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A DYNAMIC INVERSE FOR NONLINEAR MAPS

Neil H. Getz® and Jerrold E. Marsden!

ABSTRACT

We consider the problem of estimating the time-var-
ying root of a time-dependent nonlinear map. We in-
troduce a “dynamic inverse” of a map, another gen-
erally time-dependent map which one composes with
the original map to form a nonlinear vector-field. The
flow of this vector field decays exponentially to the
root. We then show how a dynamic inverse may be
determined dynamically while being used simultane-
ously to find a root. We construct a continuous-time
analog computational paradigm around the dynamic
inverse.

1. Introduction

In this paper! we describe a continuous-time dynam-
ical methodology for inverting nonlinear maps. We
call this methodology dynamic inversion. Given a
map F : R® x R4y — R” with a continuous isolated
and presumably unknown solution 8. (t) to F(6,t) =
0, we associate with F(6,t) another map Gw, 8,1
which we call a dynamic inverse of F(0,). Let E(0,t)
be a smooth map such that E(f.,t) = 8.. The prop-
erties of a dynamic inverse G[w, 8, t] are such that the
dynamical system

0 = —G[F(9,t),0,t] + E(8,t) (1)

has a solution 6(t) which converges exponentially to
the solution 6, (t). This allows us to use dynamical
systems of the form (1) to approximate 6..

The last decade has witnessed a great deal of re-
newed interest in dynamic analog computational par-
adigms; most prominently neural networks. In an-
other direction Brockett [2], [3] showed how one could
perform operations usually accomplished with dis-
crete algorithms, such as sorting of lists, solving of
least-squares matching problems, and matrix diag-
onalization through the use of isospectral gradient
flows on the group of orthogonal matrices. More re-
cently Helmke and Moore [4] have studied dynamical
solutions to the problems of solving for eigenvalues,
singular value decomposition, and balanced ,matrix

* Electrical Engineering and Computer Sciences, Uni-
versity of California at Berkeley, Berkeley, California 94720,
getzQeacs .berkeley.odu.

t Control and Dynamical Systems, California Institute of
Technology, Pasadena, California, marsden@cds.caltech.edu.

1This paper is a condensed version of [1).

factorizations via gradient flows. Dynamic inversion
may also be viewed as a new analog computational
paradigm. Though it may be used to solve intrin-
sically static problems dynamically, our primary do-
main of application is the general class of finite di-
mensional inverse problems with solutions that vary
in time. We make no assumption of a gradient struc-
ture in our problems, though our method may be seen
to encompass gradient methods.

Nicosia, et al. [5, 6] have also considered a tech-
nique of using dynamics for nonlinear map inversion.
The method we present generalizes of part of their
method, though those authors also employ observers
in order to estimate derivatives which, for simplic-
ity, we will assume are known. The dynamic inverse
generalizes certain maps utilized by those authors in
their inversions. Also, rather than relying upon nu-
merical matrix inversion in the inversion of nonlinear
maps as done in [5, 6], we recognize matrix inversion
as another nonlinear inversion problem, and incor-
porate dynamic matrix inversion into our dynamic
inversions when needed.

In Section 2 we introduce the definition of a dy-
namic inverse of a map. In Section 3 we use the dy-
namic inverse to construct a continuous-time dynam-
ical estimator for time-varying vector-valued roots of
nonlinear time-dependent maps. We then show how
a dynamic inverse may be determined dynamically.

2. A Dynamic Inverse

The dynamic inverse is defined in terms of the un-
known root of a map. Later we will show how a dy-
namic inverse may be obtained without knowing the
root.

Definition 2.1 For F : R* x Ry — R";(4,1) —
F(6,t) let 8.(t) be a continuous isolated solution of
F{6,t)=0. AmapG :R*"xBR"x R4 = R (w,t) —
Glw,0,t] is called a dynamic inverse of F on the
ball B, := {z e R*|||z|]| < 7}, r >0, if

1. the map G[F(4,t),6,t] is Lipschitz in 8, contin-
uous in ¢, and

2. there is a fixed real number 3, with 0 < 8 < oo,
such that
TG IF (24 0.(8),1) , 2 +0.(1),1) > Bll=ll3
(2)



for all z € B,. A

Some easily verified properties of the dynamic in-
verse that prove useful are the following:

Property 2.2 If G[w,8,1] is a dynamic inverse of
F(8,t) with parameter 3, then for any z > 0 € R,
p Glw, 8,1] is a dynamic inverse of F(8,t) with pa-
rameter g f. A

Property 2.3 Let F(z,t) := F(z +0.(t),1) and let
Glz,0,1) := Glw,z + 0.(t),t). Then G[w,0,1] is a
dynamic inverse of F(8,1) relative to a solution 4. if
and only if G[w, z,t] is a dynamic inverse of F(z,t)
relative to z, = 0. A

A dynamic inverse G may inherit its dependence
on ¢ from a variety of sources including dependence on
states of dynamical systems. The following property
proves useful in this regard.

Property 2.4 Assume that G'(w!;6',6°t) is a dy-
namic inverse of F!(6!,t), for all 6 satisfying (§*> —
62) € Br,, and G*(w?;6%,60';t) is a dynamic inverse
of F2(62,1) for all 4, satisfying (#' — 8}) € B,,. Let
g :=(6',0%) and w = (w',w?). Then

G'(w!;6',62%;1) ]

Glw,0,t] := [ G?(wz;g'z’g};t) (3)

is a dynamic inverse of

F'(6',¢
PO = falpe) | @
for all (6! — 61,02 — 62) € B,, x B,,. A

For scalar valued functions F(6,t) we have the
following lemma.

Lemma 2.5 Let F:R xRy — R;(8,1) — F(0,t) be
C! in 0 and continuous in t for all 8 is a connected
interval [a,b]. Let 0.(t) be a continuous isolated solu-
tion of F(8,t) = 0. Assume that there exists anr > 0
and a # > 0 such that

(6 — 6.) sign(F(b,t) — F(a,1)) - F(6,t) > B(6 —6.)*,
(5)

Jorall (6 -0.) € B, and allt e R,. Then

Glw] := sign(%DlF(G.(O),O)) ‘w o (6)

is a constant dynamic inverse of F(6,t). )
Proof: See [1] or [T7]. ‘ O

Lemma 2.5 tells us that for time-varying scalar
valued C! functions, we need only pick a sign to pro-
duce a dynamic inverse. Typically one knows an in-

(m terval [a,b] containing the solution. One need only

evaluate F(a,!;) and F(b,t3) for any times t; and
ta. A dynamic inverse for F(0,1) is then Glw] :=
sign (F(b,t2) — Fa,t1)) - w.

Sufficient conditions on F under which a dynamic
inverse exists are mild. They are given in the follow-
ing existence lemma.

Lemma 2.6 For F: R"xR; = R"™; (8,1) — F(6,1),
let 8.(t) be a continuous isolated solution of F(6,t) =
0. Let F(0,t) be C? in 8 and continuous int. Assume
that the following are true:

1. DyF(8.(t),t) is nonsingular for all t;

2. D\F(0.(t),t) and DyF(0.(t),t)~! are bounded
uniformly in ¢,

3. forall z € B,, D}F(z+0.(t),t) is bounded uni-
formly in t.

Under these conditions there exists an r > 0 indepen-
dent of t, and a function G : R" x R" x R, — R",
(w,8,t) = G[w,8,1] such that for each t > 0 and for
all @ satisfying 0 — 0.(t) € B,., G[w, 0,t] is a dynamic
tnverse of F(6,t). ¢

Proof: The proof shows that an inverse function of
@ — F(8,t) exists for each ¢ and for all 4 in a ball
B,.(:) about 8. (t). Furthermore, for all ¢ > 0, r(t) >
rmin > 0. See [7] for the complete proof. O

Though Lemma 2.6 requires F(8,¢) to be C? in
6 at & = 6,(2), this is only a sufficient condition for
the existence of a dynamic inverse as will be seen in
Example 3.2 below.

One might guess that a truncated Taylor expan-
sion for F~! might be a good candidate for G. That
this guess is true is shown by the following example.

Example 2.7 Fixed Jacobian Inverse as a Dy-
namic Inverse. Let 6.(t) be a continuous isolated
solution of F(#,t) = 0, with § € R" and ¢t € R,.
Let t; € R4 be fixed with t; > 0. Let F(z,1) :=
F(z+0.(t),1), z € Ry, have the Taylor series expan-
sion in both variables

Fiz,t) = DiF(0,t) s + O (Il It = 1=l _
[]

where the form of the error uses the fact that F(0,t) =
0 for all ¢, and as a consequence DX F(0,t;) = 0 for
k€ {1,2,...}. Choose r > 0 and expand D, F(0,¢;)
about some y € B, C R® as

DyF(0,t;) = D1 F(y, t1) + O(lyll)- (8)

Note that ¥ need not be constant, or even continuous
in time. Substituting (8) into (7) gives

F(z,ty = D F(y, 1) - = + f(5,0) (9)



where

Fzt) = O (ll=IP, It = talll=ll, Mol li=1l) -

Now consider the dynamic inverse candidate
Glw,8,t] = Glw] = D1 F(y, t1)~" - w.
(11)

Substitute G and :ﬁ' into the dynamic inverse criterion
(2), and expand F according to (9) to get

:TG[P(z,t)] = D, Py t1)~1F(z,1)
= 242D F(y, 1) £z (g
Let 8 € R4 be some fixed number with 1 > 8 >
0. If there exists an r € Ry and an interval (ip,12)

containing t; such that for all 2 € B, and all ¢ €
(tOstQ)s

D F(y, )™ (2, 0) 2 (B - Dlz]l3,
then G is a dynamic inverse of F on B, as long as ¢

is in (¢o, ). Since f(z,t) satisfies (10), it is also true
that

Dy F(y,t1)™ (=, 8) = O (1211, 1t = tal ll=ll, gl 11=11) -

Thus there are always sufficiently small r > 0, and
a sufficiently small interval (¢o,{2) such that (13) is
true.

Remark 2.8 Nearby Jacobian Inverse as a Dy-
namic Inverse. We may replace ¢; by ¢ in Exam-
ple 2.7 to conclude that Dy F(8(t),£)~} is a dynamic
inverse of F(8,1) for all t if §(¢) is sufficiently close to
8.(t) for all t € R,. N

Remark 2.9 If F(0,t) is C' in 0, then any B(f,¢) €
R"”*" such that B is continuous in ?, and

B(8.,t)D, F(6.,t) > 0 (14)

is a dynamic inverse for F. This includes as special
cases B(t) = D1F(6.,t)"! and B(t) = D, F(0.,t)T,
as well as B(t) = D, F(8,t)~! and B(t) = D, F(9,1)T
where ||6 — 8.|| is sufficiently small. A

Nonlinear Dynamic Inverses. Though it will of-
ten be convenient to choose a linear dynamic inverse,
a dynamic inverse need not be linear as shown by the
following two examples.

Example 2.10 Let F(8,¢t) = (8 — sin(¢))3. Then
0. = sin(t). Note that F'(8,¢) fails to satisfy the con-
ditions of Lemma 2.6. Let G[w] := sign{w]]w|'/3.
Then

TGF(z+60.,0)] =Tz > |2 (15)

(ﬁ\ so G[w] is a dynamic inverse of F(,1). A

Example 2.11 Let
F(8,t) = tan{@ — sin(t)). (16)

We may obtain a dynamicinverse of F' through Taylor
series reversion® of tan(z). Let Glw,8,t] = Gluw] =
w— w3/3. It is easily verified graphically that G[w]
is a dynamic inverse of F(8,1) for 8 = 1/4 and for all
2 € By. A

Later in section 4 we will show how a dynamic
inverse can be determined dynamically, that is, we
will find both the root and the dynamic inverse itself
using the same dynamical system.

3. Dynamic Inversion

In this section we will use the dynamic inverse to con-
struct 2 dynamical system whose state is an estimator
for the root 8. (t) of F(#,t) = 0. We give a dynamic
inversion theorem which guarantees exponential con-
vergence of an approximation error to zero.

It is often the case that F(8,t) is differentiable in 8
and ¢. Under this condition an estimator, E(8, ), for
6. can be obtained by differentiating F(6.(t),t) = 0
with respect to t, solving for 8., and substituting 8 for
f.. In general such an estimator will depend on t as
well as an estimate of .. The estimator may become
arbitrarily precise as the estimate of 6. (t) approaches
6. (t). Approximations of E(#,t), such as those based
upon a truncated Taylor series expansion of E(6,t),
may also possess this property. Intuitively one might
hope to produce an estimator for 8.(t) which, even
though it depends upon an estimator of 4., leads
to an approximator #(t) that converges exponentially
to 8.(t). We will formalize that intuition in Theo-
rem 3.1.

Theorem 3.1 Let 8.(t) be a continuous isolated so-
lution of F(8,t) = 0, with F : R® x R, — R"
(8,t) — F(8,t). Assumethat G :R*"xR"xR . — R™
(w,8,t) = Glw, 8,1}, is a dynamic inverse of F(6,1)
on B;, for some finite > 0. Let E:R* xR, — R";
(6,8) — E(0,t) be locally Lipschitz in @ and contin-
uous in t. Assume that for some fired & € (0,00),
E(0,t) satisfies

|EG+o.0.0- b0, <zl 1)

for all z € B.. Let 8(t) denote the solution to the
system

0=—pG(F(0,t),0,t)+ E6,1) (18)

20ne reverts a Taylor series, g(z) = ag +a) 2+a222 +0(J0])
by solving for the coefficients b; of a polynomial p(z) = bp +
by (z) + b2(z)? under the constraint that p(g(z)) = 1.



with initial condition 8(0) satisfying 6(0)—0.(0) € B,.
Then

16(2) — 8. (2)]l5 < 118(0) — 6. (0)||, e~ (#A==)
(19)

Jor allt € R, and in particular if p > /8, then 8(t)
converges to 0.(t) exponentially. 0

Proof: Let :(t) := O(t) — 8.(t), F(z,t) := F(z +
0.(t),t), and Glw, z,1] := Glw,z + 0.(t),t]. Differ-
entiate z(t) = 8(t) — 6. (¢) with respect to ¢, and use
(18) to get

i=—p@ (F(z,t), 2,t) + B (z+6.(8),6) - .(2).
(20)

Let
1o
V(z) = 5ll:I5 (21)
Differentiate V' with respect to ¢ to get

4v(z) = —p7G (F(Z,t),z’l)
42T (E (z+0.(t), 1) - é.(t)) -(22)

Then by Definition 2.1 and (17),

d a 2
V(@) < —pBllzllz + klizllz = ~ (68 - K213

(23)
(W‘ so that for z € B, we have
d
ZV(2) < —2(uB - WV(:). (24)
Thus
1 T .
V(2) < 5 llz(0)l3 e7>A=k (25)
and consequently
Nz()ll < (|2(0)}| e~ WP =), (26)
]

Example 3.2 Consider the piecewise-linear map F :
[-4,4] C R — R defined by

—4-0/2, 0< =2
F(0,1) = sin(dnt) + 30/2, —-2<0<2 .
4-6/2, 0>2  (27)

The unique solution of F(#,{) = 0in (—4,4)is6.(t) =
—(2/3) sin(4xt), and we may differentiate . () to ob-
tain 6.(t) = —(87/3) cos(4nt). A dynamic inverse of
F(8.t) is G[w,8,t] = w corresponding to 8 = 1. Let

. -3 QoS o1 .15 o2 028 a3 035 04 04S 0s
) ]

Figure 1: Solutions of the dynamic inverter of Ex-
ample 3.2 with E(6,t) = 0.(t) for g = 10 {dashed),
p# = 100 (solid), and the actual solution 8.(¢) (dot-
ted). The initial condition was 6(0) = 3.

E(8,t) := —(87/3) cos(4wt) and use the dynamic in-
verter

0 = —pF(8,t) + E(6,1) (28)

with the same initial condition as before, 8(0) = 3.
Figure 1 shows the simulation results. In this case
the errors can be seen to go to zero exponentially.
Note that for (28), each of the two solutions (),
corresponding to each of the two values of g in the
simulations, pass through the point § = 2, a local
maximum of F, for which F(6(t),t) is not differen-
tiable. In contrast, Newton’s method and the gradi-
ent method are undefined for non-differentiable func-
tions, and even if we were to make F(8,¢) differen-
tiable in @ by smoothing it, Newton’s method would
fail due to the local maximum at 8 = 2. A

Remark 3.3 If (0) = 6.(0), then the conditions of
Theorem 3.1 guarantee that 6() = 0.(t) for all t €
R4. So in a sense, we need only solve the inverse
problem at a single instant ¢ = 0. Then the dynamic

inversion takes care of maintaining the inversion for
all t. A

Remark 3.4 Let
Glw,0,t] :== D\ F(8,t)~! - w. (29)

It follows from Lemma 2.6 and Theorem 3.1 that if
is sufficiently large, ||#(0)— 0. (0)|| is sufficiently small,
and G[w,#(0),0] is a dynamic inverse of F(8,t) at
t =0, then G[w,0,1t] is a dynamic inverse of F(8,t)
for all ¢ > 0. A

Example 3.5 will illustrate application of Remark 3.4
to the estimation of 6. (¢).



Example 3.5 Let w and  be in R™. Assume that
the assumptions of Lemma 2.6 hold. We may obtain

an estimator £(8, t) for 6. by differentiating F(0.(t), t)

0,

Dy F (6.(t),¢) 6.(t) + D2F(6.,1) = 0,
(30)

solving for 8., and replacing 6. by @ to get
E(8,t) :== —D,F(8,t) ' D2 F(8,¢). (31)

Assume that r has been chosen sufficiently small, and
that D, F(6,1) is sufficiently bounded so that E(8,t)
satisfies (17) for all z € B,. Let

Glw,8,1] := D\F(8,t)"" - w (32)

and assume that r is small enough that G is a dy-
namic inverse of F on B,. If (8(0) — 0.(0)) € B;, and
4 is sufficiently large, then by Theorem 3.1 the ap-
proximation error z(t) := 8(t) — 8.(t) using (18) will
converge exponentially to zero. A

4. Dynamic Estimation of a Dynamic
Inverse

In this section we will show how we can apply the dy-
namic inversion theorem to the construction of a dy-
namical system whose state includes both a dynamic
inverse of a particular F as well as an approximation
for the root of F. Consideration of the example of
dynamic inversion of a time-varying matrix (8] will
lead the way.

Example 4.1 Consider the problem of estimating
the inverse I'.(t) € R"*" of a time-varying matrix
A(t) € GL(n,R), where GL(n,R) denotes the group
of invertible matrices in R"*". Assume that we have
representations for both A(t) and A(t), and that A(¢)
is C! in 1. Let T be an element of R™*".

In order for I'. to be the inverse of A(t), I, must
satisfy

A =1=0. (33)

Let F7 : R"*" x R, — R™*?; (IN,t) = FY(I,t) be
defined by

FYIt) = AQ)D ~ I. (34)

Let the solution of FY(I',t) = 0 be I'.(t). We ob-
tain an estimator E7(I,t) for I.(t) by differentiating
Al = I with respect to ¢, solving the resulting ex-
pression for I, replacing A ! by 4., and then replac-
ing I, by I in the resulting expression to get

EY(I,t):= —TA()I. (35)

Differentiate FY(I',t) with respect to I to get

Dy F(I,t) = A(t) (36)
whose inverse is I'.. So a choice of dynamic inverse is

Clw, Nt]:=r-w (37)
for I sufficiently close to I'. = A~!(¢). The dynamic
inverter for this problem then takes the form
—ul (AW)T = 1) = TA(¢)I.

(38)

and we choose as initial conditions I"(0) = I.(0) =

~1(0) so that the estimation error starts small. The-
orem 3.1 guarantees that for sufficiently large 4, and
for I'(0) sufficiently close to A~1(0), equation (38)
will produce an estimator I" whose error decays ex-
ponentially to zero at a rate determined by our choice
of u. A

Remark 4.2 Exampile 4.1 also allows one to invert
time-varying matrices without calling upon discrete
matrix inversion routines. One only need calculate
or approximate a single inverse, A(0)~!. The flow of
(38) then maintains the inversion for all ¢ > 0. A

Example 4.3 Assume that F(8,t) satisfies the as-
sumptions of Lemma 2.6 with continuous isolated so-
lution f.. Assume that D;F(8,t) is C* in 0 and
Clint. Let I' € R™*" denote an estimator for
DyF(0.,t)~'. We may then estimate 6. (t) as follows:
Differentiate F(f.,t) = 0, solve for ., and substi-
tute I for Dy F(8.(¢),t)"! and 8 for 6. to obtain an
estimator for . in terms of I', 6, and ¢,

E(I,0,t) := =I'D,F(6,1). (39)

Assume that E(I,0,t) is C! in its arguments. Us-
ing E(I,0,t) = [Ei(T,6,t)]ica, by (35) we may esti-
mate I, with

EXI,0,t):==-I %DlF(B,t) r

d 6=E(D,0,¢) (40)
where

DO oseiran =
Z?l l ( ”E‘(Fﬂt) lm( Wt}

In this case
FYr,0,t):=D,F(6,t)I - 1. (41)

Let G{w, I'):= I' - w as in Example 4.1.Theorem 3.1
now tells us that we may estimate 6. (t) with the sys-
tem of coupled nonlinear differential equations

1] AlL

(42)



* with guaranteed exponential convergence of (I, 8) to

(7..6.). A

After a definition, we summarize the result of Ex-
ample 4.3 with the following theorem.

Definition 4.4 For (I',6) € R**" x R", let

1/2
n

n
NEONF = | D10+ 6
i=1

5,j=1

(43)

This is equivalent to the Froebenius norm? of the ma-
trix [I,6). Let the corresponding open ball in this
norm be denoted BF. A

Theorem 4.5 Let F(8,t) satisfy the assumptions of

Lemma 2.6. For I'(0) sufficiently close to Dy F(6.,0)"},
and 6(0) sufficiently close to 0.(0), the solution (I'(t),0(t))

of
Fl__. [T 0)[DiFe.nr-1
[ ’ JI‘ ;”;gl[F?o-‘ﬁie[(r,a,:)iw,t) ] 44
+[ -I'DyF(8,1) ] s

where E(I,8,1) is given by (39), satisfies (I'(t), 8(t)) =
(DyF(0.,1),0.(t)) as t — co. Furthermore, for suf-
ficiently large u > 0, the convergence is ezponential,
i.e. there exists a k > 0 such that

I(L(t), 6(t)) = (I.(t), 8. ()|
< IF(0).6(0)) = (1.(0),6.(O)llpe™ 1o

Jorallt > 0. 0

5. Summary

A methodology for constructing dynamical systems
for tracking roots of nonlinear time-dependent maps
has been presented and shown to have exponentially
decaying error.

For examples of application of Theorem 4.5 to
tracking control of a simple robot arm, see (10, 7). For
an example of the application of Theorem 4.5 to ma-
trix inversion and polar decomposition see [11, 8, 7).
For an example of the application of Theorem 4.5 to
the problem of tracking implicitly defined trajecto-
ries, see [12, 7].

The continuous dynamical approach of dynamic
inversion has the virtue that it is independent of im-
plementation. It may be realized in an analog as
well as a digital manner (through association with
an integrator). In the control context, dynamic in-
version in combination with a continuous-time plant
and controller allows a seamless incorporation of root-
solving without the need to mix continuous-time and
discrete-time analysis.

3Also called the Schur norm or Hilbert-Schmidt norm. See
Horn and Johnson [9].
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