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Introduction

This is an extended abstract for the lecture of J.E. Marsden to be presented at
the ENOC-93 conference, Hamburg, August, 1993.

The goal of the lecture is to outline some recent work of the lecturer, M.
Golubitsky, I. Stewart, E. Knobloch, A. Mahalov and T. Ratiu on bifurcations
in Hamiltonian systems with symmetry. We will survey some earlier work with
D. Lewis, T. Ratiu and others to set the stage for the problems to be discussed.
Many of the basic results in bifurcation of mechanical systems is available in,
for example, Marsden [1992] and Duistermaat [1983) and references therein.

Part of this theory involves an understanding of the generic movement of
eigenvalues of Hamiltonian systems linearized at equilibrium points as parame-
ters of the system are varied. For eigenvalues passing through zero, this theory
was begun in Golubitsky and Stewart [1987] and for eigenvalues involved in
& one to one resonance, it was studied by Dellnitz, Melbourne, and Marsden
(1992]. The main point is that the movement of eigenvalues, such as the distinc-
tion between the cases when eigenvalues pass on the imaginary axis, or split into
the right and left half planes depends very much on the nature of the symmetry
group of the system and how this group acts on the phase space. Guckenheimer
and Mahalov [1992] show how the situation of eigenvalues passing through the
origin, but staying on the imaginary axis develops a window of instability when
the symmetry of the system is broken from S! to a discrete group, and that this
situation arises in some interesting fluid problems, such as rigid flow in a cylin-
drical container. Knobloch, Mahalov, and Marsden [1993) examine a similar
situation when eigenvalues pass through a one to one resonance.

Interesting examples of bifurcation in mechanical systems include the fol-
lowing:



e rotating liquid drops as their angular momentum increases (Lewis et. al.
[1987).

e bifurcations in planar coupled rigid bodies as system parameters vary (see
Oh et. al. [1989],

e bifurcations in the double spherical pendulum (Marsden and Scheurle
[1992))

e rotating fluid columns subject to symmetry bresking or Coriolis forces
(Knobloch et. al. [1993))

One of the overall aims of this theory is to study to what extent the theory of
bifurcation with symmetry, so successful in the theory of general dynamical sys-
tems, can be applied to mechanical systems, and when this is done, to study the
relations between these two theories. There are (at least) two main approaches
to the theory of bifurcation with symmetry that have been developed.

e The first is to use normal forms (averaging, amplitude equations) and
center manifold methods

e The second is to look for special kinds of solutions, such as equilibria and
periodic orbits using specialized tools like the Liapunov-Schmidt method.

For mechanical systems, the first method can have serious technical difficul-
ties associated with the fact that equilibria typically have many eigenvalues on
the imaginary axis, and so while normal form and invariant manifold methods
are common and indeed powerful, in these situations they can be difficult to
justify. On the other hand, the second methods, while powerful for locating
specific types of solutions, do not often give the whole picture of the phase
portrait. Typically they do not have the same technical difficulties as the first
method.

In the lecture we will concentrate on the ideas and the examples; for the
rest of the abstract, however, we give some of the more technical details for
reference. We will be illustrating both of the techniques above, and will start
with the first.

1 Hamiltonian Normal Forms

Following Knobloch, Mahalov, and Marsden [1993), we study a Hamiltonian
normal form that comes up in resonance problems and in system symmetry
breaking. Specifically, we consider Hamiltonian systems with SO(2) x SO(2)
symmetry, such as the Euler equations for swirling fluid flow in a cylinder subject
to periodic boundary conditions in the axial direction. We suppose that the
system possesses a trivial (i.e.,, SO(2) x SO(2) invariant) equilibrium. We are



interested in the stability of this flow with respect to perturbations that break
both azimuthal and axial invariance. The trivial state is stable with respect to
a single mode of this type, and this continues to be the case when the axial
wavenumber k is chosen so that two such modes have identical frequencies. If
the symmetry of the system is broken so that these two modes couple, then
instability becomes possible. We consider first the interaction between two
modes both with eigenvalues iw, one of which is axisymmetric with the other
having azimuthal wavenumber m = 1. These modes appear to dominate the
process of vortex breakdown.

If A; and A; denote the complex amplitudes of these modes, the correspond-
ing linear eigenfunction takes the form

P(r,$,2) = Re(A1e** + Ayeikz+i%), (1.1)

The symmetry under translations z — z + d in the axial direction acts by
(A1, A2) - ei¥4(A}, A,), while rotations ¢ — ¢-+8 act by (A7, Ay) — (A, Aze').
These yield the symmetry (A;, A2) — (A1€%, A2e??). The resulting equivari-
ant amplitude equations take the form

%l = wAy +idi(suldi|® + s12|42f?) + hot.

(1.2)
dAy . . . i
T = wAr+idz(sn]Ail” + sl Aof°) + heot.,

where the s;; are real constants and h.o.t. denotes higher order terms.

When the symmetry with respect to rotations is reduced by system sym-
metry breaking with azimuthal wavenumber m = 1, e.g., by precession, the
SO(2) rotation symmetry is broken to the identity and the dominant symmetry
breaking terms enter at linear order:

dA
d_tl = itwhA; + GPA2 + iAl(SnlAllz + 812|A2|2) + h.o.t.
(1.3)
dA2 . A A A 2 A 2 h
@ wA; + eqA; + 1A2(821|A1)® + 822} A2|°) + h.o.t.

Here, ¢ > 0 is a measure of the departure from full symmetry (e.g., € could be
the strength of an external Coriolis force) These equations are invariant under
the operation (A;, A3) — (€° A1, A4;). In the situation where the two modes
are not exactly in resonance, we replace equations (1.3) by

dA
‘d_tl = iw Ay + epdy +iA1(suA1? + s12]42)%) + koot

(1.4)
dA,

- = iwy Az + €Ay +iAz(s21]4, | + s22|A2)?) + hooot.,



where wz —wy = A is the detuning. Then at A = 0, w; = wy = w. Finally,
by going into the rotating frame (4, A2) — €t(A;, A2) the equations can be
further simplified:

dA . .
d_tl = iAA; +epAs +i4; (SnlAl |2 + 312|A212) + h.o.t.

(1.5)
? = eqA + 1A2(321IAII + 822|A2| ) + h.o.t.

By rescaling A; and A; and redefining ¢ we may set p = ¢ = 1 (if pg > 1) or
p=—g=1(if pg <1).

The equations (1.4) can be written in the following two forms, depending on
the sign of pg. First, if pg > 0, we set 2; = i4; and 22 = A to get the 1: —1
resonance form

21 = twyz) +iepir + i21(811|zI|2 + 812|22|2)
(1.6)
Zn = —iwaz +iegZ —iza(salz1|? + saa|2f?).
Second, if pg < 0, we let {; = 2; and (2 = 2> to get the 1 : 1 resonance form

G w1 €y + iepla + i1 (s11|G 1 + 512/¢2)?)

(1.7)

¢ iwala — iegly + ila(s211C1[% + s22/C2l?)-

As already mentioned, we can assume that p = ¢ = 1 in (1.6) and that p =
—q = 1in (1.7). The former case corresponds to the case of splitting eigenvalues,
while the latter corresponds to the passing case; cf Guckenheimer and Mahalov
[1992].

The Hamiltonian structure of these systems is the standard one obtained
by taking the real and imaginary parts of z; and {; as conjugate variables. For
example, we write z; = q; + ép, and require ¢, = 8H/8p, and p; = —9H/dq,.
It follows that:

(i) The system (1.6) is Hamiltonian if and only if s = —s5; and p = ¢. In
this case we can choose

Hem) = skl -wlal) - oRe@z)  (18)

_Suy a2 2, %22, 4
1 |21 3 lz122)% + 4 |22]*.

(ii) The system (1.7) is Hamiltonian if and only if 52 = s3; and p = —¢. In
this case we can choose

H(¢1,42) = ‘%(wﬂCllz +wa|(2|?) — epRe(6102)

4 2

(1.9)

S S 8
——lalt = Fael - Ziel.



Note that for (1.6) with ¢ = 0 there are two separate S! actions acting on z,
and z; independently; the corresponding conserved quantities are |22 and |z2]2.
However, for € # 0, the symmetry action is

(21,22) — (€02, e7%2p)

with the conserved quantity
1
J(z1,29) = 5(!Z1l2 — |22[2). (1.10)

Likewise, for (1.7), the symmetry action is

(G1:G2) — (€9¢1,€%¢,)
leading to the conserved quantity

TG, G) = 5GP +16?). (111)

In either case, it is clear that (1.6) and (1.7) are completely integrable systems,
with the integrals being provided by the Hamiltonians and the corresponding
conserved J. Note that in view of the conservation of the J the hamiltonians
(1.8) and (1.9) can be further simplified. We choose not to do this in order to
emphasize that the splitting and passing cases are distinguished by the structure
of the corresponding hamiltonians even in the absence of additional symmetries.
Close to the origin (1.8) is indefinite (splitting), while (1.9) is definite (passing).
In fact, the eigenvalues p of the linearization of both at the origin in C2 are
given by

u= %i {:I:(wl +we) /A2 — 452pq} ) (1.12)

where A = wy — w; is the detuning. In particular, if pg > 0, one gets splitting
along the lines A = 2¢,/Pq, in agreement with the generic theory (see Dellnitz,
Melbourne, and Marsden {1992]). In contrast, when pq < 0 all four eigenvalues
remain imaginary. However, in this case the passing of eigenvalues for ¢ = 0
changes to “bouncing” of eigenvalues for ¢ different from zero. Again this is
consistent with the generic theory: when symmetry, other than normal form
symmetry, is lost, passing is not generic.

It is convenient to introduce the variables r,, r, and ¢ = ¢o — @1, where
Ay =ryexp(ig1) and A2 = rexp(igz). The truncated system (1.5) then takes
the form

dr;

il €pra COS ¢

dr

—d: = eqricos¢ (1.13)
d¢ _ € 2 2y 2 2
7 A — (gri + pr3)sing + ar? + br2,



where @ = 21 — 811, b = 523 — 532. This system has the following two integrals:

1 A a b
J=—(gri—pr?), E=———(pr? 2 inéd — —rd — 41,
2q(qr1 pr3) 2 + 4 (pry +qr2) + eriresing 4pr1 4qrg 14)

Using these integrals one can obtain a single differential equation for p = 3.

This equation takes the form

do\*_ P(p) (1.15)

dt - £)s .
where
P(p) = 4€’pgp(p — 2J) — 4p’ (E+ X, Ap-i» iy ﬂ(,o— 2J)2)2

p@*+g2)" 2" " 4p" T 4p?
(1.16)

is a polynomial of degree four. Clearly, P(p) may be thought of as the potential
energy.

These results can be derived naturally by Hamiltonian reduction (cf. Mars-
den [1992)) as follows. Let ¢ = 6, — 8;, where 21 = ry exp(ifh), z3 = 73 exp(ifs).
We know that the Hamiltonian structure for (1.6) on C? described above in-
duces one on C?/S? and that the two integrals descend to the quotient space,
as does the bracket. Now C2?/S? is parametrized by (r1,72, ) and dropping the ™
integrals from the previous subsection reproduces (1.14) apart from a scaling.
But one can also drop the Poisson bracket. That is, the equations in (ry,72,¢)
can be cast in Hamiltonian form F' = {F, H} for the induced Poisson bracket.
It is obtained simply by using the chain rule to relate the complex variables and
the polar coordinates. One finds that

1 [BFOK OF8K 1l fOFOK OFOK
K)o d) = 32 (5555 ~ 55 * 72 (505~ S oms).
(1.17)
A similar procedure works for (1.7) with ¢ = 62 + 8;, where {; = 1 exp(if;)
and {2 = roexp(if;).

Equations (1.5) can be written in rigid body form and this form is important
for resonances generally. We first recall some general theory for this situation.
Consider the action of S! on C? given by
il6

(z1,22) — (€*%21,€%2,), (1.18)

where k& and ! are integers. This action is Hamiltonian with respect to the
symplectic.form on C? given by

Q((Zl, 22), (21,22)) = —Im(zlé—l) - Im(zz'z';) (1.19)



The momentum map for this action is given by
1
J(z1,22) =5 (klzsf? + U] z2)?) . (1.20)

The momentum map J is invariant under the S action. Other invariant func-
tions are given by

X+iY=772f, z= (klzaf* ~ l}zo)?) . (1.21)

1
2
If, say, !, is negative, then we replace Z7* by z'ln. Note that ~J < Z < J and
that these invariants are related by

X2+Y? =g M-k g 4 Z)H (g - Z)l, (1.22)

In-the case of the 1 : 1 resonance (k = 1,1 = 1) the invariants (X, Y, Z) comprise
the components of the momentum map of the standard SU (2) action on C?;
this action is relevant in this case, since it is the symmetry group of J.

For the 1 : 1 resonance with J fixed equation (1.22) defines a sphere. For the
1: —1 resonance, one gets a hyperboloid. For other values of k and ! one can
get objects with “pinches” and this is important in many resonance problems.

In performing Poisson reduction, one normally constructs the quotient space
C?/S! and calculates its induced Poisson bracket. However, except for the case
of k=1 and [ = 1, the action, while locally free (apart from the origin), is not
free, and so one has to be careful about singularities in the quotient space. For
example, for k = 1 and ! = 2, the action of the group element e** leaves points
of the form (0, z;) € C? invariant.

For each real number m, define the map ¢,, : R® — R by

$m = X2+ Y% — g~ M-l (g 4 Z)l (i — Z)IR, (1.23)

so that the relation (1.22) between the variables X, Y, Z, J becomes ¢ (X,Y,2)=
0.

The quotient C?/S" is identifiable with R® coordinatized by (X,Y, Z) and
carries the quotient Poisson structure given as follows. Let F and G be given
functions of X,Y, Z and let (X,Y, Z) lie on the set ¢m(X,Y,Z) = 0. Then

{F,G}(X,Y,2) = V¢ - (VF x VG). (1.24)

This result is proved as follows. Define f = F o 7 where 7 is the map sending
(21,22) = (X, Y, Z). The Poisson bracket on C? associated to the symplectic
structure (1.19) is given by

{f,9} = -Im(V.,f,V..9) = Im(V,,£,V.,9), (1.25)

where the gradient uses the real inner product. The bracket (1.24) follows by
computing {f, g} using the chain rule. We expect that this “pinched sphere”
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picture will be a useful general tool for resonance problems (many of these
results are due to Kummer [1990]).

The symplectic leaves in the above Poisson structure are given by the sym-
plectic reduced spaces, namely by the sets ¢,, = 0 corresponding to the sym-
plectic reduced spaces J~1(m)/S!. The bracket above is the Poisson bracket
associated with these leaves. The leaves ¢,, = 0 C R3 are, in general, “pinched
spheres”. If h is a Hamiltonian on C? that is invariant under the action of $?,
it induces a function H on R? and the reduced equations on the pinched sphere
¢m = 0 are given by the (Euler-like) equations

V =VH x V¢, (1.26)

where V = (X,Y, Z). In Knobloch, Mahalov, and Marsden [1993], the above
equations are studied in detail, along with bifurcation studies and their physical
implications.

2 The Liapunov-Schmidt Procedure for Hamil-
tonian Systems

As we have mentioned, the second main approache is to use solution specific
techniques. In particular, the search for periodic solutions by means of the
Liapunov-Schmidt procedure has been very successful in the Hopf and other bi-
furcations. This method is developed for systems with symmetry in Golubitsky
and Schaeffer [1985), Chapter 8, §2. We show how to add to this theory, the
extra conditions of being Hamiltonian. We first phrase this in terms of systems
with a first integral and indicate how it can be used to give a proof of the Li-
apunov center theorem. Below, we shall show how it can be used in resonance
problems. Another application of the methods here to the periodic orbit struc-
ture of the Hamiltonian Hopf bifurcation is given in Dellnitz and Golubitsky
[1993).

We first consider the abstract Liapunov-Schmidt theory for systems with a
first integral.

Let X and Y be Banach spaces and let F : X — ) be a C* map (k > 1)
whose zeros we seek. Assume that F(0) = 0. Let I" be a group acting linearly
on both A’ and Y and suppose that F is [-equivariant. Also, assume there is
a first integral in the sense that there is another Banach space W on which I'
also acts, and an equivariant map

P AxY-W
of class C! (for I > 1), such that

&(z, F(z)) = 0 (2.27)



for all x € A’ (or in a neighborhood of zero, since the constructions here are
local).

Let K = kerdF(0), where d is the Frechet derivative, and assume there is
a I-invariant closed complement M so that X = K & M and similarly, let
R = rangedF(0), assume it is closed and has a I'-invariant closed complement
N,s0 Y =R@N. Let P: Y — R denote the projection with kernel A’ and
(locally) define a C* map w : K — N with w(0) = 0 by solving

PF(k,w(k)) =0 (2.28)

for w using the implicit function theorem. By uniqueness of the solution w(k)
and invariance of the splitting under T', one finds that w is ['-equivariant. One
also finds that

dw(0) = 0. (2.29)

Higher derivatives of w at zero are determined by implicit differentiation.
To see how the first integral (2.27) affects the bifurcation equation g(k) = 0,
where
9(k) := (I - P)F(k,uw(k)) = 0, (2.30)

define ¢ : K x N — W by
o(k,n) = &((k, w(k)),n). (2.31)
Observe that ¢ is I-equivariant because w and ® are. From (2.28) and (2.30),

ok, g(k)) O((k, w(k)), (I - P)F(k, w(k)))
o((k, w(k)), F(k, w(k)))

and so p(k, g(k)) = 0 by (2.27). We interpret
o(k, g(k)) =0 (2.32)

]

as the first integral for the bifurcation equation (2.30). This imposes conditions
on the bifurcation equation similar to conditions imposed by equivariance.
The Liapunov Center Theorem below follows from the proof of the Liapunov
center theorem due to Duistermaat (see Abraham and Marsden [1978], 496-499).
The proof here is based on the Liapunov-Schmidt procedure (Vanderbauwhede
[1982], Golubitsky, Krupa and Lim [1991]).
Start with a C* system £ = f(z) on a manifold M,k > 1, and assume

(H1) z¢ is a fixed point: f(zp) = 0. Let A = f’(z) be the linearization at zp.

(H2) *woi are simple eigenvalues of A and kwpi is not an eigenvalue for k =
0,2,3,.... Let V denote the eigenspace associated to the eigenvalues +wqi.

(H3) f has a C**! first integral H : M — R; i.e., dH(z) - f(z) = 0 with the
properties:



(a) dH(zo)]V =0

(b) d®H(zo)|V is positive (or negative) definite (For Hamiltonian sys-
tems, this follows automatically, as in Abraham and Marsden [1978],
§5.6.)

Theorem 2.1 Under conditions (H1)-(H3), there is a one-parameter family of
periodic orbits in a neighborhood of zo with periods close to 2 Jwy.

These periodic orbits define an invariant C* manifold of dimension two that
is tangent to V at x.

Proof Rescaling time, we can assume that wy = 1. Passing to a coordinate
chart in M, we can assume M = RP™ since the theorem, while intrinsic for
manifolds, is local.
Let C3,, be the space of C! maps of 5! to R™ and let CJ, be the corresponding
C° maps. Define
F:C. xR—-C2,

by
Flu,7)=(1+ T)% — F(u). (2.33)

The map F is C* by the so-called “Q-lemma” (see, for example, Abraham,
Marsden and Ratiu [1988], §2.4.

Here we let 5! act on Y = C§, by 8- (v)(s) = v(s + 8) and on C}, by the
same action. Then $! acts on X = C}, x R by acting trivially on the second
factor. Note that F is S equivariant.

The derivative of F at u = x is given by

Ly = dF(z9,0) - v =9 — Av.

By (H2), .
ker L = span{Re(e**v), Im(e**v)}

where Av = iv. Thus, we can identify the kernel of dF with C; explicitly,
z — Re(ze'*v). Using the Fredholm alternative, let M = range L* be the
orthogonal complement of K = kerL, and let ' = ker L* be the orthogonal
complement to R = range L.

The Liapunov-Schmidt procedure with an integral may now be applied.
Define the complements to the kernel and the range using the adjoint of the
linearization, as in the Fredholm alternative. The adjoint depends on an S!-
invariant inner product. To simplify our procedures, we choose the L? inner
product induced by one that, on V, coincides with d2H(0)|V, (or its negative,
should ¢2H(0)|V be negative definite).

Thus, the Liapunov-Schmidt procedure gives a bifurcation equation

g:CxR-—-C
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and, being $? equivariant, it has the form (see Golubitsky and Schaeffer [1985),
p. 344)
9(z,7) = p(l2*, )z + q(|2]*, 7)iz. (2.34)
In the reversible case, one has p = 0 identically, so that one just needs to solve
the equations ¢ = 0. Here, we to show that ¢ = 0 implies p=0.
The calculation in Golubitsky and Schaeffer [1985], p. 344-349 shows that

»(0,0) = 0,¢(0,0) = 0,p,(0,0) =0 and ¢-(0,0) = —1.

Thus, we can solve ¢ = 0 for 7 = 7(|2?). We claim that this automatically
defines the required manifold of periodic orbits. To show this, we need to show
that 7 = 7(|2]%) implies p = 0 for z small. To do this we use the first integral.
Define

P: XxY-R

by
27

®((u,7),v) = A dH{u(s)) - v(s)ds.

Note that
27

®(u, ), B, 7)) AHue) - [0+ ) - )] ds

2m

(14 7)o H(u(s)) - dH(u(s)) - f(u(s))ds,

which vanishes as H is a first integral of f. Thus (2.27) holds, so we may
conclude that the bifurcation equation satisfies (2.32). In other words, we have

‘lo((z: 1‘), g(z, T)) =0,

i.e,
@(((z, )+ w(z: 7)) g(z,'r)) =0,

i.e.,
2
dH (u,(s)) - g(z,7)ds = 0.

Here, u.(s) is the element of X = C}, of the form Re(ze*v) + O(22) and ¢(z)
stands for ¢ = p(|2%, )z + g(|2|, 7)iz regarded as an element of Y by

¢ — Re(¢e**v™) (2.35)

where v* is the eigenvector for A*, i.e.,, A*v* = iv*.
Choose 7 = 7(|z|?) so ¢ = 0 as above. Thus, we get

27
0 = p(|2l?(|2[?)) /; dH(Re(ze®v + O(|2[?) - Re(ze*v")ds.  (2.36)

11



Now consider z = r real and let

27
¥(r) = dH(Re(re**v + O(|z[?) - Re(e**v*)ds.
0

Note that ¥(0) = 0; a simple calculation then gives
21’ . .
T'(0) = d?H(0) - (Re(e**v), Re(e?*v*))ds.

0

By the choice of inner product,
27
¥'(0) = / (v,v*)ds =2m
0

and so ¥(r) > 0 for 7 > 0 and small. Thus, from (2.36), p(|2|,7(|z|?)) = 0 for
z small.
The smoothness of the manifold of periodic orbits follows directly from the

smoothness of 7(|z|?) which is guaranteed by the implicit function theorem.
QED

The above proof of the Liapunov center theorem automatically produces an
analogous equivariant theorem, whose hypotheses we now explain.

Let I’ C O(n) be a given group acting in the usual way on R". Assume the
vector field f : R® — R™ is I-equivariant and that

(E1) f(wo) =0 where zq is fized by T.

As before let A = df(zq) and observe that I'equivariance of f implies that A
commutes with I". It follows that eigenspaces of A are I'-invariant. In particular,
eigenvalues of high multiplicity may be expected. Our second assumption is the
following.

(E2a) Zwgi are eigenvalues of A and kwqi is not an eigenvalue for
k=0,2,3.... Let V denote the generalized eigenspace associated to
the eigenvalues +wqi.

We replace the previous assumption that the eigenvalues =wgi are simple
by I-simple. This notion is the I'-equivariant version of simple eigenvalues. See
Golubitsky, Stewart and Schaeffer [1988].

Definition 2.2 The action of the group T on V is said to be I'-simple if either
(a) V=W ®W and T acts absolutely irreducibly on W, or
(b) T acts irreducibly, but not absolutely irreducibly, on V.

12



Our next assumption is the following;
(E2b) T acts T-simplyon V.

There is a natural action of S! on V induced by the one-parameter group
exp(sAT). Since A commutes with I, so does this action of $1. Thus, we have
a well defined action of ' X S on V. We now determine families of periodic
solutions by looking for their symmetries.

(E3a) Let ¥ C T x 8 be an isotropy subgroup of the action of
I'x 8! on V. Assume that dim Fixy () = 2.

(E3b) £ has a C**! first integral H : R?™ — R such that

i dH(zo)|Fix(Z) =0
it d?H(zo)|Fix(X) 4s positive or negative definite.

Theorem 2.3 Under conditions (E1)-(E3), there is a one-parameter family of
periodic orbits in a neighborhood of zo with & symmetry and periods close to
27m/wo. These periodic orbits form an invariant C* manifold of dimension two
that is tengent to Fix(Z) at xo.

The only remaining point for discussion is what is meant by a symmetry of
a periodic solution. An element ¢ = (v,6) € T’ x 5! is called a symmetry of
a 2m-periodic function z(t) if oz(t) = z(t — 8). That is, the periodic orbit is
preserved by vy and uniqueness of solutions to ODE’s guarantees the existence
of a unique 4.

The proof proceeds by noting that the same Liapunov-Schmidt reduction
technique as above can be used, and that the reduced map gisT’ x Sl-equivariant
with the S? action induced by phase shift being identical to the ! action in-
duced by A. Equivariance implies that g : Fix(Z) x R — Fix(X) has the
form (2.34). Using (E3a) we can identify Fix(Z) with C. The proof now pro-
ceeds as before.

The machinery of finding two-dimensional fixed-point subspaces in I-equivariant
Hopf bifurcation can now be applied to finding periodic solutions in systems
with first integrals. For example, in O(2)-equivariant systems with dimV = 4,
Theorem 2.3 produces both rotating and standing waves. We also note that
Golubitsky and Stewart [1993] show that there are surprising group-theoretic
conditions restricting those I" that can produce two-dimensional fixed-point sub-
spaces. Finally, note that the preceding result may be applied to the reduction
of a system by the continuous part of a symplectic group action at a regular
value of the momentum map, but with the discrete symmetry remaining. We
refer to Marsden [1992] for the general set up.
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3 Resonances

Nest, we show that the Hamiltonian resonance bifurcation equations can be
reduced to those of the same form as in the reversible case. We do this by using
the general Liapunov Schmidt procedure for systems with an integral, using
the stronger condition of being Hamiltonian (or, if one prefers, the condition of
being symplectic) as the first integral.

To do this, assume that we have a symplectic form Q on R". Passing to
Darboux coordinates, we may assume that n = 2r and Q is in canonical form;
that is, Q is the skew symmetric bilinear form with the matrix

B

where 1 denotes the r x r identity.Assume that the given vector field f is Hamil-
tonian relative to 2. That is, we have the identity

Qf(u),v) =dH(u)-v

for all v € R?". Define the map

®:Cp x Rx C3, — [C,]"
by

m du
O(u,7,v)-U = / {Q(v -1+ T)a,U) + dH(u) - U} ds.

0

The condition that
®(u,7,F(u,7)) =0

now is a restatement of the condition that the vector field be Hamiltonian with
Hamiltonian function H. We also observe that this condition can be rephrased
as saying that the map F regarded as a (parameter dependent) vector field on
the space C}, is Hamiltonian with respect to the weak symplectic form given by
integration of the given symplectic form around loops, and with the Hamiltonian
function given by

H(u,7) = /0 ” { %9(1 + T)‘i—‘;, u) - H(u)} ds.

We also note that this point of view was used by Weinstein in one of the ap-
proaches to the Weinstein-Moser theorem (Weinstein [1978]).

Now we set up the bifurcation equation for the & : [ resonance in a form suit-
able for applying the symplectic integral condition. We make some preliminary
assumptions: :

(RH1) z¢ is a fixed point: f(zo) = 0. Let A = df(zo) be the linearization at zq
and let k and ! be distinct positive integers.
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(RH2) tkwoi and lwpi are simple eigenvalues of A and pwpi is not an eigen-
value for p a nonnegative integer other than k or I. Let vx and v; be the
eigenvectors of A for the eigenvalues kwgi and lwpi respectively.

We can assume that wq is one by a temporal rescaling, so we assume that
this is done. Now we set up the Liapunov Schmidt procedure for the map F that
was defined in the previous section. Let X = C, x R and Y = C$_ (together
with bifurcation parameters to be included later). Let S? act on the first two
components of & by 8- (u)(s) = u(s + ) and similarly on ). Note that F is S!
equivariant.

The derivative of F at u = 2,7 = 0 is given by

Lv=dPF(z,0) - v =9 — Av

By (RH2), kerdF(zo,0) is spanned by Re{e**sv;), Im(e**v;), Re(e®*v;), and
Im(e"*v;). Thus, we can identify the kernel of dF with C2; explicitly,

(21,22) = (Re(z16**vy), Re(z261y)).

Using the Fredholm alternative, let M = range L* be the orthogonal comple-
ment of X = kerL, and let N' = ker L* be the orthogonal complement to
R =range L.

The Liapunov-Schmidt procedure with the symplectic integral, as described
above, may now be applied. This procedure is done relative to a choice of an
inner product that is [-invariant. The bifurcation equation for F has the form

g: C? x R x parameterspace — C?2

where the second two components of g are obtained from the first two by differ-
entiation, and, being $? equivariant, the first two components have the following
form (but the case k =1 is a little different)

P+ Qs = 0 (3.37)
Pz + sziz‘gk—l = 0 (3.38)
For reversible systems, the real parts of these equations vanish, and the imagi-
nary parts can be examined by using singularity theory. (Consult Golubitsky,
Stewart, and Marsden [1993] for details). Interestingly, as the following remarks

show, this same analysis applies to the Hamiltonian case. As above, the general
condition imposed on the bifurcation equation is given by

((k + w(k), g(k)) = 0

where k € K, where w(k) is the implicit function determined by the Liapunov-
Schmidt procedure, and where g is the bifurcation map. As above, we use the

15



Golubitsky, M., I. Stewart and D. Schaeffer [1988] Singularities and Groups in
Bifurcation Theory, Vol. I1, Springer-Verlag, AMS Series, 69.

Golubitsky, M. and I. Stewart [1993] An algebraic criterion for symmetric Hopf
bifurcation, Proc. Roy. Soc. Lond. A (to appear).

Golubitsky, M., 1. Stewart and J.E. Marsden [1993] The k : ! resonance for
reversible systems (in preparation).

Guckenheimer, J. and A. Mahalov [1992] Instability induced by symmetry
reduction, Phys. Rev. Lett. 68, 2257-2260.

Knobloch, E., Mahalov and J.E. Marsden [1993], Normal forms for three-
dimensional parametric instabilities in ideal hydrodynamics, (in prepa-
ration).

Kummer, M. [1990], On resonant classical Hamiltonians with n frequencies, J.
Diff. Eq., 83, 220-243.

Lewis, D., J.E. Marsden and T.S. Ratiu [1987] Stability and bifurcation of a
rotating liquid drop, J. Math. Phys. 28, 2508-2515.

Marsden, J.E. [1992], Lectures on Mechanics London Mathematical Society
Lecture note series, 174, Cambridge University Press.

Marsden, J.E. and J. Scheurle [1993] Lagrangian reduction and the double
spherical pendulum, ZAMP 44, 17-43.

Oh, Y.G., N. Sreenath, P.S. Krishnaprasad and J.E. Marsden [1989] The Dy-
namics of Coupled Planar Rigid Bodies Part 2: Bifurcations, Periodic
Solutions, and Chaos, Dynamics and Diff. Eq'ns. 1, 269-208.

Sanders, J.A. and F. Verhulst [1985] Averaging Methods in Nonlinear Dynaem-
ical Systems. Springer-Verlag.

Vanderbauwhede, A. [1982] Local Bifurcation and Symmetry Research Notes
in Mathematics, Pitman, Boston, 1982.

Weinstein, A. [1978) Bifurcations and Hamilton’s principle, Math. Zeit. 159,
235-248.

17



(em

fact that w(k) vanishes with its first derivative; i.e., it is of higher order, and
so one needs to compute the quantity

®((k, g(k))-

This condition separates into two conditions, one for each of the two components
of (3.37). Here we use the fact that the first integral condition is a vector
condition, and, correspondingly, that U can be chosen arbitrarily. In fact, we
choose, respectively, U to be the two components of f(u)—(1 +T)§‘;‘ projected to
the kernel. Then, the condition (modulo higher order terms) becomes the same
as the conditions we found in the case of the Liapunov center theorem, with
the difference now being that we find them separately for the two components
of the bifurcation equation. Thus, the argument already given above for the
Liapunov Center theorem shows that the real parts of each of the bifurcation
equations vanishes when the imaginary part does. Thus, the analysis for the
reversible case applies here as well.
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