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1 Introduction

In [23, 21, 14, 43] and [3] some new (complex) Hamiltonian soliton and homoclinic structures,
phase functions and geometric phases for soliton equations were introduced. In particular,
phase phenomena caused by the presence of monodromy at singularities in the space of
parameters was studied.

Phase functions in the quasi-periodic case have important applications in the theory of
evolution equations (where they appear in connection with the Whitham equations). We
investigate them in the singular (soliton, umbilic soliton and homoclinic) cases. In this
paper we consider the umbilic and homoclinic solutions in this context.

Umbilic soliton solutions and n-soliton solutions are both considered as singular points
in the moduli spaces of Jacobi varieties. The Hamiltonian structure and asymptotic re-
duction obtained here can presumably be understood in terms of a regularization of these
singularities. Umbilic solutions differ from the usual solitons and homoclinic orbits in that
their spectral polynomial (the basic polynomial associated with the Riemann surface) has
only positive roots, while they are all negative in the usual case. The umbilic solitons pro-
vide a geometric model for homoclinic orbits that approach low dimensional tori instead of
homoclinic points as t → ∞.

The Hamiltonian flow associated with homoclinic orbits introduced by Devaney [17] for
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the C. Neumann problem coincides with the soliton x-flow of the KdV equation. This result,
together with the isomorphism between different classes of solutions of the C. Neumann,
KdV and Jacobi problems, leads us naturally to the introduction of umbilic homoclinics.

The general approach is demonstrated for the n-soliton solutions of the Nonlinear
Schrödinger (NLS) and sine-Gordon (SG) equations and umbilic soliton solutions of Korteweg-
de Vries (KdV) hierarchies of equations.

In the process of investigating the new angle-representations for the homoclinic orbits
and soliton-like solutions of the nonlinear equations, we deal in a natural way with the
phenomena of geometric phases.

We recall that in [11], Berry considered a geometric phase factor exp(iγ) for systems that
are slowly (adiabatically) transported along a closed curve in a space of parameters. In [44] a
class of connections was constructed to obtain expressions for the Hannay-Berry phases [13]
(these are geometric angle shifts in the classical case) for some integrable problems in terms
of the nontrivial holonomy of these connections. In [44], Montgomery gave an example
of a phase associated with the presence of singularities in the case of a flat connection.
Symmetry and reduction were used to obtain a generalization of geometric phases to the
non-integrable case in the form of the holonomy of the Cartan-Hannay-Berry connection
([37]).

All of the papers mentioned above deal with problems that have compact invariant vari-
eties. In [3], we introduced complex angle-representations on associated noncompact Jacobi
varieties and use asymptotic reduction to obtain phase functions on the corresponding topo-
logically nontrivial phase spaces. This yields soliton geometric phases and provides a setting
for investigating the effect of slow evolution of the solutions of the nonlinear equations in
terms of geometric asymptotics (i.e., semiclassical modes).

For the focusing NLS equation, asymptotic reduction of the angle-representation yields a
term which remains after the asymptotic splitting of the n-soliton solution. This remaining
interaction between solitons makes the case of the (f)NLS (focusing nonlinear Schrödinger)
equation different from other soliton equations and might have applications in nonlinear
optics.

In the context of Hannay-Berry phases, one usually considers a shift of the angle variables
θ = (θ1, ..., θn) in a particular problem after transporting along a closed curve in the space
of parameters. This change consists of two parts,

4θ = 4Dθ + 4Gθ

called the dynamic and geometric phases. The dynamic phase is due to the dynamical
evolution of the system and it is proportional to the period of time (T ) during which system
is transported along the closed curve. To eliminate the dynamic phase and to retain only
the geometric part, averaging is often used. In the soliton case, the period is infinite and
so we use the method of “asymptotic reduction” and the complex phase function instead of
the averaging approach.

We recall from [3] that there are different approaches to soliton geometric phases.
Our method uses the fact that asymptotic reduction leads to the complex splitting of

the spectrum of the soliton problem and yields a new class of geometric phase phenomena
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associated to a moduli of n-dimensional noncompact Jacobi varieties. Usually the phase
space considered in the context of Hannay-Berry phases is a family of Jacobi tori.

We then show that phases are obtained as a monodromy at singularities of the phase
function, which doesn’t depend on the initial conditions. A connection between the θ-
function and τ -function can also be used to find a link between soliton geometric phases
and geometric phases for quasi-periodic solutions (see [5]).

The limiting process and τ -functions on the Jacobi cylinder were investigated by McKean
[41] for the KdV equation. The complex geometry related to the θ-functions was previously
studied in the KdV case by McKean and Ercolani [41, 22]. The modulational Poisson
structure and generalized theta functions [23, 21] for the sine-Gordon system were described
in terms of conformal ingredients such as differentials on Riemann surfaces and a possible
link with the Hamiltonian theory was investigated.

The finite dimensional complex Hamiltonians and phases obtained in this paper can be
also used for investigating modulation equations.

Lastly, our soliton Hamiltonian structures lead to presoliton geometric asymptotics and
use the results described above to obtain a link with geometric phases in the quantum case.

2 Umbilic Solitons

Here we construct a class of soliton-like solutions of the KdV equation using a singular
family of umbilic geodesics on n-dimensional quadrics.

It is known [40, 42, 51, 31, 47, 7] that there are finite dimensional invariant tori in the
phase space of completely integrable nonlinear problems and that solutions lying on these
tori (hyperelliptic Riemann surface), called quasi-periodic solutions, can be described using
a pair of commuting Hamiltonian systems written in configuration variables (λ1, ..., λn) and
momentum variables (P1, ..., Pn).

To obtain the soliton problem, one shrinks pairs of roots of the basic polynomial of
the Riemann surface ([41, 46, 1]). In [3] we applied the general procidure to the problem
of geodesics and make use of the link between the problem of geodesics [8] and the KdV
equation. In this paper, we do this for the umbilic case.

Consider a general family of geodesics on the n-dimensional ellipsoid

n+1
∑

j=1

X2
j

lj
= 1

which is described [7] in terms of the root-variables {λj} as a solution of the system of
equations

∂λj

∂x
=

1
∏

i6=j(λj − λi)

√

√

√

√

∏n
k=1,k 6=j0(λj − mk)

∏n+1
r=1 (λj − lr)

(−λj)
, j = 1, ..., n. (2.1)

To obtain angle-repersentations for different families of umbilic geodesics, we consider the
limiting process

mk → lk+1 → bk, k = 1, ..., n; k < j0,
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mk → lk → bk, k = 1, ..., n; k > j0,

corresponding to each fixed (1 < j0 < n) and transform the system (2.1) as follows

∑n
j=1

√
−λj λ

′

j

(λj−bk)
√

(−λj)(λj−l1)(λj−ln+1)
=

∏n

r=1,r 6=j0,r 6=k
(λj−br)

∏

i6=j
(λj−λi)

, k 6= j0.

∑n
j=1

√
−λj λ

′

j√
(−λj)(λj−l1)(λj−ln+1)

=

∏n

r=1,r 6=j0
(λj−br)

∏

i6=j
(λj−λi)

, k = j0.























(2.2)

The right hand sides of these expressions are equal to constants

θk
′

= 0, k = 1, ..., n, k 6= j0; θj0

′

= 1, k = jo. (2.3)

which, after integration, results in the angle-representation

θk =
∑n

j=1

∫ λj

λ0
j

√
−λj dλj

(λj−bk)
√

(λj−l1)(λj−ln+1)
= θ0

k, k = 1, ..., n; k 6= j0.

θk =
∑n

j=1

∫ λj

λ0
j

√
−λj dλj√

(λj−l1)(λj−ln+1)
= x + θ0

k, k = j0.























(2.4)

Theorem 2.1 The system of equations (2.2) of umbilic geodesics on quadrics is a Hamil-
tonian system with the Hamiltonian

H =
n
∑

j=1

(e(M(λj )Pj−(−λj)M
2(λj)) −∏n

k=1,k 6=j0(λj − bk))
∏

r 6=j(λj − λr))
(2.5)

Here

M(λ) =

√

(λ − l1)(λ − ln+1)

(−λ)
. (2.6)

The system (2.5) has a complete set of first integrals

Pj =





n
∑

k=1,k 6=j0

log(λj − bk)

M(λj)
+ (−λj)M(λj)



 (2.7)

and angle-representation (2.4) that linearize the corresponding Hamiltonian x-flow.

Proof Substituting the expressions (2.7) for the integrals into the Hamiltonian system (2.5)
we obtain first part of the proof. Then we consider the action-function

S =
n
∑

j=1

∫ λj

λ0
j

Pjdλj
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generating a Lagrangian submanifold of the phase space C2n, and consider the following
system of variables

Ik = bk, k = 1, ..., n; k 6= j0; Ij0 = l1ln+1

θk = − ∂S

∂Ik
, k = 1, ..., n.















(2.8)

There are no invariant tori in the phase space. Nevertheless, the hamiltonian flow, as we
see from (2.4), can be linearized.

Corollary 2.2 Using the isomorphism [8] between the x-flow of the problem of geodesics
and the x-flow of the KdV equation, we obtain the corresponding KdV Hamiltonian. Con-
structing the t-flow on the same invariant variety (2.7), we obtain a new class of soliton-like
solutions of the KdV equation that correspond to umbilic geodesics.

Umbilic solitons are described by the system with the following Hamiltonian

H =
n
∑

j=1

(−∑r 6=j λr +
∑n

k=1,k 6=j0 bk + l1 + ln+1)(e
(M(λj )Pj−M2(λj)) −∏n

k=1,k 6=j0(λj − bk))
∏

r 6=j(λj − λr))

(2.9)
which describes the t-flow.

The angle-representation (2.4) has logarithmic singularities. In what follows we will show
that it is similar to the soliton (d)NLS (defocusing nonlinear Schrödinger) representations
and reperesentations for the homoclinic orbits of the C. Neumann problem and it can be
analyzed using asymptotic reduction (to be described below).

3 Soliton Hamiltonian Systems and Geometric Phases

Below we recall from [3] some Hamiltonians and angle-representations for a class of soli-
ton equations. We use a general approach to deduce from the angle-representation, the
associated phase functions on associated noncompact Jacobi varieties and we introduce and
investigate geometric phases in the complex case.

Now we show that the angle-representation gives the limiting behavior of the n-soliton
solution and a system of soliton geometric phases. We call the procedure described below
the “soliton analysis” and demonstrate it using example of the (d)NLS equation.

3.1 Defocusing Nonlinear Schrödinger (d)NLS equation

Using a method similar to the approach of the previous section, it is shown in [3] that
soliton solutions of the (d)NLS equation

iQ̇ +
1

2
Q

′′ − Q̄Q2 = 0 (3.1)

and KdV equation
Ut + 6UUx + Uxxx = 0 (3.2)



6

can be described by the system with the Hamiltonian

Hs
s = −

∑n
j=1(e

M(λj )Pj − (C̄(λj))
1/2

/M(λj))
∏

r 6=j(λj − λr)
(3.3)

and

Hd
s = −

∑n
j=1(−

∑

l 6=j λl −
∑n

k=1 ak)(e
M(λj )Pj − (C̄(λj))

1/2
/M(λj))

∏

r 6=j(λj − λr)
(3.4)

and with first integrals

Pj =

∑n
k=1 ln(λj − ak)

M(λj)
j = 1, ..., n. (3.5)

Here
(d)NLS : M(λj) = 2i

√

−(λj − b1)(λj − b2)

KdV : M(λj) = 2
√−λj











(3.6)

and C̄(E) = (M(E)
∏n

k=1(E −ak))
2 is a polynomial with constant coefficients. The expres-

sion (3.3) can be considered as a constraint for (3.4).
The first integrals (3.5) define a Lagrangian submanifold of the phase space C2n that

has the form of the symmetric product

Γ : (<× . . . ×<)/σn) (3.7)

of n copies of the Riemann surface

< : P =

∑n
k=1 log(λ − ak)

M(λ)
. (3.8)

Notice that if we took a formal limit of the Hamiltonian structure, we would obtain a
phase space with singularities (i.e., a pinched torus). The Hamiltonian structure obtained
here is presumably a regularisation of the pinched torus in an appropriate sense, but we
shall not pursue that aspect here.

Introduce the following conjugate variables Īk and θ̄k

Īk = ak, θ̄k = − ∂S

∂Īk
= − ∂S

∂ak
=

n
∑

j=1

1

2

∫ λj

λo
j

dλj

(M(λj)(λj − ak))
. (3.9)

Definition 3.1 We call a complete set of variables θ̄j, j = 1, ..., n, an angle-representation

of the multi-soliton solution on the associated n-dimensional complex Lagrangian submani-
folds. It describes a map of Abel-Jacobi type determining a noncompact Jacobi variety.

Theorem 3.2 In terms of the variables (Īk, θ̄k), the soliton Hamiltonian flows are linearized

θ̄k = x + vkt + ϕk, Īk = ak, vk = 2ak k = 1, ..., n (3.10)

on the noncompact Jacobi variety introduced above.
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3.2 The Method of Asymptotic Reduction

We consider the expression for the n-soliton angle-variables

θ̄r =
n
∑

j=1

1

2

∫ λj

λo
j

dλj

(M(λj)(λj − ar))
= x + 2vrt, r = 1, ..., n (3.11)

for particular choice of initial values of the root-variables

λj(0, 0) = λo
j =

aj−1 + aj

2
. (3.12)

Note that in the general case, basic points λo
j of the angle map (3.9) are different from the

initial points λj(0, 0).
Note that term 2vrt will generate a dynamical soliton phase

∆Dθ̄r = 2vrT.

Here T is in the context of Hannay-Berry phases a period of time during which system is
transported alond a closed curve in the space of parameters. ∆Dθ̄r is a shift of the angle
variables due to dynamics. Averaging of the angle variables is usually used to eliminate
this term and to calculate additional (geometric) phase. Our case is special since we are
dealing with the infinite period T. Instead of averaging we will use the method of asymptotic
reduction

Theorem 3.3 As (t → ∞) (or (t → −∞)) the system of angle variables of the n-soliton
solution (3.9) splits into n 1-soliton angle variables. We shall call this process asymptotic

reduction.

Proof In what follows we will investigate (3.11) as (t → ∞) (or (t → −∞)). We define a
direction in the (x, t) plane by fixing

x + vkt = dk = const (3.13)

for some r = k . Then we transform the k-th equation from (3.11) adding and subtracting
integrals along different intervals on the real axis to obtain a complete integral from 0 to
λk

1

2

∫ λk

0

dλ

(M(λ)(λ − ak))
= dk +

1

2

∑

j<k

∫ λo
j+1

λj

dλj

(M(λj)(λj − ak))

+
1

2

∫ λo
1

0

dλj

(M(λj)(λj − ak))
− 1

2

∑

j>k

∫ λj

λo
j

dλj

(M(λj)(λj − ak))
+ ϕo

k.































(3.14)

Here ϕo
k is a term chosen to be consistent with the initial data (3.12). Notice that in the

real case (when all λj and Pj are real), every λj is varying once along the cycle lj over the
basic cut [aj , aj−1] on the Riemann surface (3.5) with the Pj ’s treated as constants.
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The rest of the (3.11) can be described for a fixed dk as follows

n
∑

j=1

1

2

∫ λj

λo
j

dλj

(M(λj)(λj − ar))
= x + vrt = dk + (vr − vk)t, r 6= k, r = 1, .., n. (3.15)

Here (vr − vk) > 0, r < k , and (vr − vk) < 0, r > k .
System (3.15) yields the following limits

1. t → ∞ : λr+1 → ar for r > k and λr → ar for r < k

2. t → −∞ : λr → ar for r > k and λr+1 → ar for r < k.











(3.16)

This transforms (3.14) into the expression for the 1-soliton angle variable

Θ̄k =
1

2

∫ λk

0

dλ

(M(λ)(λ − ak))
= x + vkt + Φk, k = 1, ..., n. (3.17)

Here
Φk = ϕk + ϕo

k (3.18)

3.3 Complex Phase Function and Geometric Phases

Now let us investigate a link between the angle-map obtained above, the Abel-Jacobi map,
and geometric phases. There are three approaches: complex splitting of the spectrum,
averaging and method of complex phase function, and the τ -function approach.

Definition 3.4 We define soliton geometric phases as follows:

∆ϕ =

∮

C
da(ϕ). (3.19)

Here da and C denote the differential and a closed curve in the space of parameters (a)
respectively.

The integral in (3.19) depends on the choice of connection in the space of parameters. For
example, in the case of a flat connection, we get the following result.

Theorem 3.5 Some of the soliton geometric phases coincide with the phase shift of the k-th
soliton of the multi-soliton solution and can be described by the following singular integral

∆ϕk =
1

2

∮

Lk

dλ

(M(λ)(λ − ak))
, k = 1, ..., n. (3.20)

Here Lk is a cycle over the cut [0, ak] on the Riemann surface.
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Proof In what follows we consider time (t) as a parameter. A closed curve in t-space will
be regarded as a curve from (−∞) to (∞).

Lemma 3.6 Asymptotic reduction results, in particular, in the splitting of every element
of the discrete spectrum ak into a pair of pure imaginary points (−iαk, iαk). The phase
function ϕk is defined on the covering space of the generalized Jacobian.

In what follows we demonstrate general approach using the (d)NLS equation as an example.
We use the change of variables

ξ2
j (x) =

(λj − b1)

(b2 − λj)
, α2

k =
(ak − b1)

(b2 − ak)
, ρk =

√

(b2 − ak)(ak − b1) in NLS case (3.21)

to formally integrate the basic expression occuring in the right hand side of (3.14)

∫

dλj

2M(λj)(λj − ak)
=

∫

dξj

((ξj)2 − (αk)2)
=

1

2ρk
log

∣

∣

∣

∣

∣

(ξj − αk)

(ξj + αk)

∣

∣

∣

∣

∣

. (3.22)

Lastly we obtain (3.20) as a sum of values of the (3.17) for dk → ∞ and dk → −∞. Note
that we take integral in (3.17) with different signs since for
dk → ∞ and dk → −∞ it is defined on different sheets of the Riemann surface

W 2 =
1

M(λ)2(λ − ak)2
. 2 (3.23)

Now, we want to define limit points λ1
j (or ξ1

j ) of the angle-map so that (3.22) and (3.18)
are real-valued for every j = 1, ..., n.

There are two choices, which we take for (dk → −∞) and (dk → ∞). It results in
two different relations between the phases of the solitons (ϕ+

k , ϕ−
k ) and the scattering data

(parameters of the system), namely the discrete spectrum aj . Thus, for the flat connection
we get

∆ϕk = ϕ+
k − ϕ−

k . (3.24)

2

Therefore, we have obtained a new class of classical geometric phases for the systems defined
on associated noncompact Jacobi varieties in the case of infinite period (T).

In what follows we demonstrate our method in complex case using the angle representa-
tions for the n-soliton solutions of the focusing NLS equation and for the the breather and
kink-kink solutions of the sine-Gordon equation.

3.4 Complex Geometric Phases and Angle-representations

For the focusing Nonlinear Schrödinger (f)NLS equation

iQ̇ +
1

2
Q

′′

+ Q̄Q2 = 0 (3.25)
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the differential soliton system has Hamiltonians

Hs
s = −

∑g
j=1(e

Pj − C̄(λj))
∏

r 6=j(λj − λr)
(3.26)

and

Hd
s = −

∑g
j=1 Dj(e

Pj − C̄(λj))
∏

r 6=j(λj − λr)
(3.27)

and first integrals

Pj =
g
∑

k=1

log(λj − ak)(λj − āk) j = 1, ..., n. (3.28)

Here

Dj = 2i



−
g
∑

l 6=j

λl +
N
∑

k=1

(ak + āk)



 .

Hamiltonian (3.26) is defined on the cotangent bundle T ∗((< × . . . × <)/σn) where the
Riemann surface has the form

< : P =
g
∑

k=1

log(λ − ak)(λ − āk) (3.29)

Complex (NLS) angle-reperesentation can be described as follows

θr = −Im(ak)
g
∑

j=1

∫ λj

λo
j

(

1

(λj − ar)
− 1

(λj − ār)

)

dλj = x + vrt, r = 1, ..., N, (3.30)

and

θr+N =
ar − ar+1

2i

g
∑

j=1

∫ λj

λo
j

(

1

(λj − ar)
− 1

(λj − ār+1)

)

dλj = x + vrt, r = 1, ..., N − 1.

(3.31)
Here

vr = 2Re(ar), r = 1, ..., N ; vr = ar + ār+1, r = N + 1, ..., 2N − 1. (3.32)

Now we take real parts of the expressions (3.30) and (3.31)

Re(θr) = dk + (vr − vk)t, r 6= k, r = 1, ..., N, (3.33)

Re(θr+N ) = dk +
((vr − vk) + (vr+1 − vk))

2
t, r 6= k, r = 1, ..., N − 1. (3.34)

and apply asymptotic reduction along direction dk (1 ≤ k ≤ N) in a way described in §3.
It yields the following limits for the root variables

1. t → ∞ : λr+1 → ār, λr+N → ar for r > k,
λr → ar, λr → ar for r < k

2. t → −∞ : λr → ar for r > k and λr+1 → ar for r < k.



















(3.35)
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This yields the spliting of (3.30) into N 1-soliton angle representations with corresponding
phase functions. Therefore, the angle representation (3.30) describes N -soliton solutions.

The equations (3.31) describe the interaction between 1-solitons which remains after the
asymptotic splitting of the n-soliton solution. It makes the case of (f)NLS equation different
from other soliton equations and might have important applications in nonlinear optics.

To deal with the limit of the argument part of (3.30), we return to the the formulae
connecting Q to solutions U of the (NLS)

U = i
∂

∂x
log Q. (3.36)

Integrating this expression and considering limit (3.35) we obtain arbitrary constant in the
phase of the exponent. We put this constant equal to the argument part of the phase
function corresponding to the limit (3.35).

The soliton system for the sine-Gordon equation (SGE)

Uxx − Utt = sinU, (3.37)

has the following Hamiltonians

Hs
s = −2

∑n
j=1(e

√
−λjPj − C̄(λj))(1 + GN−1(λj))

∏

r 6=j(λj − λr)
. (3.38)

Hd
s = −2

∑n
j=1(e

√
−λjPj − C̄(λj))(1 − GN−1(λj))

∏

r 6=j(λj − λr)
. (3.39)

and complete system of first integrals

Pj =
log C̄(λj)
√−λj

, j = 1, ..., N. (3.40)

which has a system of action-angle variables. Here n = n1 or n = n2.
Corresponding action-angle variables can be described as follows in kink-kink case:

Ik = ak, θk = − ∂S

∂Ik
=

n1
∑

j=1

∫ λj

λo
j

1

(λj − ak)

dλj
√−λj

, k = 1, ..., n1, (3.41)

in breather case:

Ik = ak, θk =
n2
∑

j=1

∫ λj

λo
j

(
1

(λj − ak)

dλj
√−λj

= wkx + vkt, k = 1, .., n2, (3.42)
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Ik+n2
= āk, θk+n2

=
n2
∑

j=1

∫ λj

λo
j

(
1

(λj − āk)

dλj
√

−λj
= w̄kx + v̄kt, k = 1, .., n2. (3.43)

Here

wk =

(

1 − 1

4ak

)

, vk =

(

1 +
1

4ak

)

(3.44)

The soliton (kink-kink) angle representation for the sine Gordon equation is equivalent
to a particular case of the KdV and (d)NLS representation (n1 = 2n2).

The soliton (breather) angle representation for the sine-Gordon equation is transformed
into kink-kink representation if one takes (n1 = 2n2) and
(a2k, a2k+1) → bk, k = 1, ..., n2, and then bk → (ak, āk).

We finally combine (3.41) and (3.42) to obtain angle representation for the
(N1 + N2) - soliton solution of the sine Gordon equation.

Investigating this representation one obtains corresponding geometric phases.

4 Umbilic Soliton Angle-Representations

From the results of §2, we see that the angle-representation for umbilic solitons is similar to
the case of “dark-hole” solitons of the (d)NLS equation. Asymtotic reduction for the umbilic
solitons defined by the system with the Hamiltonian (2.9) can be described as follows.

Note that angle-representation corresponding to (2.9) has the form

θk =
∑n

j=1

∫ λj

λ0
j

λj

√
λj dλj

(λj−bk)
√

(l1)−λj)(λj−ln+1)
= θ0

k + x + vkt, k = 1, ..., n; k 6= j0.

θj0 =
∑n

j=1

∫ λj

λ0
j

√
λj dλj√

(l1)−λj)(λj−ln+1)
= θ0

j0 + x + vj0t.























(4.1)

Now let us fix the direction dj0 :

dj0 = x + vj0t = const. (4.2)

and consider what happens with other elements of the angle-representation as t → ∞

θk = dj0 + (vk − vj0)t. (4.3)

An analysis of this process results in the following limiting values of λk

λk → bk, k = 1, ..., n, k 6= j0. (4.4)

Substituting these limiting values in the expression (4.1), one obtains

θj0 =
n
∑

k=1,k 6=j0

∫ bk

λ0
k

√
λk dλk

√

(l1) − λj)(λj − ln+1)
+

∫ λj0

λ0
j0

√

λj0 dλj0
√

(l1) − λj)(λj − ln+1)
= dj0 (4.5)
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meaning that the initial system (4.1) is reduced asymptotically to the one dimensional
periodic solution

Θj0 =

∫ λj0

λ0
j0

√

λj0 dλj0
√

(l1) − λj)(λj − ln+1)
= Θ0

0 + x + vj0t. (4.6)

Now we apply our method for investigating so-called “solitons with a quasi-periodic
background”. The corresponding angle-representation consists of two different parts and it
describes an interaction between solitons and quasi-periodic solutions.

The general limiting process leading to the soliton solutions of this type can be described
as follows. Let

C(λ) =
2n+1
∏

k=1

(λ − mk)

denote basic polynomial of the Riemann surface for the quasi-periodic solutions of the
KdV equation. Then general limit process leading to the “solitons with a quasi-periodic
background” can be described as follows:

[m2kr
,m2kr+1] → bkr

. (4.7)

Here
kr ∈ (k1, ..., kd), 1 ≤ kr ≤ n, 1 ≤ d ≤ (n − 1).

This yields the corresponding angle-representation

θr =
∑n

j=1

∫ λj

λ0
j

λjdλj

(λj−bkr )

√

∏

ms∈M
(λj−ms)

= θ0
r + x + vrt, r = 1, ..., d

θr =
∑n

j=1

∫ λj

λ0
j

λn−r
j

dλj
√

∏

ms∈M
(λj−ms)

= θ0
r + x + vrt, r = (d + 1), ..., n































(4.8)

where
M = (ms/ 1 ≤ s ≤ (2n + 1); s 6= (2kr), s 6= (2kr + 1)), r = 1, ..., d. (4.9)

Asymptotic reduction of the angle-representation leads to the description of an interaction
between solitons and quasi-periodic solutions.

5 Homoclinic Hamiltonian Systems

Here we show that Hamiltonian flows of the homoclinic orbits described by Devaney [17]
for the C. Neumann problem coincide with the soliton Hamiltonian x-flows for the KdV
equation. This is important since it gives an understanding of the link between soliton
solutions and homoclinic orbits for associated completely integrable systems.

It enables one to treat the homoclinic case in the same manner as the soliton case and
to introduce homoclinic Hamiltonians, angle-repersentations, and geometric phases. In par-
ticular, using the Knörrer-Moser isomorphism between the Jacobi problem of geodesics and
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the C. Neumann problem, we introduce new orbits corresponding to the umbilic geodesics
and give a geometric interpretation of the homoclinic orbits of Devaney.

5.1 Homoclinics and Solitons

First of all, we note that a system of first integrals inrtoduced by Devaney and Uhlenbeck
for the C. Neumann problem, namely

Φj(y, ẏ) : TSn → R, (5.1)

Φj(y, ẏ) = y2
j +

1

2

∑

k 6=j

(ẏjyk − ẏkyj)
2

l2k − l2j
, j = 1, ..., n (5.2)

play central role in Devaney’s description of the transversal homoclinic orbits. Here
l0 < l1 < l0 < ... < ln and l0 = 0. Namely, he proved the following Lemma.

Lemma 5.1 The first integrals are identically zero along the orbits; i.e.,

Φj(y, ẏ) = 0, j = 1, ..., n. (5.3)

We use this fact together with the algebraic-geometric description of the quasi-periodic
solutions [8, 9] of the C. Neumann problem to obtain the following result.

Theorem 5.2 The Hamiltonian flow of the homoclinic orbits of the C. Neumann problem
coincide with the soliton Hamiltonian x-flow of the KdV equation. Both flows are defined
on a noncompact Jacobi variety.

Proof In [8, 9], quasi-periodic solutions of the C. Neumann problem were discribed using
root-variables λj, i.e., solutions of the system

∂λj

∂x
=

√

−∏n
r=1(λj − mr)

∏n
k=1(λj − ak)

∏

i6=j(λj − λi)
, j = 1, ..., n (5.4)

and action-angle variables defined on the Jacobi variety of the symmetric product

Γ : ((<× . . . ×<)/σn) (5.5)

of the n copies of the Riemannian surface

< : P 2 = −
n+1
∏

k=1

(λ − ak)
n
∏

r=1

(λ − mr), (5.6)

Γ being a Lagrangian submanifold of the phase space C2n.
In this setting, the first integrals of the problem can be represented in the form

Φj = Fj =

∏n
r=1(aj − mr)
∏

k 6=j(aj − ak)
. (5.7)
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Here
aj = −2l2j , j = 0, ..., n.

Condition (5.3) and formula (5.7) yield the following choice of first integrals mj

mj = aj , j = 1, ..., n; a0 = 0, (5.8)

meaning that all roots of the basic polynomial of the Riemannian surface (5.6) are double
negative roots except a0 = 0.

Therefore, the system (5.4) corresponding to the case of a singular spectrum (5.8) coin-
cides precisely with the system of equations describing soliton solutions of the KdV equation.
It leads to the introduction of the exponential homoclinic Hamiltonians with logarithmic
first integrals and angle-representation

θr =
n
∑

j=1

1

2

∫ λj

λo
j

dλj
√−λj(λj − ar))

= x + θ0
r , r = 1, ..., n (5.9)

defined on the noncompact Jacobi variety of the symmetric product of n copies of the
Riemannian surface

P =
log(λ − ar)√

−λ
. (5.10)

2

Corollary 5.3 As (x → ∞) (or x → −∞), the spectrum of the homoclinic orbit splits into
complex pairs

aj → (iαj ,−iαj), aj = −α2
j , j = 1, ..., n

and an analysis of the angle representation yields an introduction of the following homoclinic
point (p)

λj = aj, j = 1, ..., n (5.11)

with corresponding stable W s (and ustable W u) manifolds, which consist of the orbits on
the two different sheets of the double covering of the Riemannian surface (5.10) defined by
the following change of variables

ξ2
j = −λj , j = 1, ..., n. (5.12)

Orbits on the stable and ustable manifolds are forward (and backward) asymptotic to (p)

ξj → αj , j = 1, ..., n (5.13)

and
ξj → −αj , j = 1, ..., n. (5.14)

respectively.
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The splitting of the spectrum follows from evaluating the basic integral from (5.9)

1

2αj
log(

ξj − αj

ξj + αj
) (5.15)

and analysing the angle-reperesentation (5.9) as x → ∞ (or x → −∞).
Lastly, we define another Hamiltonian flow on the invariant variety of the homoclinic

orbit and obtain exactly the soliton KdV problem.
An interesting example of the (SG) homoclinic solution in the two-dimensional case

was considered in [15, 26], where special real action-angle variables were used to describe a
breather-kink-antikink transformation through a homoclinic orbit.

We introduce below an angle-representations for such orbits in the n-dimensional case.

Theorem 5.4 Soliton (kink-kink) and breather angle representations for the sine Gordon
equation are separated by the following singular class of “resonant solutions”

θk =
n1
∑

j=1

∫ λj

λo
j

1

(λj − bk)

dλj
√−λj

, k = 1, ..., n2. (5.16)

θk+n2
=

n1
∑

j=1

∫ λj

λo
j

1

(λj − bk)2
dλj
√

−λj
, k = 1, ..., n2. (5.17)

obtained from (3.42).
Note also that the phase function can be obtained using the fact that

θk+n2
=

∂θk

∂bk
. (5.18)

Here bk, k = 1, ..., n2 are negative real numbers and N1 = 2 n1 = 4 n2.
Therefore, the homoclinic orbit in this case is a separatrix solution associated with a

degenerate system of action variables and a nondegenerate angle-representation.

5.2 Geometry of the Homoclinic Orbits

The isomorphism between classes of solutions of Jacobi problem and those of the C.Neumann
problem can be used in the opposite direction. Namely, one can consider a special family
of umbilic geodesics on the n-dimensional hyperbolloids corresponding to the homoclinic
orbits.

In what follows, we use the isomorphism mentioned above in the form established in
[9, 8]

z2
j =

xj

dj

∑n
k=1

x2
j

dj

, aj =
1

dj
, λj =

1

ηj
, j = 1, ..., n, (5.19)

which relates parameters and variables of the two systems. Here zj and ηj denote variables
of the problem of geodesics and dj are semiaxes of the corresponding quadrics. This change
of variables (5.19) enables one to avoid Abeleian integrals of the second type in the angle-
representation.
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In our case all aj < 0 but a0 = 0; therefore geodesics which correspond to the homoclinic
orbits form a singular family of geodesics on a hyperbolic cylinder with semiaxes dj < 0
and d0 → ∞.

6 Soliton Geometric Asymptotics and Geometric Phases

Another application of the machinery developed here is to geometric asymptotics. In par-
ticular, the quantum and classical phases are linked.

Recently, Lagrangian manifolds with complex germs and complex geometric asymptotics
have been studied [19, 53, 33, 4, 5] in connection with algebraic-geometric methods for
nonlinear problems. In particular, quantization using the Maslov method of canonical
operators [39] was used [19] for the semiclassical approximation of finite-gap solutions of
the Toda lattice and to obtain asymptotics of the eigenfunctions of the quantum periodic
Toda chain over a solvable Lie algebras [53].

In [4, 5] a method was suggested for constructing local semiclassical solutions (modes)
in the form of functions of several complex variables on Jacobian varieties of compact
multisheeted Riemannian surfaces.

In what follows, we study the quantization of systems with Hamiltonians nonquadratic
in P (see the exponential soliton Hamiltonians above). The work here suggests that this can
be done on the level of geometric asymptotics and phases. We demonstrate our approach
using example of soliton solutions of the KdV equation.

To obtain soliton geometric asymptotics, we first consider the quantum problem corre-
sponding to the finite gap (quasi-periodic) Hamiltonians [7, 4, 6] for the KdV equation

Hs = −
n
∑

j=1

(P 2
j + C2n+1(λj))
∏

r 6=j(λj − λr)
(6.1)

and

Hd = −
n
∑

j=1

2(−∑l 6=j λl −
∑2n+1

k=1 mk)(P
2
j + C2n+1(λj))

∏

r 6=j(λj − λr)
(6.2)

These are quadratic Hamiltonians

H =
1

2

n
∑

j=1

gjjP 2
j + V (λ1, ..., λn) (6.3)

defined on the T ∗((< × . . . ×<)/σn). (Here < is the Riemann surface: P 2 = −C2n+1(λ)).
In accordance with [4] we use the functions gjj

gjj = − 1
∏

r 6=j(λj − λr)
(6.4)

and

gjj = −
(−∑l 6=j λl −

∑2n+1
k=1 mk)

∏

r 6=j(λj − λr)
. (6.5)
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as components of the Riemannian metric and construct an operator of Laplace-Beltrami
type and then the stationary Schrödinger equation

∇j∇jU + w2(E − V )U = 0, (6.6)

defined on the n-dimensional Riemannian manifold. (Here ∇j and ∇j are covariant and
contravariant derivatives defined by the tensor gjj and w and E are parameters).

Theorem 6.1 The quantum equation (6.6) corresponding to the Hamiltonian (6.1) (or
(6.2)) can be reduced to a differential system of n equations

− 1

w2Uj

(

∂2Uj

∂λ2
j

+ w2C2n+1(λj)Uj

)

= Rj(λj) j = 1, ..., n. (6.7)

connected with each other by means of the symmetry condition

n
∑

j=1

Rj(λj)Gj
∏

r 6=j(λj − λr)
= −E. (6.8)

Here Gj = 1 and Gj = (−∑l 6=j λl −
∑2n+1

k=1 mk) in the cases (6.4) and (6.5) respectively.

Here Rj(λ) are the same polynomial

Rj(λ) = R(λ) = w1λ
n−1 + w2λ

n−2 + .... + wn, w1 = −E (6.9)

with constant coefficients.

Now we establish a link between equation (6.6) and the initial nonlinear problem by means
of geometric asymptotics. Let

U =
∑

r

Ar(λ1, ..., λn) exp[iwSr(λ1, ..., λn)]

=
∑

r

n
∏

j=1

Urj(λj) =
∑

r

n
∏

j=1

(Aj(λj) exp[iwSrj(λj)]), (6.10)

which is a function of several complex variables. Substituting (6.10) in (6.7), equating
coefficients for w and w2 and integrating, we obtain the system of equations

A2
j =

c
∂So

∂λj

=
c

√

C2n+1(λj)
, c = const (6.11)

So =
n
∑

j=1

So
j (λj) =

n
∑

j=1

∫ λj

λo
j

√

C2n+1(λj) dλj , j = 1, ..., n (6.12)

which result in the following form of geometric asymptotics

U =
∑

r

Ao
∏n

j=1(C2n+1(λj))
1

4

exp[iw
n
∑

j=1

∫ λj

λo
j

√

C2n+1(λj) dλj ]. (6.13)
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Let us consider the special class of quasi-periodic solutions of the initial KdV equation
defined by the following choice of basic polynomial

C2n+1(λ) = (−λ)
n
∏

k=1

(λ − ak)
2 + R(λ). (6.14)

which depends on exactly 2n parameters (ar, wk).

Definition 6.2 We call solutions from this class presoliton solutions.

Theorem 6.3 n-soliton solutions correspond to the case when all coefficients wk of the
polynomial R(λ) from (6.14) are equal to zero.

Corollary 6.4 If R(λ) = 0, then formulae (6.13) describes soliton geometric asymptotics
with

U =
∑

l

Ao
∏n

j=1(
√

−λj
∏n

r=1(λj − ar)
exp



iw
n
∑

j=1

∫ λj

λo
j

√

−λj

n
∏

r=1

(λj − ar) dλj



 . (6.15)

Lastly, investigating the dependence of soliton geometric asymptotics (6.15) on the slowly
changing parameters al, one can also obtain geometric phases in the quantum case. Similar
results can be obtained in case of (NLS) and (SG) hierarchies of equations.

In conclusion, we note that geometric asymptotics constructed in this section provide a
setting for investigating the semiclassical theory of modulation equations.
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