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In this paper we describe a new class of soliton solutions, called umbilic solitons, for
certain nonlinear integrable rpes. These umbilic solitons have the property that as
the space variable x tends to infinity, the solution tends to a periodic wave. and as
x tends to minus infinity, it tends to a phase shifted wave of the same shape. The
equations admitting solutions in this new class include the Dym equation and equa-
tions in its hierarchy. The methods used to find and analyse these solutions are those
of algebraic and complex geometry. We look for classes of solutions by constructing
associated finite-dimensional integrable Hamiltonian systems on Riemann surfaces.
In particular, in this setting we use geodesics on n-dimensional quadrics to find the
spatial, or z-flow, which, together with the commuting -flow given by the equation
itself, defines new classes of solutions. Amongst these geodesics, particularly inter-
esting ones are the umbilic geodesics, which then generate the class of umbilic soliton
solutions. This same setting also enables us to introduce another class of solutions
of Dymv-like equations, which are related to elliptic and umbilic billiards.

1. Introduction

The goal of the present paper is to establish a link between umbilic geodesics on
n-dimensional quadrics (described in Alber & Marsden (1994a) in terms of complex
angle representations) and new soliton-like solutions of nonlinear equations such as
the following equation in the Dy hierarchy:

U.rrl = _QUJ‘D'II - U'Uur.t.r + KUJ‘! (1)

which is discussed in Alber et al. (1994a). Here & is a real parameter and, as we shall
see in §3, there is a fundamental difference between # = 0 and x # 0 in the phase-
space geometry. Our solutions are solitons in the standard sense (sce, for example,
Ablowitz & Segur 1981) that. they undergo nonlinear interactions but retain their
identity after an interaction, up to a phase shift.

It is known that there are basic links between geodesic flows on quadrics and
quasi-periodic solutions of certain nonlinear PDEs, including the Kdv equation (for
the Kdv case, see. for example, Alber & Alber (1987) and Alber & Marsden (1994a)).
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The geodesic flows we discuss provide the spatial z-flow, and when combined with
the commuting ¢-flow, yield the class of soliton-like PDE solutions we seek.

In what follows, we also demonstrate a ‘spiral’ type of behaviour of umbilic
geodesics which may be interpreted as the geodesics being homoclinic to periodic
orbits. The corresponding umbilic solitons approach a spatially periodic wave as
x — *oo. This oscillatory behaviour at spatial infinity is similar to that observed by
Hunter & Scheurle (1988) for solutions of nonlinear equations that are of perturbed
KdV type.

Elliptic billiards can be obtained from the problem of geodesics on quadrics by
collapsing along the shortest semiaxis (for details, see Alber (1986)). This process
yields Hamiltonians and first integrals for the resulting billiard problem. The re-
flection conditions of the billiard can be expressed as a jump from one sheet of an
associated Riemann surface to another. Here, we use the corresponding Hamiltonian
billiard flows to construct new classes of solutions of equations in the Dym hierarchy.
Such billiard-type solutions have discontinuous spatial derivative and, thus, are weak
solutions for the class of PDEs we consider. Weak solutions of equation (1) for the
case £ = 0 are studied in connection with weakly nonlinear solutions of hyperbolic
equations in Hunter & Zheng (1994). In another publication (Alber et al 1994a),
we characterized the peakon solutions of a shallow-water equation as solutions of
billiard type and further extended the class of billiard solutions for this equation.

This association of weak solutions of an equation in the Dym hierarchy with the
dynamics of elliptic billiards raises the question of what types of algebraic pertur-
bations of Hamiltonian billiard flows may be associated with quasi-periodic and
umbilic-soliton solutions of Dym-like equations. For example, an interesting class of
perturbations of the elliptic billiard flow is considered in Levallois & Tabanov (1993).
Elliptic billiards are investigated in Moser & Veselov (1991) in connection with the
discrete version of the so-called C. Neumann problem, and in Deift et al. (1991) in
the more general context of loop groups. Also, Cewen (1990) discusses a link between
stationary flows of the Dym cquation and the problem of geodesics on an ellipsoid.
A relation between stationary flows in the Dym hierarchy and certain mechanical
problems is also discussed in Ragnisco & Rauch-Wojciechowski (1994).

The present paper is organized as follows: in §2 we recall the general set-up for
Hamiltonian systems on Ricinann surfaces. In the context of travelling-wave solutions
and first integrals, we consider special billiard solutions for the Dym hierarchy in § 3.
In §4 we set up the Riemann surfaces and the corresponding Hamiltonian systems
for the case of the Dym hierarchy. We also discuss billiard solutions for the elliptic
case. In §5 we introduce the angle representations for umbilic geodesics on quadrics
and in §6 we transfer this information to the context of umbilic solitons and examine
some properties of these solutions numerically. Some related remarks are made for
umbilic geodesics on hyperboloids.

2. Hamiltonian systems on Riemann surfaces

We first briefly recall that quasi-periodic solutions of many integrable nonlinear
cquations can be described in terms of finite-dimensional Hamiltonian systems on
C?". A complete set of first integrals for such equations are obtainable, for example,
by the method of generating cquations, as summarized in Alber et ol (1994a). The
method of generating equations has associated with it a finite-dimensional complex
phase space C?" and two comnmting Hamiltonian flows. The first Hamiltonian flow
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(m Umbilic geodesics and soliton solutions of nonlinear PDEs 679

gives the spatial evolution, and the other gives the temporal evolution of special
classes of solutions of the original PDE. The level sets of the first integrals are Rie-
mann surfaces having branch points parametrized by the choice of values of the first

integrals.
We think of C2" as being the cotangent bundle of C", with configuration variables
Uiy ..y iy and with canomcall\ conjugate momenta P,.... P,. The two commuting

Hamiltonians on C2* both have the form
H= %gijjZ + V(#l, .o -ﬂn)r

where g’/ is a Riemannian metric on C". The two Hamiltonians are distinguished by
different choices of the metric. The two associated Hamiltonian flows have the same
set of first integrals, the zero level sets of which are of the form

P]'2=K(#j): j=11"'$ns

where K is a rational function of p;. Thus, we get two commuting flows on the
symmetric product of n copies of the Riemann surface

R:P?=K(u)

defined by the first integrals. These Riemann surfaces can be regarded as complex
Lagrangian submanifolds. We call this set-up the u-representation of the problem.

In the following section we will utilize the method of generating equations for the
Dym hierarchy of equations.

(m\ 3. Special solutions for the Dym hierarchy
The integrable shallow-water equation investigated in Camassa & Holm (1993),
namely
My =—(Md, + 8, MY, where M =U -U,, + %k, (2)
ha}f an associated hicrarchy determined from the recursion operator R = JoJ; !,
where

J=8,-8 and Jo=M8, + .M
are the first and second Hamiltonian operators. Applying the recursion operator

R three times, starting from the shallow-water equation (2), gives the following
integrable equation (Camassa & Holm 1993):

A, = —(6 83 W (3)

In the standard Dym equation (see Kruskal 1975; Wadati et al. 1980), the term @, in
(3) is absent. Thus, (3) is Dym-like, but there are deep differences from the standard
Dym equation in, for example, its underlying complex geometry.

The two Hamiltonian structures for the standard Dym equation are .J, = —8? and
J> as above, with

M==U,+ ,i—,f:.

The equation that is located at the same level as the shallow-water equation (2)
in the hierarchy of the standard Dym equation is (1); thus, it may be obtained by

applying the recursion operator R = J; J51 three times to the Dym flow. As we
shall see, equation (1) is of special interest because it can be viewed as describing
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the dynamics for a stationary Hamiltonian system with a finitc number of degrees of
freedom, associated with geodesic flow on n-dimensional quadrics. This connection
leads to new interesting classes of solutions of equation (1). Also. every equation
in the Dym hierarchy shares the link to the problem of geodesics on quadrics (cf.
Cewen 1990). Therefore, new classes of solutions can be constructed in a similar
fashion for every member in the hicrarchy. Furthermore. the corresponding time
flows are different for cach particular equation in the hicrarchy.

To provide an example of billiard solutions of (1), we consider the first integral in
the travelling wave case. After substituting an ansatz of the form u = U(z - ct) into
(1) and integrating, one obtains

—cU” + H(U')? - U + UU" = C,. (4)
This yields

U,zi\/~0—+CIU +C'2. 5)

U-c¢

which can be transformed into the integral form

‘ U-c v U-c¢
N = =z—ct. (6
* ‘/L:"’ \/""U2 + CIU + CQ dU * /,:'n N(U - (ll)(l/. - (12) dU x c ( ))

This expression is different from the corresponding first integral for the kdv equation
in the following way: the genus of the Riemann surface is ¢ = 1 in both cases, but the
integrand here is an Abelian differential of the second type because of the extra square
root. in the numerator; as a result, the limiting procedure (namely the coalescence of
two roots) that would lead to single-soliton solutions in the Kdv case, here leads to
unbounded solutions. Because of this, equation (1) does not have solitons of Kdv type.
We will show, however, that there exists an umbilic soliton which can be obtained
from a quasi-periodic solution on a Ricmann surface of genus g = 2. In this sense.
it is a new two-dimensional solution of soliton type. At the same time, equation (1)
also has cusped and peaked periodic solutions.

The cusped solutions correspond to a particular distribution of a;, a;. ¢, & around
zero in such a way that the allowed domain for U real includes ¢. Thus, from (6)
it follows that U can be a continuous function whose derivative can be unbounded,
i.e. U can have a cusp. The peaked travelling-wave solutions can be described as
follows: we choose, for example, a number £ < 0 and 0 < ay, < ¢ < a;, and then
apply the limiting procedure a2 — ¢ to the basic polynomial, i.e. to the polynomial
in the numerator of (5). This results in the following problem of inversion:

» \[ — 01) dU =z (7)

One has to keep in mind that U is still changing between ¢ and a;. In other words,
U jumps from one sheet of the Riemann surface to the other at I/ = ¢. This kind
of solution corresponds to the one discussed in Alber et el (1994a) for the shallow-
water equation (2), but here a quadratic rather than an exponential profile is present
on either side of the peak, at which U = e¢. These peaked solutions constitute the
simplest example of the billiard solutions we mentioned above.

The case £ = 0 is of special interest, both for physical (see Hunter & Zheng 1994)
and for mathematical reasons. This can already be appreciated from expression (6)
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for the travelling-wave solution, since & = 0 reduces the order of the basic polynomial
and climinates one of the roots from the problem of inversion (6). Also, when x = 0.
the approach of Camassa & Holin (1993) for finding solutions of the shallow-water
equation with finite jumps in the first derivative can be used for (1). The * N-peakon’
solution in this case is given by

N
Ut =Y pi(0)lx — q;(1)]. 8)

J=1

where the p; and g; are canonically conjugate variables whose evolution is determined
from the Hamiltonian

\Y
| <
H= Z pipilai — gl 9)
“igy=t
When the p; are chosen so that the constant of motion P = Z}\ p; = 0, the solution
(8) corresponds to the weak solutions analysed in Hunter & Zheng (1994) (see also

Alber et al. 1994b). This N-peakon solution can be obtained by applying the limiting
procedure for soliton solutions (sce §5) to a solution of billiard type.

4. Generating equation for the Dym hierarchy

Methods of algebraic and complex geometry enable one to extend the one-
dimensional result (6) to the n-dimensional case. (For details about the general
(aﬁ\ method, sce Ercolani (1989).) In particular, using generating cquations, one obtains
umbilic n-soliton solutions and billiard solutions of equation (1).
The method begins in the standard fashion by considering the spectral problem
for an associated Schrodinger operator of the form

"

¥4

L=- Q,, + Via, t. E). (10)

oz
where E is a parameter. In some cases, such as the Kdv equation, E appears as an
eigenvalue and one ultimately equates the potential with a solution of the nonlinear
equation itsclf. Qur case is similar to the nonlinear Schrédinger equation in that the
solution U and the potential V' are related in a slightly more complicated way, given
below. To carry out this procedure. one begins by looking for a solution A of the Lax

system
oL
Ly =0, — +[L. Ay =0 11
of the form
g 18B
= —— o — 2
A Baw 2 Or (12)
Substituting the given form of A into the Lax system, one gets
oV /ot = —%B"' + 2BV + BV, (13)

where the prime denotes 9/, Equation (13) is called the generating equation. For
different choices of the forms of B and V, usnally taken to be rational functions of
E with coefficients depending on U and a finite number of space derivatives and onc
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time derivative of U, this procedure will lead to different hicrarchies of integrable
systems. For instance, choosing

M o*U

B(E,x)=FE-U(z,t) and V = Yok where M = p

yields equation (1). Then, setting B to be a polynomial of degree n in E while keeping

V' the same, and equating coefficients for the same powers of E after substituting

in the generating equation in a way similar to the method described in Alber et al

(1994a), leads to a ‘chain’ of recurrence relations which yiclds the evolution equations
(non-local when n > 1) in the hierarchy of the flow (1).

+1ik,  (14)

Remark. The most important fact about this approach is that the stationary
generating equation,

- 1B" +2B'V + BV' =0, (15)

with V of the form given in (14), coincides with the generating equation obtained in

Alber & Alber (1985) for the problem of geodesics on n-dimensional quadrics. This

equation was called there the generating equation of inverse Kdv type.
After multiplying (15) by 2B and integrating, one obtains

- B"B+1B? +2B*V = C,,(E)/E. (16)

Here, the right-hand side is an integration constant, but we are interested in the
case in which the numerator C,, is a polynomial of degree 2n in E with constant
coefficients, in order to match like powers of £ when B is chosen to be a polynomial
of degree n in E. Substituting £ = p; and B = H — ptj{x,t)), one obtains
the system of equations for the z-derivatives of the p varml)lcs, as we shall see in
equations (20) below.

The link between the problem of geodesics and the generating equation can be
explained as follows: recall that geodesics on n-dimensional quadrics of the form

n+l n+1l

QZ qu—l

(so that q;‘-’ = x'f/lj and {; are the squared semi-axes of the quadric) are described
by Euler-Lagrange equations for the Lagrangian

n+l n+1
L= 43 b u(x)(Zq,—l) a7)

These Euler-Lagrange equations are

PR .
fij'“qu=0, J=1...,n+1L (18)

It follows from (18), the constraint in (17) and its second derivative that

n+l n+1
/ (19)

Thus u plays a role of a ‘potential’ for the constraint in (17).
Lemma 4.1. Let g;(x), j = 1.....n+ 1, be a solution of the system (18). Then
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the polynomial

b =3 (T1E-0)e

i=1 Nk
is a solution of the gencrating equation (15).

This lemma shows, in particular, that the sets of first integrals coincide for the two
problems and that the problem of geodesics determines the phase-space geometry
for the quasi-periodic solutions of the Dym hierachy of equations.

The commuting Hamiltonian a- and ¢-flows for each member of the Dym hier-
achy can be introduced using the dynamical generating equation (13), following the
approach of Alber et al. (1994a): one obtains

o _ ie _ VEG)
ox J nlgj(”j — ) (20)
Oy _ vV E (1) .
- =2i¢;Dj=—""——"—, j=1,....n,
ot H:¢j(l‘j — 1)
1 2n
. - - ]2 -
where K(FE) = LOE kI:Il(E mg).
and the function D;, of y,..... 1o, which is obtained by the method of generating

equations, is different for each member of the Dym hierachy. Here L, is a constant,
€; = £1, and cach variable g lics on a copy of the Riemanu surface

unllsi : P2 = ]"(E)‘

Following the methods of Alber et al. (1994a), the solution of (1) can be represented
as follows:

n
U::.Z[lj+(H+L(2,);;-;I'2+C]JI+CQ. (21)

=1
Requiring the boundary condition that U be bounded at spatial infinity gives the
condition K = —=L2 and C; = 0. The constant C, can be removed by a Galilean boost

of the original equation (1).

Notice that in the casc of the shallow-water equation (2), the limiting case k = 0,
while special, is not singular. For the Dym equation (1), however, the limit & — 0
leads to Ly = 0 (due to x = —L3), i.c. the coefficient of the leading-order term
E?-! of K vanishes, and there is a change in the genus of the associated Riemann
surface, so this limit must be treated separately. This illustrates the nature of the
singularity of the limit £ — 0 in the context of the Riemann suface associated to
quasi-periodic solutions of (1), and generalizes the observation following the simple
case of the travelling-wave solution (G).

The systems (20) are Hamiltonian systems which have the following set of first
integrals:

1 2n
Pl =r— H(;tj—mk). J=1.... n.
Hi iy
Notice that the limiting process my, — 0 applied to these integrals results in the
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following first integrals:
2n

Pl =k H (i — ). j=1l.....n
k=l"\'#ku

and, thus, one also obtains a system of differential equations which describes ellip-
tic (or hyperbolic) billiard solutions of the equations in the Dym hierarchy. Notice
that the a-part of the system (20) after this limiting process, describes standard
geodesic hilliards. In what follows. we will continue to indicate by Ly the coefficient
of the leading-order power of £ in the definition of the Riemann surfaces, with the
understanding that whenever a formula applies to the pDE (1), —L2 =~ # 0.

5. Umbilic geodesics on n-dimensional quadrics

Soliton solutions for nonlinear integrable equations are typically obtained by coa-
lescing pairs of roots of the basic polynomial of the Riemann surface (see, for example,
Previato 1985; Alber & Marsden 1992). By applying this procedure, we now show
that classical two-dimensional umbilic geodesic flows on guadrics can also be ob-
tained in this way. Then we generalize this procedure and introduce umbilic geodesic
flows on n-dimensional quadrics. thereby obtaining Hamiltonians and angle repre-
sentations for the new class of umbilic n-soliton-like solutions alluded to above.

We start with the definition of the umbilic points on a two-dimensional surface.

Definition 5.1. Let K;(p) and Ka(p) be the largest and smallest principal cur-
vatures at a point p of a surface

S: W =R
A point py on the surface is called an umbilic point if K{(po) = K2(po).

The study of umbilic geodesics on two-dimensional quadrics is one of the classical
problems of Riemannian geometry. For example, it can be shown that in case of a two-
dimensional ellipsoid there are exactly four nmbilic points (see Klingenberg 1982).
Also, there is a special family of umbilic geodesics on the ellipsoid going through
pairs of umbilic points. In Alber & Marsden (19945) we show that they correspond
to a special choice of the value of a particular first integral of the quasi-periodic
Hamiltonian flow. The value of this first integral should coincide with the length of
the intermediate semiaxis of the ellipsoid. In what follows we obtain umbilic Hamil-
tonians and construct a complete set of umbilic angle variables. Then we generalize
the notion of the mbilic geodesics to the n-dimensional case.

Before we do this, we discuss the parametrization of the family of umbilic geodesics.,
The geodesics corresponding to the quasi-periodic case are geodesics that are tangent
to two special curves on the ellipsoid. called caustics: in this case, it is possible to
parametrize the geodesics by their intersection points with the caustics. These cauns-
tics are the intersection curves of the ellipsoid with confocal hyperboloids. We will
show that the umbilic case results from the limit in which the hyperboloid Hattens
to the region between two branches of a hyperbola. The four wnbilic points are the
intersection points of the ellipsoid and the hyperbola. As we shall see, the Hamilto-
nians for the umbilic case can be obtained through the limiting procedure deseribed.
Each member of the family of umbilic geodesics passes through two antipodal um-
bilic points and these are the only points on the causties through which they pass.

Proc. R. Soc. Lond. A (1995)
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Figure 1. The profile ol the umbilic soliton corresponding to figure 2.

These umbilic geodesics can be parametrized by the choice of initial tangent vector
at one of the umbilic points. The parameter along the geodesic will correspond to
the spatial variable z. As @ — oc, the umbilic geodesic converges to the periodic
geodesic through the four umbilic points.

In §4 we showed a link between the problem of geodesics and wave solutions of
nonlinear equations. In terms of the spatial shape u(x.t) of the solution. the above
geometry translates to the following: as r — o, the solution u converges to a periodic
function, while as x — —o0, it tends to the same periodic function, but phase shifted
with respect to the first (see figure 1).

(m\ Consider a general family of quasi-periodic geodesics on an n-dimensional ellipsoic

n+1 2

xS
Z',—J=l' 0<1n+|<"'<1]'
=1

which is described (sce, for example, Alber & Alber 1985, 1987) in terms of the
p-variables as a solution of the system of equations

8[1 L() n n+ b

' J N

W, = 57— = =——— I | (e =) | (s — L)/ (=115). G=1.....n,
70 LGy = i) i J 'Ul j J

29
where the p-variables here are elliptic variables on the Riemann surfaces associated
with the first integrals of the problem and where we have chosen ¢, = 1. These can be
obtained by the method of generating equations as described in Alber et al. (1994a)
with the Riemann surface defined by zero-level sets of integrals of motion Hj, given
by

n-+1

15 [ lkm i (5 = i)
Here m; and Ly are constants along the solutions of the system (22), and

el

lipo<my<li. j#jo. I<j<n

There are n — 1 first integrals i for the quasi-periodic flow on ¢uadrics. Each
one of them has a value which belongs to one of the intervals with the end points
corresponding to the squares of the ellipsoid semiaxis lengths and there are n such
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intervals. Therefore, in the non-degenerate case, there is no more than one my in
cach interval, and there is always one interval 7, which does not contain my. Different
choices of jy correspond to different families of guasi-periodic geodesics.

Remark. Instead of using curvature in the definition of umbilics, in the n-
dimensional case we consider the angle representation and the p-representation which
will be obtained by a certain limiting process.

Namely, we consider the limiting process

mk——»lk“ =bk. k= l.....(jo—-l). (23)

mp = b =b, k=0o+1),...,n, (24)
which results in the system of equations

4 LO \/(,‘I’J - ll)(“.] - l7l+l) I_I:l=l V‘#Jn(llj - br)

H R
’ A/ ﬂ) r[:;éJ “

corresponding to different choices of jo, where (1 < jo < n). This system yields the
following expressions:

n vV "H‘H'- ’_ rstiour (,J - b") '
Z Clat Z 1,r# 7o, r#Ek I k4o
=1 (ﬂj - bk)\ﬂﬂj -1 )(,uj —lns) i=1 :;éj(uj - 1)

i V—H;H; Al | O (TP B
j=1 LO\/  — 1 ) H; — [n#-l) J=t ni;éj(l‘j -/lq')

] k= j()'

(26)
Notice that the right-hand sides of these expressions are interpolation formulae of
Lagrange type. The left-hand sides are identified with the z-derivatives of the angle
variables. Therefore. we set

0,=0, k=1,....n, k#jo; 0, =1 k= jo, (27)

Jo

which, after integration on the Riemann surface, results in the mbilic angle repre-
sentation

n 1] — i
8= VA e =60, k=1.....m0 k#jo
=14 (4

9 (1 - bA)\/ i =05 — lasr)
O, = ) _/“’ v=#; diy
&

= =+ oqs k= jO-
j; no Lo/ (1 = 1) (5 — lug1) ¢

(28)
Here 69,....0° are constants, {pf..... #%) is a base point of integration and
(#11,....H,) denotes a point on the invariant variety, i.e. on the symmetric prod-
uct of n copies of the Riemann surface to be described below. Now we can give the
following definition.

Definition 5.2. Umbilic geodesics in the n-dimensional case are defined by the
following limiting choice of first integrals for the quasi-periodic flow: m; = b;, result-
ing in the angle representation (28). Umbilic points on n-dimensional quadrics may
be defined in terms of the p-representations by ¢, = b;, j=1,....n.

In what follows, we will introduce new systems of first integrals for umbilic
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geodesics and will obtain corresponding exponential Hamiltonians. In the next sec-
tion we will show that this provides a Hamiltonian z-flow and level sets for a certain
class of soliton-like solutions of equations of the Dym hierarchy.

Theorem 5.3. The system of equations (26) for umbilic geodesics on quadrics
define certain solutions for the Hamiltonian system with Hamiltonians given by

R~ exp(M(p;)P;) — Ly TTkm e (125 — 1)
=2, Moy — 1) ’ %)
where
/M(ﬂ) - \/(ﬂ - ll()-(flll; I"+l) . (30)

The resulting Hamiltonian system has a complete set of first integrals H;. of the
form

1 n
—— Y loglLo(uj =t J=1....n. (31)
M) s
and the angle representation (28) linearizes the corresponding Hamiltonian x-flow.
The system (26) is recovered when the Hamiltonian system gencrated by (29) is
considered on the zcro-level sets of the integrals H;.

Hj=P, -

Proof. Upon substituting the expressions (31) for the integrals into the Hamilto-
nian system gencrated by (29). we obtain the first part of the proof. Then we consider

the action function
n LTI
S = Z/ ])J (l[lj,
j=1Ju]

which generates a Lagrangian submanifold of the phase space (C",". and the following
(=]
system of variables:

Ik=l)k, k= 1,...,71: k#jo: Ij“ = L()
(32)

Even though there are no invariant tori in the phase space, the Hamiltonian flow can
be linearized, as we see from (28).

The angle representation (28) has logarithmic singularities. It is similar to the
soliton defocusing nonlinear Schrédinger representations and representations for the
homoclinic orbits of the C. Neumann problem and can be analysed using multi-
dimensional asymptotic reduction (see, for details, Alber & Marsden 1994a, b).

Corollary 5.4. The system of differential equations (25) has a particular solution
corresponding to the case when all but one of the root-variables ji; are constants:

' Lo \/(/‘j — ll)(ﬂj —lnt1)
;=

ln+| < ;< 1y, J = Jo,

V—H; ’ (33)
[tj=bj. j=1w-"$n; J#JO
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This result means that the family of wnbilic geodesics can asymptotically ap-
proach a one-dimensional torus (one of the central ellipses. which can be viewed as a
closed geodesic obtained after shrinking the caustics of the family of quasi-periodic
geodesics). This gives an example of an orbit approaching a lower-dimensional torus
as r — £3¢. The system (25) has another particular solution which corresponds to
the case when y; = b,. j = 1..... k. k < n. This results in umbilic geodesics on
(n - &)-dimensional quadrics.

6. Umbilic solitons

For example, in the two-dimensional case, a family of umbilic geodesics on an
ellipsoid asymptotically approaches a periodic orbit along the middle ellipse. This
limiting orbit can be deseribed as follows: ity = b or jto = b and

17 /¢
/ I =x+6". L<p<l. (34)
a0 Lo/ (=1 (e —1y)

One of the geodesics approaching this limiting orbit is shown in figure 2. which
shows the phase plane (j1,. j1») for the system (25) in the two-dimensional case. We
set Iy = 0.2, b = 0.7 and [} = 1.5 to provide a specific example, and integrate
the system (25) numerically. The wmbilic points on the ellipsoid are mapped into
Z = (b.b). and the polar points (£4//,.0,0) and (0,0. £\//;) are mapped into the
points A; = (11.0) (or Ay = (b.1))) and By = (b,13) (or By = (L3, b)), respectively.
An umbilic geodesie on the ellipsoid is mapped into a trajectory in the plane like the
one shown. The trajectory visits the upper and lower rectangles py € {13, 8], p2 € [b. 4]
and oy € [b.y]. pta € |I5. 0], respectively.

The phase plane consists of fowr Riemann sheets ghied together along the branch
cuts at the sides of the square j1y € [I5.4]. 12 € [3.4]. A typical trajectory touches
the vertical and horizontal branch cuts in each rectangle before it goes through the
singular point Z and moves to the other rectangle. The trajectory is tangent at
the points of contact with the branch cuts. As shown in the figure, as £ — oc the
trajectory (uickly approaches the segments of the vertical and horizontal lines y; = b
and g0 = b in a particular order, which in this case is

A= Z =B —Z—Ay—Z—By— 7 — Ay (35)

The lines yt; = b and o = b map (o the ellipsoid meridian (which is a closed geodesic)
that passes through the umbilie points. This is an unstable periodic orbit for system
(25). and the umbilic geodesic is homoclinie to it. For details of the proof of this
fact. see Klingenberg (1982). Notice that the umbilic geodesic can be parametrized
by a single parameter. c.g.. the coordinate g1, of a point of tangency along the line
p2 = Iy, i.e. the point of intersection of the geodesic with the equator.

According to the reconstruction formula (21). the sum jy + p1o provides, up to
an additive constant. the profile of the soliton solution {/{(wr, f) of equation (1). Fig-
ure 1 shows the mnbilic soliton shape, which corresponds to phase portrait shown in
figure 2.

In what follows. we constrnet an angle representation for umbilic 1-soliton solu-
tions. The process of obtaining an mmbilic soliton starts with a quasi-periodic Hamil-
tonian flow on a Riemann surface of genus 2 (rather than genus 1, as for the Kdv
soliton case) and then one makes a pair of roots coalesce by adjusting the values of
the first integrals. ‘The Hamiltonian system that deseribes the starting quasi-periodic
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Figure 2. The trajectory in the (s, s12) phase plane of an umbilic geodesic on a two-dimensional
ellipsoid in R3. The squares of the ellipsoid semiaxis lengths are chosen to be I3 = 0.2, = 0.7 and
Iy = 1.5 and the geodesic flow (25) is integrated numerically starting from the initial condition
at the upper edge p2 = 1,.

flow for umbilic solitons is two dimensional, in the sense that it is a system on (a
two-dimensional Lagrangian submanifold of) phase space C!. This Lagrangian sub-
manifold consists of two copies of a Riemann surface of genus 2, one for each of y,
and pp. After coalescing roots, one also gets a new Hamiltonian system on a product
of two copies of a Riemann surface determined by first integrals of the same form
as those described in §4 for the problem of umbilic geodesics on quadrics. The new
system is still described by two variables, which we again denote y; and g, Using
the general method of Alber & Marsden (1992), applied to the resulting system. gives
the following angle representation:

e V=i diy - v=t2dpta 0
0, = + = 0] + Lot
wd (=0 =1 =1s) i (=) /(2 — L) (2 — 1)
#1 11 ¢ 2 11 o
8, = / i + Hz itz =09 +x - bt.
uf LO\/(!‘-I =0 = 1l3) . I Ln\/(llz = L) — 1)
(36)

Starting with quasi-periodic flow on a Riemann surface of genus 2 in the Kav
case, the coalescence of roots produces a two-soliton Kdv solution that describes the
interaction of two single solitons. In the case of the Dy equation, if one starts with
quasi-periodic flow on a Riemann surface of genus 3, coalescence of two pairs of roots
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produces the following angle representation:

3 4
g = Z/ﬂ ) VR dy; — 0? + Lyt ]
ke (= b))V (g = W)y = L)

o =; dpe;
0, = f Vs iy —®Lot b (@37
; o (5 = ba)y/(ny — L)y — 1)
S, s Nt
£y ap 0
O3 = f =05+ - (b + b)t.
; wo Lo/ = 1)k = 1) : )

Applying the method of asymptotic reduction of Alber & Marsden (1992) to (36)
produces a phase shift of the limiting periodic orbit for £ — %00, given by

b

V=it dpy

A¢=2f . (38)
ts Loy/ (1 — ) (1 — 13)

This technique will be applied to (37), producing other explicit formulas for phase
shifts in Alber et al. (1994D).

To complete the geometric model, we consider umbilic angle representations on
various hyperboloids. We demonstrate our approach in the two-dimensional case for
simplicity. Different families of quasi-periodic geodesics on a hyperboloid with one
sheet can be characterized by the following two distributions of the squares of the
semiaxes {; and first integral m:

Lb<O0<lh<m<l,, and m<lz<0<il; <l;.
If we apply the limiting process
m—olb=0 b>0, and m-oly3 =95, b<0,

in the first and second case, respectively, to the system of differential equations
for quasi-periodic geodesics, we obtain two different families of umbilic geodesics.
Their angle representations are similar to those in the case of an ellipsoid. The only
difference is that g, is defined in the infinite zone | — oo, I3] or ] — 00, b] respectively.

In the first case, umbilic geodesics asymptotically approach the central ellipse on
the hyperboloid, which is described by formula (28), where

lo <py <lz, p2=0
The second family of geodesics approaches two hyperbolae on the hyperboloid and
is described by (28), where
m=b, pa <l
Umbilic geodesics on hyperboloids correspond to the solutions of the PDEs with one
p-variable defined in the infinite zone and a discrete spectrum which includes both
positive and negative elements. The reconstruction formula (21) for the solution of

equation (1) then shows that, unlike the elliptic case, umbilic geodesics on hyper-
boloids do not provide bounded solutions of the PDE.

7. Conclusions

In this paper we have established the existence of, and studied the complex geom-
etry associated with, umbilic solitons for the nonlinear evolution equation (1). These
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solitons correspond to families of singular geodesics on n-dimensional quadrics, and
we have illustrated the procedure concretely for n = 2. In a forthcoming paper we
will address the question of collisions of two or more such solitons which yields phase
shifts and will investigate in detail the special solutions of hilliard type for equations
in the Dym hierarchy.
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