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THE CONVERGENCE OF HAMILTONIAN STRUCTURES
IN THE SHALLOW WATER APPROXIMATION

ZHONG GE, HANS PETER KRUSE, JERROLD E. MARSDEN AND CLINT SCOVEL

ABSTRACT. It is shown that the Hamiltonian structure of
the shallow water equations is, in a precise sense, the limit
of the Hamiltonian structure for that of a three-dimensional
ideal fluid with a free boundary problem as the fluid thickness
tends to zero. The procedure fits into an emerging general
scheme of convergence of Hamiltonian structures as parame-
ters tend to special values. The main technical difficulty in
the proof is how to deal with the condition of incompressibil-
ity. This is treated using special estimates for the solution
of a mixed Dirichlet-Neumann problem for the Laplacian in a
thin domain.

1. Introduction. Whereas Hamiltonian methods have been very
successful for a long time in stability and bifurcation analysis of a va-
riety of systems, including fluid mechanical ones, (see, for example,
[12] and references therein), the study of “Hamiltonian asymptotics”
is still quite young. One area where this has already received some
attention is that of semi-classical quantum mechanics with the small
parameter being Planck’s constant (see, for example, [1, 11, 20] and
references therein). The beginnings of a suitable framework for Hamil-
tonian asymptotics for classical systems, such as the ones considered
here, was laid in [5, 13, 17, 18, 19)]. In the first three references, the
problem of convergence of dynamical trajectories is discussed in the
context of singular limits of the potential energy and the case of the
convergence of compressible flow to incompressible flow as the speed of
sound converges to infinity is discussed specifically (see also [1] for a
discussion). In Marsden and Weinstein [13] the problem of convergence
of Poisson structures for the case of the Maxwell-Vlasov equations to
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the Poisson-Vlasov equations as the velocity of light tends to infinity
is discussed, and in Weinstein [20] the convergence of the three body
problem to the restricted three body problem is examined.

The above problems may all be thought of as being in the area of
Hamiltonian asymptotics. Useful alternative points of view on the
problem have been given by Olver ([15] and references therein). In this
context, the work of Camassa and Holm (2] is especially interesting in
that it was able to produce a new integrable system with peaked soliton
solutions by paying careful attention to asymptotics (starting with the
Green-Naghdi equation) that preserves the Hamiltonian structure. The
present paper is in the same spirit as these works, but concentrating on
the limiting Poisson bracket structure and the limiting Hamiltonian.
We also note that recent work of Levermore and his collaborators
on the zero forcing-dissipation limit of the complex Ginzburg-Landau
equation to the nonlinear Schridinger equation uses a variant of the
limit of Hamiltonian structure idea of the present work, through the
observation that the forcing-dissipation can be captured in a Poisson
bracket like form. This Hamiltonian structure turns out to be very
useful for the question of which periodic solutions of the NLS equation
can be limits of periodic solutions of the CGL equation; the answers
turn out to be very interesting and suggest that one attempt similar
things in other problems involving limits of Hamiltonian like structures.

We note that our line of research is different from that of Kano and
Nishida [2] who show that solutions of the three-dimensional Euler
equations converge to the solutions of the shallow water equations in
the special case of two-dimensional irrotational flow. (We do not make
the irrotational restriction in the present paper.) In this paper we
do not address the question of convergence of individual solutions but
believe that the geometric and analytic results here may be useful for
that question (for example, combined with the methods of Ebin and
Marsden [6] and the paper of Ebin [5] mentioned above).

In (7] we examine the convergence of Hamiltonian structures in
elasticity, specifically the limit of three-dimensional elasticity to rod
and shell theories. This is a subject of current interest for which the
geometry of the asymptotic expansions is somewhat more complicated
than here. Nonetheless, some of the same philosophy that is developed
in this paper proves to be very useful in the elasticity problem.
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We consider an inviscid, homogeneous, incompressible fluid moving
in R3 with a free surface, but with no surface tension. We use
coordinates denoted by (z1,z2,y), where the free surface has the form
y = h(z1,%2,t) and y = 0 is a fixed surface. Euler’s equations for the
spatial velocity field V(z,, z2,y,t) are

gV =-=V(p+
t FV-V)V = (p+ 9y),
1.1 —h = -
(1.1) ot =V .V(y h)|y=h(=l-=3")’

V-V=0,

together with the condition that V be parallel to the fixed surface y = 0,
where g is the acceleration due to gravity, p is the pressure, which
vanishes at y = h(x1,22), and n is the unit normal vector to that free
surface y = h(z;,z2). For a discussion of the Hamiltonian structure for
these equations, see [10]. Our purpose is to study the shallow water
approximation (or the SW approximation for short), namely,

%+(u-vz)u+th=0,
Oh
E-FV;-()W.)—O,

where u = (u),u2) is the spatial velocity, which corresponds to the
horizontal components of the three-dimensional velocity, V. See, for
example, (18] for a classical derivation of the SW equation. Recall
that one assumes in this derivation that the hydrostatic approximation
p = h—gy is valid and that the horizontal components are independent
of y; one eliminates the third component using a vertical integration
of the divergence free condition. The SW equation has many applica-
tions, especially in geophysics as an important ingredient in ocean and
atmospheric dynamics.

It is well known that both the original 3-D fluid and the SW equation
are Hamiltonian systems. However, the Hamiltonian nature of the
approximation procedure is not so clear from the classical derivation.
One can ask questions such as: does the Poisson bracket for the 3-D
fluid with a free boundary converge (in some sense to be made precise)
to the SW bracket? Does the energy (Hamiltonian) converge as well?
In this paper we will answer these questions.
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We would like to emphasize that this problem is not to be confused
with that of imposing constraints on a given system. Rather, it is that
of the convergence of the Poisson bracket of a family of Hamiltonian
systems to a limiting one. In this sense it is rather different from the
line of investigation started by Rubin and Ungar mentioned above.

There is another result of independent interest, which is in some sense
a dual to the main theorem and that is proved by similar techniques,
namely, that there is an almost Poisson map from the shallow water
bracket to the 3-D bracket (see Theorem 4.2). This theorem is, in
spirit, very close to the philosophy of Marsden and Weinstein [12] and
in [20}.

The main technical difficulty in the proof of our result arises from the
fact that in incompressible fluid mechanics the spatial velocity field is
divergence free and, correspondingly, the functional derivatives in the
Poisson bracket of the Hamiltonian formulation are divergence free.
One must deal with the question of how the Helmholtz-Hodge decom-
position of an arbitrary vector field on a domain into its divergence-free
and its gradient part behaves when one dimension of the domain tends
to zero. This is complicated by the fact that the boundary conditions
are mixed, with Dirichlet conditions on some portions of the boundary
and Neumann on the remainder. To deal with this, we show that when
the thickness of the fluid layer goes to zero, the projection onto the
space of divergence-free vector fields is an “almost identity map” with
a sharp error estimate given in terms of the thickness. This amounts
to showing that the solution of a Poisson equation V2g = f with ho-
mogeneous boundary condition goes to zero (in the Sobolev H3 norm)
as the first power of the thickness. The proof of this appears to be new
(we thank Genevieve Raugel for her advice in this matter).

In this paper we only consider the case in which z; and z, are periodic
variables, so may be regarded as residing on the two torus, 72. We
believe that similar results also hold for flow on a (possibly rotating)
sphere in R?, in which case one should also add Coriolis terms; cf. [3,
4].

This paper is organized as follows. In Section 2 we state our version
of the Poisson bracket for a 3-D fluid with a free surface, and in Section
3 the SW Poisson bracket is recalled. In Section 4 we state and prove
the main results.

f'%_)
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2. The dynamics of a 3-D fluid with a free surface. A
Hamiltonian structure for a physical system is usually determined by
choosing a phase space, a Poisson bracket, and a Hamiltonian function.
In this section, we will describe in detail the Lagrangian phase space
of 3-D incompressible fluid flow with a free boundary. In the first
subsection we describe this structure for the Eulerian representation.
Following this, we shall describe it for the Lagrangian representation,
and show how these two representations are related by reduction from
the Lagrangian to the Eulerian viewpoint.

2.1. The Poisson bracket in Eulerian representation. Throughout
this paper we consider a fluid contained in a 3-dimensional domain
over a two torus T2, consisting of points (z1,22,¥), £ = (z1,x2) € T?,
0 £ y £ h(z). That is, z; and z, are periodic variables. The
hyperplane y = 0 is a fixed boundary, y = h(z) is the free boundary,
and h(z) is the height function. We will write the velocity field of the
fluid as V = (uy, uz, v) or simply V = (u,v), where u = (u;, u2).

Let dA = d?z = dz,dz; be the standard area form on 72, and
dv = dz1dzady the volume-form. If 2 = F(z) : T2 = T? is a
transformation, denote the determinant of the Jacobian relative to the
standard flat Riemannian metric on T2 by det DF(z).

We next recall the Poisson bracket for a 3-D fluid with a free surface,
which was derived in [10]. We shall take a slight variant of their
bracket as our starting point. Because we do not deal with surface
tension effects and because the geometry of the domain is simpler, our
derivation of the bracket is a little easier and avoids some delicate issues
with delta functions that occur in the general case. In addition, our
boundary conditions and our choice of variations are a little different.
Notwithstanding, our results also apply to systems with surface tension,
a remark we will elaborate on below.

Let N3 be the space of Eulerian variables, that is, the set of pairs
(V, k) where V is a spatial divergence-free velocity field on the domain
0 £ y < h(z), that is, tangent to the boundary y = 0. We put on the
space N3 the following Sobolev topology. The vector field V should
be of class H® where s > 3 and the boundary surface h is of class
H*"Y/2 consistent with the Sobolev trace theorems. We shall not go
into the details of the Sobolev structure here, but refer to, for example,
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(6] for details, and how to put the corresponding Sobolev structures
on the space of embeddings that will be used below in the Lagrangian
description.

We assume that the functionals we are dealing with have functional
derivatives in the following sense:

If Fis a functional on N3, the functional derivative §F/V is a
divergence-free vector field, tangent to the boundary y = 0, defined
in the following way: if 6V is a variation, then

DF .8V = " oF éVd
Sty W v
= lim F(V +t6V, h) — F(V, h)’
t—0 t

assuming that the righthand side exists, and where [ foh denotes the
three-dimensional integral over the region 0 < y < h(z). The derivative
8F/6h, a function on T2, is defined similarly.

Caution. The definition of the functional derivative depends on
the function spaces chosen. In the present case, this means that
the constraint of being divergence free is built into the definition.
If one prefers, the functional derivative here is the Helmholtz-Hodge
projection of the unconstrained (or usual) functional derivative. This
constraint must be taken into account when doing the calculations; in
particular, if one takes the usual functional derivative in this bracket,
one does not get the correct Euler equations for the problem.

As an example, consider a function of the form

r=[ [ rma,

where f is smooth. By the Hodge decomposition, any vector field A
on the domain 0 < y < & can be written as

(2.1) A=Vo+ Ag,
where Ay is divergence-free and ¢ satisfies V2¢ = div A, along with the
boundary conditions

9¢

¢|y=h(z) =0, 6—y =A- (0’ 0, 1)|u=0-

y=0

™~
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Note that the second boundary condition is equivalent to requiring that
Ao be tangent to the fixed boundary y = 0, and the first boundary
condition implies that the decomposition (2.1) be orthogonal with
respect to the L2-inner product.

Letting P be the L2-orthogonal projection that maps A to Ag, then

one checks that
oF -p a f ad f af )
av Bul Bug dv

We let 6F/én be the function over T2 defined by

oF oF
@) = (Fr@han) n
where n is the outer unit normal vector to the surface y = h(z).

Lemma 2.1. Given F;,Fp : N3 = R, sel

(22) {F,F}ap // ((SF1 an)dv

+ [ (e~ 505 @) ) VTR &,

where w = V x V is the vorticity. Then {,}sp is a Poisson bracket.
Moreover, equation (1.1) is a Hamiltonian system with the Hamiltonian

1 h
Es(v,h) = E(L/O ||V||"’dv+/;2 ghzdza:).

This lemma is proved as in {10].

2.2. The Poisson structure in Lagrangian representation. Now we
turn our attention to the Hamiltonian structure for the Lagrangian
representation. This structure will then be related to that in the
Eulerian representation described above by the process of Poisson
reduction which, in this case, is simply the relation between the
Lagrangian and Eulerian representations of the fluid. In the next
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section we will describe the phase space, the Poisson structure and
the Hamiltonian of the shallow water equation. In Section 4 we show
how the 3-D and shallow water Hamiltonian structures are precisely
related.

We consider a fluid moving in the region R, between a dynamic
free-surface y = h(z), and the fixed hyperplane y = 0. The reference
region corresponds to the region Rj, obtained by putting h = hg.
The Lagrangian representation configuration space for the 3-D fluid,
denoted by Dj, consists of a collection of (H®) volume-preserving
embeddings

T: Ry, = T? x[0,00),

which fix the lower boundary y = 0 setwise. We only allow, as elements
of D3, those embeddings T whose image is one of the sets R described
above.

Write T : (z,y) — (Z,7) = (X(=z,¥),Y(z,y)), where (Z,7) is a spatial
point and (z,y) a reference point. The fixed boundary condition is
Y(z,0) = 0. Note that T can map y = hg onto any surface y = h(z) as
long as this surface together with ¥ = 0 encloses the same volume as
0 < y < ho (cf. (14]). The space of all height functions will be denoted
by B. (By the Sobolev trace theorems, the appropriate Sobolev class
for the height functions is H*~%/2),

The energy functional is the kinetic energy plus the gravitational
potential energy. At an element T = (X,Y’) the potential energy can
be written as

ko
(2.3) V(T) = fp /0 gY d*zdy.

In the infinite-dimensional case, symplectic structures on cotangent
bundles are often defined with the help of metrics, which give a
pairing between tangent and cotangent bundles. When one defines the
corresponding Poisson bracket, the metric occurs again in the definition
of functional derivatives.

The phase space in the present problem is P := TDj; with the
standard Poisson bracket defined with the help of the L? metric. As a
set, the space P consists of pairs (T, 1), where T is a particle placement
field as before and p is a divergence-free vector field over T'; i.e., to each
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reference point (z,y), 1 assigns a vector on R? based at the spatial point
(%,%) = T(z,y) such that poT-! is a divergence free vector field. The
Poisson bracket on P is

ho (6P, 6F, SF, 6RF
NS R

The energy functional can be written as

1 h _ _ 1
By(T,p) = 5 ) (poT~hpoT Ndv+ 3 nghzdzx,

where h is the height function associated with the embedding T, as
described above.

The symmetry group G3 of the 3-D fluid consists of (the identity
component of) the set of all (H*) volume-preserving diffeomorphisms
of the reference configuration that setwise fix the surfaces y = 0 and
v = ho. This group acts on D3 on the right by compasition and leaves
the energy invariant.

The passage from the Lagrangian description to the Eulerian descrip-
tion is done by using the map II : T* D3 — N3 defined by

(2.4) (T, p) = (1 oT-l,h),

where h is the height function associated to the embedding T. The
map II is invariant under the right action of G3, and so induces a
diffeomorphism

M:T*D3/G3 = Na.

Thus, N; inherits a Poisson bracket, which is exactly the one in
Lemma 2.2. This is proved as in [10]. Thus, by construction, IT is
a Poisson map, which relates the Poisson bracket in the Lagrangian
representation to that in the Eulerian representation.

3. The shallow water fluid model. After an initial motivation
based on an asymptotic expansion, we introduce the shallow water
Hamiltonian structure in both the Lagrangian and the Eulerian rep-
resentations and, following the pattern of the last section, relate these
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two structures. In the next section we will give the precise relations
between the 3-D fluid bracket and the shallow water bracket.

3.1. The shallow water system in Lagraengian representation. To
motivate our choice of the configuration space for the SW fluid, we
introduce a parameter € measuring the fluid thickness and consider a
modification of the configuration space of the three-dimensional model.
We do this by choosing hg = ¢ in the reference configuration. Thus,
we consider a configuration of the 3-D fluid with a free surface to be a
volume preserving map T : (z,y) — (%,§), from 7% x [0,¢] to T? x R+,
We also introduce a rescaling map

Se:(z, ) (a:, -g)

from T? x R+ to itself. We conjugate an element T of D3 by S, to
obtain S, o T o S;"! which is defined on the fixed domain 72 x [0, 1].
Note that even though S, is not volume-preserving, the conjugation of
T by S, is.

The configuration space of the 3-D fluid after this conjugation by S,
converges to the following space of mappings n: T2 x [0,1] = T2 x R+:

D,y := {n=(F,det DF~y) | F : T? - T?}
in the following sense:
SeoT oS (z,y) = (F(z),det DF~Y(z)y) + O(¢)

where (F(z),0) = T(z,0), which can be easily verified by using a first
order approximation.

This suggests that as the configuration space for the SW fluid, we
take the subset Dgw C D3. To represent a tangent vector 1 € T, Dsw,
choose a one-parameter family r — n,. € Dgw with 15 = 9 and take
the derivative with respect to r at r = 0. One gets

d

== (Fr,det DF1y) = (8F, —det (DF~)div (6F o F~1)y),
=0

r

where 0F = dF,/dr|r=0. If 4 = (6F', —det (DF)~'div (6F' o F~1)y)
is another tangent vector to Dgy at n, we want to define the scalar
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product of 2 and y'. To do so, we consider the corresponding tangent
vectors S;' o po S, and S;1 oy 0 S, to the three-dimensional con-
figuration space and take their inner product (the kinetic energy inner
product). One gets

//(Se‘lopoS,)-(Se_lop'oSC)dv
T JO

=¢ F .8F' dA 4+ terms cubic in ¢.
T?

This discussion suggests that, for the definition of the Poisson bracket
in the shallow water approximation, we should use the following metric

@31 ()= /T 6F 6F dv = /T: Pa(p) - Po(u') do,

where P, denotes the projection onto the first two components.

Observe that, by definition of Dgw, P2(u) is independent of the
y-variable and that the metric (3.1) is invariant under the action of
the group D¥°! of volume-preserving diffeomorphisms of the two torus,
which acts naturally on Dgw by composition on the right.

We proceed as usual to define a Poisson bracket on TDgy. We denote
elements of T Dgw by (n, ). Consider functions F : TDgw — R which
possess functional derivatives d F/dn, 6F/épu such that

(T
or = ()
The Poisson bracket of two such functions is given by
Em-=((55) (G 5)
- [ 2 (&)~ (%) - (&) (5)]

We will write d®z when writing integrals over the current configuration,
and dA when writing integrals over the reference configuration.
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Note that the structure of Dgw is very similar to Dj. In fact, Dgw
has the structure of a principal bundle over B, the structure group
being its group D3° of area-preserving transformations of 72. In other
words, the approximation of D3 by Dgw is analogous to the reduction
of a structure group.

The group D;"" acts on the space Dgw by composition on the right,
and hence it induces an action on TDgw by Poisson maps. Denote
the tangent space to Dsw at the identity embedding by dsw. The
elements of dgy are of the form

v = (u, ~(divu)y),

where u: T? — R2,
Let F* denote the space of densities on T?. We will identify these
with functions h by identifying H and hdxz. The map
7 :T*Dgw = F* X dsw
defined by
(m,p) = (det DF~}, pon™t),
induces a map
it T‘Dsw/D‘éol = F* xdsw.
It is easy to see that 7 is well defined and injective. By a theorem of
Moser [14], it is also surjective.

The space T Dsw /D3 inherits a natural Poisson structure such that
# is a Poisson map; that is, # carries this structure to F* x dsw =: M.

Next we compute the induced Poisson bracket. Denote elements of
F* x dsw by (h,v). Consider functionals E : M — R that possess
functional derivatives §E(h,v)/8h : T? — R, so that §E(h,v)/év €

dsw is given by
6_E. - E —di J_E_
dv  \duw TV \a)¥)

— 6E 2
DE-sh= | - ohds

where

and SE
DE-6v=/ P,(——) . Py(6v)d’z.
T2 6'0

~
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Letting E = E o w, we have

6F - §u = DE(Dvdp) = DE(Spon™")
=/ Pz(éé)-Pa(‘Suon")d“w
T’ 6

- [r [132(}1l ‘;f) 0 F] . Pa(8p) dA.

OF 16F
P’(«m) Pz(za—“’)

Writing v = (u, —(div u)y), we have

Thus,

DE .6n = DLE - (Dh-6n) + D,E - (Dv - 87).
Since
Dv-8np=—(8non~t) Vv

and

Dh - 6n = —hdiv (6F o F71),
where 7 = (F,det DF~'y) and dn = (6F, —det (DF~!)div (§ FoF~1)y),
it follows that

éh

=/ ( v(’SE ) F. JF—-(Vu)Twor JF)dA
- oh

DE.5n=-/ (wdw(ap F”‘)+— (6F . F~!. Vu))

Thus,

§E T&E
V(Eh) - (Vu)T2Z o F,

|-

§E
”2(35) =
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and for (h,v) = =(n, n), one has

{E,H}nv) = {E:H} o)

gANCORES: &

8H 16F
——V( h)’z-g;OF}dA

h \ éh
1 r0E . 0H
+A2F(—(Vu) —oF e —oF
+ (Vu )T—oF ‘;EOF)dA

3 1_(6E .\ 6H 1_(§H, \ SE],
-/T: [‘V(E")'E"ZV(E") 5u ]"

6H 0E 6E oH
+L~zh(5u Vu&u u VJ_)dx

3 §H _S6E 6E _SH\ ,
_/Ta(éu VE'E‘VM)d

+/ éH Bu, au, éF &z,
12 h\du; \Bz; ~ 8z; ) 6u;
which is the shallow water bracket.

As the energy for the SW fluid, we take

(3.2)  Esw(F,F) :=% / F-FdA+§ f (det (DF))™ dA,
T2 T2

where the second term (the potential energy) is the pullback of potential
energy (2.3), using the inclusion map i : Dgw — D3. When pulled back
to the Eulerian representation, it can be written as

(3.3) Esw(v,h) = -l—f (hu - u + gh®) d*z.
2 Jpa

4. The SW Poisson bracket as an approximation of the 3-D
bracket.
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4.1. The main results. We assume from now on that the fluid is
contained in a region under a graph. Since the reference height is of
order £, we can describe the domain as 0 < z < h where h is of order
€. Since h is of order ¢, we write it as h = ¢h.

Consider a functional that has the form of a generalized energy
function:

eh
(4.1) F= [rh/o f(V(:c,y))dv+j;‘2 g(eh(z)) d*z.

As we will see later, as ¢ — 0, F' converges, in a sense we have to make
precise, to

(4.2) Fsw = /;, f(V(z,0))eh(z)d’z + _/,;., g(eh(z)) d*z.

The Poisson bracket of two functionals of the form (4.1) leads to
integrals of more general type, so we need to consider functionals
that have the following form involving an integral over the domain
0<y<eh

G’=/oehfl(V(z,y),...,D"V(m,y),...)dv
+ -/T’ a(V(z,eh(z)),...,D*V(z,eh(x)),...,eh(z)) d*z,
and their truncations
Gsw = jp Refi(V(z,0),..., D*V(z,0),...) d%x
+ /T a(V(z,0),...D°V(z,0),...,eh(x)) da.

We need to compare G with Gsw.

We say that G — Gsw belongs to the class O(m,n) or G = Gsw mod
O(m,n) or G — Gsw € O(m,n), if the first and the second integrals
of G — Gsw are, respectively, of order e™ and £", i.e.,

H(V(z,ey),...,D*V(z,ey),...) = i(V(,0),...,D%V(z,0),...)
= 0(5"'-!)’
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and

a(V(z,eh),...,D°V(x,eh),...,eh) — 1 (V(z,0),
..., D%V (z,0),...,eh) = O(c™).

For example, for the energy of the 3-D fluid, we have

E - E,,, € 0(2,00).

The approximation of F' by F,,, is not unique. For example, in Green
and Naghdi (8], the following truncation of the Hamiltonian is used

ch
Fon =[1'=./() f1(u(z,0) — yVu(z,0)) dy =z
+A’ n(V(z,0) d’z,

which is obtained by setting u(z,y) = u(z, 0),v(z,y) = —yVzu(z,0) in
(4.1). This truncation has essentially the same order of approximation
as the shallow water truncation.

QOur main result is

Theorem 4.1. Let F; be two functionals of the form (4.1). Then

{FA, F2}sp = {F1,sw, F2,sw}sw mod O(2,2).

This theorem implies, in particular, that

{F1, F2}ap — {F1,sw, Fa,swlsw = O(e?).

Remark. To include surface tension effects, one has to add terms of
the form

[ k(@) ehe(a)) 2
T2

to the functionals F;. Our Theorem 4.1 remains true for these more
general functionals. To keep the exposition as clear as possible, we do
not include surface tension terms in the derivation of our results.
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There is a dual version of Theorem 4.1 which roughly says that the
embedding A : (u(z), h(z)) = ((u(z), —Vzu(z)y), h(z)) is an almost
Poisson map.

Theorem 4.2. The embedding A is an almost Poisson transforma-
tion, i.e., for F; of the form (4.1),

{Fy0 A, Fy0 A}sw = {F1,F2}spo A+ O(e?).

The proof of Theorem 4.2 is almost the same as that of Theorem 4.1,
so we will only prove Theorem 4.1; we do this in the next subsection.

The following result concerns a type of weak convergence of the 3-D
fluid flow to the shallow water flow. We shall tacitly assume in this
result that one already has proven an existence theorem and that one
can show, at least locally in function space, that the solutions of the
3-D equations remain in a neighborhood on which a given functional F
is bounded and smooth as ¢ = 0. Our approach is consistent with
a common situation in weak convergence in which one first proves
boundedness in a strong sense and then derives convergence in a weak
sense.

Corollary 4.3. Let O, , and Ofy, be the phase flows (the flows on
the Eulerian function spaces) of the 3D fluid and shallow water fluid,
respectively. Then

©3p,. 0 A= Ao Oy +O(e?),
in the sense that for any function F of the form (4.1),
(83p,c 0 A)°F = (Ao B5w)"F + O(e?).
We caution that the constant implicit in the notation o(e?) may depend
on the functional F.

Proof. Let X3p, Xsw be the phase space vector fields generating the
3D fluid and shallow water fluid, respectively. Then, by Theorem 4.2,

$xsw(FoA)={FoAEsw}
= {Fo A,E3po A} + O(e?)
= {F,E3p}o A+ 0(?)
= {$x,,F) 0 A+ O(?).
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Hence,
(4.3) %(F 0@%p,0A-FoAdoBly)| =O0(e2).
t=0

Introduce
F(s, t) = FOGEDJ cAo efgw,
then, from equation (4.3), we obtain

OF(s,t) OF(s,?)
Os ot

Introduce new coordinates u = t + s, v = t — s. Then the above
inequality can be written as

oF o

—a—v- = O(E )
Hence, we have F(0,t) = F(t,0) + O(c®). The lemma now follows.
a

= 0(2).

A word of caution is in order here. We note that the phase flows in
this corollary will lose derivatives when the t-derivative is taken. For
example, the time derivative of initial data of class H* will in general
be only of class H*~! since the governing PDEs are first order in the
spatial variables. However, the chain rule and the equations of motion
in Poisson bracket form can still be applied since the functionals in
question are differentiable in both the H® and the H®~! topologies.
We do note, however, that the terms that are O(¢?) in the statement
depend on the F that is chosen. We presume that results like this can
be strengthened by a more careful analysis of the PDEs in question,
but this was not our goal in the present paper.

4.2, Proof of Theorem 4.1. Let V = (Uh, Uz, Us) be a vector field
over the domain 0 < y < eh(x). By the Hodge decomposition, we have
V = V¢ + Vo, where V} is a divergence-free vector field and ¢ satisfies

9¢

(4.4) Bly=cn =0, By = Us(z,0).

y=0
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Let P. be the map defined by P.(V) = Vg, which is the orthogonal
projection onto the space of divergence-free vector fields tangent to
y=0.

The Hodge decomposition is global in nature in that it depends on
the solution of a Laplacian. However, when ¢ — 0, it becomes local
as it degenerates to the decomposition into horizontal and vertical
components. This is the content of the following result, which will
be proved in the next subsection.

Lemma 4.4. Let V,h be fized, then
IV = Pe(V) = (0,0, Us(x, 0))lco = Ofe)-

Proof of Theorem 4.1. Note that the vorticity is
o T
- 8y 31:2, B:cl 3‘3} ’ 6:02 8.'1:1 )
By Lemma 4.4, we have

i(zen) = (W:'?(:l’ 0 "’fg;’;o),o) +0(e).

Equation (4.2) shows that §Fsw /éu = ¢hdf(u,0)/dz, so
W (‘;F’ JFQ)( Y EY)

(LT =2 aFg sSw (au, Buj) 3F1 sSw
= (ch) ( Ou; \Oz; Or;) Ou; (2,0)

+ O(e).

This shows that the first integral in {F;, F,}3p converges to the
corresponding term in {Fy sw, F2 sw}sw.

Now we consider the second integral in {F}, Fo}3p. By definition,

%(x,eﬁ) VIt eiVoh Voh = -%(z,eﬁ)e(ﬁ),, (z)
(4.5) - %(x, eR)e(R)e, (<)

oF =
+ E(x,sh).
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The last term above can be written, using the fact that §F/8V =
(6F/buy,6F[buy,0F /6v) is divergence-free and that §F/év vanishes at

y=0, as

%(z, eh) = h2 ‘;F (z,0) + O(e?)
=—h(6‘7 0+ i 2,0))
+ O(?).

Hence, equation (4.5) can be written as
i—i(m,eho)\/ 14¢2Vh-Vh= -V, - (eho%) (z,0) + O(e?).

Now by equation (4.2) we compute

and WHusw _ 3%, o>
0Fisw,
S0
SR, R
3 o —(z,eh)V1+e2V.h-V.h

e ()00

This proves the theorem. o

4.3. Projection to the divergence-free vector fields. We now will prove
Lemma 4.4. We first consider the case Us(z,0) = 0. From the Hodge
decomposition, V — P.(V) = V¢, where ¢ satisfies

(4.6) Vip=V.V,

and the boundary conditions (4.4). The main idea of the proof is to
rescale the domain 0 < y < eh(z) to the standard one 0 < y <1 by a
change of variables

K
eh(z)’

I =1, I = 19, y=
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Introduce -
Xy = _3_ - (_h)ﬂi
17 8z, ~ eh? 8y’
7] (h)z, 8
X2 = g0 ek a7y
18
Y = —_——.
ch 8

In the new coordinates, V2 and V can be written as V2 = X2+ X2 +Y?
and V = (X1, X2,Y). Then equation (4.6) can be rewritten as

(4.7) Vi¢g=V.V,

with boundary condition

(4'8) ¢I!7=1 =0, Yl

In what follows we will write the integral fol simply as f , and the
Sobolev norm as

lolles = [ 3 1070+ [ 161

jal=k
Lemma 4.5. Let ¢ be the solution of equation (4.7) with boundary
conditions (4.8), then
l6llsx < CRYEPIIVIIe,  k=0,1,2,3,
where C(h) is a constant only depending on h.

Proof. We first prove the case k = 0. From (4.7) we obtain by
integration by parts,

fv¢-v¢=—]¢v2¢=-j¢V-V,
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so by the Schwarz inequality

fosso=fonvs (fouw) " (fr)"

or
(4.9) [ve-ves [vey,

and

(4.10) [o@rs [veves vy

Since ¢(z,1) =0,

sei=-[ o

By the Schwarz inequality, we obtain

/¢'~’<c/(‘9¢) ~c/h 2(Y()) < C(R)E fv V.

This proves the case k = 0.

Next we estimate the derivatives of ¢. Note that ¢, := 8¢/0z,;
satisfies

9
2 A
(4.11) V1 + Ly = 5—-(VV),
where

= (a1 X1 + a2 X2 + a3Y)¢x + (041\'1 +as Xy + 06Y)¢,

a; are functions of x = (z),z2), and the same boundary conditions
apply as in (4.8).

Equation (4.11) yields

(4.12) [ (Vé1, V1) = (L1, ) = = / ma%(vm.
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Note that
- [wne <5 [avar+c [s+c [iver,

so we obtain from equations (4.12) and (4.9) that

[WmmMscme+/m /ww)<mwmh
Therefore,
(4.13) / (Y (1)) < / (Vé1, V1) < (VI

Since ¢,(x,1) = 0, as in the case of k = 0 we obtain

od\: -
/@g)sammw%.

Using a similar method, we have the same estimate for 8¢/0x>. This
and (4.10) prove the case k = 1.

Now we turn to the case k = 2. We estimate the second derivatives in
a like manner: 8%¢/022,8%¢/8z3: First, by differentiating (4.7) twice
with respect to z,, we obtain an equation similar to equation (4.11) for
¢2 = 8%¢/0x%, and then by the same method as above,

(4.14) Jre? s i,
Then, using the fact ¢2(x,1) = 0, as above we obtain
(4.15) /ﬁSC@ﬂW%m

To complete the proof for the case k = 2, we need to estimate 5%¢/d52.
To do this, we obtain from equation (4.7),

Y2(6) = X bi@) g -+ e (52 ) +d@Y ()
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then by equations (4.10), (4.15) and (4.13), it follows that

Jororse [T (G2 ) +(r(2)) +wor

< CA)IVIfEa,

and hence,

/ (gﬁ) f R (Y*(¢)) < C(h)EIV Il

This completes the proof of the case k = 2.

Finally we prove the case k = 3. First note that from equation (4.7)
we have
Y3(9) + Y XI(¢) +YX3(4) = Y(VV),

then we estimate 8%¢/87° using the same method as in the estimate
of 82¢/07%. Next we estimate 83¢/8z3. Differentiating (4.7) three
times with respect to z;, and repeating the same argument as in
the case £ = 2, we obtain an equation similar to equation (4.11) for
$3 = 8°¢/0z3, and hence we can estimate Y(#3) and hence ¢3. O

Proof of Lemma 4.4. We first consider the case Us(z,0) = 0.
Sobolev’s inequaltiy

llgllc: < CR)Igliaa < C(R)EX||V]las

gives the result in case U3(z,0) =0
We now consider the more general case. Let ¢. be the solution of
V2%¢ = V - V with boundary condition

d
Bly=eh =0, —65 \ = Uz(z,0).
y=

Then ¢, can be written as ¢, = Us(z,0)(y — eh(z)) + ¢2, where ¢ is
the solution of

V22 = V-V = V(Us(z, 0)(y — eh(z))),
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with the boundary condition

22

=0.
ay y=0

¢2|y=:fz =0,

As before, we see that the C!-norm of ¢, is of order O(¢), so

llée — Us(z, 0)(y — eh(z))llc: = Ofe),

and
P.(V)=V -(0,0,Us(z,0)) + O(e). a]
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