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Introduction

The Liapunov-Schmidt procedure is widely used to reduce bifurcation problems
that satisfy appropriate hypotheses to the solution of equations defined on finite-di-
mensional spaces. This procedure has been adapted to systems with symmetry (see
Golubitsky and Schaeffer {1985] Chapter 7 Section 2). As observed in Hale [1969),
the Liapunov-Schmidt procedure is especially effective for finding periodic orbits
arising through Hopf bifurcation and may be adapted to Hopf bifurcation with
symmetry (see Golubitsky, Stewart and Schaeffer [1988] and references therein).

In this paper we observe that the Liapunov-Schmidt procedure preserves addi-
tional structure, of a kind that we call an “implicit constraint”. We show that this
observation can be used to derive several known results (listed below) in a uniform
and simple manner. The constraint is implicit in the sense that it becomes an im-
plicit condition on the Liapunov-Schmidt reduced bifurcation equation. However,
it may be an explicit “system constraint” to begin with, such as the conditions of
having a first integral, being Hamiltonian, or being a gradient.

Implicit constraints can greatly simplify the solution of the Liapunov-Schmidt
reduced equations because of the restrictions they impose on their form. The Hamil-
tonian case is especially well behaved because, under appropriate hypotheses, the
reduced bifurcation equation defines a Hamiltonian vector field. In this sense the
Liapunov-Schmidt procedure performs a Hamiltonian reduction analogous to the
well known “orbit space” reduction method for Hamiltonians with a symmetry
group; see for example Abraham and Marsden [1978].

The paper divides into three main parts:

e In Part I, we set the stage by adding the extra ingredient of a constraint to
the Liapunov-Schmidt procedure for systems with symmetry. We illustrate
how to use this extra ingredient by giving a new proof of the Liapunov center
theorem for systems with a first integral and extending it to an equivariant
context.

e In Part II, we apply the constrained Liapunov-Schmidt procedure to give
a simple and direct determination of the periodic orbit structure of the
Hamiltonian-Hopf bifurcation.

e In Part III, we apply this method to study the bifurcation structure of peri-
odic orbits near a k: £ resonance for both reversible and Hamiltonian systems.

We will give a more detailed introduction to each of the applications and discuss
some of the relevant literature throughout the text.

Acknowledgments We would like to express our sincere thanks to Tom Bridges,
Hans Duistermaat, Vivien Kirk, Victor LeBlanc, James Montaldi, Jan-Cees van
der Meer, Tudor Ratiu, Jiirgen Scheurle, Alan Weinstein, and, in particular, André
Vanderbauwhede, for useful comments and discussions.

Part I The Constrained Liapunov-Schmidt Procedure

1 Introduction

The basic idea of the method is as follows. Particular types of solutions in a
differential equation, such as a fixed point, relative equilibrium, or a periodic orbit,
can be found by determining the zeros of an appropriate map and applying the
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Liapunov-Schmidt procedure. For example, the problem of finding periodic orbits
can be formulated as the search for zeros of a map F(u,7) = 0 near a known
zero, where u is an element of a loop space (a candidate periodic orbit) and 7 is
the perturbed period, an idea that goes back to Hale [1969]. Additionally, F' may
depend on bifurcation parameters ), but we suppress these for the moment. The
Liapunov-Schmidt procedure leads to a reduced bifurcation eguation g(k,7) = 0
defined for k in the kernel of the linearization of the original equation, and the
reduced map ¢ inherits the symmetries of F'. If we are looking for periodic orbits,
then the map F has a natural symmetry group S' representing phase shifts along
the periodic orbits, as well as any other symmetries that may be present in the
original problem.

When the system under consideration has extra structure, we can often encode
this structure in an identity of the form ®(u, 7, F(u, 7)) = 0, for a suitable mapping
®. We call such an identity an implicit constraint (implicit because of the way F
occurs in ®). We show below that an implicit constraint on F imposes a related
implicit constraint on the reduced map g, so that ¢(k,7,g(k,7)) = 0 for a function
 derived from 9.

Our first illustration of the method is an application to the Liapunov center
theorem. Here the extra structure that leads to an implicit constraint is given by
a first integral. The kernel is two-dimensional and is identified with the complex
numbers C; the circle group 8! may be viewed as the unit modulus complex numbers
with its usual action on C; and S'-equivariance implies that g : C x R — C has the
form

g(z,7) = p(|2[*,7)2 + q(|2[?, 7)iz (1.1)

for real-valued functions p and ¢. The first integral condition implies that p and ¢
are related in such a way that p vanishes if ¢ vanishes. Therefore, to find solutions,
it is enough to solve the equation ¢ = 0. As in Hopf bifurcation, it can be shown
that ¢, is nonzero at the origin, so we can solve for zeros by the implicit function
theorem. We remark that this method using the Liapunov-Schmidt procedure to-
gether with symmetries and an implicit constraint avoids the procedure of blowing
up the singularity.

If we make the stronger assumption that the system is Hamiltonian or re-
versible, then it can be proved directly that the function p in (1.1) is identically
zero. In the reversible case, this is seen directly from the fact that the map g inherits
the reversible symmetry structure. In the Hamiltonian case, the implicit constraint
states that the map g is a Hamiltonian vector field (depending parametrically on
7), using the usual symplectic structure on C with the real and imaginary parts
of z as conjugate variables. We use this Hamiltonian structure in place of having
a first integral. In fact, it is easy to see that the map g in (1.1) is Hamiltonian
if and only if p = 0. Vanderbauwhede and van der Mecer [1994] have also proved,
independently and by a different method, that the reduced bifurcation equation
inherits a Hamiltonian structure.

2 Implicit constraints

This section develops the constrained Liapunov-Schmidt procedure. In prac-
tice, a key step is to translate conditions such as having a first integral. being
variational, or being Hamiltonian, into constraints and to pass these constraints to
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the bifurcation equation. We illustrate this procedure in various applications, but
for the moment we concentrate on the abstract formulation.

Let X and Y be Banach spaces and let F: X — Y be a C* map whose zeros
we seek. Assume that F(0) = 0. Let dF denote the (Fréchet) derivative of F
and assume that dF(0) is Fredholm. Let I" be a compact Lie group acting linearly
on both X and Y and suppose that F' is I'-equivariant. We say that there is an
implicit constraint if there is another Banach space W on which I also acts, and a
C*° equivariant map

P XXXY - W
such that
(X, F(X))=0 (2.1)

for all X € X (or in a neighborhood of zero, since the constructions here are local).

For a system of ODEs, the possession of a first integral can be phrased as an
implicit constraint, as we now explain. Consider a system of ODEs on R” of the
form

X = f(X),

and assume that it has a first integral; that is, there exists a function H:R" — R
that is constant along trajectories:

H(X(s)) = H(X(0))

for all solutions X (s). Differentiation with respect to s shows that this condition
is equivalent to

dH(X)- f(X) =0

for all X. Suppose that we are looking for equilibria of this system; that is, looking
for zeros of f. Then we can choose X = Y = R" and define

(X, Y)=dH(X)-Y
and so the condition that H be an integral is equivalent to
‘I)(X,f(X)) =0,

which is an implicit constraint. Looking for equilibria, while conceptually simple,
is an important problem in Hamiltonian bifurcation theory, and this remark lets us
investigate the basic bifurcations (Hamiltonian pitchfork, Hamiltonian saddle node,
etc.). The problem of finding periodic orbits is a bit more subtle, but the basic idea
is similar, as we shall see in the next section.

We now investigate the condition imposed on the bifurcation equation by an
implicit constraint. Since dF(0) is assumed to be Fredholm, K := ker dF(0) has a
[-invariant closed complement M so that X = K@ M. Similarly R := range dF(0)
is closed and has a I'-invariant closed complement A, so that Y = R ® N. Let
P:Y — R denote the projection with kernel A and (locally) define a C> map
w:K — M with w(0) = 0 by solving

PF(k+w)=0 (2.2)

/"«?},)
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for w as a function of k using the implicit function theorem. Uniqueness of the
solution w(k) and invariance of the splitting under I' imply that w is I'-equivariant.
Moreover,

dw(0) = 0. (2.3)

Higher derivatives of w at zero are determined, as usual, by implicit differentiation.
Clearly, solutions of the equation F(X) = 0 are given by X = k + w(k), where k is
a solution of the bifurcation equation

g(k) = (I -P)F(k +w(k)) =0. (2.4)

To see how the extra structure (2.1) affects the bifurcation equation, define ¢ :
K xN — W by

¢k, n) = &(k + w(k),n). (2.5)

Observe that ¢ is I'-equivariant because w and @ are. The derivatives of ¢ at (0,0)
can be calculated in terms of the derivatives of ® and w. From (2.2) and (2.4), we
get

p(k, g(k)) @(k +w(k), (I - P)F(k + w(k)))
O(k + w(k), F(k + w(k))),
0

by (2.1). Thus the implicit constraint
p(k,g(k)) =0 (2.6)

encodes the implications for the bifurcation equation (2.4) of the extra structure in
the original problem. This imposes conditions on the bifurcation equation similar
to those imposed by equivariance. We will see how to deal with such conditions
and how to sometimes make them explicit (for example in the Hamiltonian case)
in the following sections. We begin by showing that this technique gives an easy
and natural proof of the Liapunov center theorem.

3 The Liapunov center theorem

The Liapunov center theorem is one of the classical periodic orbit theorems
for Hamiltonian systems. We give a proof of it that illustrates the method of the
preceding section. We prove it for systems with a first integral, which includes
the Hamiltonian case. In the Hamiltonian case there is additional structure in
the bifurcation equation, but it leads to the same conclusion. As we have indi-
cated, this extra structure states that the map g is a Hamiltonian vector field, a
methodology we shall deal with shortly. Expositions of the Liapunov center the-
orem are found in, for example, Kelley [1967] and Abraham and Marsden [1978,
pages 496-499); the latter giving a proof based on blowing up the singularity due
to Duistermaat. We also note the approach of Alexander and Yorke [1978] (sce
also Schmidt [1976a,b]) which links the Liapunov center theorem with the Hopf
bifurcation. See also the proof in Vanderbauwhede [1982b]. In addition, Liapunov
center theorems for reversible systems can be found in Vanderbauwhede [1982a],
Sevryuk [1986] and Golubitsky, Krupa and Lim [1991].

Let f be a C> vector field on a C> manifold M. Assume:
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(H1) X, is a fixed point of the system, that is, f(Xp) = 0.

(H2) The linearization Ag = df(Xg) has simple eigenvalues +wypi, and
kwyi is not an eigenvalue for k = 0,2,3,.... Let V denote the
eigenspace associated to the eigenvalues twys.

(H3) The vector field f has a C> first integral H: M — R (that is,
dH(X) - f(X) = 0) with the following two properties:
(a) dH(Xo)|V = 0;
(b) d*H{Xo)|V is nondegenerate.

Theorem 3.1 Under conditions (H1)-(H3) there is a one-parameter family of
periodic orbits in a neighborhood of Xo with periods close to 2m/wy. They locally
fill out an invariant C* manifold of dimension two that is tangent to V at Xp.

Proof Rescaling time, we can assume that wy = 1. Passing to a coordinate
chart in M we can assume that M = R", since the theorem, while intrinsic for
manifolds, is local. Let C}, be the space of C* maps u:S' — R" and let C3, be the
space of C® maps v:8' — R™. Define

F:C), xR—CY.
by

Flu,7r)=(1+ T)% - f(u). (3.1)

The map F is C* by the ‘Q-lemma’: see, for example, Abraham, Marsden and
Ratiu [1988], Section 2.4.

The group S' acts on Y = C, by (8- v)(s) = v(s + 6) and similarly on CJ, .
Further, S! acts on X = C}, x R with trivial action on R. With these actions, F is
S!l-equivariant.

The derivative of F at u = X, is L, where

Lv = dF(Xy,0)-v = v' — Agv. (3.2)
By (H2),
kerL = span {Re(e'*v), Im(e**vp)}
= {Re(ze**v) | z € C}
where Agup = 4vp. Thus we can identify the kernel of dF(Xo,0) with C via the
map z — Re(ze**vp).

Choose orthonormal coordinates on R” so that the first two coordinates, when
complexified, span the eigenspace corresponding to eigenvalues +i and that on this

space we have
o 1
n=[ 5 1]

The components of the (complex) vector vy are (1,4,0,...,0). Differentiating the
conservation condition dH(X)- f(X) = 0 twice with respect to X and evaluating at
X = Xo shows that the matrices representing Ay and d>H(X,) commute. A 2 x 2
matrix calculation shows that on the kernel, the matrix representing d2H(X,) is a
nonzero multiple of the identity, say d° H(Xo) = pl.
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Now we use the Fredholm alternative relative to the L? inner product obtained
by integrating the standard inner product on R”. Let M = rangeL® be the
orthogonal complement of X = ker L, and let A’ = ker L* be the orthogonal
complement to R = range L. Notice that L*v = —v' — Ajv. It is important to
be careful with this splitting, because L and L* are differential operators and a
derivative is lost. However these operators are in fact elliptic, so this causes no
difficulties: see Golubitsky and Schaeffer {1985], p. 332 for details.

The Liapunov-Schmidt procedure with constraints, as described in the preced-
ing section, may be applied. This procedure gives a bifurcation equation

g CxR—-C.
Being S'-equivariant, g has the form

9(z,7) = p(|2I*. 7)z + q(|2]*, T)iz; (3.3)

see Golubitsky and Schaeffer [1985], p. 344. Note that p(0,0) = 0 and ¢(0,0) =
0 since the linear terms vanish in any Liapunov-Schmidt reduced map. In the
reversible case p = 0 identically, so it suffices to solve the equation ¢ = 0. We now
show that a similar approach works for systems with a first integral; more precisely,
we can use the first integral to show below that g = 0 implies p = 0.

In the case of Hamiltonian systems, our general results below will show that the
map g is a Hamiltonian vector field on C. Since any Hamiltonian vector field on C
has the form f(z) = —2i8H /% for some real valued function H(z, Z), it follows that
g is purely imaginary, and hence p = 0 identically (see Bridges [1990] for another
argument along these lines). In this respect, the Hamiltonian and reversible cases
are similar, as is well known. The resemblance is less close in other situations; see
Roberts and Quispel [1992].

The calculation in Golubitsky and Schaeffer [1985], pp. 344-349, shows that

¢-(0,0) = —1.

Thus, we can solve ¢ = 0 for 7 = 7(|z|?). We claim that this automatically
defines the required manifold of periodic orbits. To prove this, we must show
that 7 = 7(|z|?) implies p = 0 for z small. To do this we use the implicit constraint
afforded by the first integral. Define

P XxY—-R
by
27
d((u,7),v) = dH(u(s)) - v(s)ds. (3.4)
0
Note that
2% du ,
o((u,7), Flu, 7)) = A dH(u(s)) - [(1 +T)£ - f(u(s))] ds (3.5)

2 2m
Q +'r)/0 %H(u(s))ds —/0 dH (u(s)) - f(u(s))ds.

The first term in (3.5) vanishes since H(x(27)) — H(u(0)) = 0 by the periodicity of
u, while the integrand in the second term vanishes pointwise because H is a first
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integral of f as in (H3). Thus (2.1) holds, so the bifurcation equation satisfies (2.6).
In other words,
p((z,7).9(z,7)) =0,
so that
®(z + w(z,7),7,9(2,7)) =0,

whence
2n

dH(u.(s))-g{(z,7)ds = 0.

Here u.(s) is the element of X = C}, corresponding to the implicitly defined
function z + w(z,7) and so has the form Re(ze'*vy) + O(|2]?), and g(z) =: ¢ =
p(|z1>,7)z + q(|z|?, T)iz. We regard ¢ as an element of )’ by the identification

¢ — Re(Ce'vy) (3.6)

where v is the eigenvector for Aj, that is, Ajvg = —ivg. The first two components
of vy and v are the same.
Choose T = 7(|z|?) so that ¢ = 0 as above. Then

2
0 = p(|z|, 7(|2*)) /0 dH(Re(ze** vy + O(|2]%))) - Re(ze™* v )ds. (3.7)

We show that the second factor (that is, the integral term) is nonzero for small |z|.
To do so let z = r be real and let

2m

U(r) = | dH(Re(re*vy + O(r?))) - Re(e™ v )ds.
Note that ¥(0) = 0 and that
¥'(0) = /0 " #H(0) - (Re(e**v0). Re(ug))ds.
By the choice of inner product,
¥(0) = s /0 ¥ (Re("* ), Re(e™*u2)))ds = 2ms

and so ¥(r) # 0 for r > 0 and small. Identity (3.7) now implies that p(|z|2, 7(|z|?)) =
0 for z small.

The smoothness of the manifold of periodic orbits follows from the smoothness
of 7(|z|?), which is guaranteed by the implicit function theorem. (3

4 An equivariant Liapunov center theorem

The proof of the Liapunov center theorem given in the previous section auto-
matically produces an analogous equivariant theorem, whose hypotheses we now
explain.

Let I' C O(n) be a group acting in the usual way on R". Assume that the
vector field f:R" — R" is I'-equivariant and that

(El} f(Xo) = 0 where X is fized by T.
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As before, let Ag = df(Xy) and observe that I'-equivariance of f implies that Ao
commutes with I'. It follows that eigenspaces of Ay are [-invariant. In particular,
eigenvalues of high multiplicity may be expected. Our second assumption is the
following.

(E2a) The eigenvalues of Ag include twyi, and kwyi is not an eigen-
value for k = 0,2,3....

Let V denote the generalized eigenspace associated to the eigenvalues fuwyi. We
replace the previous assumption that the eigenvalues +wyi are simple by requiring
V to be I'-simple. This notion is the -equivariant version of simple eigenvalues
(see Golubitsky, Stewart and Schaeffer [1988]) and is defined as follows:

Definition 4.1 The action of the group I on V is said to be I'-simple if either
(a) V=W oW and T acts absolutely irreducibly on W, or

(b) T acts irreducibly, but not absolutely irreducibly, on V.
Our next assumption is the following:
(E2b) T acts I-simply on V.

There is an action of S' on V induced by the one-parameter group exp(sA7).
Since Ay commutes with I, so does this action of S'. Thus, we have a well defined
action of I' x 8! on V. We now determine families of periodic solutions by looking
for their symmetries. This involves two more conditions, as follows:

(E3a) Let ¥ C T' x S' be an isotropy subgroup of the action of
' xS! on V. Assume that dim Fixy(Z) = 2.

(E3b)  f has a C* first integral H :R®™ — R such that
(i) dH(Xo)| Fixy(Z) =0;
(ii) d®H(Xy)| Fixy (Z) is nondegenerate.

To state the main theorem, we define what is meant by the symmetry of a
periodic solution. An element ¢ = (7,68) € T x S' is called a symmetry of a 2x-
periodic function X (t) if vX(t) = X(t — 0). That is, the periodic orbit is preserved
as a set by v; uniqueness of solutions to ordinary differential equations guarantees
the existence of a unique 8.

We may now prove an equivariant version of the Liapunov center theorem:

Theorem 4.2 Under conditions (E1)~(E3), there is a one-parameter family
of periodic orbils in e neighborhood of Xo with £ symmetry and periods close to
o97/wo. They locally fill out an invariant C>* manifold of dimension two that is
tangent to Fixy (Z) at Xy.

Proof Usc the same Liapunov-Schmidt reduction technique as in the preced-
ing section, and observe that the reduced map g is I" x S'-equivariant, where the
S!-action induced by phase shift is identical to the S'-action induced by Ag. Equiv-
ariance implies that g: Fixy(Z) x R — Fixy (Z) has the form (3.3). Using (E3a)
we can identify Fixy (£) with C. Now proceed as in the proof of Theorem 3.1. O

Remark 4.3 It is also possible to prove this equivariant version of the Lia-
punov center theorem by using the trick of adding dissipation to the Hopf theorem;
see Golubitsky, Stewart and Schaeffer [1988], Exercise 4.4, p. 283.
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5 Remarks and generalizations

The entire machinery of finding two-dimensional fixed-point subspaces in I'-
equivariant Hopf bifurcation can now be applied to finding periodic solutions
in systems with first integrals. For example, in O(2)-equivariant systems
with dim V' = 4, Theorem 4.2 produces both rotating and standing waves.

As noted in Golubitsky and Stewart [1993], there are surprising group-
theoretic conditions restricting those I’ that can produce two-dimensional
fixed-point subspaces. Let mp : I' x 8' — T be the projection and let
H = mp(X). Note that H is isomorphic to £. Let K = (I'x {0})NZ. Indeed,
we can think of £ as a twisted subgroup of T' x 8'; that is, uniqueness of
solutions guarantees the existence of a group homomorphism 6 : H — S!
such that (v,8(y)) € X for all ¥ € H. Note that K = ker#, from which it
follows that K is normal in H and H/K is isomorphic to a Lie subgroup of
S' and hence is either cyclic or S'. Tn any case H/K is abelian. The fol-
lowing theorem is proved in Golubitsky and Stewart [1993): If there is any
representation V in which ¥ has o two-dimensional fired-point subspace,
then H/K is a mazimal abelian subgroup of Np(K)/K where Ny-(K) is the
normalizer of K in I,

In the case of a Hamiltonian system with symmetry group G, the method
of the preceding section may be applied to the new Hamiltonian system
obtained by symplectically reducing by the continuous part of a symplectic
group action (namely, by the connected component of the identity of G) at
a regular value of the momentum map. (See, for example, Marsden [1992]
for the general set-up. The case of a singular value of the momentum map
is very interesting and the above ideas would need to be modified to cover
it. It is probable that a symplectic slice theorem will be useful for this
situation.) After reduction by the continuous group, one is in general left
with a discrete symmetry group, which can be used for the group T in the
above result. The application of the Liapunov center theorem to the reduced
problem will produce relative equilibria, so that one will get relative periodic
orbits (often tori) in the original space.

Montaldi, Roberts and Stewart [1988] deduce Theorem 4.2 from an equiv-
ariant version of the Weinstein-Moser theorem — see their Remark 1.2(b).
However, they do not give the proof of local smoothness of the manifold in
any detail.

First integrals coupled with Liapunov-Schmidt reduction can be used to
recover the periodic solutions found in the zero eigenvalue bifurcations stud-
ied in Golubitsky and Stewart [1987]. The advantage of the approach of the
present paper is that these families of periodic solutions will exist even when
the Hamiltonian has many degrees of freedom. A similar conclusion can be
obtained using the splitting lemma.

The existence of integrals in the Liapunov-Schmidt reduction works in finite
differentiability since the proof depends only on the standard implicit func-
tion theorem. Proofs of results like the Liapunov center theorem in finite
differentiability can be based on a finite differentiability version of (3.3),
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(8)

(h)

which we have not derived. (A related approach may be found in Vander-
bauwhede [1990].) It is clear that if the original vector field is of class C2¢+!
then the invariant functions p and ¢ will be only of class C*. (See, for
example, Abraham, Marsden and Ratiu [1988] Section 2.4 for this type of
argument.) This information is sufficient to prove the existence of the man-
ifold of periodic solutions in the Liapunov center theorem, but some care is
needed to determine the exact degree of differentiability of that manifold.

As mentioned, possession of a first integral is just one kind of extra structure
that a system may have. Of course, symmetry provides extra structure, but
this can be exploited directly: the symmetry of the system transfers to the
bifurcation equation. In Remark (i) we show how to formulate the condition
of being Hamiltonian as an implicit constraint. In the next section we show
how, in some cases, this implicit constraint can be recast into the condition
that g is Hamiltonian and use this observation to lay the foundation for an
approach to finding periodic solutions of Hamiltonian systems.

The condition of being a gradient system can also be formulated as an im-
plicit constraint. Suppose that we seek equilibria of a gradient system on
R™ (or more generally on a Riemannian manifold), say

T = Vh(x).

We use the standard inner product on R" denoted (, ), and use it to identify
R™ with its dual space. We seek zcros of the map F(z) = Vh(z), assuming,
as usual that F(0) = 0. In this case, the linearized operator L = dF(0)
is self-adjoint, so the splitting in the domain and range space are identical,
namely R" = ker L & rangeL. Let X = R", ¥ = R" and W = R. Define
the map

P:XxY-W
by

O(z,y) - u = (y.u) — dh(z) - u.

The implicit constraint

®(z, F(z)) =0

holds. The condition imposed on the bifurcation equation is
0 = @(k,g(k)) - v = (g(k), u) — dh(k + w(k)) - u.
However, by.definition-of the implicit function w, we have
dh(k + w(k)) - (dw(k)-u) = (Vh(k+ w(k)), (dw(k) - u))
(Vh(k + w(k)), P(dw(k) - u))
(PVh{k + w(k)), (dw(k) - u))
0.

Therefore, the implicit constraint can be written as
0 = p(k,g(k)) - u = (g(k), u) — dh(k + w(k)) - (u + dw(k) - u).
By the chain rule, we can rewrite this as

0 = (g(k),u) — dh(k) - u
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where A(k) = h(k + w(k)), so that g is a gradient field, which recovers a
result of Rabinowitz [1977).

(i) We can modify the above example to find equilibria of a Hamiltonian system,
by replacing the inner product by the symplectic structure. By definition a
Hamiltonian vector field X on a symplectic vector space (V, ) satisfies

QX (2),u) =dH(z) - u.

Let F(z) = Xy(z), and choose X =V, Y =V and W = V", the dual space.
Define the map
P:XxY-W
by
®(z,y) - u=Qy,u) —dH(2) - u.

Again the bifurcation equation inherits an implicit constraint reflecting the
Hamiltonian condition. In fact, as we shall see in the next section, under
appropriate hypotheses that play the role of the self-adjointness in the pre-
ceding example, the map g will be a Hamiltonian vector field. This way of
phrasing the implicit constraint will play an important role in what follows.

6 The Hamiltonian constraint

We begin this section by amplifying the remark at the end of the last section
and then we consider the problem of the existence of periodic orbits for Hamiltonian
systems (possibly with symmetry) near equilibria.

6.1 Conditions for the bifurcation map to be Hamiltonian Let V be a
symplectic vector space (possibly infinite-dimensional) with symplectic form Q and
let F:V x A — V be a Hamiltonian vector field with Hamiltonian H:V x A — R.
Here, A denotes a space of parameters that we will, as usual, suppress for the
moment.

Assume, as in the general Liapunov-Schmidt procedure, that F(0) = 0. Let
L:V — V be the linearization of F at the origin. Recall that the generalized
kernel of L is a symplectic subspace of V. (See Golubitsky and Stewart [1987], for
example.) As is well known, and is easy to check, the operator L is Hamiltonian
with Hamiltonian the quadratic form associated with d® H(0), the second derivative
of H at the origin. It follows that L* is also Hamiltonian with Hamiltonian the
quadratic form associated to Jd® H(0)J*. Another way to express the fact that L
is Hamiltonian is to say that L is Q-skew: Q(Lu,v) = —Q(u, Lv) for all u,v € V.

Assume that

Qu, v) = {Ju,v)

where J:V — V is a complex structure and where {(,}) is a real inner product on
V. This is the standard relation between complex and symplectic structures (see,
for example, Abraham and Marsden [1978].) In these terms, the skew symmetry of
L reads

{JLu,vY) = - {Ju, Lo}

A check of the definitions shows that J(ker L) = ker L*. That is, the complex
structure maps the kernel of L to that of L*. To show this, let « € ker L. To show
that Ju € ker L* we write, for any v € V,

{L* Ju,v) = {Ju, Le)) = — (JLu,v) = 0.
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Thus, L* Ju = 0, as we claimed.

Consistent with the notation in the general Liapunov-Schmidt procedure, let
K=%ker L, N=ker L* , R = rangeL and M = rangeL*. A main hypotheses
that will be appropriate for the Liapunov center theorem and resonance bifurcations
is as follows:

(S) The complex structure J leaves ker L invariant: ker L = ker L*.

The formula relating € and J shows that if a subspace W C V is invariant under
J, then it is automatically symplectic. Conversely, if it is symplectic, then writing
V =W @ W where W% is the Q orthogonal complement of W, and choosing an
associated inner product and complex structure on each summand, one sees that
it is possible to choose the inner product and complex structure on V so that W
is invariant under J. Because of this remark, we see that the above assumption is
automatic if the kernel of L equals the generalized kernel (and, if necessary, the inner
product and the complex structure are adjusted). In this sense, the assumption is
akin to a semisimplicity assumption.

Proposition 8.1 Under hypothesis (S), the spaces R and N as well as the
spaces K and M are Q orthogonal complements.

Proof By (S), the kernels of L and L* are identical. It follows that the ranges
are identical as well. If v = Lu and if Ly = 0, then

Qv,y) = (Jo, ) = = {Lu, Jy)) = {u, L"Jy) =0

since, by hypothesis, Jy is in the kernel of L, that is, in the kernel of L*. The
proposition now follows. [J

Hypothesis (S) implies that the mapping g maps K — K. With the above
assumption, it therefore makes sense to think of g as a vector field on the symplectic
vector space K. We now make a simple but crucial observation:

Theorem 6.2 Under assumption (S), the map g is a Hamiltonian vector field
with Hamiltonian h(k) = H(k + w(k)). Moreover, g and the function h have the
same tnvariance properties as the given Hamiltonian H.

Proof Let k; € K and recall that g(k) = (I — P)F(k + w(k)). Use the fact
that Dw(k) - k) € M and the fact that PF(k + w(k)) = 0 is the defining property
of the implicit function w and Proposition 6.1 to verify

Qg(k), k1) = Qg(k),dw(k) - ki + k1)
= QUF(k+ wk)),dw(k) -k + k).

Since F' is Hamiltonian, we can use the chain rule to write the last expression as
dH(k + w(k)) - (dw(k) - ky + k) = dh(k) - k;.

Thus, g is a Hamiltonian vector field with Hamiltonian function h. Invariance
properties follow in the usual way from uniqueness, assuming that the group action
preserves the symplectic form and the complex structure. [

In particular, in this case we have reformulated the problem to one of searching
for equilibria of a Hamiltonian vector field defined on the kernel. In what follows, we



94 M. Golubitsky, J.E. Marsden, I. Stewart and M. Dellnitz

will show how to also use this result for finding periodic orbits by casting the prob-
lem into one of finding the equilibria of an infinite-dimensional Hamiltonian system
on loop space. See Vanderbauwhede and van der Meer [1994] for an alternative
discussion of the Hamiltonian structure of the bifurcation equations.

6.2 Periodic orbits and the loop space We start with a Hamiltonian
system z = Xy(z) on a symplectic vector space (E,w). As we have noted before,
eventually H will also depend on a bifurcation parameter. (We will be assuming
that the space E is finite-dimensional for simplicity, but in principle the methods
that we outline here will apply to infinite-dimensional problems too; however, as
is known, the resonance assumptions that are necessary in the infinite-dimensional
case are severe using these methods.) We will be applying the above theorem not to
this Hamiltonian system, but to an associated Hamiltonian system on loop space,
to be described below. The point of view of using the loop space was used by
Weinstein in one approach to the Weinstein-Moser theorem (see Weinstein [1978])
and it is also related to the method used by Bridges [1990].

We may assume that £ = C" and that w is in canonical form, that is, w is the
skew-symmetric bilinear form given by

u)(Zl, 22) = —2Im (Z] N 22) . (61)

The factor of —2 is of course conventional and corresponds to the standard choice
of symplectic structure. Also, the inner product here stands for the standard Her-
mitian inner product.

Introduce the loop space C, of C! maps 8' — E and let C3, be the corre-
sponding space of C" maps. As in Section 3, define

F:C), xR—CY,
by

) du

'(E - f(u)7

where f = Xy. The Liapunov-Schmidt procedure is now applied to the map F'.
Since the vector field f = Xy is Hamiltonian, the identity

Flu,r)=(1+7)

w(Xp(u),v)=dH(u) v
holds for all v € R?". Define the map
(I):C'.llw X R X Cg‘ﬂ’ - [CQIW]‘

by

P(u.T,v)- U = /~ {w (v -(1+ T)%,U) + dH(u) - U} ds. (6.2)
0
The implicit constraint
O(u, 7, Flu, 7)) =0 (6.3)

is a restatement of the condition that the vector field f is Hamiltonian with Hamil-
tonian function H. This condition can also be rephrased as saying that the map
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F, regarded as a (parameter-dependent) vector field on CJ_, is Hamiltonian with
respect to the weak symplectic form

Qu,v) = — / " w(u(s), v(s)) ds, (6.4)
27r 0
and with the Hamiltonian function
1 (1 du
M) = 5 /0 {éw ((1 + T)g,u) - H(u)} ds. (6.5)

We can also put a real inner product and a complex structure on loop space by av-
eraging the corresponding objects on E around loops, as we did with the symplectic
structure.

In this approach, we take the symplectic vector space to which the general
theory is to be applied to be the loop space V = C2,.. Of course, there is the usual
derivative loss, so the vector field F is really only defined on the dense subspace
C3.. Moreover, the real inner product with respect to which adjoints are taken is
an L? inner product and so V is not complete. In addition, the symplectic form
is only a weak symplectic form. However, as in Weinstein [1978] and Chernoff and
Marsden [1974], while these are important technicalities, they are easily taken care
of using ellipticity; they are similar to the technicalities that occur in this approach
to the Hopf bifurcation (as we mentioned before, the reader can consult Golubitsky
and Schaeffer [1985], p. 332 for additional information).

Theorem 6.2 shows that if the kernel of the linearized equations is symplectic
and arranged to be invariant under the complex structure, then thé bifurcation
equation will be a Hamiltonian vector field. To be able to apply this, we need to
do two things. First, we need to calculate the linearized equations and second, we
need to calculate the induced symplectic structure on the kernel of the linearization
and check that it is nondegenerate. In the remainder of this section we shall show
how to do this for the Liapunov center theorem and later we shall show how to
implement it for the case of resonance bifurcations.

6.3 The Hamiltonian Liapunov center theorem Now we apply the Hamil-
tonian version of the Liapunov-Schmidt procedure developed above to the case of
the Hamiltonian Liapunov center theorem. As in (3.2) the linearization

L:Cf,.. — Cgo,,
is r
v
Lv = — - Agv,
v ds oV,

where Ay = df(0). Since the linear map L is Fredholm of index zero we may use
the L2-orthogonal splittings
C3, = Ko rangelL’
Cy. = rangeL®N
where K = ker L and N = ker L. The Liapunov-Schmidt reduced map obtained
from F is
g K xR—-N.

Next, we compute the kernel of L under the given eigenvalue assumptions. First
of all, note that the real eigenspace of Ay corresponding to eigenvalues +i (with



96 M. Golubitsky, J.E. Marsden, I. Stewart and M. Dellnitz

the frequency set equal to one, as before) is of real dimension two and is coincident
with the generalized eigenspace since the eigenvalues are assumed to be simple.
Thus, this space is symplectic. (As before, see, for example, Golubitsky and Stew-
art [1987] for a discussion of this Williamson type of result.) We can choose the
complex structure on E so that this eigenspace is the one complex dimensional
space corresponding to the eigenvalue i and that the operator Ay is given by mul-
tiplication by i on this space. We can also assume that the other eigenspaces are
w-orthogonal to it. We can now realize E as C" with this eigenspace given by
the first factor. Thus, in this complex representation, the complex ecigenspace with
eigenvalue i (i.e., the two-dimensional real eigenspace corresponding to eigenvalues
+i) is given by the first component. Let vg = (1,0,... ,0) denote this eigenvector.

The kernel of L was given previously in real terms, but in complex terms, it is
simply the two-dimensional subspace of the loop space given by the set of all loops
of the form

u(s) = €2y

for arbitrary complex z. This space is clearly invariant under the complex structure
on loop space that was described earlier. Also, we see explicitly that this space is
symplectic by noting that its symplectic structure is given, using self explanatory
notation, by

1 2w ) )
— w(e'* z v, €'° 221)
2w 0

1 2

Q(vy, v2)

—_ -2Im (e’ z v, €250
27|' 0

= =2Imz;2,.
In other words, the symplectic structure on the kernel of L, after identification with
C, is the standard one. Thus, the general theory applies to show that the map g

that occurs in the bifurcation equation g = 0 is indeed a Hamiltonian vector field.
Recall from (3.3) that due to S'-equivariance, the bifurcation map has the form

g CxR—-C
where
g(z.7) =pz + qiz, (6.6)
and p and q are real valued functions of |z|? and 7. In Section 3 we used (3.4) to

show that p vanishes whenever ¢ vanishes. However, in the present case, knowing
that g is Hamiltonian implies that it has the form

g(z) = —21'&-

for a real valued function H of (z.z). In particular, g is purely imaginary, and so
we have the identity p = 0.
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6.4 Conditions imposed on the bifurcation equation In this subsection
we consider the situation when the hypothesis (S) might fail for the linearization.
This will be needed in the next section when we search for periodic orbits in the
Hamiltonian Hopf bifurcation. In this case, we still have an implicit constraint as
is guaranteed by the general theory described earlier. To do this, we return to the
implicit constraint on loop space, condition (6.3), but we do not necessarily assume
hypothesis (S).

As in (3.2) the linearization

L:Ch, — Y,

is

dv
Ly = E - A()U,

where Ay = df(0). Since the linear map L is Fredholm of index zero (we showed
above that in general the kernel and the cokernel of L are isomorphic, and so have
the same dimension), we may use the splittings

C), = K& rangel”

Cy. = rangelLoN

where K = ker L and N = ker L*. The Liapunov-Schmidt reduced map obtained
from F is

g KxR—-N.

We use (6.3) to determine a condition that is independent of the implicit func-
tion w used to define g. For this purpose we choose the function U in (6.3) to be
du/ds. With this choice it is clear that the last term in (6.3) vanishes, since it is
the s-derivative of H(u(s)) and u is periodic. It is also obvious that the term

w((1 + 7)du/ds, du/ds)

2m du
V(u, T, v) —/0 w (d_s’v) ds

is an implicit constraint for F. Setting u = k + w(k, 7) we obtain the identity

_fF fdk dw )
‘([)(k.,T) = '/: W (E + E,g(k,?’)) =0

from the induced implicit constraint on g.

is zero. Thus,

Lemma 6.3 We have
2% 2
/ w(L*v,V)ds = —/ w(v, L"V)ds, (6.7)
0 0
forall v,V €C)..
Proof Recall that

v
Lv = —‘fi—s — AV
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Since v and V are periodic, integration by parts yields
27
dv N
_/0 {w (v,—-‘g -A(,V)}ds
2w du
— -_ hand o /
‘/(; {w (ds’v) + w(v, —AgV )}ds.

Earlier we showed that both Ay and Aj, are Hamiltonian vector fields. This implies
in particular that:

27
/ w(v, L'V)ds
4}

w(v, AJV) = —w(Ajv, V).

27
dv .
/0 w (E + Agv, V) ds

277
- / w(L v, V)ds,
0

This shows that

2
/ {w (d—v,V) +w(v,—A5V)}ds
0 ds

as desired. O

Since dw/ds € range L* and g € ker L*, this lemma establishes the symplectic

orthogonality condition
2
dw
[; w ('(—i';,g(k,T)) =0

Theorem 6.4 The bifurcation mapping g satisfies the implicit constraini

This proves the following:

Wik, ) = /0 " (‘;—’; g(k,T)) =0 (6.8)

Part II Hamiltonian-Hopf Bifurcations
7 Introduction

A Hamiltonian-Hopf bifurcation occurs in a Hamiltonian system of ODEs when,
as a parameter A in the Hamiltonian is varied, two pairs of simple purely imagi-
nary eigenvalues of the Jacobian at an equilibrium collide and form a quadruplet
of complex eigenvalues. The splitting of eigenvalues into the complex plane forces
the critical purely imaginary eigenvalues to be geometrically simple (though alge-
braically double). The Hamiltonian Hopf bifurcation has a long history that we
shall not attempt to survey here. We refer to Meyer and Schmidt [1971], Abraham
and Marsden [1978] and Arnol'd [1988] for discussions and some references. We
discuss some of the relevant literature in the introduction to Part ITL

Van der Meer [1985] studied this bifurcation and, through the application of
normal form theory and singularity theory developed for the purpose, was able
to classify the periodic solutions that are spawned by this resonance. Bridges
[1990] showed that the periodic solutions in a Hamiltonian-Hopf bifurcation can be
obtained using Z, singularity theory with a distinguished parameter as developed
in Golubitsky and Langford [1981]. In this Part we show that Bridges’s results can
be recovered as an example of the use of implicit constraints. We summarize the
advantages of this approach.
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o No discussion of the effects of the tails of Taylor series — such as occurs in
all normal form analyses — need be given.

o The proof works equally easily for 2n-dimensional systems as for four-dimen-
sional systems. This fact may allow eventually the derivation of a formula
describing the alternatives in the Hamiltonian-Hopf bifurcation such as now
exists for Hopf bifurcation.

The disadvantages of this approach are summarized by:

o The issue of the linearized stability of the periodic solutions is not addressed
(though a strengthening of the reduction technique such as occurs in the
analysis of Hopf bifurcation, see Golubitsky, Stewart and Schaeffer [1988]
Chapter XVI Section 6, might be able to recover this information).

e Dynamics other than periodic solutions — such as the existence of invariant
tori — are not discussed. Again, we feel that this can be achieved with
additional effort.

After rescaling we can assume that the critical eigenvalues are at +i. We use the
Liapunov-Schmidt procedure for finding periodic solutions that are approximately
2n-periodic. As we will show, the assumption that the eigenvalues are geometrically
simple permits a reduction of the problem of finding 27-periodic solutions to one
of solving an equation of the form

™ g(z,A,7) =0

where
g CxRxR—-C.

As in the proof of the Liapunov center theorem, S' phase-shift symmetry on 27-
periodic functions implies that g is S!.equivariant. Equivariance in turn guarantees
that

gz, A, 7) = p(z®, A, T)z + q(2?, A, T)iz,

where p and q are real-valued functions. Solving g = 0 for nonzero solutions reduces
to solving the pair of equations p = ¢ = 0. Asin Bridges [1990] we will show that the
S'-invariant function ¢ vanishes identically. (Note the difference with the Liapunov
center theorem where p vanishes identically.) Thus the problem of finding periodic
solutions in the original system of ODEs reduces, near a point whcre a Hamiltonian-
Hopf bifurcation occurs, to finding solutions of

p(z®, A, Tz =0. (7.1)

As van der Meer notes, the solutions to (7.1) are most easily found by swapping
the roles of A and 7; that is, think of the perturbed period parameter 7 as the
bifurcation parameter and the system parameter A as the unfolding parameter.
The main technical result of this Part is the verification of the following:

Theorem 7.1
(a) p(0,0,0)=0, p-(0,0,0)=0, p.-(0,0,0)>0.

(b) Generically px(0,0,0) and p;2(0,0,0) are nonzero.

KW\
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A<0

A=0 @

A<0

Figure 1 (z?2 + 72+ X)x =0.

Theorem 7.1 shows that solving (7.1) is equivalent to solving the (singularity
theory) normal form equation:

(£2? £ A+ 72z =0. (7.2)

The bifurcation diagrams associated with these solutions are given in Figures 1 and
2. Note that when A < 0 — which corresponds to the eigenvalues of the Jacobian
being purely imaginary — there are two branches of periodic solutions emanating
from the trivial equilibrium. These solutions are just the ones guaranteed by the
Liapunov center theorem.

We end this introduction by discussing the structure of Part II. In the next sec-
tion we discuss the linear algebra associated with a Hamiltonian-Hopf bifurcation.
In Section 9 we introduce the generalities of the Liapunov-Schmidt reduction while
in Section 10 we show how the Hamiltonian implicit constraint allow us to conclude
that the function q is a multiple of p and that it even has to vanish identically. In
Section 11 we prove Theorem 7.1 and in the last section we use singularity theory
to derive (7.2).

8 The general setting

Let H:R*" x R — R be a Hamiltonian parametrized by a system parameter A,
and let

dX
ds

be the corresponding Hamiltonian system of ODEs. We assume that at A = Ag the
svstem (8.1) undergoes a Hamiltonian-Hopf bifurcation at the equilibrium X = Xj,.
We simiplifv notation by setting Xy = 0 and Ay = 0. Thus

£(0.0) = dH(0.0) = 0. -

= f(X,A) (8.1)
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A<0

Figure 2 (—z? + 2 + A)z = 0.

In a Hamiltonian-Hopf bifurcation two pairs of simple purely imaginary eigenvalues
collide on the imaginary axis as A is varied. Generically, after the collision, the
critical eigenvalues form a quadruplet of eigenvalues in the complex plane. Indeed,
generically at criticality, the generalized eigenspace V' corresponding to the critical
eigenvalues is a four-dimensional subspace of R*" on which

Ap = df(0,0)

is nilpotent and has double purely imaginary eigenvalues +iw. We rescale time in
(8.1) and assume that

wg = 1.
Nilpotency implies that Ay has a two-dimensional invariant subspace
Vo = ker(A2 + 1),

and a complementary two-dimensional subspace V; mapped isomorphically onto Vj
by A3+ 1.

The linear map Ag|V has a normal form that can be described by choosing an
appropriate basis, as follows. Choose v;,v2 such that

Vo = R{v). v2}
and
Ao(v)) =v2 and  Ao(v2) = —u.

Next, choose a basis
"/l = {UI!& UAI}
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where
Ao('l)3) =v+vy and Ao(‘v.g) = vy — V3. (8.2)

In this basis, the matrix form of Ag|V is

J I
A0|V_(0 J)’

0 -1
J= ( - ) .
At a generic Hamiltonian-Hopf bifurcation we assume nonresonance of the
critical eigenvalues; that is, we assume that ki is not an eigenvalue of df (0,0) when

k = 0,£2,43,.... Since 0 is not an eigenvalue, the implicit function theorem
implies that there is a smooth branch of equilibria for (8.1); that is,

fluo(A), A) =0,

where u4(0) = 0. We may change coordinates in u so that this family of equilibria
is at 0; that is, ug(A) = 0. Thus, we may assume

F(0,A)y=0 for all A (8.3)

where

9 The reduced system

In the present context the operator F in (3.1) depends on the parameters 7
and A, and we define F:C}, x R x R — C3, by

Flur) = (1475 — ().

As above, let L be the linearization of F at 0,

Lv= @ - AQ‘U, Ao = df(0,0),
ds
and let L* be the adjoint operator
. dv .
L'y = i Agv.

We view Ag as an n x n matrix acting on C?*. Then we can choose complex
eigenvectors vy, vy € C?" such that

Aopvo = —tvg  and  Agyy = iy,
by setting
vo=v +ivy and vj = vz + iv,. (9.1)
Let - denote the ordinary inner product on C*". Then these choices satisfy
vy To =15 vo =0, {9.2)

as a direct calculation using (9.1) shows.
Again we have the splittings (see Section 6)

Cl. = Ko rangeL”
co. range L& N
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where X = ker L and N = ker L*. (Unlike in Hopf bifurcation, nilpotency of Ao
implies that we cannot choose N = K.) We compute

K = {Re(ze *u)|ze€C},
N = {Re(ze *vj)|z € C}.

In this way we have identified both X and A with C, viewed as a two-dimensional
real vector space. We denote elements of K by v and elements of A" by v*. Finally,
let
E:Cy; — rangelL
be the projection onto range L with kernel N.
By the standard technique (implicit function theorem and S!-equivariance) we
can reduce the problem of finding zeros of F to the solution of

gz, A7) = (2, A\, T)T + q(z®, A\, T)iz = 0, (9.3)
where = € R. Here we can identify z with the 2x-periodic function
#(s) = zRe(e™"*up).

10 Dependence of p and q

In the case of the Liapunov center theorem we have seen that the function p
vanishes identically, and hence the solutions of the reduced system are determined
by the equation q = 0 (sce Sections 3 and 6). As we will show in this section, in the
case of the Hamiltonian Hopf bifurcation ¢ vanishes identically, and the structure
of the set of periodic solutions is defined by p = 0.

We proceed in a way analogous to our treatment of the Liapunov center theo-
rem. First we use the implicit constraint induced by ® in (3.4) to show that ¢ is a
multiple of p. Then — using the implicit constraint of Section 6 — we prove that
q vanishes identically.

Define

®:C} xC) —R
by
2
d(u,v) = dH (u(s)) - v(s)ds.
0

As in Section 3, but with parameters suppressed,

&(u, F(u)) =0.
This implies that

e:KxN->R
defined by

pl(u,v) = ®(u + w(u),v)

satisfies

p(u,g(u)) =0,
where w is the implicitly defined function obtained from Liapunov-Schmidt reduc-

tion.
The general discussion in the previous paragraph implies that

2n
/ dH (uy(s)) - g{z, A, 7)ds =0,
0
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where u.(s) is the element of C}, of the form % + O(z?). Regarding g(x, A, 7) as an

element of Cy, by

z — Re(ze™"v})

and using the linearity of ® and ¢ in the second variable we obtain
27

p(z? )\, 7) dH(u.(s)) - Re(ze™**v})ds
0

27
+ q(x:’,)\,r)/o dH(uz(s)) - Re(ize™*v})ds = O.

We want to show that there exists a function r = r(x, A\, 7) such that
g(z2 A7) = r(z, A, 7)p(z® A\, 7) (10.1)

in a neighborhood of x = 0, x # 0. For this to hold it is sufficient that the derivative
of

27r
¥(z) = / dH (uz(s)) - Re(ie™"v})ds
()
does not vanish at £ = 0. Since

Re(e ™ **vg) = cos(s)vy +sin(s)vs and Re(ie **v}) = sin(s)vz — cos(s)v,

2 _ 0 J
d*H(0,0) = ( _J I
we find that /%\

and

() = / d2H(0,0)(Re(e~*vo), Re(ie=*u3))ds
0
= 2.

This proves (10.1).

We end this section by using the methods of Section 6 to show that g = 0.
First observe that all the considerations in that section leading to (6.8) are still
valid if the operator F' additionally depends on a parameter. Hence, for elements
k € K = ker L, we have

’ (dk
Pk, A7) =/ w({—,9(k,\7)] =0. (10.2)
0 ds

Substituting ¢ and using the S'-invariance of p and ¢ we obtain

p(z? Ar)/% ( ,x)ds+q(a: ,\r)/ ( ,m:)ds:O.

We claim that the first integral is zero whereas the second integral is nonzero, which
shows that ¢ vanishes identically. By the definitions of ¢ and d in (9.1) we have
Jd = ¢, where J is the matrix associated with the underlying symplectic form w.
Therefore

2
/ w(Re(—ie"**vy), Re(e **v}))ds = nRe(w(—ivo,v5)) =0, and
0

2w
/ w(Re(—ie~**vy),Re(ie™**v3))ds = wRe(w(—vp,v3)) = —nlw|? #0,
0

f‘ﬂ&_\
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which proves the claim.

11 Derivatives in the reduced system

By the results of the previous section we know that the set of periodic solutions
is locally given by solutions of the equation

p(:r:2,/\,7'):1: =0.

Theorem 7.1, which allows us to recognize the structure of the solution set of this
equation in a neighborhood of (0,0,0), follows directly from the next four lemmas.

Lemma 11.1
»-(0,0,0) = 0.
Proof Observe that
9:-(0,0,0) = p-(0.0,0) + ig-(0,0,0).

Using the formulas in Golubitsky and Schaeffer {1985, p. 33|, and the fact that
F, =dF, = 4 we obtain at 0

ds?®
Grr = (vG.dF, v — d®F(vg, L™\ PF,))
~is, * d -1
(Re(e~""55), 2 (Refe™")))
0 (by (9.2)). O

Il

Lemma 11.2
PA(0,0,0) = ~ = Re(vj - (df3)uo).
Proof It follows from (8.3) that F(0,0) = 0. We compute
g:x = (v),dFy vy — d*F(vy, L' PFy))
= (v, dfx - vo)
= (. ) — 3 dia - vo)
= —%Re(v(', -dfx - vg). a
Lemma 11.3
p--(0,0,0) = 5{; - UG-

Proof This time we use formulas (3.37) and (3.38) in Golubitsky and Schaeffer
[1985] and compute

Gerr = {(v*,dF.;-v+2dF; -w)

. d
2<‘U ,d—s'w>

[
[
N
N
Q.
& &
g
\/

where w is defined by
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In particular, w satisfies the ODE
_pdu _ _dv
ds ~  ds’

The second equality holds since ﬁ—: € K and since the kernel K is contained in the
range R by the assumptlions on Ag. We note that

Lw= (11.1)

(e—is,vo - cisv—o-)

ol =

&8
I

and make the ansatz
w(s) = Re(e”™**by).

Since v = Re(e~"*yy) it follows with (11.1) that b, has to satisfy
(Ao + l[)b] = {vg.

Hence, by the definition of vy and vj (9.1) and the action of Ay on v3 and vy (8.2),
we conclude that b; = iy which yields
dv* | S 1, - —
~2(g,w) = ‘-’é("wo-,“)o) - E("vov —1v5)

1 c ok e — —
= 3 (Givg,dug) + (~1vg, —ivg))
= Re(—iy - ivg)

— o ¥
- Uo'vn.

Therefore, p,, = v - v > 0, as desired. O

Lemma 11.4
p:2(0,0,0) = —gRe [% (%d”f (vo, v0, o) + d° f(vo, bo) + d* f(Tg. bz))] )

where

Apbo

1
§d2f(l’(), Ta)

. 1
(Ao — 2i1)b; idgf(l’o, vo)-

Proof The proof of this lemma follows exactly the method of the derivation
of the cubic term in the bifurcation equation at a Hopf bifurcation. We follow the
proof of Proposition 3.3 in Golubitsky and Schaeffer {1985, pp. 352, 355-356].

Using Golubitsky and Schaeffer [1985] (3.26), we have

dp

— =y d V. 2
ETEE) (v".d° F(v,v,v) + 3d° F (v, w))

where
w=—L7"Pd*F(v,v).

Observe that d*F = —d* f when k > 1. Recall that
1 , . R T —
v= (e v +eT)  and vt = S(eT g + eug).

2
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Since (¢'™*,e'*) = 0 if m # n it is easy to compute

(W, =" (0,v.0)) = ~ SRe(¥ - & [ (v0.t0. 7).
Similarly, one can verify that

(v*.df(v.v)) = 0.

from which it follows that d> f(v,v) € range L and hence that Pd? f(v,v) = &* f(v,v).
It also follows that we may assume

w = by + e~ 2by + 29Dy,
and we may use this form to solve
Lw = d*f(v,v)
for by € R*" and b, € C*". Indeed,

@ F(0.9) = £{e™"d (vo,v0) + 20 F (w0, T) + ¥ [ (7. 5)}.
Combining the various terms, we have that

, 1
(v*,d*F(v,w)) = -539[%' (d® f(vo, bo) + d° F (T, b2))],
where 1
Agby = §d2f(vo,v_o)
and

. 1
(Ag—2iI)b; = Zd2f(vo,vo)- o

12 Singularity theory

Having proved Theorem 7.1 we follow van der Meer {1985] in viewing the bifur-
cation equation (7.1) as a bifurcation problem in the perturbed period parameter 7
with imperfection parameter A. We follow Bridges [1990] in solving p = 0 by using
Zy-equivariant singularity theory. Setting A = 0 in (7.1) and using the facts

p(0)=0. p-(0)=0, p-r(0)>0 and p,2(0)#0

proved in Theorem 7.1, we can apply the determinacy results from Z;-equivariant
singularity theory with a distinguished parameter (Proposition 3.4(b) Golubitsky
and Schaeffer [1985], p. 259) to show that (7.1) with A = 0 is Z,-equivalent to

(x22 + )z =0.

Next we use the Z; universal unfolding theorem (Theorem 3.3 of Golubitsky
and Schaeffer [1985], p. 259) and the fact that py(0) # 0 to prove that the reduced
bifurcation equation (7.1) is Zs-equivalent to the normal form (7.2).

Part III Periodic Orbits near Resonances

In this part, we study two questions: how to find periodic solutions in reversible
systems near equilibria in & : £ resonance and how to find periodic solutions in
Hamiltonian systems near equilibria with k:{ resonances. The answer to the first
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question relies on using symmetry — both the S'-symmetry of phase shift and the
reversible symmetry — and (a slightly nonstandard) singularity theory to solve the
reduced equations obtained through Liapunov-Schmidt reduction. We use implicit
constraints and symmetry to reduce the answer for the second question to the
answer for the first question.

These subjects have been well studied and we now describe the relation of
the present approach to k:£ resonances in reversible and Hamiltonian systems
with that of other authors. The survey in Arnol’d [1988] applies directly only to
systems that are in Birkhoff normal form. Although, as is remarked there, a great
deal can subsequently be deduced for systems that are subject to higher order
perturbations, these deductions are not made explicit. Duistermaat [1983], whose
work is largely based on Schmidt [1974], obtains similar results to ours but the
singularity-theoretic calculations are more delicate because he works in a different
context with a different equivalence relation. Consequently, his normal forms have
one extra modal parameter for k:1 resonances with £ > 3. In compensation, he
obtains more delicate information, such as stabilities. A reference for the reversible
case is Sevryuk [1988], but again the singularity theory is treated differently.

There are many earlier papers, including Palmore [1969], Meyer and Palmore
[1970], Meyer and Schmidt {1971], Roels [1971a, b], Henrard [1973], Schmidt and
Sweet [1973], Sweet [1973] and Schmidt [1973, 1978]. They differ from the present
work in method — most of them use perturbation expansions and prove conver-
gence, although Schmidt and Sweet [1973] and Sweet [1973] use the ‘alternative
method’ — which is essentially the same as Liapunov-Schmidt reduction. More-
over, the results of Sweet [1973] apply to any system with a first integral, not just
a Hamiltonian system. A good general source for the related method of averaging
and further references, is Sanders and Verhulst [1985].

The most important difference with other works and the present one, is that in
this paper we obtain normal forms that include the effect of a ‘detuning parameter’.
Of the references cited, only Schmidt {1973}, Duistermaat [1983], and Arnol’d [1988]
do this: all others consider only the dynamics at resonance. Moreover, we find all
k, ¢, and 1-families of periodic solutions near equilibrium, and our results apply
to reversible systems as well as to Hamiltonian ones. Our singularity-theoretic
methods differ considerably from those of all authors except Duistermaat [1983]
and Arnol’'d [1988]. The latter gives no details about this method, but it is clear
that singularity theory is involved.

Another more technical difference is that most of the above authors assume
that the Hamiltonian is real analytic — a property that is essential for the series
methods they employ. The exceptions are Arnol'd [1988], Duistermaat [1983] and
Roels [1971a); the latter assumes that the Hamiltonian is kinetic plus potential
where the potential is C! and has locally Lipschitz gradient.

Most authors identify which coefficients in the Hamiltonian are relevant and
which nondegeneracy conditions must hold. Some obtain stability information,
which we do not attempt here, though the methods of Montaldi, Roberts, and
Stewart [1990b] could in principle be used and the calculations would be very similar
to those of Duistermaat [1983).

For examples of reversible systems in mechanics that may or may not be Hamil-
tonian, and their stability and bifurcation properties, we refer to O'Reilly, Malthotra
and Namachchivaya [1993] and references therein.
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Another useful tool in the study of resonances is that of pinched spheres and
invariants. When a resonant system is put into normal form, the Hamiltonian ac-
quires an S' symmetry, which can be used to perform reduction, leading to an
analysis of the normal form. The reduced spaces are spheres for the 1:1 resonance
and are ‘pinched spheres’ for higher order resonances. These spheres carry an inter-
esting Lie-Poisson type of Poisson structure. The ‘pinches’ come about because of
the isotropy of special points that occurs for higher order resonances. The systems
on these spheres can often be analyzed rather effectively. References for this ap-
proach are Kummer [1979], Cushman and Rod [1982], Twai [1985], Kummer [1990),
David, Holm, and Tratnick [1990] and references therein. Knobloch, Mahalov, and
Marsden [1993] contains an exposition of the Poisson structure of this problem.

Of course, the methods above often can be extended to multiple resonances. We
do not discuss this aspect here, except for the obvious remark that our methods are
not restricted to simple resonances. Some of the relevant literature is Duistermaat
[1984], Sanders and Verhulst [1985] (and references therein), Hoveijn and Verhulst
(1999), Haller and Wiggins [1992], and Haller [1993] (and references therein).

13 Preliminaries

We assume that the state space is R*". Many different ‘time-reversal’ sym-
metries are possible in a general system of ODEs; here we consider only the time-
reversal symmetry that takes the form

R(z,y) = (z,-y), (13.1)
where x,y € R". Abstractly, we write the system of ODEs as

dX ,
- =J(XN), (13.2)

where X = (z,y) € R*" and A € R. We assume that (13.2) has an equilibrium at
A = 0 which is R-invariant in the time-reversible case, and which without loss of
generality we take to be the origin; that is,

£(0,0) = 0.

Let Ay = dfy ¢ be the Jacobian matrix of this equilibrium and let 0 < k < € be
coprime integers. Assume

(R1) ki and *£i are simple eigenvalues of Ay and £mi is not an eigen-
value of Ay where m # k, ¢ is any nonnegative integer.

Hypothesis (R1) implies that A is invertible, so by the implicit function theorem
there is a unique branch of equilibria X () with X (0) = 0. Therefore

FX(A), A =0.

For Hamiltonian systems we can change coordinates directly in X to assume X{(\) =
0 and

fO,0) =0. (13.3)
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Slightly more care is needed to arrive at the same result in the time-reversible
case. Recall that time-reversibility implies

f(RX,\) = -Rf(X,)) (13.4)
AoR = -RA,. (13.5)

Hence
f(RX(A),A) =0,

and uniqueness of solutions obtained by the implicit function theorem implies that
RX(A) = X(\).

Now a change of coordinates that preserves time-reversibility leads to (13.3).

At resonance we may always factor out common denominators and rescale time
so that the resonant eigenvalues are integer multiples of ¢, and we assume from now
on that this has been done. In Hamiltonian systems it is well known that generically
purely imaginary eigenvalues can pass through resonances as a parameter is varied.
To verify the corresponding statement for time-reversible systems, we must show
that eigenvalues in these systems are also locked onto the imaginary axis. This is
also well known — but less well known — so we now give details.

In so doing, we discuss the reasonableness of the assumption (13.1) as well as its
consequences. Let V* = {(z,0)} be the +1 eigenspace of R and let V~ = {(0,y)}
be the —1 cigenspace of R. The identity (13.5) implies that

A():V+ -V~ and A():V_ — V+.

Observe that V* and V~ are invariant subspaces under A3. Hypothesis (R1)
implies that Ajq is invertible, so that A3|V+ and AZ|V_ are similar matrices, that
is,

ARV = (Ag|VH)THAGIV ) (Aol V).
Hence these restrictions have the same eigenvalues. It follows that the eigenvalues
of Aq are precisely the square roots of the eigenvalues of A3V, and the eigenvalues
of Ap fall into three classes:

(i) oy o>0,
(ii) £pi; p >0,
(iii) £o £ pui; o,u>0,

corresponding to whether the eigenvalues of AZ|V* are positive, negative or com-
plex. It follows that the existence of purely imaginary eigenvalues of Ag is generic.

We now show that the resonance hypothesis (R1) is a codimension one assump-
tion in time-reversible systems. Let

Ay = dfox.

It follows that as X is varied the purely imaginary eigenvalues can (generically be
expected to) pass through & : ¢ resonances with eigenvalues +ki,20i when A = 0.
Generically these eigenvalues are simple. By rescaling time we can assume that the
appropriate eigenvalues of Ay, for all A near zero, are +ki and +w(A)i where w is
smooth in A and w(0) = £. We assume that Ay has no other resonant eigenvalues
+mi, where m # k.€ is a non-negative integer; and that the critical eigenvalues
pass through resonance with nonzero speed, that is,
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(R2) w'(0) # 0.

It is well known that S' has two families of nontrivial symplectic representa-

tions, in which

6-z=¢"2
or

0-z=¢e"0;
where £ > 1, 2 € C, and C carries its standard symplectic structure. Call these
representations p¢ and p_;. The map z — Z shows that p; and p_; are isomor-
phic as abstract representations. However, this isomorphism does not preserve the
symplectic structure — see Montaldi, Roberts and Stewart [1988] and Dellnitz and
Melbourne (1993]. It is usual to distinguish between these two representations by
referring to a k: ¢ resonance or a k: —£ resonance. More precisely, let (z;, z2) be
complex coordinates on C2. Without loss of generality the S'-action on z, is by pr.
where k > 1. Then the S'-action on z, is either p¢ or p_¢ where £ > 1. The first
case is a k: € resonance and the second a k: —¢ resonance.

14 Normal forms with S'-Symmetry

We now find periodic solutions to (13.2) with period approximately 27 using a
Liapunov-Schmidt reduction. Let

F:Cl. xRxR— Cy
be defined by
d
Flu(s) A7) = (1 +7) 3 = flu(s), ),

and solve F' = 0 by Liapunov-Schmidt reduction in the standard way. The reso-
nance hypothesis (R1) implies that the kernel of dFy g is four-dimensional. Thus
we can write the reduced equation as

g:C?PxRxR—C?

and solving g(z.A,7) = 0 yields all small-amplitude periodic solutions of (13.2)
with period near 2x.

The S! phase shift symmetry that acts on periodic functions in C,, restricts
the form of g considerably. Our eigenvalue assumptions imply that on the above
kernel, 8 € S! acts by

0(z1, 22) = (2. €0

22)1

where k£ > 1 and ¢ (which may be positive or negative) are coprime and g commutes
with this action. A calculation from invariant theory determines the general form
of g. We state the result for the &:¢ resonance in the following lemma, and discuss

the k:—2 resonance afterwards.

Lemma 14.1 Assume that g:C*> — C? is equivariant with respect to the k: ¢
action of S'. Then

9(z1,22) = (Pizy + Qi ' 25, Pazy + Qu2{zm ") (14.1)

where Py, P>, Q.Q2 are complez-valued S'-invariant functions of the following
three of the four S!-invariants

|z112, |22/2, Re(zfz_gk).
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Moreover, P, Ps,Q,, Q2 are uniquely determined by g.
Proof Write g = (g1, g2) in coordinates. We derive the form of g;; the deriva-
tion for g, is similar. Equivariance implies that

—ki6 kiﬂzhcﬁoz?)‘

gi1(z1,22) =" "gle
Write the Taylor series for g, as

—b . c—
91(z1,22) = ZAabch‘le zgzzd

and use the invariance condition to show that the only terms that survive are the
ones for which

kla-b-1)+¥c—-d)=
Collect terms in the Taylor expansion of g, that have a common factor of z,zy or
2273 to write g; in the form

9i1(z1,22) = Y _ Baseall21 ', |221) {70 25527,

where two of the indices a,b,c,d are zero. Since k and £ are coprime and non-
negative we conclude that
oz, 22) = Al |2 217252 + B(lail®, |22|?, Z7825 )z ' 25,
We now assert that g, can be put into the form
9121, 22) = C(|z1 %, |22, Re(2{75%)) 21 + D(l21% |22/*, Re(21 2% )7

To verify this assertion observe that

(zll’—za-k)m L)m

z = ((Z]ZQ +2Z7 22)—21 "2
3 kij[Re(2{z5")) (Z' ) 21

i+j=m

Then note that when 7 > 0

@'Y = @AY Yala' .

Similarly,
71"23)'"»«—1[_'25 = ((21 zo+~lz2k)_z£—k)m?l-(—lz§
= Z k,_,[Re(z,zzk)] (Z,ZQ'”)"Z]‘ ’Z2k.
i+j=m

Then note that when j > 0,
(AT YIS = R T 2P R .

A double induction completes the proof of the assertion.
To complete the proof of the lemma we verify that the invariant functions P,
P, Q,, Q. are unique. To see this assume that

Pz + Q[ﬁf_lzzk =0.
Using S' symmetry we can assume that z; = z, is real and obtain

P+ Qi =0. (14.2)
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Since P; and @, are clearly invariant under the action z, — Z; it follows that

Pz + lef"'fik =0. (14.3)
Subtracting (14.3) from (14.2) yields

Qiz{ " 'Im(25) =0,

so that @, =0, and hence P, = 0 as desired. O

For the k: —£ resonance the results are similar, but z; must be replaced by %
and conversely. Clearly zeros of (14.1) are in one-to-one correspondence with zeros
of the corresponding mapping with 2o and Z; interchanged, so the zeros for the
k : —¢ resonance can be read off from those for the corresponding k : ¢ resonance.
When seeking periodic orbits of the original Hamiltonian system, determined by
these zeros, we may therefore confine attention to the k: ¢ resonance. We do so
from now on.

15 Reduced equations in the time-reversible case

The form of g is further restricted by time-reversibility. It can be checked that
the time-reversal symmetry R preserves the kernel and cokernel of dF and hence
anticommutes with g, that is,

9(3’7- 5) = _g(zl ’ 22)-

This anticommutativity allows us prove a stronger version of Lemma 14.1.

Lemma 15.1 Time-reversal symmetry implies that the invariant functions Py,
Py, @1, Q2 are purely imaginary. [

Set P, = iP; and Q, = iQ}. After dividing by i we see that finding periodic
solutions to the differential equation (13.2) is equivalent to finding solutions to the
following system of two complex equations:

Pizy + Qizpt-124 0 (15.1)
Pizo + Qiim* 1 = 0, (15.2)

where Pf, P}, @}, Q3 are real-valued functions of |2 [2,]22]2, Re(2{%3%), A and 7.

We begin by finding the one-parameter family of periodic solutions that is al-
ways present by virtue of the Liapunov center theorem (for time-reversible systems).
Suppose that z; = 0. Then (15.1) is satisfied and (15.2) reduces to Piz; = 0. Thus
either z2 = 0 (the trivial equilibrium) or P} = 0. Since P _(0) # 0 we can use
the implicit function theorem to solve Pi = 0 for 7 and obtain a family of periodic
solutions with period near 2r/¢. We refer to this family as the ¢-family of solutions.
Since £ > k the eigenvalues +{i are nonresonant.

We may now assume that z; # 0. Applying the S' action we further assume
that zy = z; > 0 where z; € R. Dividing by z, in (15.1), shows that the remaining
periodic solutions may be found by solving

Pl +Qjzi25 = 0 (15.3)
2z + QiR = 0. (15.4)
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Solving the imaginary part of (15.3) leads to the equation @{Im(z5) = 0. Since
@} is the coefficient of a higher order term in the reduced equation (a term of order
at least two) we can make the genericity hypothesis:

(R3) Q1(0) # 0.
It follows from (R3) that
Im(z5) =0 (15.5)

at solutions.

Next, since P} .(0) # 0, we can use the implicit function theorem to solve the
real part of (15.3) for 7 and then substitute this solution for 7 in (15.4). Thus
finding the desired families of periodic solutions reduces to solving (15.4).

Equation (15.5) implies that z§ € R, that is,

29 = :z:ge""”/k (156)

where m is an integer, x, € R and z > 0. Now the group generated by e**/* ¢ s!
fixes z;, so up to symmetry (15.6) reduces to two cases

Z2 = X2
Zy = mgei"/ k.
It follows that |z5|2 = z2 and 2§ = ex} where ¢ = £1.

We divide our analysis into two cases: k > 1 and k = 1. However, note that
when k is odd, we could have used the discrete symmetries to conjugate z2 to
xo € R; that is, we can permit z, to be negative as well as positive. This has the
advantage of eliminating the parameter e = £1 from the problem. We will use this
observation when considering the case k = 1.

The case k > 1 When k > 1 we can set z; = 0 to obtain a family of solutions
directly, because (15.4) is automatically satisfied. Equation (15.3) (which we solved
previously for 7) now reduces to Pi = 0. We call this the k-family of solutions.
It consists of solutions with period near 2z/k and is given by the nonresonant
eigenvalues +ki in the Liapunov center theorem.

Next we assume that z, # 0 and multiply (15.4) by 23 to get

Pj|2of* + Qhaizm" = 0. (15.7)
The imaginary part of (15.7) is just
Q5Im(z5) =0
which holds by (15.5). Indeed, (15.7) may be rewritten as
Pig? + eQizizh = 0.
Since 22 # 0 and k > 2 we may divide by z3 to obtain
Py + eQhxiay % =0, (15.8)

where ¢ > 3.
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. ‘ . S 9 =2 &
Since P and Q) are functions of 23, 23, ex§ 2§, A, 7 and 7 = (a1, 23, ex) x5, M),
it follows that (15.8) has the form

pi(z1, 2, A) = (23,73, ) + st(x?, z3, »\):t:{"z:ch‘f'2 (15.9)

where s(0,0,)) = 0 and ¢ = *! yields two distinct functions p*. It may be verified
that the lowest order terms in ¢ do not depend on ¢, that is,

(22,23, 0) =az] + bl + e+ ...
where a, b, ¢ do not depend on €. (The lowest order terms in s¢ do depend on ¢.)

The case k = 1 When k& = 1 the previous discussion implies that we must
solve

Pizo+Qizi =0 (15.10)

where PJ, Q) are functions of £2, 23, £4zs, A, 7, and 7 = 7(z}, 23,21 *x2. ). Since
k =1 is odd, we may assume z, € R,z # 0 rather than considering the two cases
€ = +1. Also, note that generically (when Q2(0) # 0) there is no 1-family when
xy = 0 (since T2 = 0 then implies that x, = 0). However, we will find 1-families of
solutions when zo # 0.

As in the case £ > 1 we can rewrite (15.10) uniquely as

px1, 22, X) = r(a}, 23, N)az + s(zf, 23, Nzl ™% = 0, (15.11)
where $(0,0,A) = 0.

16 Reduced equations in the Hamiltonian case

In this section we show that at a point of k: ¢ resonance in a Hamiltonian
system we can also find time-periodic solutions by solving a system analogous to
the one used to find time-periodic solutions in the reversible case. To establish this,
we control the Liapunov-Schmidt reduced equations by using the extra structure
imposed by the Hamiltonian character instead of using the time-reversal symmetry,
as in Lemma 15.1.

We consider the equation & = f(u) = Xy (u) on a symplectic vector space
isomorphic to R?" = C", as before (later we will add parameters) and make as-
sumptions similar to the reversible case:

(RH1) zy is a fixed point: f(zo) = 0. Let Ay = df(xo) be the lineariza-
tion at xy and let k& and £ be coprime positive integers.

(RH2) *kwyi and *lwpi are simple eigenvalues of Ag and pwyi is not
an eigenvalue for p a nonnegative integer other than k or {. Let
v and v; be the eigenvectors of Ag for the eigenvalues kwyi and
fwpt respectively.

By (RH1) the function H has a critical point at the point zo. By (RH2) the
second derivative is nondegenerate on the four-dimensional eigenspace.

We can assume that 0 < k& < ¢, as in the reversible case, and that wy = 1 by
rescaling time. Now apply the Liapunov-Schmidt procedure to the map F. Let
X =), xR and Y = C§, (together with bifurcation parameters to be included
later). Let S! act on the first two components of X by (8 - u)(s) = u(s + 0) and
similarly on Y. Note that F is S'-equivariant.
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The derivative of F at (u,7) = (z¢,0) is L, where
dv
Ly = dF(.'B(),O)"U = -‘E — Agv.

The kernel of dF(xg,0) coincides in this case (unlike Hamiltonian Hopf) with the
eigenspace of the four eigenvalues and therefore is symplectic and is even the sym-
plectic sum of two two-dimensional symplectic subspaces. Thus, we will proceed
by using the condition (S). By (RH2), ker dF(zy, 0) is spanned by the four periodic
functions

Re(e'**v;), Im(e***v;), Re(e*®v;), Im(e**v).

Exactly as in our treatment of the Liapunov center theorem, we can use the complex
structure already on phase space to rephrase this as the space spanned by the loops
e'*3zu;. and e'®zv;. Thus we can identify the kernel of dF with C? explicitly,

(21, 29) = (z1€%50y, z0€™ ).

The same calculation as in the case of the Liapunov center theorem shows that the
symplectic structure on the kernel coincides with the standard symplectic structure
on C%. We may choose coordinates on C? so that the matrix Ao has the block form

0 k£ 0 O
-k 0 0 O
0 0 0 ¢
0 0 —-¢ 0

and the second derivative d>H(0) is

oo o0oR
coR o
omMo o
wmooo

where a and 3 are nonzero constants. In these coordinates, the components of vy
are (1,4,0,0,0,...,0) and those of v; are (0,0,1,1,0,...,0).

Because condition (S) holds, the kernel of L* equals the kernel of L and is
isomorphic to C* by means of

(21,22) (zle‘k‘*v;, zgeitsv{ ,
where vj, is the eigenvector for Aj given by Aju; = —ik* and similarly for v;. The
first four components of v} and v, are the same, as are those of v} and v.

The Liapunov-Schmidt procedure in the context of assumption (S), may now
be applied. Recall that we use the standard inner product on C", and that
L'v=-v - Ay, M = rangeL*, K = ker L, and N' = ker L°. The bifurca-
tion equation for F has the form

¢:C? xR xR — C?
and, heing S'-cquivariant, g has the form

g = Pin+QiIiTld

@2 = Prm+ Quzizmtl

=
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Of course, the bifurcation equations will be g = 0. By Theorem 6.2, the mapping g
is a Hamiltonian vector field with an S'-invariant Hamiltonian H. Being invariant,
the function H can be written as a function of the invariants which we shall denote
@ =27, b= 2%, c = 1(2{ Z*+772), d = — §(2{75" —72}), and the parameters
Aand 7.

It is a standard and easily verified fact that a Hamiltonian vector field g with

components g; on €2 has the form

L= _2‘_
9; 132—]‘

where we regard the Hamiltonian as a complex-valued (smooth) function of z; and
27, 22, 22, A and 7.
Putting these facts together, we find that

g1 = —2iHaz +{[Hy— Halm"™'25
g2 = —2iHyz — k[Hy+ Hei2iz L

André Vanderbauwhede pointed out that these equations may be solved in a fashion
similar to those obtained in the time-reversible case (15.8)-(15.11). Setting either
z; = 0 or 25 = 0 gives the 27/k and 27 /¢ families of solutions as in Section 15.
We assume that z; # 0 and zp # 0. Phase-shift S! symmetry allows us to set
z1 = x; > 0. As in the time-reversible case, we solve for 7 by using the implicit
function theorem to solve Im(g,) = 0. Indeed,

Im(g)) = z1|-2H, + €:n€'21m([Hd - iH,:]zz‘,‘)] =0

can be solved for T since H, . # 0 (recall P{ _(0) # 0).
Next note that Re(g:) = 0 and Re(g2) = 0 are identical equations. We can
write the two remaining equations as Re(g.%3) = 0 and Im(g>Zz) = 0. Explicitly

Re(g:z3) = —kxiRe([Hy+iHJR") =0 (16.1)
Im(g.z3) = —2Hy|z0f* — kzi{Im([Hy +iHZ") = 0. (16.2)

Equation (16.1) implies that

(Hy + iH )3 = £ H3? + H2|2fki.

Hence (16.2) may be rewritten as

2Hy|zo|* £ kzl\/ H3 + H2|20)* = 0. (16.3)

Assuming the nondegeneracy assumption (recall (R3) in Section 15)
Hy0)#0 or H(0)#0

implies that \/H:*; + HZ? is smooth. Equation (16.3), upon division by |22} or |22]?
depending on whether k = 1 or k > 1, yields equations of the form (15.9) or (15.1 1).
Once (16.3) is solved for |22|, the phase of z; is found using (16.1).
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17 Thecase k > 1

We find solutions to (15.9) by using singularity theory to determine all small
amplitude solutions. The singularity-theoretic results required in this context —
such as the ‘tangent space constant’ theorem and the universal unfolding theorem
— are a consequence of general singularity theory results proved in Damon [1984].

The singularity theory calculations are most easily handled using the ‘invariant’
functions r and s. (We omit the superscript € in (15.9) in this discussion.) The
changes of coordinates that we consider are given as follows. First, let

u=z} and wv=1z3, (17.1)

and consider changes of coordinates in the domain of p of the form
(z1,22) — (21X (1, v), 2o Xa2(u, v)), (17.2)

where X,(0,0) > 0 and X»(0,0) > 0. These changes of coordinates preserve the
z; and z, axes and the positive quadrant. We also allow multiplication of p by
functions of the form

S(u,v) + R(u,v)zi 2252

where S(0,0) # 0. It is a simple exercise to check that these transformations
preserve the form of p and thus can be thought of as operations on the pair
(r(u,v), s(u,v)), as is done for invariant functions in equivariant singularity the-
ory.

In the context of the theory developed in Golubitsky and Schaeffer [1983], it
is straightforward to compute the tangent space T'(p) for these coordinate changes.
One finds that T'(p) is a module of function pairs in (£, ,, My.,) where &, ,, is the
ring of germs of smooth, real-valued functions in the variables v, v and M, , C &, ,,
is the maximal ideal generated by functions vanishing at the origin. This module
has four generators:

(r,8), (" 2v*"2s,7), (2ury, 2us, + (£ — 2)s), (2vr,, 2vs, + (k — 2)s). (17.3)
Theorem 17.1 Assume that (> k> 2. If
TusToy TuSy — TuSy (17.4)
are nonzero at the origin, then p is equivalent to the normal form
r{u,v) =u+€v, s(u,v)=cu (17.5)

where € = sgn(r,(0)r,(0)) = x1 and e2 = —eysgn(rySe — rvsy) = x1. This
singularity has codimension one and a universal unfolding is

r(u,v,A) =u+ v+ A, s{u,v) =cu. (17.6)

Proof Under the assumptions (17.4), T(p) = (My o, My,v). Hence terms
of degree two and above in r and s may be eliminated by coordinate changes.
Moreover, the ‘tangent space constant’ theorem allows us to transform s to s(u,v) =
+u. Rescaling gives the appropriate normalizations to . (O

We now discuss the zero sets of p¢ which has the form

P =XlteXZ4 A4,

ﬁ}\
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Figure 3 € > k > 2 and ¢ = +1. Equation .1";’ + I:f, +Ax 1‘1 :.;'2 =0 when A < 0.

where X(z,,z2,A) = (X;, X2) and A()) are invertible changes of coordinates. Note
from (15.8) that p* = 0 and p~ = 0 have the same solutions when either z, = 0
_ or 2 = 0. Note also that the sign ¢, is the same for p* and p~ since ¢ affects only
(m\ higher order terms. Hence the zero set, restricted to ) > 0, z2 > 0, is as shown in
Figure 3 for ¢ = +1 and X < 0. The figures for A < 0 and € = —1 may be drawn

in a similar fashion.

18 Thecase k=1

Using singularity theory we determine all small amplitude solutions of (15.11).
Since we do not need to preserve the first quadrant, we can allow a more general
system of coordinate changes than we did in the previous section. The coordinate
changes that we allow are:

(z1,22) — (2, X1 (2, ), 22 X2(u,v) + 2572 Xy (u, v)) (18.1)

where X5(0,0) # 0. These changes of coordinates still preserve the x, axis. Note
that when £ = 2 we must require that X3(0,0) = 0 since we always assume that
$(0,0,0) = 0 in (15.11). (When { = 3 we will enlarge the system of coordinate
changes even further, see (18.10).) We also allow multiplication of p by functions
of the form
S(u.v) + R(u,v)xt 2,
where $(0,0) # 0. It is an exercise to check that these transformations preserve the
form of p and hence can be thought of as operations on the pair (r(u,»),s{u,v)),
as is done for invariant functions in equivariant singularity theory. However, it is
not easy to write down the precise way that (r, s) is transformed by these changes
of coordinates.
It is also a standard exercise to compute the tangent space T(p) for these co-
ordinate changes. One finds that T'(p) is a module of function pairs in (£,... My )
(m'\ where &, is the ring of germs of smooth, real-valued functions in the variables
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u,v and M, , C &, , is the maximal ideal generated by functions vanishing at the
origin. This module has four generators:

(r,8), (1725, vr), (2ury. 2us, + (€ — 2)s), (2ur, + 1, 2vs,), (2u‘~32s,, 2ury, + 1)
(18.2)

when € > 3. When ¢ = 2 the last generator must be replaced by u and v times that
generator.

As indicated, we distinguish three subcases: ¢ > 4, { = 2 and ¢ = 3. To
complete the singularity theory for the case £ = 3 we must modify the discussion
slightly.

Theorem 18.1 Assume that £ > 4. If
Tus Ty Suy Spy TuSy — 3Ty Sy (18.3)
are nonzero at the origin, then p is equivalent to the normal form
r(u,v) =u+e€v, s(u,v)=1u (18.4)
where ) = 1. This singularity has codimension one and a universal unfolding is
r(u,v,A) =u+ev+ A, s(u,v)=u (18.5)

Proof Under assumptions (18.3), (M2 M2 ) C M, T(p). The second
generator in (18.2) is not used in this calculation. The standard ‘tangent space
constant’ theorem implies that p is 2-determined. Rescaling z, and x5 and premul-
tiplying p by S(0,0) produces the normal form (18.4). Since zo # 0 when k = 1 we
may allow X5(0, 0) to be nonzero — not just positive. Finally, we can now compute
T(p) exactly and see that the codimension of (18.4) is one (the constant term in

r(0)). O
Theorem 18.2 Assume that £ =2. If
Su, Su (18.6)
are nonzero at the origin, then p is equivalent to the normal form
r(w,v) =0, s(u,v)=¢u+v (18.7)
where € = £1. This singularity has codimension one and a universal unfolding is
r{u,v,A) = A, s{u,v) =equ+wv. (18.8)
Proof Write r = au + bv and s = cu + dv. Under assumptions (18.6),
T(p) = (Mu,e, Mup).

It follows that p is 2-determined and we can assume b = 0. Rescaling leads to
the desired normal form. This singularity has codimension one with unfolding
parameter ) as indicated in (18.8). O

Finally, we consider the case £ = 3. Now

p(xy, 22) = r(u, v)xs + s(u, v)x; (18.9)

,ﬁ(\
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where s(0,0) = 0. These p's are just the odd functions, that is, they satisfy

p(—z1. —x2) = —p(z1, T2)-

The appropriate coordinate changes are X(z;,z;) where X is odd. In addition,
these coordinate changes must preserve the half-plane x; > 0. The general such
change of coordinates is:

X(x),x2) = (Azy + Buza,Cxy + Dzx3) (18.10)

where 4,B,C,D are functions of u,v, A(0,0) > 0, and D(0,0) # 0. The contact
equivalences in the range have the form

S(u! U) + R(u,v)m,:cg,

where S(0,0) # 0.
We now compute the tangent space T(p) and find that it has six generators

(2ury, 2usy +5), (2u’sy +us, 2uvr, ), (2us,, 20r, +7), (2vr, +7,208,), () 5), (us, vr)

corresponding to A,B,C,D,S and R.
We next put the lowest order terms of r, s into a normal form. Suppose that

r(u,v) =au+bv and s(u,v) = cu+ dv.
Consider the change of coordinates
X(z1,x2) = (Az), nAx) + Diy)
where A, D, and g are constants with A > 0, D 3 0. Then
p(X(z1,22)) = H(u, v)z2 + 3(u, v)7y
where

Fu,v) = (a+2dp+ 3bp?)A2Du + bD?v
S(u,v) = (c+ap+du® +bud)Au + (3bu + d)AD?v.

This calculation implies that
b#0 (18.11)

is required in a singularity of lowest codimension. Thus we assume that r,,(0,0) # 0
and set g = —d/3b. Next we assume that

c+ap+dp’ + by £0,

which is equivalent to

a = 2d* — 9abd + 27b%c # 0. (18.12)
We now choose A, D and S(0,0) so that
Hu,v) =mu+v, 3§(u,v)=u, (18.13)
where 2
3ab -
ms= 3sgn(a)W

is a modal parameter. No further simplification of (18.13) is possible.
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A<0 A=0 A>0
Figure 4 & = 1, £ > 1. Equation #3x2 + 23 + Arz + 2§ = 0.

Theorem 18.3 Assume that £ = 3 and that (18.11) and (18.12) are satisfied.
Then p is equivalent to the normal form (18.13). This singularity has codimension
two and e universal unfolding is :

rlu,v,\) = mu+v+ A, s(uv)=u, (18.14)
where m is a modal parameter.

Proof Using normal form (18.13) we can show that, independent of higher
order terms,

T(p) = (M2, M2 ) & R{(2mu, 3u), (0, mu + 3v), (mu + 3v,0)}.

The ‘tangent space constant’ theorem then says that we can eliminate higher order
terms using a change of coordinates. The computation of the tangent space also
shows that p has codimension two - - but one of those unfolding parameters is the
modal parameter m along which the germ p has constant codimension. O

19 Bifurcation diagrams when &£ =1

We now consider the solutions that may be derived from the normal forms of
the previous theorems.

The case £ > 4 In this case normal form (18.5) is
1;’@ + 675+ Axy + ,r‘; =0

where ¢; = 1. This equation yields the pictures in Figures 4 and 5.

The case £ = 3 In this case normal form (18.14) is
P+ mairs + 2+ Az =0

where m € R is a modal parameter. The pictures are essentially the same as in the
case { > .

-~
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-

—

<0 L=0 A>0
Figure 5 k= 1, £ > 4. Equation x¥xy — 23 + Ar2 + £f = 0.

The case ¢ = 2 In this case normal form (18.8) is
@z +73+A=0

where €) = £1. The case €, = +1 and A < 0 is graphed in Figure 6.

We conclude with a remark about the relation between the reversible and the
Hamiltonian cases. Our analysis shows that the resulting bifurcations for the re-
versible and the Hamiltonian & : { resonant cases are closely related. Arnol’d and
others have raised the issue of why it is that the reversible and Hamiltonian cases
so often lead to the same bifurcation diagrams? When the Hamiltonian problem
satisfies condition (S), our results show that we end up with a Hamiltonian system
with a Hamiltonian that is S'-invariant, and that in these cases, one has similar
bifurcation diagrams. However, as we saw, the nonsemisimple Hamiltonian-Hopf
case was rather different in the reversible and Hamiltonian cases. Another interest-
ing link that might be useful for this general question is that, subject to some mild
conditions, any Hamiltonian system can be realized as the S' reduction of a re-
versible Hamiltonian one. The proof of this, whose details we do not give here, uses
the Kaluza-Klein trick along with the theory of reduction of Lagrangian systems
(see Marsden [1992] and Marsden and Scheurle [1993]). Thus. for example, the
bifurcation of an equilibrium of a Hamiltonian system can be directly realized as
the reduction of the bifurcation of a relative equilibrium in a reversible Hamiltonian
system with S'-symmetry.

Conclusions

In this paper we have shown how singularity theory and the Liapunov-Schmidt
procedure for systems with implicit constraints leads directly and simply to specific
resuits for the bifurcation of periodic orbits. This method was applied to the Lia-
punov center theorem in the cases of systems with an integral, Hamiltonian systems
and reversible ones. It was also applied to the Hamiltonian Hopf bifurcation, and
to resonance bifurcations in both the Hamiltonian and reversible cases. In this way,
we were able to recover the corresponding bifurcation results of Duistermaat [1983].
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2-family
[ 1-family

Figure 6 k = 1, £ = 2. Equation rf + x% + A =0when A < 0.

Sevryuk [1986] and Bridges [1990]. The method here, which looks for periodic orbits
by applying the Liapunov-Schmidt procedure directly on loop spaces, has a number
of technical advantages over normal form methods. We showed that the mapping
that occurs in the procedure is a Hamiltonian vector field if a semisimple type of
condition (S) is satisfied, and this is used to show that the bifurcation analysis of
the reversible and Hamiltonian resonances are closely related. This condition holds
for the Hamiltonian Liapunov center theorem and resonance bifurcations, but not
for the Hamiltonian Hopf bifurcation, which is analyzed directly using the implicit
constraint. In addition to analyzing stability, which we believe can be done by
enhancing the present context using the techniques used for the Hopf bifurcation
(see Golubitsky, Stewart and Schaeffer [1988]) combined with those of Montaldi,
Roberts and Stewart [1988], there are many other problems to which the methods
of this paper could in principle, be applied. For example, it would be interesting to
analyze the case of passing resonances for Hamiltonian systems with symmetry, as
in Dellnitz, Melbourne and Marsden [1992].

References

Abraham, R. and Marsden, J.E. [1978] Foundations of Mechanics, Second Edition,
Addison-Wesley Publishing Co., Reading, Mass.

Abraham, R., Marsden, J.E. and Ratiu, T.S. [1988] Manifolds, Tensor Analysis,
and Applications, Second Edition, Springer-Verlag, New York.

Alexander, J.C. and York, J.A. [1978] Global bifurcation of periodic orbits, Am. J.
Math., 100, 263-292.

f‘ﬁ}.\

faﬁ\‘



-

The Constrained Liapunov-Schmidt Procedure and Periodic Orbits 125

Arnol'd, V.I. (ed.) [1988] Dynamical Systems III, Encyclopaedia of Math. Sciences,
3, Springer-Verlag, New York.

Bridges, T. [1990] Bifurcation of periodic solutions near a collision of eigenvalues
of opposite signature, Math. Proc. Camb. Phil. Soc., 108, 575-601.

Chernoff, P.R. and Marsden, J.E. [1974] Properties of infinite dimensional Hamil-
tonian systems, Lecture Notes in Math., 425, Springer-Verlag, New York.

Cushman, R. and Rod, D.L. [1982] Reduction of the semisimple 1 : 1 resonance,
Physica D, 6, 105-112.

Damon, J.N. [1984] The unfolding and determinacy theorems for subgroups of A
and K, Memoirs Vol. 50, No. 306, Amer. Math. Soc., Providence.

Delinitz, M. and Melbourne, 1. [1993] The equivariant Darboux theorem, Lectures
in Appl. Math., 29, 163-169.

Dellnitz, M., Melbourne, I. and Marsden, J.E. [1992] Generic bifurcation of Hamil-
tonian vector fields with symmetry, Nonlinearity, 5, 979-996.

Duistermaat, H. [1983] Bifurcations of periodic solutions near equilibrium points of
Hamiltonian systems, Lecture Notes in Math., 1057, Springer-Verlag, New
York.

Duistermaat, H. [198;1] Non-integrability of the 1: 2 : 2 resonance, Ergodic Theory
and Dyn. Sys., 4, 553.

Golubitsky, M., Krupa, M. and Lim, C. [1991] Time reversibility and particle sedi-
mentation, SIAM J. Appl. Math., 51, 49-72.

Golubitsky, M. and Langford, W. F. [1981] Classification of unfoldings of degenerate
Hopf bifurcations, J. Diff. Eqns., 41, 375-415.

Golubitsky, M. and Schaeffer, D.G. [1985] Singularities and Groups in Bifurcation
Theory: Vol. I, Applied Math. Sciences, 51, Springer-Verlag, New York.

Golubitsky, M. and Stewart, 1. [1987] Generic bifurcation of Hamiltonian systems
with symmetry, Physica D, 24, 391-405.

Golubitsky, M. and Stewart, 1. [1993] An algebraic criterion for symmetric Hopf
bifurcation, Proc. Roy. Soc. Lond. A, 440, 727-732.

Golubitsky, M., Stewart, 1. and Schaeffer, D. [1988] Singulerities and Groups in
Bifurcation Theory: Vol. II, Applied Math. Sciences, 69, Springer-Verlag,
New York.

Hale, J.K. [1969] Ordinary Differential Equations, Wiley, New York.

Haller, G. and Wiggins, S. [1992] Orbits homoclinic to resonances: the Hamiltonian
case, Physica D, 66 298-346.

Haller, G. [1993], Multi-pulse Homoclinic Phenomena in Resonant Hamiltonian
Systems, Thesis, Caltech.

Henrard, J..[1973] Lyapunov’s center theorem for resonant equilibrium, J. Diff. Eq.
14, 431-441.

Hoveijn, 1. and Verhulst, F. [1990] Chaos in the 1: 2 : 3 Hamiltonian normal form,
Physica D, 44, 397.



126 M. Golubitsky, J.E. Marsden, 1. Stewart and M. Dellnitz

Twai, T. [1985] On reduction of two degrees of freedom Hamiltonian systems by an
S! action, and SOy[1,2] as a dynamical group, J. Math. Phys., 26, 885-893.

Kelley, A. [1967) The stable, center-stable, center, center-unstable, and unstable
manifolds, J. Diff. Eq., 3, 546-570.

Knobloch, E., Mahalov, A. and Marsden, J.E. [1993] Normal Forms for three-
dimensional parametric instabilities in ideal hydrodynamics, Physica D, to
appear.

Kummer, M. [1979] On resonant classical Hamiltonians with two degrees of freedom

near an equilibrium point, Lecture Notes in Physics, 93, Springer-Verlag, 57-
75.

Kummer, M. [1990] On resonant classical Hamiltonians with n frequencies, J. Diff.
Eq., 83, 220-243.

Liapunov, M.A. [1949] Probléme générale de la stabilité du mouvement, Annals
Math. Stud., 17, Princeton University Press.

Marsden, J.E. [1992], Lectures on Mechanics, London Math. Society Lecture Note
Series, 174, Cambridge University Press, Cambridge.

Marsden, J.E. and McCracken, M. [1976] The Hopf bifurcation and its Applications,
Applied Math. Sciences Series, 19, Springer-Verlag, New York.

Marsden, J.E. and Scheurle, J. [1993] The reduced Euler-Lagrange equations, Fields
Institute Comm., 1, 139-164.

Meyer, K.R. and Palmore, J. [1970] A new class of periodic solutions in the restricted
three-body problem, J. Diff. Eq., 8, 264-276.

Meyer, K.R. and Schmidt, D.S. [1971] Periodic orbits near L, for mass ratios near
the critical mass ratio of Routh, Celest. Mech., 4, 99-109.

Montaldi, J.A., Roberts, R.M. and Stewart, 1.N [1988] Periodic solutions near equi-
libria of symmetric Hamiltonian systems, Phil. Trans. R. Soc. Lond., A 325,
237-293.

O’Reilly, O., Malhotra, N.K. and Namachchivaya, N.S. (3993} Destabilization of the
equilibria of reversible dynamical systems, preprint.

Palmore, J. [1969] Bridges and natural cenlers in the restricted three-body problem,
Report, Univ. of Minnesota.

Rabinowitz, P.H. [1977] A bifurcation theorem for potential operators, J. of Funct.
An., 25, 412-424. .

Roberts, J.A.G. and Quispel, G.R.W. [1992] Chaos and time-reversal symmetry.
Order and chaos in reversible dynamicel systems, Phys. Reports, 216 63-177.

Roels, J. [1971a] An extension to resonant cases of Liapunov’s theorem concerning
the periodic solutions near a Hamillonian equilibrium, J. Diff. Eq., 9, 300-324.

Roels. J. [1971b] Familics of periodic solutions near a Hamiltonian equilibrium when
the ratio of two eigenvalues is 3, J. Diff. Eq., 10, 431-447.

Sanders. J.A. and Verhulst, F. [1985] Averaging Methods in Nonlinear Dynamical
Systems. Springer-Verlag, New York.



The Constrained Liapunov-Schmidt Procedure and Periodic Orbits 127

Schmidt, D.S. [1973] Periodic solutions near a resonant equilibrium of a Hamilto-
nian system, Celest. Mech., 9, 81-103.

Schmidt, D.S. [1976a] Hopf’s bifurcation theorem and the center theorem of Lia-
punov, Celest. Mech., 9, 81-103.

Schmidt, D.S. [1976b] Hopf’s bifurcation theorem and the center theorem of Lia-
punov with resonance cases, Section 3C of Marsden and McCracken [1976].

Schmidt, D.S. and Sweet, D. [1973] A unifying theory in determining periodic fam-
ilies for Hamiltonian systems at resonance, J. Diff. Eq., 14, 597-609.

Sevryuk, M.B. [1986] Reversible Systems, Lecture Notes in Math., 1211, Springer-
Verlag, Berlin.

Sweet, D. [1973] Periodic solutions for dynamical systems possessing a first integral
in the resonance case, J. Diff. Eq., 14, 171-183.

Vanderbauwhede, A. [1982a] Local Bifurcation and Symmetry, Research Notes in
Math., 75, Pitman, Boston.

Vanderbauwhede, A. [1982h] Families of periodic solutions for autonomous systems;
in Dynamical Systems II (A. Bednarek and L. Cesari, eds), Academic Press,
427-446.

Vanderbauwhede, A. [1990] Hopf bifurcation for equivariant conservelive and time-
reversible systems, Proc. Roy. Soc., Edinburgh, 116 A, 103-128.

Vanderbauwhede, A. and van der Meer, J.C. [1994] A general reduction method
for periodic solutions near equilibria in Hamiltonien systems, Fields Institute
Comm., to appear.

van der Meer, J.C. [1985] The Hamiltonian-Hopf Bifurcation, Lecture Notes in
Math., 1160, Springer-Verlag, Berlin.

Weinstein, A. (1978] Bifurcations and Hamilton’s principle, Math. Zeit., 159, 235-
248.



