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1 Introduction

Methods of symplectic and complex geometry have recently given important
information about the phase-space geometry of nonlinear equations (see, for ex-
ample, Ercolani, Forest, McLaughlin, and Montgomery [1987], Ercolani [1989], Er-
colani and McLaughlin [1991], McLaughlin and Overman [1993]). A few specific
examples are as follows. From the point of view of complex geometry, the reality
conditions and homoclinic varieties for the sine-Gordon (SG) equation

Uzz — Uy =sinU, (1.1)

were investigated in Ercolani and Forest [1985] and Ercolani [1989]. The modula-
tional Poisson structure for the sine-Gordon system was derived in terms of confor-
mal ingredients, such as differentials on Riemann surfaces and @-functions, and a
link with the Hamiltonian theory was investigated (see Ercolani et. al. [1987]). Ge-
ometric singular perturbation theory was discussed in Kovacic and Wiggins [1992] in
connection with the resonances of the sine-Gordon equation. In Bishop, McLaugh-
lin and Solerno [1989)] a global 2-dimensional system of real action-angle variables
was constructed for the sine-Gordon equation, which gives a framework for describ-
ing the breather-kink-antikink transition. Then a geometric method of “blowing-up
the singularity” was used for completing the phase space in the neighborhood of
the singular point of the corresponding dynamical system and for extending it
to a Hamiltonian system on this new phase space. (For details about a method
of “blowing-up the singularity”, see Birnir [1986].) Complex geometry related to
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quasiperiodic and soliton solutions and singular theta functions was studied in the
KdV case in McKean [1977] and Ercolani [1989]. Finally, a topological classifica-
tion of soliton equations based on the geometry of compact invariant varieties was
studied in Ercolani and McLaughlin [1991].

In Alber and Marsden [1992, 1994] we developed a new method for obtaining
geometric phase phenomena for soliton equations, including the familiar phase shift
of interacting solitons. Traditionally, the phase spaces of integrable systems were
viewed as being foliated by invariant tori; however, for soliton phase spaces and to
get formulas for geometric phases, we have shown that a foliation by noncompact
varieties is essential. The method is based on the introduction of a new complex
angle representation on a noncompact invariant variety. (In particular, a 1-soliton
solution is identified with the linearized Hamiltonian flow on a logarithmic Riemann
surface.) Asymptotic reduction of the n-dimensional soliton complex angle repre-
sentation then yields a description of geometric phases in terms of the monodromy
at singularities in the space of parameters.

In the process of investigating these angle representations, we deal in a natural
way with the phenomena of geometric phases. Recall that in Berry [1984], a geomet-
ric phase factor exp(iy) was considered for systems that are slowly {adiabatically)
transported along closed curves in a space of parameters. In Montgomery [1988]
a class of connections was constructed to obtain expressions for the Hannay-Berry
phases (these are geometric angle shifts in the classical case) for some integrable
problems in terms of the nontrivial holonomy of these connections. (See Berry and
Hannay [1988].) Montgomery also gave an example of a phase associated with the
presence of singularities in the case of a flat connection. Symmetry and reduction
were used in Marsden, Montgomery and Ratiu [1990] to obtain a generalization
of geometric phases to the non-integrable case in the form of the holonomy of the
Cartan-Hannay-Berry connection. Recently, David and Holm [1992] investigated
Hannay-Berry phases for the real Maxwell-Bloch equations on R3.

As was already discussed, we introduced angle representations on noncompact
Jacobi varieties and used asymptotic reduction to obtain geometric phases for a pair
of commuting soliton Hamiltonian flows. Our method uses the fact that asymptotic
reduction leads to the complex splitting of the spectrum of the soliton problem. A
connection between the #-function and the 7-function can also be used to find
a link between soliton geometric phases and geometric phases for quasiperiodic
solutions (see Alber and Marsden [1992] and Alber [1992]). We note that in the
quasiperiodic case, geometric phases are related to the Whitham equations through
the phase function.

The goal of the present paper is to introduce a multidimensional generalization
of asymptotic reduction given in Alber and Marsden [1992], to use this to obtain a
new class of solutions that we call resonant solitons, and to study the corresponding
geometric phases. The term “resonant solitons” is used because these solutions
correspond to a spectrum with multiple points, and they also represent a dividing
solution between two different types of solitons. In this sense, these new solutions
are degenerate and, as such, will be considered as singular points in the moduli
space of solitons.

As one passes from n-soliton solutions to resonant solitons, the spectrum changes
continuously, but the invariant variety on which the solitons reside, does not. Thus,
one has to use the tools of any perturbative set up with great care. The methods
of asymptotic reduction provide these tools.
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These methods give a detailed description of complex phases for the focussing
nonlinear Schrédinger, or (f)NLS, equation,

iQ + %Q” +QQ%=0 (1.2)

and the sine-Gordon equation, including phases for the breather-kink-antikink and
soliton-separatrix interactions. They also yield a link with the geometric models for
resonant solutions, such as umbilic geodesics on quadrics. (See Alber and Marsden
[1994].) Our approach also provides a link between solitons and homoclinic orbits
of nonlinear systems and should enable one to investigate perturbations of the angle
representations of nonlinear systems to detect chaotic behavior in the neighborhood
of the homoclinic orbits. In particular, in Alber and Marsden [1994] we show
that the Hamiltonian flow associated with homoclinic orbits introduced in Devaney
[1978] for the C. Neumann problem coincides with the soliton z-flow of the KAV
equation. This result leads us naturally to the introduction of homoclinic geometric
phases.

We summarize some of the new features found in the present paper using gen-
eralizations of the method of asymptotic reduction:

¢ Our general approach allows one to study the collision, or interaction, of
solitons of different type, such as the interaction of a breather and a kink
solution, which generates additional phase shifts. The paper also discusses
resonant solutions, which, as we have mentioned are degenerate solitons, such
as solutions separating breathers and kinks.

e We show that along a 2-dimensional direction in an invariant variety V,
there is a splitting of the 2n-dimensional resonant angle representation into
the sum of n copies of 2-dimensional solutions of the same type. This type
of behavior was previously observed in the case of soliton solutions along a
1-dimensional direction. Namely, this splitting is the analogue, for resonant
solutions, of the familiar asymptotic splitting of an n-soliton solution into n
individual 1-soliton solutions.

¢ Finally, we develop the method of discrete asymptotic reduction and demon-
strate it using the Toda lattice and new discretizations of the defocusing
nonlinear Schrédinger (d)NLS equation and obtain the corresponding phases.

We start by recalling in Section 2 the 1-dimensional method of asymptotic
reduction for the associated complex angle representations that yields, among other
things, complex geometric phases. In Section 3 we illustrate this method using 2-
soliton solutions of the focusing (f)NLS equation. We introduce a new kind of
complex soliton generated by a collision of two standard solitons, which we call
a “ghost” soliton. The word “ghost” is used because one “sees” this part of the
solution in the complexification of the system, which perhaps explains why the
object was missed up to now. This ghost soliton is necessary for the understanding
of the entire interaction and for the asymptotic splitting of the solitons. We also
expect that it will play an important role in the perturbation theory of the (f)NLS
equation and in applications to nonlinear optics, especially in view of recent efforts
to use optical solitons in fiber optics and the importance of temporal and spatial

phase shifts in these investigations. (See, for example, Hasegawa and Kodama
(1992].)
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The general multi-dimensional method of asymptotic reduction is described
in Section 4. This approach is illustrated for the case of resonant solutions of
nonlinear equations and is applied to the collision, or interaction, of solitons of
different type, such as the interaction of a breather with a kink solution of the
sine-Gordon equation as well as the interaction of a soliton with a separatrix. In
particular, as is shown in Section 5, such interactions generate new phase shifts,
including resonant geometric phases.

Finally, in Section 6 we describe asymptotic reduction for discrete (infinite par-
ticle) nonlinear problems that arise from partial differential equations by an “exact”
discretization process. We will show that this includes Toda lattices that arise from
discretizing the soliton solutions of the defocussing nonlinear Schrédinger equation.
(This discretization process is different from standard methods of approximating
nonlinear equations described in Toda [1989]; here we sample the solutions of non-
linear equations at discrete spatial points and get an exact solution of the infinite
particle Toda lattice equations.) This leads to an introduction of new exponential
Hamiltonians, angle representations and geometric phases.

The general theory of continuous and discrete systems that are related to each
other through the same Jacobi varieties (level sets in the phase space) was developed
by Solomon J. Alber [1989, 1991].

Recently methods of asymptotic reduction were applied to the study of peaked
solitons and billiard solutions of a class of nonlinear integrable pde’s in Alber,
Camassa, Holm and Marsden [1994a]. This class of equations includes a shallow
water equation investigated in Camassa and Holm [1993] and Camassa, Holm and
Hyman [1993] as well as equations from the Dym hierarchy. The method we use for
the shallow water equation also leads to a link between a certain class of solutions of
one of the members of the Dym hierarchy and solutions of the Hamiltonian system
for an N-dimensional elliptic billiard. The details of this link can be found in Alber,
Camassa, Holm and Marsden [1994b)].

2 Complex geometric phases

In Alber and Marsden [1992, 1994] a general approach to geometric phases for
soliton equations was described and the (d)NLS and KdV equations were considered
in detail.

In what follows, we demonstrate the general method of asymptotic reduction
of the complex angle representations for the (f)NLS and sine-Gordon (SG) hierar-
chies of equations and use methods of complex analysis to yield information about
geometric phases. In particular, this method gives a description of a new effect of
a residual interaction between 1-soliton solutions after the asymptotic splitting of
the n-soliton solution of the (f)NLS equation. On the other hand, angle represen-
tations for the SG equation give insight into the breather-kink-antikink interaction
and describe the effect of such interactions on the transition through the separatrix
solution.

One starts with two complex Hamiltonian flows in complex phase space C2".
The main purpose of asymptotic reduction is to investigate the vector phase func-
tion ¢, a C™ valued meromorphic function defined on an invariant variety V consist-
ing of the symmetric product of n copies of a Riemann surface ® C C2" associated
to the problem. This Riemann surface R is determined by the constants of the mo-
tion of the particular problem, and was defined for different examples in Alber and
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Marsden [1992]. Asymptotic reduction plays the role of averaging in the sense that
it separates the geometric phase from the dynamical phase. Normally the dynamic
phase is the frequency times the time (or the integral of the frequency with time
(see, for example, Montgomery [1988], page 276). In the case of solitons, the period
is infinite, and this is a main difficulty that is overcome by the method of asymp-
totic reduction. The complex phase function, which stands as an argument in the
7-function, keeps track of the phase information in solitons, even when they are
interacting. In this context, the phase shift of solitons is related to the singularity
structure of the phase function.

We may regard V as a bundle over a space of parameters M. In our case,
the parameters consist of spectral parameters a; that will be discussed below. We
can choose an arbitrary connection on this bundle. In what follows, we will choose
a trivial connection because we are primarily interested in describing geometric
phases in terms of monodromy caused by the presence of singularities. In this
context, the geometric phase is defined, as in Alber and Marsden [1992], as follows.

Definition 2.1 We define soliton geometric phases as:

f;daap. (2.1)

Here d, denotes the covariant derivative relative to the given connection and C is
a closed curve in the space of parameters.

Note that this formula incorporates the possibilities of two sources for geo-
metric phases, namely the anholonomy of a connection, and the monodromy of a
singularity. From the point of view of a connection it is a natural extension of
the results obtained for the Cartan-Hannay-Berry connection in the real case using
averaging techniques

Hannay's angles = j{ (da0) . (2.2)
foi

For details see Montgomery [1988] and Marsden, Montgomery and Ratiu [1990).

3 Geometric phases for the (f)NLS equation

It is known that quasiperiodic invariant tori are degenerate for the NLS equa-
tion. These degeneracies are related to the fact that the NLS equation should be
considered as a degenerate case of a more general nonlinear problem. (For details
see Previato [1985] and M. Alber and S. Alber (1985, 1987].)

This difficulty manifests itself also on the level of searching for solitons. In what
follows, we show that the method of asymptotic reduction naturally deals with the
degenerate nature of the soliton solutions on the level of invariant varieties.

To obtain multi-solitons of the (f)NLS equation, we first consider quasiperiodic
solutions. We start with the spectral polynomial

Cu) = [J (e —m») (3.1)
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depending parametrically on the spectrum my,... ,msn. The complex numbers
m; are assumed to be distinct. Let

Z ot = Zmr . (3.2)

l=1,l#j3

Here g = 2N — 1. Next, consider the following Riemann surface:
Rouasi = W2 = ~C(p) (3.3)

and the variety V' = (Rguasi X - - X Rquasi) /0y Where oy is the group of permutations
of g letters. Finally, let ¢; = +1. One can choose these arbitrarily at the moment;
their significance will be discussed later. In terms of this data, we consider the
following two systems of differential equations on V:

C
N; — a“] — 21 ] ('u‘])
ox H#] (k5 — )
(3.4)
. Oy . C(uy) .
Hy = ——— — 2Z€'D'——‘_a J= 17"'793
! ot I Hl;ej(,uj — )
Here each variable u; lies on a copy of the Riemann surface Rqyqs:-
Each of these equations has first integrals given by:
4N
P} =-Cuj) = —[[(wi—m»), i=1,...0 (3.5)
r=1

The equations may be considered as a Hamiltonian system with conjugate variables
p; and Pj.

Now we apply the following limiting process to the spectrum m,. of the quasiperi-
odic problem:

M4k, Mak—1 — Gk, M4k—2,Mak—3 — ag, k=1,...,N. (3.6)

Here N = (g+1)/2 and g, the genus of Rqyqs:, is assumed to be an odd number. (See
Previato [1985] and McKean [1977] for details.) This limiting process defines a new
polynomial C by /C(u) — C(g) and results in the following limiting differential
equations (3.4):

Oy _ o TIoi (s — ar) (s — @)
== ’LEJ ,
Ox Hl;éj(p’j — )
(3.7)
Ou; : HN—1(NJ' —a,)(p; — ar) )
— = 2ie; D; == , =1,..,
ot Y Iz u — ) J g

describing an N-soliton solution of the (f)NLS equation. Here

g9

N
Z ﬂl+2 ap +ax) |,
k=1

I=1,l#j
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and €; is as before. Note that prior to Alber and Marsden [1992], the limiting
process (3.6) was usually applied to the system of first integrals as well. As a
result, the soliton Hamiltonian flows were considered on pinched tori in the phase
space. We have shown that, instead, by introducing the new system of first integrals

N
P; = Zlog(uj —ap){p; —ax) j=1,..,9, (3.8)
k=1

the system can be realized on a noncompact invariant variety: (Rsor X -« - X Reor)/ Og,
where the Riemann surface R,,; is defined by

N
Reot : W = Z log(p — ag)(p — ag). (3.9)

k=1

In Alber and Marsden [1992] we showed that the system (3.7) together with its new
first integrals (3.8) can be realized as a Hamiltonian system with an exponential
complex Hamiltonian.

Note that the limiting process described above yields an odd dimensional com-
plex (f)NLS system. In what follows we will demonstrate that this yields an addi-
tional complex soliton generated by a collision of the standard solitons.

3.1 2-dimensional soliton solution of (f)NLS equation Before describ-
ing the N-soliton solutions, we want to give a motivation for our approach by
describing the “ghost” soliton generated by a collision of two standard optical soli-
tons.

An analysis of the Riemann surface (3.9} associated with the 2-soliton solution
of the (f)NLS equation yields 3 u-variables (i1, 2, 43). This gives 3 terms in the
angle representation (61, 62, 63) and demonstrates the existence of the 3-rd ” ghost”
soliton. In what follows we use the notation: ay = x; + ¢y and ay = 29 + iys.

The angle representation that describes the collision of 2 standard solitons of
the (f)NLS equation, namely

2

e ——_
' 4y \ 4 1o (bj —a1)  (p; —a1) Hi

Jj=1

i (/ (e Rir=rn) d“3)

3

= l‘+U1t, (310)

where v = 2z; and

2
1 Hi 1 1
_——0 - dis;
: dyp \ 4 /@? ((Mj—a2) (.Uj“a2)) &

= x4 wat, (3.11)
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where vy = 25, also includes the 3-rd angle variable, which accounts for the re-
maining interaction between two initial solitons after asymptotic splitting. The
third angle variable yields an additional soliton and can be chosen for t — oo and
t — —oo as follows

2 3
o = ”2@%55 Z/ ((ujian‘(uji@))d"f

Jj=1

1 13 1 1
+2(y1 —Y2) (/ILO ((M3 —ay) - (s — a2)) dua) = (z + v3t) + Im(63),

3

2(y1x1 - y2$2)

Vg =
(y1 — 92)

(3.12)

and

= T gL;j(<ujial)‘<ujia2>)d“j

1 K3 1 1
2u —w) </u ((MS —a)  (us-— a2)> dﬂB) = (z + vst) + Im(63),

2(y121 — Yox2)
(y1 — v2)

V3 = (313)

Here 05 = —§§L . To illustrate the phase shift procedure, we assume that (zy < z1)
and (0 | y2 < y1), which implies that (v < v;). Asymptotic reduction along
(di = z +v1t) and (da = x + vot) (described in Alber and Marsden [1992]) yields
a splitting of the 2-soliton angle representation and results in the following phase
shifts:

1Acbi] == L 1o
n

az — a4

Y

as — ay

ArgAcg, := 2arctan (u) — 2arctan (M)

To — I T2 — I
(3.14)
1 _
|AgH,| = —— log| =2
Y2 a; — az

ArgAgb, := —2arctan (u) + 2arctan (M) ]
T2 — X I — T2 J

Reduction along the third real direction (d3 = x + v3t) yields an additional phase
shift, namely the phase shift of the “ghost” soliton corresponding to 65:

Y1
Y2

1
Agls| = — o
[Abl (y1 —¥2) 8

We choose 63 = 0 ast — oo and 63 = 05 as t — —o0.

. (3.15)
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We believe that these new soliton phase shifts can be detected in an experiment
similar to those used to measure temporal phase shifts of the optical solitons (see
Friberg, Machida and Yamamoto [1992] and Hasegawa and Kodama [1992]).

Remark 3.1 Note that the condition v; = vy = v (or x1 = z9) yields vz = v.
In other words, the additional soliton generated by standard solitons moving with
identical speeds, does not split from them.

To clarify the link between complex angle representations introduced above and
standard formulae for optical solitons from nonlinear optics (see Ablowitz and Segur
[1981] and Hasegawa and Kodama [1992]) we describe below the 1-dimensional case;
that is, the case (N = 1,9 = 2N —1 =1). There is only one u(x,t) variable which
satisfies the following system of differential equations

g—’; = 2ie(p — a)(p — a)
(3.16)
(?9—1: =2ie(p—a)(u —a)D.

Here D = (a + @) = 2Re(a). In what follows we consider ¢ = 1. The choice of
the basic point of the angle representation on a particular sheet of the Riemann
surface plays an important role in asymptotic reduction for complex solutions of
the (f)NLS equation.

The system (3.16) yields:

1 du
- | ————~——= =z +vt, v=2Re(a), 3.17
2 | @ -a @ (317
or
1 / ( 1 1 )
+ — Jdu =z + vt. 3.18
@ ) \e=w ") * (3.18)
From the equivalent expression
n—a
log ( N) =dlm(a)(x +vt+6,) =8 (3.19)
a—
it follows that
q a €] 1<)
p—a 4 _a+ae” . l1-e
a—,u_e e e = Re(a) — iIm(a) (1+65>. (3.20)

Now, the solution Q(z,t) of the (f)NLS equation is related to the u-variable p(z, t)
by
_ .0
U=-2u+2(a+a)=-2u+ 4Re(a) = 5 log @, (3.21)
4

and therefore, we have

Q =exp (—i / Ud;r) = exp (Qi/pda: - 4iRe(a)x) . (3.22)
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Here

/ jdz = Re(a)z — ilm(a) / (ﬂ) do (3.23)

1+ef

/ 1—ePN / dx _/eﬂd;c _/e-ﬂdx _/eﬂd:c
1168 )% = 1+ef 1+ef [ e P +1 1+eB

1
= ————log(e P +1) -
m(a

1
- 8
1 (a) log(1 +€”) + rt + ¢

8 8\ 2
1 e 2 +e2
) log ( 5 ) + 6t + Cp. (3.24)

Finally, we obtain the expression
Q = Q° exp (—2iRe(a)z + 2ilm(a)ét — ivg) sech (2Im(a)(x + vt + 6y)) .

After substituting the expression for Q into equation (1.2) we determine the coef-
ficient §. This results in the formula

1Q = Q%exp (—ZiRe(a)x + 2i((Im(a))® — (Re(a))*)t — iuo) sech (2Im{a)(z + vt + b))

which coincides with the expression used in nonlinear optics (see Hasegawa and
Kodama [1992]).

We expect that angle representation and new phase shifts described above will
play an important role in applications to nonlinear optics, especially in view of
recent efforts to use optical solitons in fiber optics and the importance of temporal
and spatial phase shifts in these investigations. In particular, angle representa-
tions can be used for numerical simulations of the solutions of perturbed nonlinear
equations.

3.2 n-soliton solutions of the (f)NLS equation First of all, we show that
(3.7) gives rise to a new Hamiltonian system in the phase space C%.

Theorem 3.2 The systems (3.7) are soliton Hamiltonian systems with Hamil-
tonians

P ()]

H® =2 YR (3.25)
and
He =2 _1 Dj(e”i — C(u;)) (3.26)
° Hz;sj(ﬂj — )
and with first integrals
N
P; = 2—J Z Y —ar) 7=1,..,9, (3.27)

which determine an invariant variety in the form of o symmetric product

(%sol XX §Rsol)/o'gv
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of n copies of the Riemann surface described as follows

N
1 _
Reot : W = % ngl log(pe — a) (1 — a,). (3.28)

Theorem 3.3 The Hamiltonian systems (3.25) and (3.26) have a system of
action-angle variables which splits into N 1-soliton angle variables with correspond-
ing phase functions as (t — 00) or (t — —o0).

Proof
From the system (3.7), we obtain the following system:
’ N B
Hj —¢ Hs;ﬁr(:u’] - as)(,ufj - as)
(uj —ar)(p; —ar) 7 I (s — ) ’
Ay T (15 — a)(u; — a,) (3.29)
‘ = €rjD; , r=1,..,N.

Hl;éj(/J’j — )

We take into consideration parameters €,; = +1 inherited from the quasiperiodic
problem. They will determine in what follows the choice of the sheet of the Riemann
surface in the expression for the r-th angle variable. Note that a soliton solution
corresponds to a particular choice of the indices. Otherwise, the system (3.29)
describes a more general class of solutions.

Summing the above equations (3.29) with respect to j, we obtain the first part
of the angle representation

(:uj - ar)(/‘j —ar)

N 1 1
o = m();/o ((Mj—ar)—(ﬂj_ar)> s
Z / ( —— — — 1_ — ) dpien
4Im ] ok (lu’J+N ar)  (Wj+n —ar)
— et (3.30)

where v, = 2Re(a,) and r=1,...,N. Here 1 < k < N.

We will consider the real part of the angle representation first. It will be
shown in the end of this section that phases for the imaginary part of the angle
representation are determined by the phases for the real part.

Now we fix the k-th direction, di = x + vt = constant, and investigate the
behavior of the rest of the angle variables

O =2+ (vr —p)t+ et =dp + (v, —vp)t, r=1,...N: r#k, (3.31)
as t — £o00. This yields the following limits for the first (N — 1) p,-variables:

1.t w00 : pp - a,, forr<kand pu, —a,.for N>r>k
(3.32)
2.t - -0 : ur —a,forr<k and g, —»a.for N>r>k.

The important part of asymptotic reduction in the case of (f)NLS equation is that
it should be applied to the whole vector space of angle representations which has a
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basis consisting of g = (2N — 1) elements. We choose ¢;, in a way described below
and determine (N — 1) missing elements of the basis in each of the cases t — oo and
t — —o0, as follows:

1. (t —> o0) for r < k, let

N o ppy 1 1
OT N = / ( - ) d;L'
! ; wo N\l —ax) (g —ar)) 7
N

B (e ) e

ey \ieny —ax) - (pjen —ar

= 2i(ax — a,)(z + v,y N1), (3.33)

and for N > r > k, let

N oy 1 1
07‘ = / ( — — — ) d .
w2 o \w—aw)  (-a)) M

> [ (o =)
- - ~ p dujy N
=1, u (#j+N - ak) (Mj+N - ar) al

= 2i(ar — a)(z + vrant). (3.34)

Here

Uy N = ag + a, for r <k,
(3.35)
UpyN = G + a, for r > k.

2. (t = —o0) for r < k, let

AR 1 1
0, :V/( __ A)dr
L)\ —a (m—an)

2i(ax — ar)(T + vrynNt), (3.36)
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and for N > r > klet

N J
e = Z/ ((Njiak)_(ujiar)) B

Jj=1

N

3 /MHN ( 1 1
_ _ du;
= S (Hjen —ar)  (pjen — ar)) N

s=1j#k VHieN

= 2i(ax — a,)(z + vy Nt). (3.37)
Here

UppN = Qg + @ for r < k,
(3.38)
UryN = ay +a, for r > k.

Now we take the real parts of the expressions (3.30), (3.33), (3.34), (3.36) and
(3.37) and apply asymptotic reduction along the direction dj, (1 <k < N). This
yields the following limits for the remaining (N — 1) y,-variables:

1. t—o00: ppyny —a,, forr<k
and gy —a.for N>r>k

(3.39)
2. t—> —00 : ppan —ayforr <k

and p,,n — a, forr > k. )

After substituting these values into the expression for the k-th angle variable it is
transformed into the 1-soliton angle variable with some acquired complex phase:

o = L /Mk ( 1 — 1 ) dpr + o
k 4Im(ay) e (ke —ax)  (px — ag) HET P
=T + vit,
(3.40)
1 Hi 1 1
o [ (k)
k 4Im(ay) 2 (bk —ax) (o — ax) Hh T P
= T + vit. J

Here, basic points of the integrals are taken on different sheets of the Riemann
surface. [J

Now using the phase function and the general definition of a geometric phase
given above we calculate a real part of the complex (f)NLS phase.

Corollary 3.4 Consider the difference between 0, and @,‘: and let dy, — co.
This yields a phase generated by the singularities of the initial system of equations:
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1 1 1
AcOy — - f ( St )d .
G 2Im(ax) Jp, \ (pe —ar)  (pe — k) AL
— 41
m(ax) Zlog ;= ak 21m (ak) §1log - (3.41)

Here, the integral is taken along the cycle Ly over the basic cut on the Riemann
surface.

The method of asymptotic reduction of the angle representations described
above yields the splitting of (3.30) into (V) 1-soliton angle representations with
their corresponding phase functions. Therefore, the angle representation (3.30)
describes N-soliton solutions.

Corollary 3.5 The first part (3.30) of the angle representation is the same
for all directions di.. The choice of the last (N — 1) elements of the representation
as well as the choice of the €,; is an important part of the asymptotic reduction
in case of the (f)NLS equation. The problem is considered on the linear space of
the angle representations. Namely, along with every fized direction dy, we choose a
new particular set of angle variables (0,+n, r =1,...,N, 7 #k).

To deal with the limiting imaginary part of (3.30), we use the formulae con-
necting the solution @ of the (f)NLS to the function U:

0
U -—z—logQ, U=-2 E pi+2 E ay + ag). (3.42)
=1 k=1

Integrating this expression, we obtain an arbitrary constant in the phase of the ex-
ponent. We put this constant equal to the argument part of the phase corresponding
to (3.41). (See the 1-dimensional case discussed in Section 3.1.)

The angle representations introduced above demonstrate the existence of the
residual interaction between solitons after the asymptotic splitting of N-soliton so-
lutions of the (f)NLS. This residual interaction is a manifestation of the degeneracy
of the invariant varieties in the phase space of this soliton problem. It generates
the ghost solitons described in previous section.

4 Asymptotic reduction and sine-Gordon geometric phases

Another important problem that can be investigated by the method of complex
angle representations is the description of the interaction between different types
of soliton solutions of the same nonlinear equation. To demonstrate this, we will
investigate the breather-kink-antikink interaction and the effect of this interaction
on the separatrix of the sine-Gordon equation and corresponding geometric phases.
In Bishop, McLaughlin and Solerno [1989)], 2-dimensional real angle variables were
introduced to describe a transformation of a breather into a kink-antikink solution
through a separatrix. In the present paper, we are investigating an interaction
between different types of soliton solutions of the sine-Gordon equation and their
effect on the transition through an n-dimensional separatrix.

We consider (N = (n; + 2n3))-dimensional complex phase space CV and in-
vestigate general soliton solutions using asymptotic reduction of the combination
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of the ny-dimensional breather and ns-dimensional kink-antikink angle representa-
tions. The general approach yields an interesting new class of phases and describes
the transition through separatrix solution in the n-dimensional case.

To clarify the link with algebraic geometry we begin with the quasiperiodic
solutions. (We will be using notations introduced in the previous section for (f)NLS
equation.) In the case of the sine-Gordon equation, the associated quasiperiodic
system has the form

Oy, —1;C (1)
—— =214+ Gn-1(p)) m—F7——21, 4.1
e | DRy )
Op; —1;Cny)
L = 2(1 = Gy (py)) ) i1 N, (4.2)
ot ' ]))Hi;ej(ﬂj — fi)
defined on the symmetric product of the n copies of the hyperelliptic curve
2N
W? = —%, where C(u) = H(u - m,) - (4.3)
r=1

is a spectral polynomial. (See M. Alber and S. Alber [1985] and Ercolani, Forest,
McLaughlin, and Montgomery [1987].) Here

1
Gro1(p) = ——= ) agp™ " (4.4)

with the coeflicients from

N N
Gw) =TI =u) =3 g™ (4.5)
j=1 =0
Using the different limiting processes:
Mar, Mor_1 — a,, where a, = —a?, r=1,...,n,
(4.6)
which gives an (n;) kink-antikink solution
and
My, +4r, Mp 44r-1 — hra Mpy+4r—2, M +4r-3 — Brv r= ]-v ey N2y
(4.7

which gives an (ny) breather solution

applied to different parts of the discrete spectrum (m,) one can obtain a combi-
nation of soliton solutions: breathers and kinks. It leads to the transformation of
the basic polynomial: \/C(u) — C(u), which results in the transformation of the
differential systems (4.1) and (4.2).
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4.1 Breather-kink collision and corresponding phase shifts The idea is
to use different pieces of the soliton and resonant angle representations to construct
representation for the collision in the form of a mosaic defined on the Riemann sur-
face of rather complicated structure. Different pieces are kept together through the
same set of p-variables. Note that the general form of each piece corresponding to
a particular type of soliton solution is preserved. What is changed is the dimension
of the underlying Riemann surface which is determined by the dimension of the
mosaic. '

We illustrate the action angle variables produced by our method for the two
soliton case of the breather-kink-antikink collision, which corresponds to the fol-
lowing discrete spectrum: (aj,ag;h, ). Here a1,a2 € R and h, heC.

4 .
1 i 1 dis;
I =a,, 6= —Z/ S o R w1 x + v1it, (4.8)
2 Jue by —ar) v=py
4 .
1 2] 1 du
I, = a9, O = = / —_ = WoI + vat, (49)
2 Jz::l ue (1 — a2) =H;
and
4 .
1 [22] 1 d“
I3 = h, 03 = = / (———— = w3xr + Ugt, (410)
2 Jz_:l ;L]’? (iu’J - h’) v T Hj
L=h 6 124:/% LR B (4.11)
4=h, 4= —— ——— = W3T 3t. .
2 =143 (“j - h’) vV T Hj
Here
1 1
r = ]_ —_ 5 r = 1 _— = 3 4
w ( 4ar) v ( +4ar) r=1,2 (4.12)
and

w3=(1—ﬁ),v3=(1+ﬁ). (4.13)

4.2 n-dimensional case The systems obtained from (4.1) and (4.2) as a
result of the limiting procedures (4.6) and (4.7) can be checked to be Hamiltonian
systems with the Hamiltonians

o 2@ “ P — O(u)) (1 + G- (1))
Hl;éj(l'l’j — )

(4.14)

]

and

0 Tiog (VTR = O(py)) (1 = G- (k)
HY = T Gy o) . (4.15)
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These systems have a complete set of first integrals
_ log C(u;)
2,/—,[1.]‘ ’

and a system of action-angle variables. Here N = n; + 2n,.
The action-angle variables can be described as follows:

P; j=1,.,N (4.16)

N
1 Hj 1 .
I, =a,, 07':_85 :_Z/ T~ du] = w,x + v, r=1,..,n,
0L 255 Juy (s ar) V=H; (4.17)
and
N
1 Hj 1 d/ll
Ir+n = hra 9r+n == / ( J_ = Wy + 'Urt, r = 1, Ly N2,
' b2 Jz::l e (15 = he) /=1 (4.18)

I Ry, 6 L ZN:/M L (4.19)
r4+ng+ny — M, r4+ns4+n; — 5 = Zwrl'-f"l_}rt, 4.19
n2 1 2 L 2 =1 #; (/1,]- — hr) Vot 71
r = 1,..,TL2.
Here
~(1- 2 (14— r=1 (4.20)
W, = 1) Uy = ia. r=1,..,m .
or
~(1- 2 — (14 =1 (4.21)
Wy = 4hr , Up = 4hT r=1..,Nng. .

Note that the soliton (kink-antikink) angle representation for the sine-Gordon equa-
tion is similar to a particular case (n; = 2n) of the KdV and (d)NLS representation
investigated in Alber and Marsden [1992]. Therefore, it remains only to describe
in detail the pure breather angle representation.

We change variables as follows

pi=—&, hr=-x, (4.22)

choose €,; in a way specified below to find that real part of the angle representation
is represented in the form

2|h,|? 3 ( & —Xr ) £
0, = log |21 —== g
Re(x,)(4|h-|> — Re(h;)) ]; & & +xr|) 16

2|k, |2 & ( £ — Xr ) £

— lOg J

ReCo) (i ~Rel) | 2=, " &5 |) I

_ (4|h, 2 + Re(h,)),
- (4[hr|? - Re(hr))t’ r=1,.,n (4.23)
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3

and

3]
3

0 B 2|h.|? i
e T Re(x:)(4/h-[? — R =1

_ o (HReP 4 Re(h)Y
T T\ GR P —Rehy ) ¥

5] + Xr
(4.24)

Now we apply asymptotic reduction to the real parts of the first no elements of the

angle representation. This yields the following distribution of the limiting values of
the p-variables along real directions dj:

4|hk|2 + Re(hk)

di = Vit = R VR Y

k=X + Vi x+(4|hk|2—Re(hk)

1. t—o00: pp =X, for Vi, <V and p, — x, for V. > Vi,
(4.25)
2. t— -0 pp = xrfor V. < Vi and p, — x, for V, > V.

Here it is useful to keep in mind that y; ., = g; and V,,, < ... < V.

Now we combine angle representations and obtain phases acquired by breathers
as a result of interaction with kinks and vice versa. This results in the following
phase shift:

_ 2| hi|? - k) (O + Xe)

8% = Re(h) (A ~Re(hn)) Z ’ O + xk> (X; — Xk
B 2|xx [ Z ‘ xk) (xj + X&)
Re(hi)(4hk|? — Re(hy)) (x5 + xx) (x5 — Xx)

=k+

+ Ag @Ereather-kink,

where Acg‘ltc)reather-kink is the phase acquired by the breather after interaction

with the kink solution and is given by the following expression:

breather-kink 2|hk|2 -
Ac©O = 1
Gk Re(hy) (4[hi]? — Re(hi)) Z 8

(@ = xx) (o5 + xk)
(aj + xx) (5 — xx)

=1(v;/w;)<Vy

n2

2|Xk|
Re(h) (@11uf? — Re(h)) > log

=1(v;/w;)>V},

(o5 — xk) (o + xx)
(QJ + Xk) (o — X&) ’

where q; = —a]2-. These phases depend on the mutual distribution of the elements
of the breather and kink parts of the discrete spectrum.
The additional phase that is acquired by the kink along

UV
dp =+ —
Wy,
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due to interaction with breathers has the form:

kink-breather 2|0‘k|2 - (xj — ak)
AcOp = 5 Z log | —=—
Re(a) o — 1) ,_, 2= [ + )
2o |2 - (xj — ar)

log | =——1.
Re(ay)(4]ax > — 1)) 2 100 + )

J=1,V;> (v /wy)

Phases for the imaginary parts of the angle representation are obtained in the form
of argument shifts corresponding to the same logarithmic phase function.

In the case of complex geometric phases, the real and imaginary parts of the
phase usually have different physical meanings. For example, in the case of a
breather solution of the sine-Gordon equation, these two parts are related to two
different types of oscillations of the breather; one is a wave phase oscillation and
the other is an amplitude oscillation. For the (f)NLS equation, they correspond to
temporal and spatial phase shifts of optical solitons.

Above, we considered asymptotic reduction along real “breather” and “kink”
directions. Note that complex angle representations obtained in this paper can be
also used for integrating complex Hamiltonian flows along complex directions in
and t.

5 Resonant geometric phases

Below we introduce 2n-dimensional angle representations for resonant solutions
of the sine-Gordon equation and describe resonant geometric phases. This technique
is of course not restricted to the sine-Gordon equation, but can be applied to any
soliton equation. Resonant solutions are considered as singular points in the moduli
space of solitons and correspond to multiple points of the discrete spectrum.

As we remarked in the introduction, as one passes from n soliton solutions
to resonant solitons, the spectrum changes continuously, but the invariant variety
on which the solitons reside, does not. Thus, one has to use the tools of any
perturbative set up with great care. The methods of asymptotic reduction provide
these tools.

We will show that asymptotic reduction of the resonant angle representations
along a 2-dimensional direction splits them into the sum of n 2-dimensional resonant
solutions. This kind of asymptotic splitting of solitons was previously known only
in the case of n-soliton solutions splitting into single solitons, and only along a
one dimensional direction. The main difference is that in the present case, the
2-dimensional resonant angle representations are irreducible in the sense that they
do not split asymptotically.

In particular, this approach yields a detailed description of the complex phases
for the (f)NLS and sine-Gordon equations, including phases for the breather-kink
and soliton-separatrix interactions.

A resonant solution can be considered as a separatrix between different soliton
solutions of the same nonlinear equation. We will demonstrate this idea using the
breather-kink-antikink interaction and the transition through a separatrix in the
case of the sine-Gordon equation.

Soliton kink-antikink and breather solutions of the sine-Gordon equation are
separated by the separatrix solutions obtained as follows. Namely, one takes in



20 M.S. Alber and J.E. Marsden

(4.17) ny = 2n3 and considers the following limiting process:
(a2k7a2k—1) _>bk7 k= 17"'7”3'

This provides an example of a resonant solution.
The resonant solution (i.e., separatriz solution) in the case of the sine-Gordon
equation can be described by the angle representation

2ng .
1 2] 1 d/J/
0, = - / L — x4 vyt + 62,
=yl we (5= br) /=15

Jj=1

(5.1)

2ng .
1 Hj 1 d/"'
0, =5 / 3 :prx+yrt+6(r)nv
T we (5 —br)? /=Ly e

Here

1 1 1 1
Wr = 1+E y Up = l_a 7p7‘:_g%'7l/rzg.

The first ng integrals can be evaluated as before using change of variables

Hj = — ?7 b, = _672' (52)

resulting in the introduction of the logarithmic phase functions. The phase function
for the second part of (5.1) can be obtained using the fact that

y 06, 1 06,
rHns ~9b, 28,08,
(5.3)
1 2n 1 1 & 1
= — — 07‘
2(267")2 JZ:; (Igj - ﬂr| Igj + BTI) 5;_) S(ﬂr)2

1
= 02+n3 +b_2(t—‘r)

We apply asymptotic reduction by investigating the Jollowing system, obtained from
the resonant angle representation described above,

2ng &;
1 E'_/Br g br_l
0, = E:T.l > M =xz+Vit, V.= , 5.4
461‘(1 - br) j=1 € 108 Ej + /Br £9 v br +1 ( )
= 3

g.
7 1
o = E(.’L‘—t) + 8—6?(1'4—‘/;'0,

) __1_%36.( 1 )
T sa NG - B 1g + B

T = 1, N3,

(5.5)

Remark 5.1 Note that we are dealing with (2n3) u; variables and only (ngj)
action variables b;. This means that we consider each pair of variables py and pjyn,
on the two copies of the same Riemann surface with the branch point b;.
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The equations corresponding to 6, and 6, ,, from the systems (5.4) and (5.5)
determine exponential and rational rates of convergence to 8, for & and &4,
along directions d, and d,4,, respectively

1

1
dr =+ V,t, dr+n3:b—2(a:—t) (z + Vit).

8[32
Now we fix two directions di and dgy,, and investigate the asymptotic limit of
every &; for ¢ — Foo.

As a result of the asymptotic reduction, we obtain a 2-dimensional separatrix
solution that consists of one logarithmic and one rational type of angle variable,
together with the acquired phase function ¢. The logarithmic angle variable is

ot- = by /“'c 1 dpk
i 2(1 + b) (ke — bk) V—p
by /”“"3 1 dik4ng +-
+ — T =ax+ Vit
21+ (hrins =00 V=herm;  F
(5.6)
and the rational one is
o - L[
ks 2 Jpe (e = bx)* V=
1 /””"3 1 bkt -
+ = = Qpin. = PT + Vil
2 “Z+n3 (:u'k+n3 - bk)2 vV T Hk+ns ktns
This also results in the accumulation of the following resonant phases:
1 . Bi = B
AcOr = ¢ —pp = Z log |=L—F
26k (1 — by) PRt B; + B
1 o
© 28.(1—b D log e
Bre(l—bi) v 18, ¥ 8|’
As©O o N i ( 1 1 )
GOktny = e = Pran. = -
3 k+ns k+ng Sﬂk] V<V |ﬁj—ﬁk| |ﬂj+ﬂk|
1 & ( 1 1 )
86} i 1;>v 18 = Bel 185+ Bl)

Remark 5.2 Note that the angle representation can be smoothly transformed
from breather case to kink-antikink case. The problem is that the system of action
variables is degenerate for the resonant (separatrix) solution considered on the same
phase space C" together with breathers and kinks. Here N = n; + 2ny + 2n3.

On the other hand, we have enough angle variables to describe the resonant
(separatrix) subspace of the phase space and to calculate corresponding phases.
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Now we consider a combination of all elements of the angle representation and
link them to each other through the same set of exactly N = n;+2n,+2n; variables
;. Here, each of the y; is on the corresponding Riemann surface.

Remark 5.3 Asymptotic reduction developed in this paper for resonant solu-
tions of nonlinear equations enables one to construct and investigate n-dimensional
umbilic solitons introduced in Alber and Marsden [1994]. It also yields angle rep-
resentations for the solitons with quasiperiodic background and for m-dimensional
complex solutions which describe collision of m solitons moving with the same
speed.

6 Discrete asymptotic reduction and geometric phases

Finally, we give an example of the application of asymptotic reduction to the
Toda lattice regarded as a spatial discretization of the defocussing (d)NLS equation.
We will do this on the level of the angle representations for the two problems.
To make this link, we will choose directions for the asymtotic reduction that are
partially discrete. In fact, we will choose directions appropriate to solitons for
(d)NLS, and along these directions, we leave the time variable ¢ continuous, but
choose the spatial variable x to be discrete.

In particular, our approach provides angle representations and exponential
Hamiltonians for the IV soliton solutions of the infinite particle Toda lattice (on
the line) and gives a clear understanding of the corresponding geometric phases.
We will also show that asymptotic reduction of the N-soliton angle representation
for the Toda lattice yields a splitting into the sum of 1-dimensional solitons similar
to the solitons of “finite density” of the (d)NLS. (For details about a connection
between Toda lattices and continuous problems, see Toda [1989] and S. Alber [1989,
1991].)

Theorem 6.1 N-soliton solutions for the infinite particle Toda lattice system
are described by the following angle representation

N

Hj dit; k.
0 = / 2 =t+rhg + 62,
; ug (k= py )/ (g e — b1) (e — b2) * (6.1)

k=1,...N; N=2n+1,

where (r) is a discrete variable. The system (6.1) splits into the sum of 1-
dimensional angle representations of the same type as t — *oo.

Proof One first works out the Hamiltonian system and associated angle rep-
resentation for the quasiperiodic case as one does for the NLS equation, as was
described before, or in Alber and Marsden [1992]. Then one passes to the N soli-
ton limit by collapsing the spectrum as before. This leads to a new system of angle
representations as stated in the theorem. To study the asymptotic splitting, we
prepare the following lemma.

Lemma 6.2 The 1-dimensional angle representation

dp

6= g - =t+rh+6° 6.2
/uo @ VoGt (6:2)
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corresponds to a class of solutions of the infinite particle Toda lattice, which includes
the 1-soliton solutions.

Proof We introduce new variables

= by 26252—51

2 _
This results in the following form of 8:
1 £E- a 0
0= _"log|>—-|=t¢ VA 4
p0g|§+a' +rh+6°, reZ, (6.4)
where
2 b1 —a
o = — , p=+/(a—b1)(a—ba). (6.5)
a — bg
From this it follows that
(b2 = b1) < (1-5) (1-8) )
= by + — , 6.6
n=bet T Gaea-1-p auspra-m) Y
where
B = exp(pb° + pt + prh) = exp(p(). (6.7)
This yields the solution (g) of the Toda lattice in the form
1+ evefS a+1
q= C() + log (m) , V= lOg (a——_l) y (68)

which is the Toda 1-soliton solution. The proof of the splitting is similar to the
continuous case. The main difference between the discrete and continuous cases is
the description of a “fixed direction” Dy. Note that we are considering Toda flow
(which is linearized in terms of the angle representation) as an “exact” spatial dis-
cretization of the soliton flow of the (d)NLS equation on the noncompact invariant
variety described in Alber and Marsden [1992]. Therefore, we consider asymptotic
reduction for the infinite particle Toda lattice along a spatial discretization of the
continuous direction di used before for the (d)NLS equation. In particular, this
yields discrete geometric phases. O

Corollary 6.3 The 1-dimensional angle representation in the above lemma
corresponding to the case when by = by = b, namely,

© d/L 0 ﬁ
/,p (@a—p)(p—1") T a—b (6.9)

yields an expression for q, namely
g = bt +log (1+ €?) + Cy, (6.10)

which is similar to a “dark” soliton of the (d)NLS equation.
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Angle representations of this type belong to the same class as action-angle
variables first introduced in Flaschka and McLaughlin [1976].

In a forthcoming paper we will describe new types of discretizations of the
soliton problem for the (f)NLS equation which can be investigated using the method
of this section. Soliton solutions of these new discrete systems can be considered
as an approximation (similar to infinite particle Toda lattice models) for optical
solitons.

Lastly, angle representations obtained in Alber and Marsden [1994] for homo-
clinic orbits of the C. Neumann problem (extended to the discrete case by the
method of this section) can be used to describe corresponding homoclinic orbits of
the stationary Heisenberg chain with classical spins. (For details concerning a con-
nection between discrete version of the C. Neumann problem and the Heisenberg
chain see Moser and Veselov {1991]).

Acknowledgements, Mark Alber thanks The Fields Institute for its kind hos-
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