
Normal Forms for Three–dimensional Parametric Instabilities

in Ideal Hydrodynamics

Edgar Knobloch
Department of Physics

University of California, Berkeley, CA 94720, USA

Alex Mahalov ∗

Department of Mathematics
Arizona State University, Tempe, AZ 85287

Jerrold E. Marsden †

Department of Mathematics
University of California, Berkeley, CA 94720, USA

October, 1992. This version: December 20, 1993

Abstract

We derive and analyze several low dimensional Hamiltonian normal forms describing sys-
tem symmetry breaking in ideal hydrodynamics. The equations depend on two parameters
(ε, λ), where ε is the strength of a system symmetry breaking perturbation and λ is a detun-
ing parameter. In many cases the resulting equations are completely integrable and have an
interesting Hamiltonian structure. Our work is motivated by three-dimensional instabilities of
rotating columnar fluid flows with circular streamlines (such as the Burger vortex) subjected to
precession, elliptical distortion or off-center displacement.

1 Introduction

In the last few years it has become recognized that elliptical distortion of a circular hydrodynamic
flow can lead to instability (Pierrehumbert [1986], Bayly [1986], Vladimirov and Il’in [1988], Waleffe
[1990]). The inclusion of precession can also lead to instability (Kerswell [1992], Mahalov [1993]).
The unstable modes are characterized by an azimuthal wavenumber m, an axial wavenumber k and
a frequency ω. Linear stability theory for Hamiltonian systems shows that an instability can only
occur for wavenumbers and frequencies corresponding to intersections of dispersion curves for two
distinct modes of oscillation or deformation of the circular flow, i.e., when k1 = k2 �= 0 and ω1 = ω2,
with the latter perhaps both zero. Generically such a situation arises for a discrete set of axial
wavenumbers. If the corresponding modes are coupled by distortion or precession, instability can
result. For the elliptical distortion, this requires that the corresponding azimuthal wavenumbers
differ by 2, i.e., m1 − m2 = 2. For the precessional instability the corresponding requirement is
m1 − m2 = 1. Such instabilities are of parametric type.

∗Research partially supported by NSF Contract DMS 89-19074 and CTS 89-06343
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The above results have been obtained using linear stability theory. Guckenheimer and Mahalov
[1992] observed that the presence of instability for eigenvalues near zero is intimately related to
the reduction in symmetry by distortion or precession, and used this observation to describe the
nonlinear evolution of the instability. In the present paper we extend this approach to eigenvalues
away from zero, and examine in detail the effects of symmetry reduction on both the existence of
instabilities and on their nonlinear evolution. We shall be mostly concerned with dynamical systems
with the symmetry SO(2)×O(2), which arise frequently in applications. The origin of this symmetry
varies widely, but the following serve as two prototypical examples:

Rotating columnar flows. A rotating columnar fluid flow with circular streamlines has SO(2)
symmetry with respect to rotations. If the system is, in addition, invariant under translations
and reflections in the axial direction, the imposition of periodic boundary conditions introduces
the symmetry O(2).

Systems undergoing a Hopf bifurcation on a line. Many translation invariant hydrodynamical sys-
tems undergo a Hopf bifurcation at a particular parameter value. As above, the imposition of
periodic boundary conditions together with reflection invariance introduces the spatial sym-
metry O(2) into the dynamical equations. Normal form symmetry introduces an additional
S1 ∼= SO(2) phase shift symmetry in time, leading to a Hopf bifurcation with SO(2) × O(2)
symmetry.

Patterns result from spontaneous symmetry breaking instabilities that arise as parameters are varied,
and these can be classified in terms of the isotropy subgroups of the full symmetry group. This
spontaneous symmetry breaking must be distinguished from system symmetry breaking that arises
due to symmetry breaking imperfections in the system. In applications it is essential to examine
the robustness of the dynamical behavior of an idealized and usually highly symmetric model with
respect to such imperfections. For example, for the rotating fluid column, such imperfections consist
of distortions with various azimuthal wavenumbers, i.e., of various types of deformation of the
circular streamlines. An additional source of imperfection is provided by precession of the column;
see Mahalov [1993].

For systems undergoing a Hopf bifurcation, the imperfections are provided either by parametric
forcing, breaking the S1 phase shift symmetry, or by various types of spatial inhomogeneities (e.g.,
sidewalls) breaking the O(2) spatial symmetry. Both types of imperfection are relevant to the
Faraday system, in which surface waves are parametrically excited by the vertical oscillation of a
fluid–filled container.

For the generic Hopf bifurcation with S1×O(2) symmetry, the effects of breaking the S1 symmetry
down to Z2 (2:1 resonance) was considered by Riecke et al. [1988]; the effect of breaking O(2) down
to D2 was described in detail by Dangelmayr and Knobloch [1991]. Other aspects were considered
by Nagata [1988].

In the present paper we discuss the role played by symmetry breaking imperfections in Hamil-
tonian systems. We show that imperfections can have dramatic consequences for the stability of
the system, and discuss the requirements under which this is the case. There are three classes of
problems that are of interest:

(a) the case of an eigenvalue iω of double multiplicity in a system with SO(2)×SO(2) symmetry,
corresponding to two distinct modes in the axial direction,

(b) the case of a pair of eigenvalues ±iω on the imaginary axis in a system with SO(2) × O(2)
symmetry, and

(c) the case of double zero eigenvalue in a system with SO(2)×O(2) symmetry, corresponding to
two steady modes related by reflection symmetry in the axial direction.
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Case (a) describes mode interactions characteristic of a system with SO(2)×SO(2) symmetry, such
as might arise in the rotating fluid column with axial flow. Such interactions can be arranged by
varying the axial wavenumber (i.e., the axial spatial period), and will be the primary focus of this
paper. This is because the resulting amplitude or normal form equations subsume not only case (a)
and a subset of case (b) but also the nondissipative limit of the normal form equations describing
the Hopf bifurcation with O(2) symmetry and the double Hopf bifurcation with 1:1 resonance with
or without SO(2) symmetry.

Two items of caution are in order here. Firstly, the number of eigenvalues participating in the
Hamiltonian limit of, say, the Faraday problem, is double that in the dissipative case. Nonetheless,
the formal nondissipative limit of the dissipative amplitude equations is of invaluable assistance
in analyzing their dynamics, much as the nonlinear Schrödinger limit of the complex Ginzburg–
Landau equation helps in understanding the dynamics of the latter. Note that Hamiltonian mode
interactions in a system with SO(2) × O(2) symmetry (case (b) above) lead to more complicated
equations on C4.

A second caution concerns the justification of the use of low dimensional Hamiltonian normal
forms. For dissipative systems, one usually justifies such a procedure by the use of a center manifold
(or sometimes an inertial manifold) because this manifold captures, in a precise sense, all of the
local qualitative features of the dynamics in a low dimensional system. In the Hamiltonian case,
this sort of procedure is not easy to justify rigorously, however. One approach is to imagine that
the Hamiltonian system is embedded in a dissipative family and that after the dissipation is added
along with bifurcation parameters, there will be a well defined low dimensional center manifold of
fixed dimension independent of the small but nonzero dissipation. It would be naive to imagine that
this center manifold along with its qualitative dynamics literally converges as the dissipation tends
to zero, but one can nonetheless expect—and prove in various special instances (e.g., for equilibria
or relative equilibria)—that many of the main features of the dissipative dynamics (sometimes rep-
resenting the large scale dynamics) are well represented by the Hamiltonian system on the center
manifold or an approximation to it. An instance where one can prove that the Hamiltonian part
of the normal form captures some of the essential features of the general dynamics can be found
in Lewis and Marsden [1989]. However, the general theory along these lines remains incomplete,
although the theory of Mielke [1992] should prove to be very useful in this respect.

The movement of eigenvalues in generic, nonsymmetric Hamiltonian systems was described by
Krein [1950] and Galin [1982]. Simple eigenvalues always remain on the imaginary axis under small
Hamiltonian perturbations of any kind. When eigenvalues collide resulting in multiple eigenvalues
lying on the imaginary axis, they may either split, leaving the imaginary axis, or pass through one
another, remaining on the imaginary axis. In the former case the system becomes unstable. The
movement of eigenvalues in generic families of symmetric Hamiltonian systems is affected by the
symmetry type (see Dellnitz et al. [1992]). In particular the symmetry may force the eigenvalues to
pass through one another and for many systems with symmetry, this can be the generic behavior.
In this case the reduction in symmetry due to an imperfection may result in splitting “windows”,
and hence lead to instabilities (Guckenheimer and Mahalov [1992]). The resulting normal forms
comprise a two-parameter family (ε, λ) of Hamiltonian vector fields. Here ε denotes the size of
system symmetry breaking perturbation, while λ is a detuning parameter, i.e., the difference in
frequencies of the two interacting modes. Both are assumed to be small. In the following we derive
the normal forms corresponding to a number of problems of this type, elucidate their Hamiltonian
structure, and describe the resulting phase portraits and transitions in the (ε, λ) plane.

In §2 we describe the analysis relevant to understanding the instability of a precessing rotating
fluid column. In §3 we discuss the elliptical instability. These cases are distinguished by the az-
imuthal wavenumber m of the imperfection. The general case of parametric instabilities in systems
with symmetry is discussed in §4. §5 is devoted to the Faraday system and the Benjamin-Feir insta-
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bility. In §6 we apply our ideas to rotating columnar fluid flows with circular streamlines undergoing
slow precession. In the two–dimensional case, the energy–Casimir method can be used to prove
stability by constructing a positive definite functional on a neighborhood of the basic flow (Szeri
and Holmes [1988]). This functional becomes indefinite if a third dimension is added, allowing an
instability by the reduced symmetry mechanism. The paper concludes with a discussion in §7.

2 Hamiltonian normal forms: the case m = 1

2.1 Basic amplitude equations

In this section we consider Hamiltonian systems with SO(2) × SO(2) symmetry, such as the Euler
equations for swirling fluid flow in a cylinder subject to periodic boundary conditions in the axial
direction. We suppose that the system possesses a trivial (i.e., SO(2)×SO(2) invariant) equilibrium.
A flow with circular streamlines and uniform in the axial direction serves as an important example.
We are interested in the stability of this flow with respect to perturbations that break both azimuthal
and axial invariance, i.e., with respect to three–dimensional perturbations. It is well known that the
trivial state is stable with respect to a single mode of this type, and this continues to be the case
when the axial wavelength is so chosen that two such modes have identical frequencies. However,
if the symmetry of the system is broken so that these two modes couple, then instability becomes
possible. We consider first the interaction between two modes both with eigenvalues iω, one of which
is axisymmetric with the other having azimuthal wavenumber m = 1. These are the modes that
appear to dominate the process of vortex breakdown (see Leibovich et al. [1986] for a discussion).
If A1 and A2 denote the complex amplitudes of these modes, the corresponding linear eigenfunction
takes the form

ψ(r, φ, z) = Re(A1e
ikz + A2e

ikz+iφ). (2.1)

Here, Re denotes the real part and k is the axial wavenumber of both modes. The symmetry
under translations z �→ z + d in the axial direction acts by (A1, A2) �→ eikd(A1, A2), while rotations
φ �→ φ+θ act by (A1, A2) �→ (A1, A2e

iθ). These operations may be combined to yield the symmetry
(A1, A2) �→ (A1e

iθ1 , A2e
iθ2). The resulting equivariant amplitude equations take the form

dA1

dt
= iωA1 + iA1(s11|A1|2 + s12|A2|2) + h.o.t.

(2.2)
dA2

dt
= iωA2 + iA2(s21|A1|2 + s22|A2|2) + h.o.t.,

where the sij are real constants and h.o.t. denotes higher order terms. Since these equations are
invariant under the symmetry (A1, A2) �→ eiωτ (A1, A2) corresponding to phase shifts in time, they
are already in normal form. In other problems considered below, the normal form transformations
will introduce a distinct S1 symmetry into the corresponding normal form.

When the symmetry with respect to rotations is reduced by system symmetry breaking with
azimuthal wavenumber m = 1, e.g., by precession or off-center displacement, the SO(2) rotation
symmetry is broken to the identity and the dominant symmetry breaking terms enter at linear order:

dA1

dt
= iωA1 + εpA2 + iA1(s11|A1|2 + s12|A2|2) + h.o.t.

(2.3)
dA2

dt
= iωA2 + εqA1 + iA2(s21|A1|2 + s22|A2|2) + h.o.t.
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Here, ε is a measure of the departure from full symmetry (e.g., ε could be the strength of an external
Coriolis force), and is positive. All other symmetry breaking terms that can be added have to be
at least cubic in the amplitudes and so are small relative to those retained. This approach is in the
spirit of the corresponding dissipative analysis by Dangelmayr and Knobloch [1991]. In the following
we drop the higher order terms.

The resulting equations are invariant under the operation (A1, A2) �→ (eiθA1, e
iθA2) only, i.e.,

under the diagonal action of SO(2). In general we are interested in the situation where the two
modes are not exactly in resonance. Consequently we replace equations (2.3) by

dA1

dt
= iω1A1 + εpA2 + iA1(s11|A1|2 + s12|A2|2) + h.o.t.

(2.4)
dA2

dt
= iω2A2 + εqA1 + iA2(s21|A1|2 + s22|A2|2) + h.o.t.,

where ω1 −ω2 ≡ λ is the detuning. Then at λ = 0, ω1 = ω2 = ω. Finally, by going into the rotating
frame (A1, A2) �→ eiω2t(A1, A2), the equations can be further simplified:

dA1

dt
= iλA1 + εpA2 + iA1(s11|A1|2 + s12|A2|2) + h.o.t.

(2.5)
dA2

dt
= εqA1 + iA2(s21|A1|2 + s22|A2|2) + h.o.t.

Such time dependent transformations must be remembered when interpreting periodic (or other
special) solutions of (2.5) in terms of the original system. Note that by rescaling A1 and A2 and
redefining ε we may set p = q = 1 (if pq > 1) or p = −q = 1 (if pq < 1). The distinction between
these two cases will be of vital importance in what follows. Identical equations hold in the more
general case involving the interaction of two modes with azimuthal wavenumbers m and m + 1.

Equations (2.5) are usually written using Ā2 instead of A2 as the variable (see below). In the
dissipative case with the additional reflection symmetry A1 ↔ A2, the resulting equations describe
the effect of breaking the translation symmetry in a Hopf bifurcation with O(2) symmetry. A
detailed discussion of this case is given by Dangelmayr and Knobloch [1991]. In this case the
coupling coefficient p is in general complex, with q = p̄, and the dynamics of the resulting equations
depend sensitively on arg p.

2.2 Hamiltonian structure

In the following we examine the Hamiltonian structure of equations (2.4), dropping the higher order
terms. These equations can be written in the following two standard forms, depending on the sign
of pq. First, if pq > 0, we set z1 = iA1 and z2 = Ā2 to get the 1 : −1 resonance form

ż1 = iω1z1 + iεpz̄2 + iz1(s11|z1|2 + s12|z2|2)
(2.6)

ż2 = −iω2z2 + iεqz̄1 − iz2(s21|z1|2 + s22|z2|2).

Second, if pq < 0, we let ζ1 = z1 and ζ2 = z̄2 to get the 1 : 1 resonance form

ζ̇1 = iω1ζ1 + iεpζ2 + iζ1(s11|ζ1|2 + s12|ζ2|2)
(2.7)

ζ̇2 = iω2ζ2 − iεqζ1 + iζ2(s21|ζ1|2 + s22|ζ2|2).
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As already mentioned, we can assume that p = q = 1 in (2.6) and that p = −q = 1 in (2.7). We
shall see that the former case corresponds to the splitting case, while the latter corresponds to the
passing case.

We now consider the Hamiltonian nature of these systems. The Hamiltonian structure we use is
the standard one obtained by taking the real and imaginary parts of zi and ζi as conjugate variables.
For example, we write z1 = q1 + ip1 and require q̇1 = ∂H/∂p1 and ṗ1 = −∂H/∂q1. A useful trick
in this regard that enables one to work in complex notation is to write Hamilton’s equations as
żk = −2i∂H/∂z̄k. Using this, one readily finds that:

(i) The system (2.6) is Hamiltonian if and only if s12 = −s21 and p = q. In this case we can
choose

H(z1, z2) =
1
2
(ω2|z2|2 − ω1|z1|2) − εp Re(z1z2) −

s11

4
|z1|4 −

s12

2
|z1z2|2 +

s22

4
|z2|4. (2.8)

(ii) The system (2.7) is Hamiltonian if and only if s12 = s21 and p = −q. In this case we can
choose

H(ζ1, ζ2) = −1
2
(ω1|ζ1|2 + ω2|ζ2|2) − εp Re(ζ1ζ̄2) −

s11

4
|ζ1|4 −

s12

2
|ζ1ζ2|2 −

s22

4
|ζ2|4. (2.9)

Note that for (2.6) with ε = 0 there are two separate S1 actions acting on z1 and z2 independently;
the corresponding conserved quantities are |z1|2 and |z2|2. However, for ε �= 0, the symmetry action
is

(z1, z2) �→ (eiθz1, e
−iθz2) (2.10)

with the conserved quantity

J(z1, z2) =
1
2
(|z1|2 − |z2|2). (2.11)

Likewise, for (2.7), the symmetry action is

(ζ1, ζ2) �→ (eiθζ1, e
iθζ2)

leading to the conserved quantity

J(ζ1, ζ2) =
1
2
(|ζ1|2 + |ζ2|2). (2.12)

In either case, it is clear that (2.6) and (2.7) are completely integrable systems, with the integrals
being provided by the Hamiltonians and the corresponding conserved J . In view of the conservation
of J , the Hamiltonians (2.8) and (2.9) can be further simplified. We choose not to do this in order to
emphasize that the splitting and passing cases are distinguished by the structure of the corresponding
Hamiltonians even in the absence of additional symmetries. Close to the origin (2.8) is indefinite
(splitting), while (2.9) is definite (passing). In fact, the eigenvalues µ of the linearization of both at
the origin in C2 are given by

µ =
1
2
i
{
±(ω1 + ω2) ±

√
λ2 − 4ε2pq

}
, (2.13)

where λ = ω1 − ω2 is the detuning. In particular, if pq > 0, one gets splitting along the lines
λ = 2ε

√
pq, in agreement with the generic theory of Dellnitz, Melbourne, and Marsden [1992].

(In the context of this theory, it is the symmetry (z1, z2) �→ (z1, e
iθz2) that is broken, and the
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representations on the two spaces, which reduce to the eigenspaces at ε = 0, are distinct). In
contrast, when pq < 0 all four eigenvalues remain imaginary. However, in this case the passing of
eigenvalues for ε = 0 changes to “bouncing” of eigenvalues for ε different from zero. Again this
is consistent with the generic theory: when symmetry, other than normal form symmetry, is lost,
passing is not generic. We expect that in the independent passing case the loss of symmetry always
leads to splitting and a window of instability if the quadratic terms at criticality (here ε = 0, ω1 = ω2)
are indefinite, but that it leads to bouncing if they are definite).

Although the system (2.4) is Hamiltonian only in the special case identified above, it is nonetheless
completely integrable. To see this we introduce the variables r1, r2 and φ ≡ φ2 − φ1, where A1 =
r1 exp(iφ1) and A2 = r2 exp(iφ2). The truncated system (2.5) then takes the form

dr1

dt
= εpr2 cos φ

dr2

dt
= εqr1 cos φ (2.14)

dφ

dt
= −λ − ε

r1r2
(qr2

1 + pr2
2) sinφ + ar2

1 + br2
2,

where a = s21 − s11, b = s22 − s12. Observe that, without changing the values of a and b, and
hence without altering the preceding equations, we can adjust the constants in the original system
so that it is Hamiltonian. In other words, the original system and consequently system (2.14) can
be assumed to be Hamiltonian without any loss of generality. This system has the following two
integrals obtained from the original momentum and the energy:

J =
1
2q

(qr2
1 − pr2

2), E =
λ

2(p2 + q2)
(pr2

1 + qr2
2) + εr1r2 sinφ − a

4p
r4
1 − b

4q
r4
2. (2.15)

Using these integrals, one can obtain a single differential equation for ρ ≡ r2
1. This equation takes

the form (
dρ

dt

)2

= P (ρ), (2.16)

where

P (ρ) ≡ 4ε2pqρ(ρ − 2J) − 4p2

(
E +

λq2

p(p2 + q2)
J − λ

2p
ρ +

a

4p
ρ2 +

bq

4p2
(ρ − 2J)2

)2

(2.17)

is a polynomial of degree four. Clearly, −P (ρ) may be thought of as the potential energy.
Some additional structure can be derived naturally by the method of Hamiltonian reduction (cf.

Marsden [1992]) as follows. Let φ = π
2 − θ1 − θ2, where z1 = r1 exp(iθ1), z2 = r2 exp(iθ2). We know

that the Hamiltonian structure for (2.6) on C2 described above induces one on C2/S1 and that the
two integrals descend to the quotient space, as does the Poisson bracket. The quotient space C2/S1

is parametrized by (r1, r2, φ) and dropping the integrals from the previous subsection reproduces
(2.15). But one can also drop the Poisson bracket. That is, the equations in (r1, r2, φ) can be cast
in Hamiltonian form Ḟ = {F, H} for the induced Poisson bracket. Here H is given by (2.8). This
bracket is obtained simply by using the chain rule to relate the complex variables and the polar
coordinates. One finds that

{F, K}(r1, r2, φ) = − 1
r1

(
∂F

∂r1

∂K

∂φ
− ∂F

∂φ

∂K

∂r1

)
− 1

r2

(
∂F

∂r2

∂K

∂φ
− ∂F

∂φ

∂K

∂r2

)
. (2.18)

A similar procedure works for (2.7) with φ = θ2−θ1− π
2 , where ζ1 = r1 exp(iθ1) and ζ2 = r2 exp(iθ2).

7



The Poisson bracket (2.18) is, of course, nothing but the original canonical Poisson bracket on
the space of (q1, p1) and (q2, p2) variables, but written in the new polar coordinate variables, and
as such, is an example of a noncanonical bracket. In the next section, we shall see other ways of
writing the original canonical bracket in new variables. Such brackets are thus related to each other
through their relation to the original canonical variables.

2.3 Rigid body form of the amplitude equations

In this section, we show that equations (2.3) or (2.5) can be written in rigid body form. This form is
of independent interest, but one of the motivations for including it is the fact that the identification
of invariant spheres and Euler type variables has often proved useful in bifurcation theory (Swift
1988).

We first recall some general theory for this situation by giving a version of the theory of Kummer
[1979]. Consider the action of S1 on C2 given by

(z1, z2) �→ (eikθz1, e
ilθz2), (2.19)

where k and l are integers. This action is Hamiltonian with respect to the symplectic form on C2

given by
Ω((z1, z2), (z̃1, z̃2)) = −Im(z1z̃1) − Im(z2z̃2). (2.20)

The conserved quantity (or momentum map) for this action is given by

J(z1, z2) =
1
2

(
k|z1|2 + l|z2|2

)
. (2.21)

The momentum map J is invariant under the S1 action. Other invariant functions are given by

X + iY = zl
1z

k
2 , Z =

1
2

(
k|z1|2 − l|z2|2

)
. (2.22)

If, say, l, is negative, then we replace zl
1 by z

|l|
1 in these expressions. Note that −J ≤ Z ≤ J and

that these invariants are related by

X2 + Y 2 = k−|l|l−|k|(J + Z)|l|(J − Z)|k|. (2.23)

In the case of the 1 : 1 resonance (k = 1, l = 1) the invariants (X, Y, Z) comprise the components of
the momentum map of the standard SU(2) action on C2; this action is relevant in this case, since
it is the symmetry group of J .

For the 1 : 1 resonance with J fixed equation (2.23) defines a sphere (Cushman and Rod [1982]).
For the 1 : −1 resonance (k = 1, l = −1), one gets a hyperboloid (Iwai [1985]). For other values of
k and l one can get objects with “pinches” and this is important in many resonance problems (see,
for example, Haller and Wiggins [1992, 1993]).

In performing Poisson reduction, one normally constructs the quotient space C2/S1 and calcu-
lates its induced Poisson bracket. However, except for the case of k = 1 and l = 1, the action, while
locally free (apart from the origin), is not free, and so one has to be careful about singularities in the
quotient space. For example, for k = 1 and l = 2, the action of the group element eiπ leaves points
of the form (0, z2) ∈ C2 invariant. As we shall see shortly, the quotient in the Poisson context can
be singularity free, even though the symplectic context has singularities.

For each real number m, define the map φm : R3 → R by

φm = X2 + Y 2 − k−|l|l−|k|(m + Z)|l|(m − Z)|k|, (2.24)
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so that the relation (2.23) between the variables X, Y, Z, J becomes φJ(X, Y, Z) = 0.
The quotient C2/S1 is identifiable with R3 coordinatized by (X, Y, Z) and carries the quotient

Poisson structure given as follows. Let F and G be given functions of X, Y, Z and let (X, Y, Z) lie
on the set φm(X, Y, Z) = 0. Then

{F, G}(X, Y, Z) = ∇φm · (∇F ×∇G). (2.25)

This result is proved as follows. Define f = F ◦ π where π is the map sending (z1, z2) �→ (X, Y, Z).
The Poisson bracket on C2 associated to the symplectic structure (2.20) is given by

{f, g} = −Im 〈∇z1f,∇z1g〉 − Im 〈∇z2f,∇z2g〉 , (2.26)

where the gradient is the real gradient, taken with respect to the real inner product. The bracket (2.25)
follows on computing {f, g} using the chain rule. This is a straightforward, although slightly lengthy
computation.

The symplectic leaves in the above Poisson structure are given by the symplectic reduced spaces,
namely by the sets φm = 0 corresponding to the symplectic reduced spaces J−1(m)/S1. The bracket
above is the Poisson bracket associated with these leaves. The leaves φm = 0 ⊂ R3 are, in general,
“pinched spheres”. If h is a Hamiltonian on C2 that is invariant under the action of S1, it induces
a function H on R3 and the reduced equations on the pinched sphere φm = 0 are given by the
(Euler-like) equations

V̇ = ∇H ×∇φm, (2.27)

where V = (X, Y, Z). The case of multiple resonances is described by a similar expression, given by
Kummer [1990].

The general theory just given shows that we should expect to get Euler-like equations when we
express the equations (2.5) in terms of invariants, which is in fact borne out in what follows. Although
the calculations below could be carried out in terms of the variables z1 and z2 used in equation (2.19)
and the accompanying invariants (2.21), (2.22) we have chosen to employ the primitive variables
used in equation (2.5). In particular, we use the invariants

N = |A1|2 + |A2|2, u + iv = 2Ā1A2, w = |A1|2 − |A2|2, (2.28)

instead of J , X, Y and Z defined above, since these apply both when pq > 0 and when pq < 0. As
before these invariants are not independent, since N2 = u2 +v2 +w2. When p = q = 1 (the splitting
case) the quantity w is an integral of the motion for equations (2.5), while the remaining quantities
satisfy the top equation

dL

dt
= L × Ω, (2.29)

where L ≡ (N, iu, iv)T and Ω ≡ P + DL. Here P is a vector and D is a 3 × 3 matrix defined as
follows:

P =


 λ − 1

2 (s12 + s21 − s11 − s22)w
0

−2iε


 , D =


 − 1

2 (s21 − s12 + s22 − s11) 0 0
0 0 0
0 0 0


 . (2.30)

Specifically,

dN

dt
= 2εu,

du

dt
= vΩ1(w, N) + 2εN,

dv

dt
= −uΩ1(w, N), (2.31)
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where

Ω1(w, N) ≡ λ − 1
2
(s12 + s21 − s11 − s22)w − 1

2
(s21 − s12 + s22 − s11)N. (2.32)

The kinetic energy can now be constructed as T = LT P + 1
2LT DL, and is an integral of motion for

the top (dT/dt = 0). Note that T = 4E, where E is defined by (2.15).
In the case p = −q = 1, N is an integral of (2.5), while

dw

dt
= 2εu,

du

dt
= −2εw + vΩ1(w, N),

dv

dt
= −uΩ1(w, N). (2.33)

These equations can also be written in the form (2.29) with L ≡ (w, u, v)T and Ω ≡ P + DL, where
P and D are now defined as follows:

P =


 λ − 1

2 (s21 − s12 + s22 − s11)N
0
2ε


 , D =


 − 1

2 (s12 + s21 − s11 − s22) 0 0
0 0 0
0 0 0


 . (2.34)

2.4 The simplest normal form

Equations (2.5) can be further simplified using the transformation (Jorgensen and Christiansen
[1992])

A1(t) = B1(t) exp(iψ(t)), A2(t) = B2(t) exp(iψ(t)), (2.35)

where ψ(t) =
∫ t

t0
(s21|B1|2 + s12|B2|2)ds. This transformation does not change the invariants (2.28).

The variables B1(t) and B2(t) obey the following equations:

dB1

dt
= iλB1 + εpB2 + i(s11 − s21)B1|B1|2

(2.36)
dB2

dt
= εqB1 + i(s22 − s12)B2|B2|2.

By rescaling the amplitudes B1, B2 and the time three constants in (2.36) can be eliminated.
Redefining λ and ε we obtain

dB1

dt
= iλB1 + εB2 + iB1|B1|2

(2.37)
dB2

dt
= ±εB1 + icB2|B2|2,

where c := ±
(

s22 − s12

s11 − s21

)
q

p
is a real constant and λ replaces λ(±pq)−1/2. Equations (2.37) con-

stitute our desired normal form, subject to the nondegeneracy conditions s22 �= s12, s11 �= s21, in
addition to p �= 0, q �= 0.

In the + case (splitting) these equations have two conserved quantities w and H, given by

w = |B1|2 − |B2|2

H(u, N) =
λ

2
N +

1 − c

8
N2 +

1 + c

4
Nw ± ε

√
N2 − u2 − w2. (2.38)
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Here w, u and N are defined as in (2.28). The two signs now refer to the two sheets of the hyperboloid;
the results below are given for the + sign. Note that H is a Hamiltonian for (2.37), and corresponds
to the 1 : −1 resonance, as described above. In the variables u and N , the equations take the form

du

dt
= 2

√
N2 − u2 − w2

∂H

∂N
= {H, u}

(2.39)
dN

dt
= −2

√
N2 − u2 − w2

∂H

∂u
= {H, N}.

Here { , } is the non–canonical Poisson bracket

{f, g} ≡ 2
√

N2 − u2 − w2

(
∂f

∂N

∂g

∂u
− ∂f

∂u

∂g

∂N

)
. (2.40)

These equations are equivalent to (2.31). The bracket (2.40) is the Lie–Poisson bracket for the
hyperboloid (orbits of SO(2, 1)).

In the – case (passing) equations (2.37) have instead the two integrals N and H given by

N = |B1|2 + |B2|2

(2.41)

H(u, w) =
λ

2
w +

1 + c

8
w2 +

1 − c

4
Nw + ε

√
N2 − u2 − w2.

In the variables u and w, the equations take the form

du

dt
= 2

√
N2 − u2 − w2

∂H

∂w
= {H, u}

dw

dt
= −2

√
N2 − u2 − w2

∂H

∂u
= {H, w}, (2.42)

where

{f, g} ≡ 2
√

N2 − u2 − w2

(
∂f

∂w

∂g

∂u
− ∂f

∂u

∂g

∂w

)
. (2.43)

2.5 Phase portraits for a two-parameter family (ε, λ) of Hamiltonian vec-
tor fields in the + case (splitting)

In this section we analyze the two-parameter family of Hamiltonian vector fields

dB1

dt
= iλB1 + εB2 + iB1|B1|2

(2.44)
dB2

dt
= εB1 + icB2|B2|2.

FFrom (2.38) we have

εv = H − λ

2
N − 1 − c

8
N2 − 1 + c

4
Nw, (2.45)
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so that
dN

dt
= 2ũ

(2.46)
dũ

dt
= g0 + g1N + g2N

2 + g3N
3,

where ũ = εu and

g0 = λ̃H

g1 =
1
2
(4ε2 − λ̃2) +

1 − c

2
H

(2.47)

g2 = −3
8
(1 − c)λ̃

g3 = − (1 − c)2

16
.

Here λ̃ ≡ λ + 1
2 (1 + c)w. Phase portraits of (2.46) depend on the number of real roots of the cubic

polynomial f(N) ≡ g0 + g1N + g2N
2 + g3N

3. Let P = g1g3 − 1
3g2

2 and Q = g0g
2
3 − 1

3g1g2g3 + 2
27g3

2 .

If Q2

4 + P 3

27 > 0 then f(N) has a single real root and the phase portrait is topologically equivalent to
a circle. In the case Q2

4 + P 3

27 < 0, the polynomial f(N) has three real roots and the phase portrait
of (2.46) is topologically equivalent to a figure eight. Thus, the expression Q2

4 + P 3

27 can be used in
determining phase portraits for a particular choice of parameters λ̃, ε, c and H.

The invariant surface H = 0 is of particular interest. Restricted to this surface, equations (2.44)
become

dN

dt
= 2ũ

(2.48)
dũ

dt
=

1
2
(4ε2 − λ̃2)N − 3

8
(1 − c)λ̃N2 − (1 − c)2

16
N3,

These equations have three families of equilibria, given by (ũ, N) = (0, 0) and(
0,

3λ̃ ±
√

λ̃2 + 32ε2

c − 1

)
,

provided N > 0. Of these, (0, 0) corresponds to the original equilibrium (A1, A2) = (0, 0) provided
w = 0. This is because |w| < N . This equilibrium is unstable in the wedge |λ| < 2ε. The nontrivial
equilibria depend on the value of the integral w. When c > 1 there is no nontrivial equilibrium in
λ̃ < −2ε; in −2ε < λ̃ < 2ε there is precisely one such equilibrium and it is stable. Finally, in λ̃ > 2ε
there are two nontrivial equilibria, with the larger one stable and the smaller one unstable. In the
invariant surface H = w = 0 the original equilibrium is stable for λ < −2ε; it loses stability to a
new equilibrium as λ passes through λ = −2ε. This equilibrium remains stable with increasing λ
even when λ exceeds 2ε, and the original equilibrium regains its stability. Thus for λ > 2ε the two
stable equilibria coexist, and the original equilibrium is unstable with respect to finite amplitude
perturbations. The situation is reversed when c < 1; in this case the finite amplitude instabilities
occur for λ < −2ε. The corresponding bifurcation diagram is shown in Figure 1.
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2.6 Phase portraits for a two-parameter family (ε, λ) of Hamiltonian vec-
tor fields in the – case (passing)

In this section we analyze the two-parameter family of Hamiltonian vector fields

dB1

dt
= iλB1 + εB2 + iB1|B1|2

(2.49)
dB2

dt
= −εB1 + icB2|B2|2.

The normal form (2.49) corresponds to the passing case. These equations may be written in the
form

dw

dt
= 2ũ

(2.50)
dũ

dt
= h0 + h1w + h2w

2 + h3w
3,

where ũ = εu and

h0 = (λ +
1 − c

2
N)H

h1 = −2ε2 − λ2

2
− 1 − c

2
λN − (1 − c)2

8
N2 +

1 + c

2
H

(2.51)

h2 = −3
8
(1 + c)(λ +

1 − c

2
N)

h3 = − (1 + c)2

16
.

As before the invariant surface H = 0 is of particular interest. There are three fixed points in
this surface, given by (ũ, w) = (0, 0) and(

0,
−3λ̃ ±

√
λ̃2 − 32ε2

1 + c

)
,

where λ̃ ≡ λ+ 1
2 (1+c)N . Note that the nontrivial fixed points are present for |λ̃| > 4

√
2ε. The trivial

equilibrium corresponding to the original equilibrium is always stable, with N serving locally as a
Liapunov function. Of the remaining equilibria it is the one with the larger |w| that is stable. Thus
for |λ̃| > 4

√
2ε finite amplitude instabilities become possible, provided that these are associated with

sufficiently large perturbations in N . The corresponding bifurcation diagram is shown in Figure 2.

2.7 The transition between splitting and passing

The connection between the splitting and passing cases is simple to establish. We keep p = 1 and
allow q to vary through zero. In this case, the two integrals are

w ≡ q|B1|2 − |B2|2 (2.52)
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and

H ≡ λN

1 + q2
+ εv +

1
2

N

(1 + q2)2
[(1 − cq)N + 2w(c + q)], (2.53)

where N ≡ |B1|2 + q|B2|2 and (u, v) are defined as before. The structure of the problem remains of
the form (2.46), with

g0 = λ̃H − 2ε2
(

1 − q2

1 + q2

)
w

g1 =
1

1 + q2
[H + 4ε2q − λ̃2]

(2.54)

g2 = −3
2

1 − cq

(1 + q2)2
λ̃

g3 = −1
2

(1 − cq)2

(1 + q2)3
,

where

λ̃ ≡ λ +
c + q

1 + q2
w. (2.55)

In the surface {H = 0} ∩ {w = 0} containing the origin the dynamical equations simplify:

dÑ

dt
= 2ũ

dũ

dt
=

1
2
(4ε2q − λ2)Ñ − 3

8
λÑ2 − 1

16
Ñ3,

where

(Ñ , ũ) ≡ (1 − cq)
(

2N

1 + q2
, εu

)
,

Note that the small q regime is equivalent to the case of small c. One can now see that for fixed (ε, λ)
as q decreases towards zero the instability region closes up, the two bifurcation points λ = ±2ε

√
q

come together and the branch of nontrivial equilibria detaches from the trivial equilibrium Ñ = 0.
Indeed one can verify that dÑ/dλ = 0,∞ both require q < 0. The transition between Figure 1b and
Figure 2 thus takes place via the degenerate bifurcation diagrams shown in Figure 3.

2.8 Mode interaction with SO(2) × O(2) symmetry

We conclude this section by writing down the corresponding normal forms for the case with reflec-
tion symmetry in the axial direction. Then the symmetry group associated with translations and
reflections in the axial direction becomes O(2), and the full symmetry is now SO(2)×O(2). In this
case the modes at ±iω are related by reflection symmetry. Let A3 and A4 be the amplitudes of the
modes at −iω defined so that the linear eigenfunction is

ψ(r, φ, z) = Re(A1e
ikz + A2e

ikz+iφ + Ā3e
−ikz + Ā4e

−ikz+iφ). (2.56)

The translations z → z + d now act by (A1, A2, A3, A4) → eikd(A1, A2, A3, A4), while the reflec-
tion z → −z acts by (A1, A2, A3, A4) → (Ā3, Ā4, Ā1, Ā2). Finally, the rotations φ → φ + θ act

14



by (A1, A2, A3, A4) → (A1, e
iθA2, A3, e

−iθA4). In addition, in normal form, the vector field will
commute with the normal form symmetry (A1, A2, A3, A4) → (eiωτA1, e

iωτA2, e
−iωτA3, e

−iωτA4)
generated by phase shifts t → t + τ . The most general Hamiltonian vector field commuting with
these operations, truncated at third order, is (cf. Silber and Knobloch [1991], Knobloch and Silber
[1993])

dA1

dt
= iωA1 + iA1(s11|A1|2 + s12|A2|2 + s13|A3|2 + s14|A4|2) + ir1A2A4Ā3

dA2

dt
= iωA2 + iA2(s21|A1|2 + s22|A2|2 + s23|A3|2 + s24|A4|2) + ir2A1A3Ā4

(2.57)
dA3

dt
= −iωA3 − iA3(s13|A1|2 + s14|A2|2 + s11|A3|2 + s12|A4|2) − ir1A2A4Ā1

dA4

dt
= −iωA4 − iA4(s23|A1|2 + s24|A2|2 + s21|A3|2 + s22|A4|2) − ir2A1A3Ā2.

With detuning and the symmetry breaking terms due to precession or off-center displacement we
obtain

dA1

dt
= iω1A1 + εpA2 + iA1(s11|A1|2 + s12|A2|2 + s13|A3|2 + s14|A4|2) + ir1A2A4Ā3

dA2

dt
= iω2A2 + εqA1 + iA2(s21|A1|2 + s22|A2|2 + s23|A3|2 + s24|A4|2) + ir2A1A3Ā4

(2.58)
dA3

dt
= −iω1A3 + εpA4 − iA3(s13|A1|2 + s14|A2|2 + s11|A3|2 + s12|A4|2) − ir1A2A4Ā1

dA4

dt
= −iω2A4 + εqA3 − iA4(s23|A1|2 + s24|A2|2 + s21|A3|2 + s22|A4|2) − ir2A1A3Ā2.

In this form the equations commute with the O(2) axial symmetry, as well as with the normal form
symmetry; only the SO(2) rotation symmetry has been broken. Identical equations hold for the
corresponding interaction between modes with azimuthal wavenumbers m and m + 1.

Equations (2.58) generalize equations (2.4) to the case of SO(2) × O(2) symmetry. Note that
the subspace A3 = A4 = 0 is invariant. Within this subspace equations (2.58) reduce to (2.4), and
describe the interaction between two downward propagating waves. Another important invariant
subspace is given by A1 = Ā3, A2 = Ā4. In this subspace equations (2.58) also take the form (2.4),
but with different coefficients. The equations within this subspace describe the interaction between
two standing waves. The general equations describe the interaction between traveling and standing
waves of both types (m = 0, m = 1). In particular the equations capture the stability properties
of downward traveling waves with respect to upward traveling waves, or the stability properties of
standing waves with respect to traveling perturbations.

The Hamiltonian structure of the equations (2.58) may be analyzed in the same manner as in
§2.2. For example, if pq > 0, and z1 = iA1, z2 = A2, z3 = iA3, z4 = A4 we see that the equations are
Hamiltonian if p = q = 1, s12 = −s21, and r1 = r2. As before, these conditions are inessential in the
sense that when one reduces to polar coordinates, one can always arrange for them to be satisfied.
In addition, there is a Hamiltonian structure for the equations written in terms of invariants.

In the absence of system symmetry breaking the dissipative version of equations (2.57) was
analyzed (in particular cases) by Silber and Knobloch [1991] and by Knobloch and Silber [1993].
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With the system symmetry breaking terms the corresponding equations in the A3 = A4 = 0 subspace
form the nondissipative limit of the equations studied by Dangelmayr and Knobloch [1991] for the
Hopf bifurcation with O(2) symmetry. In particular, the nontrivial steady states described in §2.4
and §2.5 now correspond to the two types of standing waves described in their paper. This is also
the case for the equations in the A1 = Ā3, A2 = Ā4 subspace. The corresponding analysis for the
competition of two modes, as in the present case, will be reported elsewhere.

3 Hamiltonian normal forms: the case m = 2 (elliptical in-
stability)

3.1 Basic amplitude equations

We next consider the case in which the azimuthal wavenumbers differ by 2. This is the case of the
so-called elliptic instability studied by Pierrehumbert [1986] and Bayly [1986]. It arises when the
rotation symmetry SO(2) is broken to Z2, for example, by distorting the circular streamlines of the
flow into elliptical shape. This distortion couples modes propagating in the positive and negative
directions along the axis. In systems with axial reflection symmetry both waves are simultaneously
present. For the eigenfunction

ψ(r, φ, z) = Re(A1e
ikz+iφ + A2e

−ikz+iφ), (3.1)

the rotations φ → φ + θ act by (A1, A2) → eiθ(A1, A2), while the translations z → z + d act by
(A1, A2) → (eikdA1, e

−ikdA2) and reflection z → −z acts by (A1, A2) → (A2, A1). As a consequence
of the reflection symmetry the dispersion curves cross on the real axis, i.e., at ω = 0. The elliptical
distortion breaks the rotation invariance and couples the two counter-propagating modes. The
amplitude equations, truncated at third order, take the form

dA1

dt
= iλA1 + εĀ2 + iA1(s1|A1|2 + s2|A2|2)

(3.2)
dA2

dt
= iλA2 + εĀ1 + iA2(s2|A1|2 + s1|A2|2),

where, as before, λ is the detuning and ε measures the size of the elliptical distortion. The coefficient
describing the coupling to the distortion can be made purely real as in (3.2), or purely imaginary. In
either case the origin is unstable in the wedge |λ| < ε, i.e.,, the reflection symmetry z → −z forces
splitting to take place. This observation is independent of any detailed considerations of the system
of interest. In the dissipative case equations (3.2) were studied by Riecke et al. [1988] (see also
Walgraef [1988]), in the context of parametric forcing of the Hopf bifurcation with O(2) symmetry.
Riecke et al. showed that the forcing stabilized standing waves over traveling waves, even in cases
where, in the absence of forcing, traveling waves would be stable. Equations (3.2) thus represent
the nondissipative limit of the analysis of Riecke et al.

With the change of variables A1(t) = B1(t) exp(iψ(t)), A2(t) = B2(t) exp(−iψ(t)), where ψ(t) =
−s2

∫ t

t0
(|B1|2 − |B2|2)ds, one obtains

dB1

dt
= iλB1 + εB̄2 + i(s1 + s2)B1|B1|2

(3.3)
dB2

dt
= iλB2 + εB̄1 + i(s1 + s2)B2|B2|2,

16



or, rescaling B1 and B2:

dB1

dt
= iλB1 + εB̄2 + iB1|B1|2

(3.4)
dB2

dt
= iλB2 + εB̄1 + iB2|B2|2.

This is the required normal form for the elliptical instability, provided s1 + s2 �= 0. Here λ is the
detuning parameter and ε measures the size of the elliptical distortion (e.g. eccentricity). It is
remarkable that the normal form (3.4) does not contain any parameters depending on a specific
problem under consideration.

Equations (3.4) are Hamiltonian in the standard structure for the complex variables z1 = B1

and z2 = B2 with the Hamiltonian

H(B1, B2) = −λ

2
(
|B1|2 + |B2|2

)
+ εIm(B1B2) −

1
4

(
|B1|4 + |B2|4

)
. (3.5)

Moreover, the symmetry (B1, B2) �→ (eiθB1, e
−iθB2) gives the conserved quantity (momentum map)

J(B1, B2) = |B1|2 − |B2|2. (3.6)

As in §2, we can express this Hamiltonian structure in either polar coordinates or in terms of invari-
ants. In terms of the variables B1 ≡ r1 exp(iφ1), B2 ≡ r2 exp(iφ2) and φ ≡ φ1 + φ2, equations (3.4)
become

dr1

dt
= εr2 cos φ

dr2

dt
= εr1 cos φ (3.7)

dφ

dt
= 2λ − ε

(
r2

r1
+

r1

r2

)
sinφ + r2

1 + r2
2.

Again, this system is completely integrable with the two integrals derived from the above Hamilto-
nian (or its negative) and momentum:

J = r2
1 − r2

2, E =
λ

2
(r2

1 + r2
2) − εr1r2 sinφ +

1
4
(r4

1 + r4
2). (3.8)

Using the integrals J and E, the solution of (3.7) reduces to quadrature:

1
4

(
dρ

dt

)2

= P (ρ) ≡ ε2(ρ2 − J2) − 4
(

E − λρ

2
− 1

8
(ρ2 + J2)

)2

. (3.9)

Here ρ ≡ r2
1 + r2

2. Note that for fixed J the integral E varies between h1(J) and h2(J), where h1(J)
corresponds to a fixed point and h2(J) corresponds to a homoclinic (heteroclinic) orbit.

The system (3.4) has two invariant subspaces {B1 = B2} and {B1 = iB2}. In the dissipative case
mentioned above these correspond to the two types of oscillations phase locked to half the frequency
of the parametric forcing. Both are standing oscillations. These subspaces are characterized by
J = 0. In the first subspace (3.4) reduce to

dB

dt
= iλB + εB̄ + iB|B|2. (3.10)

17



In the second subspace,

dB

dt
= iλB − iεB̄ + iB|B|2. (3.11)

The equations in each subspace are again Hamiltonian, which is consistent with the general fact that
fixed point spaces of discrete symplectic symmetries are symplectic spaces and induce Hamiltonian
subsystems on them (see Marsden [1992, Chapter 8] for the general theory). The corresponding
phase portraits of (3.10) are shown in Figure 4. The phase portraits of (3.11) are obtained by
rotation of the phase portraits in Figure 4 by π

2 .
More generally, the phase portraits depend on both E and J . These quantities specify invariant

surfaces in phase space. Dynamics on these surfaces can be understood by converting (3.9) to a
system of two equations in the variables ρ and dρ

dt . For λ = 0 there are two possibilities, depending
on the sign of ε2 + E − J2

8 . The resulting phase portraits in (ρ, dρ
dt ) space resemble those shown in

Figure 4.

3.2 The effect of symmetry breaking

The discussion of the elliptical instability presented above relies on the presence of reflection symme-
try in the axial direction. This residual symmetry need not be exact, however, and may be broken
for example by means of an axial flow. A number of other system symmetry breaking perturbations
can also be envisaged. These include the following:

(a) SO(2) × O(2) → Z2 × O(2) → Z2 × SO(2)

(b) SO(2) × O(2) → Z3 × O(2)

(c) SO(2) × O(2) → Z4 × O(2).

In those cases where the axial reflection symmetry is preserved, the elliptical instability remains a
steady state one. In cases where it is broken (for example, by axial flow) the instability becomes
a Hopf bifurcation (cf. Armbruster and Mahalov [1992], Knobloch [1992b]). In the following we
suppose that ε1 measures the strength of the system symmetry breaking from SO(2) to Zn, and ε2
measures the strength of the system symmetry breaking from O(2) to SO(2), and retain as before
only the dominant symmetry breaking terms.

When an axial flow reduces the symmetry from SO(2)×O(2) to SO(2)×SO(2) by breaking the
reflection symmetry z → −z the symmetry (B1, B2) → (B2, B1) of the normal form (3.4) is broken.
Consequently we can describe the effect of weak axial flow by breaking the latter symmetry. We
obtain

dB1

dt
= iλ1B1 + ε1p1B̄2 + i(1 + γ1)B1|B1|2

(3.12)
dB2

dt
= iλ2B2 + ε1p2B̄1 + i(1 + γ2)B2|B2|2.

Here, λ2 − λ1 = O(ε2), p2 − p1 = O(ε2) and γ2 − γ1 = O(ε2), where ε2 denotes the strength of the
reflection symmetry breaking effect. Note that by rescaling the amplitudes the coefficients γ1 and
γ2 can be set equal to zero, though at the cost of redefining p1 and p2. It is now easy to check that
the trivial equilibrium is unstable whenever

(λ1 − λ2)2 < 4(ε21p1p2 − λ1λ2). (3.13)
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Note that, in contrast to the symmetric case, the presence of the instability depends critically on
the splitting of the frequencies of the left–handed and right–handed modes. If this splitting is large
enough for a given value of ε the instability can be suppressed entirely.

Equations (3.12) are also integrable, and have the following two integrals:

J = p2r
2
1 − p1r

2
2, E =

1
2

(
λ1 + λ2

p1 + p2

)
(r2

1 + r2
2) − ε1r1r2 sinφ +

1 + γ1

4p1
r4
1 +

1 + γ2

4p2
r4
2. (3.14)

The use of the integrals reduces the system (3.12) to quadrature:

1
4p1p2

(
dρ

dt

)2

= P (ρ), (3.15)

where ρ ≡ p2r
2
1 + p1r

2
2 and

P (ρ) ≡ ε21(ρ
2 − J2) − 4p1p2

[
E − λ1 + λ2

4p1p2

(
ρ +

p1 − p2

p1 + p2
J

)

− 1
16p2

1p
2
2

[((1 + γ1)p1 + (1 + γ2)p2)(ρ2 + J2) + 2((1 + γ1)p1 (3.16)

− (1 + γ2)p2)ρJ ]
]2

.

Equations (3.4) and (3.12) can be put in rigid body form. We start with the equations

dA1

dt
= iλ1A1 + ε1p1Ā2 + iA1(s11|A1|2 + s12|A2|2)

(3.17)
dA2

dt
= iλ2A2 + ε1p2Ā1 + iA2(s21|A1|2 + s22|A2|2),

describing the effect of weak axial flow on the elliptic instability (case (a) above). Here the amplitudes
A1 and A2 are as in (3.1), and λ1 − λ2, p1 − p2, s11 − s22 and s12 − s21 are all O(ε2). There are two
cases: (i) p1p2 < 0 (pinched spheres, passing of the zero eigenvalues), and (ii) p1p2 > 0 (pinched
hyperboloids, splitting of the zero eigenvalues). In case (ii), a rescaling of the amplitudes yields

dA1

dt
= iλ1A1 + ε1pĀ2 + iA1(s11|A1|2 + s12|A2|2)

(3.18)
dA2

dt
= iλ2A2 + ε1pĀ1 + iA2(s21|A1|2 + s22|A2|2).

In terms of the Euler variables

N ≡ |A1|2 + |A2|2, w ≡ |A1|2 − |A2|2, u + iv = 2A1A2, (3.19)

cf. equations (2.28), one obtains the equations

dw

dt
= 0

dN

dt
= 2ε1pu
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(3.20)
du

dt
= −v(2λ + aN + ε2bw) + 2ε1pN

dv

dt
= u(2λ + aN + ε2bw),

where 2λ ≡ λ1 + λ2, 2a ≡ s11 + s21 + s12 + s22 and 2ε2b ≡ s11 + s21 − s12 − s22. Note that once
again N2 = u2 + v2 + w2. If we replace ε1p by ε1 and ε2b by ε2 the vector L ≡ (N, iu, iv) satisfies
the top equation

dL

dt
= L × Ω (3.21)

where Ω ≡ P + DL, and P and D are now given by

P =


 −2λ − ε2w

0
−2iε1


 , D =


 −a 0 0

0 0 0
0 0 0


 , (3.22)

cf. equation (2.30). As in the case of the m = 1 instability, the kinetic energy is given by T =
LT P + 1

2LT DL and is an integral of the motion. It is now easy to understand how the Hamiltonian
structure (and phase portraits) change when the two system symmetry breaking parameters ε1 and
ε2 are varied.

To understand case (b) we note, following Nagata [1988], that the normal form for a vector field
that commutes with the symmetry Z3 × O(2) is given by

dA1

dt
= ig1A1 + iε1g2Ā

2
1Ā

3
2

(3.23)
dA2

dt
= ig3A2 + iε1g4Ā

2
2Ā

3
1,

where the functions g1, ..., g4 are C∞ functions of the invariants |A1|2 + |A2|2, (A1A2)3, (Ā1Ā2)3

and (|A1|2 − |A2|2)2. These functions are not independent since the two equations for A1 and A2

are related by the reflection symmetry (A1, A2) → (A2, A1).
Similarly, in case (c), one finds that the normal form that commutes with the required action of

Z4 × O(2) is

dA1

dt
= ig1A1 + iε1g2Ā1Ā

2
2

(3.24)
dA2

dt
= ig3A2 + iε1g4Ā2Ā

2
1,

where the functions g1, ..., g4 are now functions of the invariants |A1|2 + |A2|2, (A1A2)2, (Ā1Ā2)2

and (|A1|2 − |A2|2)2. As before these functions are related by the reflection symmetry (A1, A2) →
(A2, A1).

It is important to observe that the symmetry breaking terms that now enter are all nonlinear
and hence they do not affect the linear stability problem. Consequently in these cases instability
will not in general be present. This is because the wavenumbers of the eigenfunctions differ by 2.
However, when SO(2) is broken to Z2n (n ≥ 1) the same equations as (3.18) are obtained for the
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interaction of modes of the form eikz+inφ and e−ikz+inφ. Similarly, when m1 − m2 = 2n − 1, say,
equations of the form (2.3) or (2.58) follow for modes of the form eikz and eikz+i(2n−1)φ whenever
the symmetry is broken to Z2n−1, depending on the symmetry in the axial direction. Here n is again
a positive integer.

Equations (3.2) discussed above also arise in the theory of edge waves excited by a normally
incident wave at a beach; equations (3.12) then describe the excitation of edge waves by slightly
oblique waves (cf. Miles [1991]). This problem is closely related to that discussed in §4.

4 The general case

In this section we consider the interaction of two modes with azimuthal wavenumbers m and n, and
the same axial wavenumber. We must now distinguish between two types of parametric interaction,
through coupling to a deformation mode of the form e±i(m−n)φ or of the form e±i(m+n)φ, where
0 < n < m. We write the linear eigenfunction in the form

ψ(r, φ, z) = Re(Ameikz+imφ + Aneikz+inφ + A−meikz−imφ + A−neikz−inφ). (4.1)

The translations z → z + d now act by

(Am, An, A−m, A−n) → eikd(Am, An, A−m, A−n),

while the reflection z → −z acts by

(Am, An, A−m, A−n) → (Ā−m, Ā−n, Ām, Ān).

Finally, the rotations φ → φ + θ act by

(Am, An, A−m, A−n) → (eimθAm, einθAn, e−imθA−m, e−inθA−n).

In addition, in normal form, the vector field will commute with the normal form symmetry

(Am, An, A−m, A−n) → (eiωτAm, eiωτAn, e−iωτA−m, e−iωτA−n)

generated by phase shifts t → t + τ . The most general Hamiltonian vector field commuting with
these operations, truncated at third order, is

dAm

dt
= iωAm + iAm(s11|Am|2 + s12|An|2 + s13|A−m|2 + s14|A−n|2) + ir1AnA−nĀ−m

dAn

dt
= iωAn + iAn(s21|Am|2 + s22|An|2 + s23|A−m|2 + s24|A−n|2) + ir2AmA−mĀ−n

(4.2)
dA−m

dt
= −iωA−m − iA−m(s13|Am|2 + s14|An|2 + s11|A−m|2 + s12|A−n|2) − ir1AnA−nĀm

dA−n

dt
= −iωA−n − iA−n(s23|Am|2 + s24|An|2 + s21|A−m|2 + s22|A−n|2) − ir2AmA−mĀn.

With detuning and the symmetry breaking terms of the form ei(m−n)φ we now obtain

dAm

dt
= iω1Am + iεpAn + iAm(s11|Am|2 + s12|An|2 + s13|A−m|2 + s14|A−n|2) + ir1AnA−nĀ−m
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dAn

dt
= iω2An + iεqAm + iAn(s21|Am|2 + s22|An|2 + s23|A−m|2 + s24|A−n|2) + ir2AmA−mĀ−n

(4.3)
dA−m

dt
= −iω1A−m − iεpA−n − iA−m(s13|Am|2 + s14|An|2 + s11|A−m|2 + s12|A−n|2) − ir1AnA−nĀm

dA−n

dt
= −iω2A−n − iεqA−m − iA−n(s23|Am|2 + s24|An|2 + s21|A−m|2 + s22|A−n|2) − ir2AmA−mĀn.

The equations corresponding to the perturbation ei(m+n)φ can be obtained from those above by
replacing n with −n. Note that the two sets of equations differ in the nonlinear terms, since the
change of sign of n is not in general a symmetry of the SO(2) × O(2) equivariant problem. The
Hamiltonian structure of these equations is the same as that described in §2.8.

The corresponding equations for the SO(2)×SO(2) interaction can be obtained from those above
by setting A−m and A−n equal to zero (cf. equations (2.3)). Moreover setting An and A−n equal to
zero results in equations of the form (3.2). Note that the structure of these generalizations does not
differ from the special cases already considered. Consequently no further analysis is necessary. This
is because of the translation invariance in the axial direction which prevents terms that are resonant
in the azimuthal coordinate from appearing in the normal form equations. Note also that we have
restricted attention in the above discussion to the interaction between modes with the same axial
wavenumbers only. It is not hard to generalize the discussion to cases where the competing modes
have different axial wavenumbers as well.

5 Amplitude equations for parametrically driven capillary
waves and Benjamin-Feir instability

5.1 Parametrically driven capillary waves

As already mentioned the equations derived above for the elliptical instability are the same as those
arising in parametrically forced systems. In this section we discuss in more detail one such example:
Milner’s [1991] model for secondary instabilities in driven capillary waves. Milner is interested in
understanding the relative stability between surface waves with roll and square planforms in a shallow
layer of water contained in a large aspect ratio container oscillated vertically. In this configuration
the dominant restoring force is due to surface tension, and the resulting surface ripples are called
capillary waves. In the following we assume translation symmetry in two orthogonal directions, as
well as reflection symmetry with respect to both directions. We write the eigenfunction describing
the elevation of the surface relative to the oscillating undeformed surface in the form

ζ(x, y, t) = Re{eiωt(v1e
ikx + v2e

iky + w1e
−ikx + w2e

−iky)}. (5.1)

The translation symmetry (x, y) → (x + d1, y + d2) acts by

(v1, v2, w1, w2) → (eikd1v1, e
ikd2v2, e

−ikd1w1, e
−ikd2w2);

reflection (x, y) → (x,−y) acts by

(v1, v2, w1, w2) → (v1, w2, w1, v2),

while rotation through π/2 acts by

(v1, v2, w1, w2) → (w2, v1, v2, w1).
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Finally, the normal form symmetry acts by (v1, v2, w1, w2) → eiφ(v1, v2, w1, w2). The resulting
normal form equations, truncated at third order, take the Hamiltonian form (Milner [1991], Silber
and Knobloch [1991])

dv1

dt
= iλv1 + iεw̄1 + iv1(a|w1|2 + b(|v1|2 + |w1|2) + c(|v2|2 + |w2|2)) + idv2w2w̄1

dv2

dt
= iλv2 + iεw̄2 + iv2(a|w2|2 + b(|v2|2 + |w2|2) + c(|v1|2 + |w1|2)) + idv1w1w̄2

(5.2)
dw1

dt
= iλw1 + iεv̄1 + iw1(a|v1|2 + b(|v1|2 + |w1|2) + c(|v2|2 + |w2|2)) + idv2w2v̄1

dw2

dt
= iλw2 + iεv̄2 + iw2(a|v2|2 + b(|v2|2 + |w2|2) + c(|v1|2 + |w1|2)) + idv1w1v̄2

cf. equation (2.57). Here ε measures the amplitude of the parametric forcing and is responsible for
the breaking of the normal form symmetry (v1, v2, w1, w2) → eiφ(v1, v2, w1, w2). The parametric
forcing respects the spatial symmetries. The quantity λ is the frequency mismatch, λ ≡ ω − 1

2ωd,
where ωd is the forcing frequency. Here ω is the natural oscillation frequency of the capillary waves.

The equations in the invariant subspace v2 = w2 = 0 take the form

dv1

dt
= iλv1 + iεw̄1 + iv1(a|w1|2 + b(|v1|2 + |w1|2))

(5.3)
dw1

dt
= iλw1 + iεv̄1 + iw1(a|v1|2 + b(|v1|2 + |w1|2)).

In the dissipative case these are the equations studied by Riecke et al. [1988] and Walgraef [1988];
they describe the effect of parametric forcing on the competition between standing and traveling
waves. There is another important invariant subspace of equations (5.2), given by v1 = w1, v2 =
w2. This subspace corresponds to standing waves in the two orthogonal directions. Consequently
traveling wave perturbations are suppressed. In this subspace the equations take the form

dv1

dt
= iλv1 + iεv̄1 + iv1(a|v1|2 + b|v2|2) + idv2

2 v̄1,

(5.4)
dv2

dt
= iλv2 + iεv̄2 + iv2(b|v1|2 + a|v2|2) + idv2

1 v̄2.

These equations describe the parametric resonance in small aspect ratio square containers and have
been studied by a number of authors (e.g., Nagata [1989]). Nearly square containers may be studied
by breaking weakly the symmetry (v1, v2) → (v2, v1) in equations (5.4) (cf. Feng and Sethna [1989,
1990]; Feng and Wiggins [1993]). In a rectangular container the required mode interaction problem
is of codimension two since the frequencies of the two competing modes must be tuned in order to
resonate with half the frequency of the parametric forcing. Such an interaction is described by the
equations

dv1

dt
= iλ1v1 + iεp1v̄1 + iv1(s11|v1|2 + s12|v2|2) + id1v

2
2 v̄1

(5.5)
dv2

dt
= iλ2v2 + iεp2v̄2 + iv2(s21|v1|2 + s22|v2|2) + id2v

2
1 v̄2
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with λ1 − λ2 = O(1) and similarly for the remaining coefficients. Note that no transformation of
the type used to simplify equations (3.2) is available in this case. As in our earlier discussions, the
above Hamiltonian equations have two sets of integrals corresponding to the energy and, when there
is an S1 symmetry present, a conserved momentum. In particular, the system (5.3) is completely
integrable while (5.4) and (5.5) are completely integrable if ε = 0. For example, equations (5.5) with
ε = 0, has the integrals

J = d2r
2
1 + d1r

2
2, E =

λ1

d1
r2
1 +

λ2

d2
r2
2 + r2

1r
2
2 cos φ +

s11 − s21

2d1
r4
1 +

s22 − s12

2d2
r4
2, (5.6)

where we have used the polar coordinate notation v1 = r1e
iφ1 , v2 = r2e

iφ2 and defined φ ≡ 2φ1−2φ2.
(As before, one adjusts the coefficients in (5.5) without changing the reduced system to get a
standard Hamiltonian system). A special case of these integrals was found already by Feng and
Sethna [1990]. The existence of these integrals should prove helpful in analyzing the parametrically
forced problem (5.5) for 0 < ε � 1, as in the work of Feng and Sethna [1990] and Feng and Wiggins
[1993], as should those obtaining in the case ε �= 0, d1 = d2 = 0, discussed in §3. We also remark
that there are hidden symmetries in the above problems, particularly in the square case (Crawford
[1992]). These are relevant in the Hamiltonian case since Neumann boundary conditions have to be
imposed at the boundaries of the container.

5.2 Benjamin–Feir instability

In the example discussed above, the parametric instability arose in the standard way, i.e., by tem-
poral modulation of a parameter of the system, in this case the gravitational acceleration. There is,
however, another example of parametric instability in the theory of water waves that also fits into
our picture. This is the so–called Benjamin–Feir instability of wavetrains. This is a modulational
instability of the wavetrain and arises through the coupling of two sidebands, k±l, via the wavenum-
ber k of the wavetrain. Two cases are of interest, that in which the original wavetrain is a progressive
wavetrain, and that in which the original wavetrain is a standing wave. These two cases differ by
the presence of a reflection symmetry in vertical planes in the latter case. This instability may be
viewed as follows: the undisturbed water surface plays the role of the basic state corresponding to
the flow with circular streamlines. The wavetrain then provides the distortion that can couple two
natural modes of oscillation of the system leading to the possibility of subharmonic instabilities of
Benjamin–Feir type.

We illustrate the above discussion with the nonlinear Schrödinger equation

∂A

∂t
= iγ

∂2A

∂x2
+ i|A|2A, (5.7)

subject to periodic boundary conditions in the spatial variable x. Equation (5.7) has a solution in the
form of a wave A = ReiΩt+ikx, where Ω = R2 − γk2. We wish to study the stability of this solution
with respect to side band perturbations, i.e., with respect to perturbations with wavenumbers k± l.
Thus we set

A = eiΩt

(
Reikx + a

)
. (5.8)

Linearizing in a, we find that a satisfies the equation

∂a

∂t
= iγ

∂2a

∂x2
+ i(2R2 − Ω)a + iR2e2ikxā. (5.9)
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This equation has a solution of the form

a = b1e
i(k+l)x + b2e

i(k−l)x, (5.10)

where

db1

dt
= i[2R2 − Ω − γ(k + l)2]b1 + iR2b̄2

(5.11)
db2

dt
= i[2R2 − Ω − γ(k − l)2]b2 + iR2b̄1.

These equations are of the form (3.12), with λ1 − λ2 = O(l), p1 = p2 = −1, and R2 playing the role
of ε. Condition (3.13) implies that an instability is present whenever

0 < γ(2R2 − γl2). (5.12)

Consequently the wavetrain is unstable with respect to sideband instability (0 < l � 1) whenever
γ > 0. This is the Benjamin–Feir instability (cf. Benjamin [1967]).

In this discussion we have focused on the linear stability properties of a propagating wavetrain.
To determine the nonlinear terms responsible for the saturation of the instability one would have to
go through a center manifold type of reduction based on the two unstable modes. The structure of
these terms is not as simple as in (3.12); this is because in the above derivation we are considering
an instability of a wave, and this wave has already broken the O(2) symmetry of the system. On
the other hand if we consider the two sidebands, k ± l, as two modes that are (weakly) coupled by
a small amplitude wave, then to leading order (in R) the equations for b1 and b2 will be of the form

db1

dt
= iR2b̄2 + ig11b1 + ig12b̄

k−l−1
1 bk+l

2

(5.13)
db2

dt
= iR2b̄1 + ig21b2 + ig22b̄

k+l−1
2 bk−l

1 ,

where the functions gij , i = 1, 2, j = 1, 2, are functions of

|b1|2, |b2|2, bk−l
1 b̄k+l

2 + b̄k−l
1 bk+l

2 and (bk−l
1 b̄k+l

2 − b̄k−l
1 bk+l

2 )2,

as well as of R. For k > 2, l ≥ 1, k > l, the resulting equations truncated at third order are precisely
of the form (3.2), though with broken reflection symmetry (b1 ↔ b2), and so can be transformed
into equations (3.12). The Benjamin–Feir instability is thus of the same kind as the instabilities
discussed here. We remark, finally, that the instability of standing wavetrains in dispersive systems
is complicated by the finite group velocity of the waves, and so is described by equations that are
more complicated than (5.7) (see Knobloch [1992a]).

6 Precessional instability of columnar flows: an explicit ex-
ample

In this section we discuss an explicit application of the above ideas. We focus on the precessional
instability of columnar flows of the form (0, V (r), W (r)), where (r, φ, z) are right–handed cylindrical
coordinates. Szeri and Holmes [1988] have established sufficient conditions for the nonlinear stability
of such flows to finite amplitude axisymmetric disturbances using the energy–Casimir method. The
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method depends upon finding a constant of motion that has a local maximum or minimum at the
corresponding equilibrium. In general such a constant of motion is a functional of the kinetic energy
and the conserved quantities that correspond to symmetries of the system via Noether’s theorem.
The nonlinear stability to axisymmetric perturbations is proved by showing that the second variation
of this functional is positive (negative) definite. We show that the energy–Casimir functional becomes
indefinite if three–dimensional variations are allowed. The idea of the proof is as follows. We assume
that an infinitesimal external Coriolis force is applied to the system. As a result the system loses
some of its conserved quantities (e.g. angular momentum about the z axis). In addition the Coriolis
force alters the base flow. We show that the resulting steady state flow has an unstable manifold
for an arbitrarily small strength of the external Coriolis force, and conclude that columnar flows are
structurally unstable in the sense that they are infinitesimally close to flows (steady state solutions of
Euler equations) having an unstable manifold. We formalize this discussion by making the following
definition: A steady-state solution V0 of a Hamiltonian system with a Hamiltonian H0 is called
structurally unstable if for any ε0 > 0 there exists an ε, 0 < ε < ε0, such that the steady state V0 is
deformed into a steady state solution Vε = V0 + εV1 of a Hamiltonian system with a Hamiltonian
Hε = H0 + εH1 having an unstable manifold.

We remark that any velocity field of the form (0, V (r), W (r)) satisfies the Euler equations for the
fluid regardless of the functions V (r) and W (r). The linear stability of these flows to axisymmetric
perturbations was first considered by Rayleigh, who found that the flow (0, V (r), 0) is stable only if

Φ = r−3 d

dr
(r2V 2(r)) > 0 (6.1)

for all r in the domain of interest. Synge [1933] showed that Φ > 0 is necessary and sufficient for
stability. Howard and Gupta [1962] derived a sufficient condition for linear stability of the flow with
velocity (0, V (r), W (r)), including an axial velocity component W . The condition is

J = Φ/(dW/dr)2 > 1/4. (6.2)

Thus if the Richardson number J exceeds 1/4 everywhere in the domain of interest, then the flow
is linearly stable.

As already noted the two cases W = 0 and W �= 0 possess different symmetry properties with
respect to reflections z → −z. The former has the symmetry O(2) × SO(2), while the latter has
the symmetry SO(2) × SO(2). This distinction is important for the structure of the full problem
(compare §2.1 and §2.9), but does not affect the linear stability calculation, i.e.,, the calculation
of the quantity pq that distinguishes splitting from passing. In the following we restrict ourselves
to the reflection symmetric flows (0, V (r), 0) satisfying the inviscid Rayleigh criterion for stability.
The results of our analysis are presented for flows selected from the two–parameter family of Burger
vortices given by

V (r) =
Γ

2πr
(1 − e−βr2

). (6.3)

These profiles are of interest in the vortex breakdown problem. The results discussed below focus
on the presence of splitting and hence of instability; no nonlinear computations have been carried
out.

The flow configuration is shown in Figure 5. The E axis is the axis of rotation for the system. The
unperturbed flow velocity field is given by (6.3). In a coordinate system rotating with a constant
angular velocity about E, the inviscid Euler equations require the instantaneous velocity field to
satisfy

∂v
∂t

+ v · ∇v + 2εE × v = −∇π, (6.4)
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where E = (cos φ,− sin φ, 0). Here ε is the strength of the external Coriolis force. For ε = 0 we find
that any flow (0, V (r), 0) satisfies (6.4). In the presence of the external Coriolis force the following
is an exact solution of the inviscid Euler equations (6.4):

u0 = (0, V (r),−2εr sinφ), π0 =
∫

V 2/rdr − 2ε2r2 sin2 φ. (6.5)

We now consider the linear stability analysis of this flow. The linearized equations for the
disturbance field (u, v, w, p) are

∂u

∂t
+

V

r

∂u

∂φ
− 2

V

r
v − 2εr sinφ

∂u

∂z
− 2εw sinφ = −∂p

∂r

∂v

∂t
+

V

r

∂v

∂φ
+

(
V

r
+ V

′
(r)

)
u − 2εr sinφ

∂v

∂z
− 2εw cos φ = −1

r

∂p

∂φ

(6.6)
∂w

∂t
+

V

r

∂w

∂φ
− 2εr sinφ

∂w

∂z
= −∂p

∂z

1
r

∂

∂r
(ru) +

1
r

∂v

∂φ
+

∂w

∂z
= 0.

Dispersion curves for the Burger’s vortex (6.3) with Γ
2π = 1 and β = 1 are shown in Figure 6.

The solid and dashed curves correspond to axisymmetric (m = 0) and helical (m = 1) modes. For
ε = 0 the system (6.6) has invariant subspaces characterized by different azimuthal wavenumbers.
Perturbations with ε �= 0 couple these subspaces. As a result the movement of the eigenvalues
changes from passing to splitting provided the azimuthal wavenumbers differ by 1 (Figure 7). We
can associate vortex instabilities with the degeneracies (crossing points in Figure 6) caused by two
physically distinguishable eigenmodes of the unperturbed vortex having the same eigenfrequency.

7 Discussion

In many problems stability results can be obtained from variational principles using the available
conserved quantities (momentum maps or Casimir functions). As in the example of columnar flows
above such a variational formulation exists for many exact solutions in two–dimensional hydrody-
namics and plasma physics, as well as for more general Hamiltonian systems, and allows one to
use the conserved quantities to establish the nonlinear stability of such equilibria. The situation
is less clear in three–dimensional hydrodynamics. In some cases, however, it is possible to use the
conserved quantities obtained via Noether’s theorem to prove that an equilibrium must be linearly
unstable. If the system is distorted (perturbed) in such a way that at least one conserved quantity
is lost, its evolution satisfies equations of the form

d

dt
F (u) = εG(u), (7.1)

where F (u) is a conserved quantity (quantities) for the undistorted system (obtained via Noether’s
theorem) and G(u) is a functional describing the rate of loss of the conserved quantity (quantities)
F (u). Here ε is the strength of the system symmetry breaking perturbation. Although equations
(7.1) are fully nonlinear, their linearization about u = 0 is given by〈

LF ,
du

dt

〉
= ε〈LG, u〉, (7.2)
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where LF = DF (0) and LG = DG(0) are two linear operators. Equation (7.2) is valid under the
assumption that ||u|| is small. In the case in which the distortion leads to a parametric instability
involving two critical modes u1 and u2,

dA1

dt
= εpA2,

dA2

dt
= εqA1, (7.3)

where A1 and A2 are the corresponding amplitudes. It follows that instability is present if pq > 0,
with a growth rate given by

σ2 = ε2pq. (7.4)

An expression for σ2 can be found in terms of the critical modes and LF , LG only. Since

u = A1(t)u1 + A2(t)u2, (7.5)

it follows that

p〈LF , u1〉A2 + q〈LF , u2〉A1 = 〈LG, u1〉A1 + 〈LG, u2〉A2, (7.6)

and hence that

p〈LF , u1〉 = 〈LG, u2〉, q〈LF , u2〉 = 〈LG, u1〉. (7.7)

Finally, therefore,

σ2 = ε2
〈LG, u1〉〈LG, u2〉
〈LF , u1〉〈LF , u2〉

. (7.8)

If the quantity (7.8) is positive the equilibrium is linearly unstable. The formula (7.8) may be viewed
as an analogue of the formula for the movement of eigenvalues in the context of dissipation induced
instabilities (see Bloch et al. [1993]).

The above discussion illustrates well the basic point of this paper: that system symmetry breaking
perturbations of Hamiltonian systems with symmetry can, under the appropriate circumstances, lead
to the loss of stability. These instabilities take place whenever the loss of symmetry results in the
splitting of double eigenvalues and are important in applications since they occur on a dynamical
time scale. This is so, for example, for the elliptical instability of columnar flow (Pierrehumbert
[1986], Bayly [1986]). As discussed here (see also Guckenheimer and Mahalov [1992]) the origin of
this instability is universal. It requires only the presence of reflection symmetry in the axial direction.
If the two modes are interchanged by this symmetry, then the coefficients of the SO(2)-breaking
terms must be equal i.e., p = q in (3.2), and so pq > 0 implying splitting. This argument establishes
the existence of an instability without the necessity of having to carry out even the linear stability
calculation. In this paper we have extended this approach to other multiple eigenvalues, and in
particular considered the case of the Hamiltonian Hopf bifurcation, with or without an additional
(axial) reflection symmetry. In this case when the system symmetry is broken, the eigenvalues may
either split or bounce, indicating the need for a linear stability analysis. In addition we have shown
how the symmetries of the system can be used to write down the truncated normal forms describing
the growth and saturation of these instabilities. We have described the Hamiltonian structure of
the resulting normal forms, and showed that in the simplest cases of interest these normal forms are
completely integrable. As a result a complete description of the local dynamics becomes possible.

We focused on systems with the symmetries SO(2)×SO(2) or O(2)×SO(2), where the first group
refers to periodic boundary conditions in the axial direction and the second to rotational invariance.
For such systems instabilities of the type discussed here are expected to be always present since
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the translational invariance in the axial direction implies that the axial wavenumber of the modes
is available as a parameter that can be tuned to force the coalescence of dangerous eigenmodes on
the imaginary axis. The dangerous interactions are precisely those for which independent passing
does take place in the unperturbed problem (cf. Dellnitz et al. [1992]). As illustrated in Figure 8,
once the azimuthal SO(2) symmetry is reduced by the system symmetry breaking perturbation the
bifurcations that take place as a function of the detuning λ are now non-semisimple double Hopf
bifurcations with 1 : 1 resonance (cf. van Gils et al. [1990]).

Acknowledgements We thank Mary Silber and Vivien Kirk for helpful discussions on the Hamil-
tonian structure of normal forms.
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Figure Captions
Figure 1. Bifurcation diagram for m = 1 in the + case (splitting): (a) c > 1, (b) c < 1. The label S
denotes a stable equilibrium (center) while U denotes an unstable equilibrium (saddle).
Figure 2. Bifurcation diagram for m = 1 in the − case (passing). The label S denotes a stable
equilibrium (center) while U denotes an unstable equilibrium (saddle).
Figure 3. The transition between splitting and passing for m = 1, showing (a) N(λ) and (b) w(λ)
when q = 0. This case connects Figure 1b with Figure 2.
Figure 4. Elliptical instability (m = 2). Phase portrait for standing oscillations (a) λ > ε > 0, (b)
|λ| < ε, (c) λ < −ε.
Figure 5. Coordinate system for the columnar vortex subjected to an external Coriolis force.
Figure 6. Dispersion curves for the Burger’s vortex. The solid and dashed curves correspond to
axisymmetric (m = 0) and helical (m = 1) modes.
Figure 7. Movement of eigenvalues: (a) independent passing (ε = 0), (b) splitting (ε �= 0).
Figure 8. Independent passing (ε = 0) and non-semisimple Hamiltonian Hopf (ε �= 0).
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