gravitational force on the arm. The output of our system is x with = F(0).
Let 6.(¢) be the solution of F(#,t) = 0. If we knew 0,.(t), 0.(¢), and 0,(t) we

could set
r=V(0,6)+ K(O)+M©) (6. — 56— 0.) = B(0—6.)) (25)

where 3 and 2 are positive definite matrices in R2*2 to achieve exponential
convergence of @ to 0, (t). But for generality we will assume that we don’t know
f, or its derivatives. We will use dynamic inversion to obtain them.

We obtain an estimator E*(I',¢) for 6, by differentiating F'(6.,t) = 0,

d : .
F(0.1) = DF(0)0, — da(t) = 0 (26)

Consequently, 6, = DF(0,)"1a4(t). Again for generality, rather than symboli-
cally or numerically invert DF(0.) we will solve DF(0)I" — I = 0 for I'. Thus

EYNI,t) = Figlt). (27)
We will also require an estimator for 9* Note that

_ODF(0)
g=p1(rt) 06

ODF ()

Bi(It) + —35

E3(I,1). (28)

Differentiating (26) with respect to t, solving for d., and replacing DF(6,)~!
with I', and 6, with E'(6,t) gives an estimator for 6, in terms of I, and ¢,

EX(I,6,t):=T (i»d - % DF(6)

: El(r,t)) : (29)

6=E1(It)

For the estimator E™ for F* we get

. d .
EM(1,0,t) :== —I'— DF(0)|. I.
(1,0,%) a D7)é:El(F,t) (30)
Assembling our results, our controller becomes
I' = —pI(DF(O)T — 1)+ EM(I',0,1)
0 = —ul(F(0) - valt) + ENI1) (31)
ro= M) (BXL,0,0) = 51(6 - BN (I,1) = Go(0 — 6))

which, by Theorem 2 give exponentially convergent tracking § — ..
We choose #4(t) to be a time parameterized figure-eight in the workspace,

zq(t) = [3.75 cos(mt), 2 4+ 1.5sin(2nt)].

10

N.H. Getz and J.E. Marsden

Workspace Paths

x2 [m]

x1 [m]

Figure 2: Workspace paths: F(0) (solid),]-"(é) (dashed), and F(0.) (dotted).

Figures 2 through 4 show the results of a simulation. The integration was
performed in Matlab [Mat92] using an adaptive step-size Runge-Kutta inte-
grator. The parameters used in the simulation were p = 10, 51 = 1017,
Bo = 1001, I = 3[m], ls = 2[m], and m; = ms = 1[kg] with ¢ = 9.8[m/s?].
The initial conditions are 6(0) = [0,7/2], I'(0) = DF(6(0) = [0,1/3,—1/2,1/3],
6(0) = [r,—n/2], 0(0) = 0 with all angles in radians. Figure 2 shows the result-
ing end-effector path (solid), desired path (dotted), and the image of 6 through
F in the workspace (dashed). Both the image of through F, and the path of
the end-effector can be seen to converge to the desired path. Figure 3 shows a
similar picture, but in configuration space. Again, the convergence of both g
and 6 to the inverse kinematic solution corresponding to the desired trajectory
can be seen. Figure 4 shows the norm of the estimation error g — 0., (top) and
the tracking error [0(t), 6(t)] — [0«(t), 0. (t)] (bottom) graphed versus time.

5 Conclusions
We have shown that through a well defined dynamical method we may pro-
duce explicit estimators for an implicit output reference trajectory and its time

derivatives, where those estimators converge exponentially to the true values of
the quantities which they estimate. Starting with a state-feedback controller

11

Tracking Implicit Trajectories

Configuration Space Paths

theta2 [rad]
o
(6]
T

o
T

-0.5 -

Rus

-1.5 -

) 1 1 1 1 1
-1 -0.5 0 0.5 1 1.5 2 25 3 3.5

thetal [rad]

Figure 3: Configuration space paths: # (solid), # (dashed), and @, (dotted).

Norm of Theta* Estimation Error
0.5 T T T T T

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

Norm of Theta* Tracking Error
25 T T T T T

1.2 1.4 1.6 1.8 2

Figure 4: Error norms, ||é(t) — 0.(t)|]2 (top), and ||(A(¢), H(t)) — (0.(2), 0,)2
(bottom).

12

N.H. Getz and J.E. Marsden

designed for exponential tracking of explicit output reference trajectories, we
replaced the explicit reference trajectory and its time derivatives by our esti-
mators. We then proved, though an appeal to a theorem from the theory of
singularly perturbed control systems, that the combination of minimum phase
nonlinear plant, dynamic estimator, and controller results in exponentially con-
vergent output tracking with well-behaved internal dynamics.

The authors are grateful to C.A. Desoer and S.M. Shahruz for their com-
ments and advice.

References

[Cra89] J.J. Craig. Introduction to Robotics, Mechanics and Control. Addison
Wesley, New York, second edition, 1989.

[GM94] N. H. Getz and J. E. Marsden. Dynamic inversion of nonlinear maps.
Technical Report 621, Center for Pure and Applied Mathematics,
Berkeley, California, 19 December 1994.

[GM95] N. H. Getz and J. E. Marsden. Dynamical methods for polar decom-
position and inversion of matrices. Technical Report 624, Center for
Pure and Applied Mathematics, Berkeley, California, 5 January 1995.

[1si89] A. Isidori. Nonlinear Control Systems, An Introduction. Springer-
Verlag, New York, second edition, 1989.

[Kha92] H.K. Khalil. Nonlinear Systems. Macmillan, New York, 1992.

[Mat92] Matlab. The MathWorks, Inc., Natick, Mass., 1992.

[NTV91] S. Nicosia, A. Tornambe, and P. Valigi. A solution to the generalized
problem of nonlinear map inversion. Systems and Control Letters,

17(5), 1991.

13

Tracking Implicit Trajectories

A Programs

In this appendix we include matlab programs used for the simulation of the
implicit tracking control of a two-link robot arm. These are the programs that
were used to produce the illustrations in the article.

% PROGRAM: runarm

)

% DESCRIPTION: This program runs a simulation of the control of

% a two-link robot arm using dynamic inversion.

)

% NOTES: Use "plotarm" to plot results.

)

% For "Tracking Implicit Trajectories", N.H. Getz and J.E. Marsden.
)

b
)
b
)
b
)

% DATE: 2-8-95

3

PROGRAM: runarm

3

AUTHOR: Neil Getz

3

ORGANIZATION: University of California at Berkeley

3

global ripath r2path hpath

% parameters for figure-eight
ripath = 3.75;

r2path = 1.5;

hpath = 2;

11 = 3; % length of first link
12 = 2; % length of distal link
ml = 1; % mass of first link

m2 = 1; % mass of distal link
mu = 10; % dynamic inversion gain

betal = 1; % control gains
=1
g = 9.8; % gravitational accelleration

% Initial conditions for estimator.

thhat0 = [0; pi/2]; % Initial theta estimation

slhat = sin(thhat0(1));

clhat = cos(thhat0(1));

s12hat = sin(thhat0(1) + thhat0(2));

cl12hat = cos(thhat0(1) + thhat0(2));

DForwhat0 = [[(-11*s1lhat-12%s12hat), -12%s12hat],
[(l1*clhat + 12%cl12hat), 12*c12hat]];

14

N.H. Getz and J.E. Marsden

gam0 = minv(DForwhat0~(-1)); % Inverse of DFor at thhatO.
% Initial conditions for plant (robot).

thO = [pi; -pi/2]; % Starting robot configuration.
thdot0 = [0;0]; % Starting joint velocities.

q0 = [gam0; thhatO; thO; thdot0]; % Initial conditions for estimator and plant.

clear TQ t q

Q =4q0’;
INC = 0.1;
TO = 03
TF = 2;
T=T0;

N = (TF-TO)/INC; % Must make TF an integer multiple of INC.
% This loop makes it so that if you stop the simulation before
% TF is reached, you don’t loose all of your data.
for(i=1:N),
last = length(T);
fprintf (’Starting from t = %g\n’,T(last));
[t,q] = ode45(’armcontrol’,T(last),T(last)+INC,Q(last,:)’);
lent = length(t);
T= [T;t(2:1ent)];
Q = [Q;q(2:1lent,:)];
last = length(T);
end;

DRl D U hh Dt htots b o totototo oot oo toto o o o to o s Tt 1o 1o o o oo Tt 1o 26 o oo Fo o o 2o 2o oo o Yo o T 2o 2 o o o
% FUNCTION: armcontrol

%

% SYNOPSIS: gdot = armcontrol(t,q)

% DESCRIPTION: Vector field for simulated control of a two-link planar

% robot arm with first link length 11, second link length
% 12, link 1 mass ml, link 2 mass m2 (point masses at

% distal ends). Dynamic inversion is used to invert the
% forward kinematics and incorporated into a controller
% to make the arm track a figure-eight. The argument "t"
% is the time, and "q" is thestate at time t. See below
% for the identity of the elementsof q.

%

% The states x, thhatl, and thhat2 are statesg of the

% dynamic inverter. The states thl, th2, thildot, th2dot
% are states of the arm.

15

Tracking Implicit Trajectories

% AUTHOR: Neil Getz

)

% ORGANIZATION: University of California at Berkeley
)

% DATE: 2-8-95

)

% For "Tracking Implicit Trajectories", N.H. Getz and J.E. Marsden.
function qdot = armcontrol(t,q)
global ripath r2path hpath

11 = 3; % Length of first link.

12 = 2; % Length of second link.
ml = 1; % Mass at distal end of first limnk
m2 = 1; % Mass at distal end of second link
mu = 10; % Dynamic inversion gain.

betal = 10; % Control gain.
beta0 = 100; % Control gain.
k = 9.8; % Gravitational accelleration

% Desired End-Effector Trajectory

[xd,ddtxd,ddtddtxd] = figeight (t,rlpath,r2path,hpath);
xd = xd7;

ddtxd = ddtxd’;

ddtddtxd = ddtddtxd’;

gam = q(1:4); % gamma: States to estimate dynamic inverse

thhatl = q(5); 7% thhat: States to estimate inverse kinematic soln.
thhat2 = q(6);

thl = q(7); % th: States of robot arm.

th2 = q(8);

thidot = q(9);

th2dot = q(10);

% Abbreviations for sines and cosines.
clhat = cos(thhat1);

c2hat = cos(thhat?2);

cl2hat = cos(thhatl+thhat?2);
slhat = sin(thhat1);

s2hat = sin(thhat?2);

s12hat = sin(thhatl+thhat?2);
%

cl = cos(thl);

c2 cos(th2);

cl12 = cos(thl+th2);

16

N.H. Getz and J.E. Marsden

sl sin(thi);
s2 sin(th?2) ;
512 = sin(thil+th2);

% Mass matrix

M11 = 1272%m2 + 2%11%12%m2%c2+11"2%(ml1 + m2) ;
M12 = 1272*m2 + 11%12*m2%c2;

M22 = 1272*m2;

M = [M11, M12; M12, M22];

% Coriolis and Centrifugal Forces
V = [-m2#11%12%s2%th2dot"2 - 2*m2*11%12*s2%thldot*th2dot;
m2%11%12%s2*thidot 2] ;

% Gravitatonal Forces
K = [(m2%12%k*c12 + (m1+m2)*11%k*cl); m2%12xk*c12];

% Forward Kinematics map on thhat.
Forwhat = [ll*clhat+12%c12hat; l1*slhat+12*s12hat];

% Its differential.
DForwhat = [[(-11*slhat-12%s12hat), -12*s12hat],
[(l1*clhat + 12%cl12hat), 12*c12hat]];

% Partial of its differential w.r.t. thi.
dDForwdlhat = [[(-11*cilhat-12%c12hat), -12%c12hat],
[-1l1*s1hat-12*s12hat, -12*s12hat]];

% Partial of its differential w.r.t. th2.
dDForwd2hat = [[-12%c12hat, -12*c12hat],
[-12%s12hat, -12*s12hat]];

% Estimator for d/dt thhat.
El = m(gam)*ddtxd;

ol
1]

Forwhat-xd;

[}
1]

m(gam) ;

% d/dt D(Forw) with 4/dt th -> E1
C = dDForwdlhat*E1(1) + dDForwd2hat*E1(2);

% d/dt m(x).
EM = minv(-m(gam)*C*m(gam));

FM = minv(m(gam)*DForwhat-eye(2)) ;

17

Tracking Implicit Trajectories

% Dynamic inverse for dynamic inverse definition.
GM = [m(gam)’,zeros(2,2); zeros(2,2), m(gam)’];

% Estimator for d2/dt2 thhat.
E2 = m(gam)* (ddtddtxd - C*E1);

% CONTROLLER
% Dynamic inverter.
ddtgam = -muxGM*FM + EM;
ddtthhat = —-muxG*F + E1;
%
% Feedback torque.
tau =V + K + Mx(...
E2 - betal*([thildot;th2dot]-E1)
- betalO*([th1;th2]-[thhat1;thhat2])
)

% Arm dynamics.

ddtth = [thldot; th2dot];

ddtthdot = M\ (-V-K+tau) ;

qdot = [ddtgam;ddtthhat;ddtth;ddtthdot];

Dbl toteto b ol hte oo lo Yoo Toto T Toto To To o To o Jo To o Jo o Jo Fo o Jo o Yo Fo o T o Fo o o o o o o o o o o o o oo 1o

% FUNCTION: figeight

h

% SYNOPSIS: [xd,ddtxd,ddtddtxd] = figeight(t,r1,r2,h)
h

% DESCRIPTION: Generates a position, velocity, and accelleration of a

% time-parameterized figure-eight in the euclidean plane.
% Each output item is a 1 by 2 vector. xd is the x,y

% position, ddtxd is the corresponding velocity, and

% ddtddtxd is the corresponding accelleration. The

% arguments are

)

% t, the time

% rl, half of the width of the figure-eight

% r2, halp of the height of the figure-eight

% h, the y-coordinate of the center of the figure
% eight. The x-coordinate of the center is 0.
)

% The period of the figure-eight is two seconds.

)

% For "Tracking Implicit Trajectories", N.H. Getz and J.E. Marsden.
)

% AUTHOR: Neil Getz

)

18

N.H. Getz and J.E. Marsden

% ORGANIZATION: University of California at Berkeley

%

% DATE: 2-8-95

function [xd,ddtxd,ddtddtxd] = figeight(t,rl,r2,h)

xd = [(ri*cos(pi*t)), (h + r2*sin(2%pi*t))];

ddtxd = [(-rlxpi*sin(pi*t)), (r2*2#pikcos(2*pixt))];

ddtddtxd = [(-ril*pikpikcos(pi*t)), (-r2*24pi*24pi*sin(2*pi*t))];
Dttt o Toto ot ToToto o 1o o Yoo o oo ToToto o o s Yoo s o o T o 2o o o o T o 2o o T o o o o o T o 2o o T o o o o
% FUNCTION: m

%

% SYNOPSIS: Convert a vector to a matrix.

%

function M = m(x)
M= [x(1),x(2);x(3),x(4)];

I I Tt Tt T Tt Tt e Tt T ot Tt s T T o Tt T T o o T o to T T o T T s T o 0o T T o T o T T o o T o 2o T o o o 2o o
% FUNCTION: m

%

% SYNOPSIS: Convert a matrix to a vector.

%

function x = minv (M)
x = [M(1,1);M(1,2);M(2,1);M(2,2)1;

Tl T T T T T T s o 1ot To To o o oo To o to oo oo oo 1o o o oo oo o ota o oo o oo o ot 1o o oo oo to e ta o oo o oo o
% Program: plotarm

% DESCRIPTION: Plots various useful signals from the simulation of the
% implicit tracking controller for the two-link robot

) arm.

% For "Tracking Implicit Trajectories", N.H. Getz and J.E. Marsden.

% AUTHOR: Neil Getz

% ORGANIZATION: University of California at Berkeley

% DATE: 2-8-95

global rilpath r2path hpath

19

Tracking Implicit Trajectories

| o
[}
[
o

© O
o |

GAM1 = Q(:,1);
GAM2 = Q(:,2);
GAM3 = Q(:,3);
GAM4 = Q(:,4);
THHAT1 = Q(:,5);
THHAT2 = Q(:,6);

TH1 = Q(:,7);
TH2 = Q(:,8);
TH1DOT = Q(:,9);

TH2DOT = Q(:,10);

% Desired End-Effector Trajectory
[XD,DDTXD,DDTDDTXD] = figeight (T,rlpath,r2path,hpath);

Cl = cos(TH1);
C2 = cos(TH2);
C12 = cos(TH1+TH2);
S1 = sin(TH1);
S2 = sin(TH2);
S$12 = sin(TH1+TH2);

C1HAT = cos (THHAT1);
C2HAT = cos (THHAT2) ;
C12HAT = cos (THHAT1+THHAT2) ;
S1HAT = sin(THHAT1);
S2HAT = sin(THHAT2);
S12HAT = sin(THHAT1+THHAT2) ;

EndEf = [11*C1+12%C12, 11%S1+12%S12];

FORWHAT = [11#C1HAT+12%C12HAT, 11*S1HAT+12%S12HAT];

DFORWHAT = [(-11*S1HAT-124S12HAT), -12%S12HAT,
(11*C1HAT + 12%C12HAT), 12*C12HAT];

20

N.H. Getz and J.E. Marsden

DDFORWD1HAT = [(-11#C1HAT-12%C12HAT), -12*%C12HAT ,
-11%S1HAT-12*S12HAT, -124S12HAT];
DDFORWD2HAT = [-12%C1HAT, -12%C1HAT, -12+%S1HAT, -12*S1HAT];

ActualTh = zeros(length(T),2);
for i = 1:length(T),
ActualTh(i,:) = actualtheta(T(i));

end;

THACT1 = ActualTh(:,1);

THACT2 = ActualTh(:,2);

C1ACT = cos(THACT1);

C2ACT = cos (THACT2);

C12ACT = cos (THACT1+THACT?2) ;

S1ACT = sin(THACT1);

S2ACT = sin(THACT2);

S12ACT = sin(THACT1+THACT2);

DFORWACT = [(-11%S1ACT-12%S12ACT), -12*S12ACT,

(11*C1ACT + 12%C12ACT), 12%C12ACT 1;

DDFORWD1ACT = [(-11*C1ACT-12%C12ACT), -12%C12ACT ,
-11#S1ACT-12%S12ACT, -12%S12ACT 1;

DDFORWD2ACT = [-12*C1ACT, -12%C1ACT, -12%S1ACT, -12%S1ACT];

THDOTACT = zeros(length(T),2);

THDOTDOTACT = zeros (length(T),2);

% CACT is d/dt DF(THACT).

CACT = zeros(length(T),4);

for i = 1:length(T),

THDOTACT (i,:) = (m(DFORWACT(i,:))\DDTXD(i,:)’)’;

CACT(i,:) = minv(...

m (DDFORWD1ACT (i, :)) *THDOTACT (i, 1)

+ m(DDFORWD2ACT (i, :))*THDOTACT (i,2)

)7

THDOTDOTACT (i,:) = (.

m (DFORWACT (i, :))\(DDTDDTXD(i,:)’> -m(CACT(i,:))*THDOTACT(i,:)’)

)7

end;

figure(1); % WorkPaths.eps

plot (EndEf (:,1) ,EndEf(:,2),’-’ ,XD(:,1) ,XD(:,2),’:’,
FORWHAT (:,1) ,FORWHAT(:,2),’—=");

title (’Workspace Paths’);

xlabel(’x1 [m]’); ylabel(’x2 [m]’);

axis(’equal’);

print -deps WorkPaths.eps

figure(2); % ConfigPaths.eps

plot (TH1,TH2, -’ ,ActualTh(:,1) ,ActualTh(:,2),’:’ ,THHAT1,THHAT2,’--);
xlabel (’thetal [rad]’); ylabel(’theta2 [rad]’);

21

Tracking Implicit Trajectories

title(’Configuration Space Paths’);
print -deps ConfigPaths.eps

figure(3); % XVsT.eps

subplot(2,1,1),

plot(T,EndEf(:,1),’-’,T,XD(:,1),’:’, T,FORWHAT(:,1),’--");
xlabel(’t’); ylabel(’x1’);

title (’Workspace Trajectories’);

subplot(2,1,2),

plot(T,EndEf(:,2),’-’,T,XD(:,2),’:’, T,FORWHAT(:,2),’--");
xlabel(’t’); ylabel(’x2’);

print -deps XVsT.eps

figure(4); % ThetaVsT.eps

subplot(2,1,1),
plot(T,TH1,’-’,T,ActualTh(:,1),’: >, T, THHAT1,’--’);
xlabel(’t’); ylabel(’thetal’);
title(’Configuration Space Trajectories’);
subplot(2,1,2),

plot(T,TH2,’-’,T,ActualTh(:,2),’:’, T,THHAT2,’--’);
xlabel(’t’), ylabel(’thetal2’);

print -deps ThetaVsT.eps

figure(5); % EstErrEnergy.eps

EstNorm = zeros(length(T),1);

TrackNorm = zeros(length(T),1);

EstNorm = zeros(length(T),1);

for i = 1:length(T),
% Norm of estimation error.
EstNorm(i) = norm([THHAT1(i),THHAT2(i)]-ActualTh(i,:));
slact = sin(ActualTh(i,1));
sl12act = sin(ActualTh(i,1) + ActualTh(i,2));
clact = cos(ActualTh(i,1));
cl2act = cos(ActualTh(i,1)+ActualTh(i,2));
DForwhat = [(-l1l*slact-12%sl12act), -12*s12act;

(li*clact + 12%cl2act), 12*cl2act];
ActualThDot = DForwhat\DDTXD(i,:)’;
TrackNorm(i) = norm(...
[TH1(i),TH2(i),TH1DOT(i) ,TH2DOT(i)]1-[ActualTh(i,:),
ActualThDot’]);

end;

subplot(2,1,1)

plot(T, EstNorm,’-’);

xlabel(’t’);

title(’Norm of Theta* Estimation Error’);

subplot(2,1,2)

plot (T, TrackNorm,’-’);

22

N.H. Getz and J.E. Marsden

xlabel(’t’);
title (’Norm of Theta* Tracking Error’);
print -deps ErrEnergy.eps

El = zeros(length(T),2);
E2 = zeros(length(T),2);
CHAT = zeros(length(T),4);
for i = 1:length(T),
E1(i,:) = (m(Q(i,:))*DDTXD(i,:)’)’;
CHAT(i,:) = minv(...
m (DDFORWD1HAT (i,:))*E1(i,1) + m(DDFORWD2HAT (i,:))*E1(i,2)
)3
E2(i,:) = (...
m(QCi,:))*(...
DDTDDTXD(i,:) >~ m(CHAT(i,:))*E1(i,:)’
) ...
)3

end;

figure(6),

subplot(2,1,1),

plot(T, E1(:,1),’r->,T,THDOTACT(:,1),’y:’);

xlabel (’t’);%ylabel (’E1(1) (-) and d4/dt thetax(1) (:)’);
title(CE1(1) (=), d/dt thetax(1) (:)’);

subplot(2,1,2),

plot(T,E1(:,2),’-’>,T,THDOTACT(:,2),’:’);

xlabel(’t’); title(’E1(2) (-) and d/dt thetax(2) (:)’);

figure(7),

subplot(2,1,1),

plot (T, E2(:,1),’->,T,THDOTDOTACT (:,1),%:°);
xlabel(’t’);

title (’E2(1) and d°2 theta_x(1) / dt"2 ’);
subplot(2,1,2),

plot(T,E2(:,2), ’c~>,T,THDOTDOTACT (:,2),’b:’);
xlabel(’t’);

title (’E2(2) and d°2 theta_*(2) / dt~27);

figure(8)

subplot(2,1,1),

plot (T(1:length(T)-1) ,E1(1: (length(T)-1),1),’-",...
T(1:length(T)-1) ,diff (THHAT1) ./diff(T),’:’);

xlabel(’t’); ylabel(’E1(1)7);

subplot(2,1,2),

plot (T(1:length(T)-1) ,E1(1: (length(T)-1),2),’-",...
T(1:length(T)-1) ,diff (THHAT2) ./diff(T),’:’);

title(’Checking E1 (-) as Estimator of d/dt thetahat (:)’);

23

Tracking Implicit Trajectories

xlabel(’t’); ylabel(’E1(2)7);

24

