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Abstract

Marsden and Scheurle [1993] studied Lagrangian reduction in the context
of momentum map constraints—here meaning the reduction of the standard
Euler-Lagrange system restricted to a level set of a momentum map. This
provides a Lagrangian parallel to the reduction of symplectic manifolds. The
present paper studies the Lagrangian parallel of Poisson reduction for Hamil-
tonian systems. For the reduction of a Lagrangian system on a level set of
a conserved quantity, a key object is the Routhian, which is the Lagrangian
minus the mechanical connection paired with the fixed value of the momentum
map. For unconstrained systems, we use a velocity shifted Lagrangian, which
plays the role of the Routhian in the constrained theory. Hamilton’s variational
principle for the Euler-Lagrange equations breaks up into two sets of equations
that represent a set of Euler-Lagrange equations with gyroscopic forcing that
can be written in terms of the curvature of the connection for horizontal vari-
ations, and into the Euler-Poincaré equations for the vertical variations. This
new set of equations is what we call the reduced Euler-Lagrange equations , and
it includes the Euler-Poincaré and the Hamel equations as special cases. We il-
lustrate this methodology for a rigid body with internal rotors and for a particle
moving in a magnetic field.

1 Introduction

The goal of this paper is to study the reduction of Lagrangian systems with symme-
tries. Marsden and Scheurle [1993] showed how to reduce Lagrangian systems with
a fixed value of the momentum map imposed (hereafter called “constraints”), and
showed how this procedure is related to the classical procedure of Routh and is the
Lagrangian version of symplectic reduction. In this paper, we study the problem
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without the momentum map constraint explicitly imposed, and so it corresponds to
the Lagrangian counterpart of Poisson, rather than symplectic reduction.

We begin with a few brief historical comments. In Poincaré [1901, 1910] (see also
Hamel [1904]), equations on a general Lie algebra were found that are a Lagrangian
counterpart of the Lie-Poisson equations on the dual of a Lie algebra that were
implicit in the work of Lie around 1890 (see Marsden and Weinstein [1983], Weinstein
[1983], Marsden [1992] and references therein). One can view the resulting Euler-

Poincaré equations as the reduction of the Euler-Lagrange equations from the
tangent bundle of a Lie group to its Lie algebra, as we shall see in §4. The Euler-
Poincaré equations were combined with the Euler-Lagrange equations by Hamel
[1904] and may be regarded as a more general case of Lagrangian reduction. As
Hamel [1949] notes, there are many others who also contributed to this theory and
so the history is not, in reality, quite as clean as we have suggested; for example,
Lagrange himself devoted a good deal of attention to this problem for the rotation
group in volume two of Mechanique Analytique, with of course, Euler’s equations for
a rigid body in the background as a key example. Modern references that impact
on the present work are too numerous to detail here, but we especially point out
that Cendra, Ibort, and Marsden [1987] studied this problem from the variational
point of view, Koiller [1992] from the point of view of nonholonomic mechanics, and
Weinstein [1993] from the point of view of groupoids.

We start with a configuration manifold Q and a Lagrangian L : TQ → R. Let
G be a Lie group and let g be its Lie algebra. Assume that G acts on Q and lift
this action to TQ by the tangent operation. Assuming that L is G invariant, there
is induced a reduced Lagrangian l : TQ/G → R. We can regard TQ/G as a g

bundle over TS, where S = Q/G. We assume that G acts freely and properly on
Q, so we can regard Q → Q/G as a principal G-bundle. Future work is planned to
relax this assumption, as the singular case is very important in examples. In fact,
substantial work on singular reduction in the Hamiltonian context has been done
in, for example, Arms, Marsden, and Moncrief [1981], Sjamaar and Lerman [1992]
and references therein and it would be desirable to develop the counterpart of this
theory on the Lagrangian side. Progress in this direction has been made by Lewis
([1992] and related works).

An important ingredient in the work is to introduce a connection A on the
principal bundle Q → S = Q/G. We discuss below the example of the mechanical
connection, which may be chosen for A. This connection allows one to split the
variables into a horizontal and vertical part, and as we shall see, this is natural from
the point of view of mechanics as well as of mathematics.

Next, we introduce some notation so that we can write the reduced Euler-
Lagrange equations in coordinates. We will first discuss the case of the Hamel
equations, which does not involve the connection. Let

• xα, also called “internal variables”, be coordinates for shape space Q/G,

• ηa be coordinates for the Lie algebra g relative to a chosen basis

• l be the reduced Lagrangian regarded as a function of the variables xα, ẋα, ηa,
and
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• ca
db be the structure constants of the Lie algebra g of G.

If one writes the Euler-Lagrange equations on TQ in a local principal bundle triv-
ialization, with coordinates xα on the base and ηa in the fiber, then one gets the
following system of Hamel equations

d

dt

∂l

∂ẋα
−

∂l

∂xα
= 0 (1.1)

d

dt

∂l

∂ηb
−

∂l

∂ηa
ca
dbη

d = 0. (1.2)

However, this representation of the equations does not make global intrinsic sense
(unless Q → S admits a global flat connection). The introduction of a connection
overcomes this and one can intrinsically and globally split the original variational
principle relative to horizontal and vertical variations. One gets from one form to
the other by means of the velocity shift given by replacing η by the vertical part
relative to the connection:

ξa = Aa
αẋα + ηa

Here, Ad
α are the local coordinates of the connection A. As we shall see in the

examples, this change of coordinates is motivated from the mechanical point of view
since the variables ξ have the interpretation of the locked angular velocity . The
resulting reduced Euler-Lagrange equations have the following form:

d

dt

∂l

∂ẋα
−

∂l

∂xα
=

∂l

∂ξa

(
Ba

αβẋβ + Ba
αdξ

d
)

(1.3)

d

dt

∂l

∂ξb
=

∂l

∂ξa
(Ba

bαẋα + ca
dbξ

d) (1.4)

In these equations, Ba
αβ are the coordinates of the curvature B of A, Ba

dα = ca
bdA

b
α

and Ba
dα = −Ba

αd.

The matrix [
Ba

αβ Ba
αd

Ba
dα ca

bd

]

is itself the curvature of the connection regarded as residing on the bundle TQ →
TQ/G, but we will not pursue this point in the present paper.

The variables ξa may be regarded as the rigid part of the variables on the origi-
nal configuration space, while xα are the internal variables. As in Simo, Lewis, and
Marsden [1991], the division of variables into internal and rigid parts has deep impli-
cations for both stability theory and for bifurcation theory, again, continuing along
lines developed originally by Riemann, Poincaré and others. The main way this new
insight is achieved is through a careful split of the variables, using the (mechanical)
connection as one of the main ingredients. This split puts the second variation of the
augmented Hamiltonian at a relative equilibrium as well as the symplectic form into
“normal form”. It is somewhat remarkable that they are simultaneously put into
a simple form. In another publication, we plan to link the reduced Euler-Lagrange
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equations with this theory in hopes of obtaining a division of the variables into rigid
and internal for the nonlinear theory as well as for the linearized theory.

One of the key results in Hamiltonian reduction theory says that the reduction
of a cotangent bundle T ∗Q by a symmetry group G is a bundle over T ∗S, where
S = Q/G is shape space, and where the fiber is either g∗, the dual of the Lie
algebra of G, or is a coadjoint orbit, depending on whether one is doing Poisson
or symplectic reduction. We refer to Montgomery, Marsden, and Ratiu [1984] and
Marsden [1992] for details and references. Our work gives the analogue of this
structure on the tangent bundle with the key reduced equations being given by (1.3)
and (1.4). These two sets of equations are coupled through the curvature of a
connection on the bundle and the fact that the Lagrangian is, in general, a function
of all the variables. Normally one chooses the connection to be the mechanical
connection, although any other choice is allowed.

Remarkably, equations (1.3) are formally identical to the equations for a me-
chanical system with classical nonholonomic velocity constraints (see Neimark and
Fufaev [1972] and Koiller [1992].) The connection in that case is the one-form
that determines the constraints. This link is made precise in Bloch, Krishnaprasad,
Marsden and Murray [1993]. In addition, this structure appears in several con-
trol problems, especially the problem of stabilizing controls considered by Bloch,
Krishnaprasad, Marsden, and Sanchez [1992].

For systems with a momentum map J constrained to a specific value µ, the
key to the construction of a reduced Lagrangian system is the modification of the
Lagrangian L to the Routhian Rµ, which is obtained from the Lagrangian by sub-
tracting off the mechanical connection paired with the constraining value µ of the
momentum map. A basic ingredient needed for the reduced Euler-Lagrange equa-
tions is a velocity shift in the Lagrangian (the shift is given by a choice of connection,
often the mechanical connection), so this velocity shifted Lagrangian plays the role
that the Routhian does in the constrained theory.

Acknowledgements We thank Tony Bloch, Mike Enos, P.S. Krishnaprasad, De-
bra Lewis, Richard Montgomery, Richard Murray, Tudor Ratiu, Juan Simo, Alan
Weinstein and the referees for useful comments and inspiration.

2 The Mechanical Connection

We will now recall the definition of the mechanical connection, as it is the one that
would often be chosen. We assume, to be specific, that one has a metric 〈〈 , 〉〉 on Q
that is invariant under the group action. (Otherwise, use the second fiber derivative
of the Lagrangian as the “metric”).

For each q ∈ Q, the locked inertia tensor is the map I(q) : g → g∗ defined by

〈I(q)η, ζ〉 = 〈〈ηQ(q), ζQ(q)〉〉. (2.1)

where ηQ denotes the infinitesimal generator of the action of G on Q, so that ηQ is a
vector field on Q. Since the action is free, I(q) is an inner product. The terminology
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comes from the fact that for coupled rigid or elastic systems, I(q) is the classical
moment of inertia tensor of the corresponding instantaneously rigidified system.
While most of the results hold in the infinite as well as the finite dimensional case, to
expedite the exposition, we give many of the formulas in coordinates. For instance,

Iab = gijK
i
aK

j
b, (2.2)

where gij are the components of the metric tensor relative to coordinates qi, i =
1, 2, . . . n on Q and where we write

[ξQ(q)]i = Ki
a(q)ξ

a (2.3)

relative to the coordinates on Q and a basis ea, a = 1, 2, . . . ,m of g. This equation
defines Ki

a, which we call the action coefficients. In such a basis, the coordinates
of ξ ∈ g are defined by writing ξ = ξaea.

Define the map A : TQ → g that assigns to each (q, v) the corresponding angular
velocity of the locked system:

A(q, v) = I(q)−1(J(q, v)). (2.4)

where J : TQ → g∗ is the standard momentum map for the lifted action of G on Q
given by 〈J(q, v), ξ〉 = 〈〈v, ξQ(q)〉〉. (Sometimes we shall regard J as defined on the
cotangent bundle by identification with the tangent bundle using the metric without
explicit mention.) In coordinates,

Aa = I
abgijK

i
bv

j (2.5)

The components of A are defined by

Aa
j = I

abgijK
i
b (2.6)

so that Aa = Aa
j v

j . The map A is, in fact, a connection on the principal G-
bundle Q → Q/G and is called the mechanical connection . In other words, A
is G-equivariant and satisfies A(ξQ(q)) = ξ. While A appears explicitly in Smale
[1970] and Abraham and Marsden [1978], the point of view of connections is due to
Kummer [1981]. The horizontal space of the connection A is given by

horq = {(q, v) | J(q, v) = 0} ⊂ TqQ; (2.7)

i.e., the space orthogonal to the G-orbits, as in the Yang-Mills construction. The
vertical space consists of vectors that are mapped to zero under the projection
Q → S = Q/G; i.e.,

verq = {ξQ(q) | ξ ∈ g}. (2.8)

For each µ ∈ g∗, define the 1-form Aµ on Q by

〈Aµ(q), v〉 = 〈µ,A(q, v)〉 (2.9)

i.e.,
(Aµ)i = gijK

j
bµaI

ab. (2.10)
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It follows from the identity A(ξQ(q)) = ξ that Aµ takes values in J−1(µ).
The horizontal-vertical decomposition of a vector (q, v) ∈ TqQ is given by

v = horqv + verqv (2.11)

where
verqv = [A(q, v)]Q(q) and horqv = v − verqv.

Notice that hor : TQ → J−1(0) and that it may be regarded as a velocity shift.

3 The Routh Method

The abelian case of Lagrangian reduction was known to Routh by around 1860;
a modern account is given in Arnold [1988]. Marsden and Scheurle [1993] give
a geometrization and a generalization of the Routh procedure to the nonabelian
case. To achieve this, we incorporated the conservative gyroscopic forces into the
variational principle in the sense of Lagrange and d’Alembert. We also employed a
Dirac constraint construction to include the cases in which the reduced space is not
a tangent bundle (but it is a Dirac constraint set inside one). In this section, we
recall some of the key features of the general Routh method.

Given µ ∈ g∗, define the Routhian Rµ : TQ → R as follows:

Rµ(q, v) = L(q, v) − 〈A(q, v), µ〉 (3.1)

where A is the mechanical connection. Thus,

Rµ(qk, q̇l) = L(qk, q̇l) − Aa
j (q

k)µaq̇
j. (3.2)

This function is not quite the classical Routhian (which does not make coordinate
invariant sense), but is closely related to it as we shall see later. Notice that the
Routhian has the form of a Lagrangian with a gyroscopic term; see Bloch, Krish-
naprasad, Marsden, and Sanchez [1992] and Wang and Krishnaprasad [1992] for
information on the use of gyroscopic systems in control theory.

A basic observation about the Routhian is that solutions of the Euler-Lagrange
equations for L can be regarded as solutions of the Euler-Lagrange equations for
the Routhian, with the addition of “magnetic forces”. The chain rule proves the
identity

d

dt

∂Rµ

∂q̇i
−

∂Rµ

∂qi
=

d

dt

∂L

∂q̇i
−

∂L

∂qi
− µa

(
∂Aa

i

∂qj
−

∂Aa
j

∂qi

)
q̇j .

The last term

βa
ij =

(
∂Aa

j

∂qi
−

∂Aa
i

∂qj

)

represents “magnetic” or “gyroscopic” forces. As we shall see below, it is closely
related to, but is not quite the curvature B of the connection A, except in the
abelian case. This identity proves the following:
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{
Euler-Lagrange

for L

}
⇔

{
Lagrange d’Alembert

for Rµ

}

i.e.,

δ

∫
Rµ(q, q̇)dt =

∫
µ · β(q̇, δq)dt (3.3)

This form of the variational principle drops (or reduces) to a variational prin-
ciple on the orbit space Q/Gµ. For example, this is how one can directly get a
reduced variational principle for the Euler rigid body equations. In this principle,
the variation of the integral of Rµ is taken over curves satisfying the fixed endpoint
condition. The principle holds, in particular, if the curves are constrained to satisfy
the condition J(q, v) = µ. The restriction of Rµ to this level set equals

Rµ =
1

2
‖horqv‖

2 − Vµ (3.4)

where Vµ is the amended potential defined by Vµ = H ◦Aµ, and where H : T ∗Q → R

is the Hamiltonian. In fact, one has, in the specific case of Lagrangians of the form
kinetic minus potential,

Vµ(q) = V (q) +
1

2

〈
µ, I(q)−1µ

〉
.

In the variational principle (3.3) dropped to Q/Gµ, the endpoint conditions can be
relaxed to the condition that the ends lie on orbits rather than being fixed. This is
because the kinetic part now just involves the horizontal part of the velocity, and so
the endpoint conditions in the variational principle, which involve the contraction
of the momentum p with the variation of the configuration variable δq vanish if
δq = ζQ(q) for some ζ ∈ g, i.e., if the variation is tangent to the orbit. The
condition that (q, v) be in the µ level set of J means that the momentum p vanishes
when contracted with an infinitesimal generator on Q.

The function Rµ restricted to the µ-level set of J defines a function on the
quotient space T (Q/Gµ) – that is, it factors through the tangent of the projection
map τµ : Q → Q/Gµ. The variational principle also drops, therefore, since the
curves that join orbits correspond to those that have fixed endpoints on the base.
The magnetic term defines a well-defined two form on the quotient as well, as is
known from the Hamiltonian case, even though Aµ need not drop to the quotient

To summarize, suppose that q(t) satisfies the (unconstrained) Euler-Lagrange
equations for L and satisfies J(q, q̇) = µ. Then the induced curve on Q/Gµ sat-
isfies the reduced Lagrangian variational principle, i.e., the variational principle of
Lagrange-d’Alembert on Q/Gµ with magnetic term β and the Routhian dropped to
T (Q/Gµ).

In the special case of a torus action, i.e., with cyclic variables, this reduced
variational principle is equivalent to the Euler-Lagrange equations for the classical
Routhian which agrees with the classical procedure of Routh. We shall give more
details of the abelian case in §6 below.
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There is a well defined reconstruction procedure for these systems. One can
horizontally lift a curve in Q/G to a curve q(t) in Q (which therefore has zero angular
momentum) and then one rotates it by the group action by a time dependent group
element solving the equation

ġ(t) = g(t)ξ(t)

where ξ(t) = A(q(t), ˙q(t)), as is used in the development of geometric phases—see
Marsden, Montgomery, and Ratiu [1990].

Using our reduced Euler-Lagrange equations, we will get a reduced Lagrangian
description in terms of the angular velocity rather than the angular momentum
variables. Notice that the above Routh method is partially Hamiltonian in that it
directly utilizes the momentum variables for the rigid part and the velocity variables
for the internal part. In the context of systems with a momentum map constraint,
this is natural. However, the reduced Euler-Lagrange equations provide a reduced
Lagrangian description entirely in terms of velocity variables.

4 A variational principle for the Euler-Poincaré equa-

tions

We shall study the reduced Euler-Lagrange equations in two special cases before
tackling the general case. These are the cases in which Q = G, treated in this
section and the case in which G is abelian, treated in the next. Later, we will
synthesize these two cases.

Let us begin with a discussion of the special case of the rigid body. We regard
an element R ∈ SO(3) giving the configuration of the body as a map of a reference

configuration B ⊂ R
3 to the current configuration R(B) taking a reference or label

point X ∈ B to a current point x = R(X) ∈ R(B). For a rigid body in motion,
the matrix R becomes time dependent and the velocity of a point of the body is
ẋ = ṘX = ṘR−1x. Since R is an orthogonal matrix, R−1Ṙ and ṘR−1 are skew
matrices, and so we can write

ẋ = ṘR−1x = ω × x, (4.1)

which defines the spatial angular velocity vector ω. The corresponding body angu-

lar velocity is defined by

Ω = R−1ω, i.e., R−1Ṙv = Ω × v (4.2)

so that Ω is the angular velocity relative to a body fixed frame. The kinetic energy
is

K =
1

2

∫

B
ρ(X)‖ṘX‖2d3X, (4.3)

where ρ is a given mass density. Since

‖ṘX‖ = ‖ω × x‖ = ‖R−1(ω × x)‖ = ‖Ω × X‖,
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K is a quadratic function of Ω. Writing

K =
1

2
ΩT

IΩ (4.4)

defines the moment of inertia tensor I, which, if the body does not degenerate to
a line, is a positive definite 3×3 matrix, or better, a quadratic form. This quadratic
form, can be diagonalized, and this defines the principal axes and moments of

inertia . In this basis, we write I = diag(I1, I2, I3).
From the Lagrangian point of view, the precise relation between the motion in

R space and in Ω space is as follows.

Theorem 4.1. The curve R(t) ∈ SO(3) satisfies the Euler-Lagrange equations for

L(R, Ṙ) =
1

2

∫

B
ρ(X)‖ṘX‖2d3X (4.5)

if and only if Ω(t) defined by R−1Ṙv = Ω × v for all v ∈ R
3 satisfies Euler’s

equations:
IΩ̇ = IΩ × Ω. (4.6)

One instructive way to prove this is to use variational principles. By Hamilton’s
principle, R(t) satisfies the Euler-Lagrange equations if and only if

δ

∫
Ldt = 0.

Let l(Ω) = 1
2(IΩ) ·Ω so that l(Ω) = L(R, Ṙ) if R and Ω are related as above. To see

how we should transform the variational principle of L, we differentiate the relation
R−1Ṙv = Ω × v with respect to R to get

−R−1δRR−1Ṙv + R−1δṘv = δΩ × v. (4.7)

Let the skew matrix Σ̂ be defined by

Σ̂ = R−1δR (4.8)

and define the vector Σ by
Σ̂v = Σ × v. (4.9)

Note that
˙̂
Σ = −R−1ṘR−1δR + R−1δṘ

so
R−1δṘ =

˙̂
Σ + R−1ṘΣ̂ (4.10)

substituting (4.10) and (4.8) into (4.7) gives

−Σ̂Ω̂v +
˙̂
Σv + Ω̂Σ̂v = δ̂Ωv

i.e.,

δ̂Ω =
˙̂
Σ + [Ω̂, Σ̂]. (4.11)
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The identity [Ω̂, Σ̂] = (Ω × Σ)̂ holds by Jacobi’s identity for the cross product, and
so

δΩ = Σ̇ + Ω × Σ. (4.12)

These calculations prove the following

Theorem 4.2. Hamilton’s variational principle

δ

∫ b

a
Ldt = 0 (4.13)

on SO(3) is equivalent to the reduced variational principle

δ

∫ b

a
l dt = 0 (4.14)

on R
3 where the variations δΩ are of the form (4.12) with Σ(a) = Σ(b) = 0.

To complete the proof of Theorem 4.1, it suffices to work out the equations
equivalent to the reduced variational principle (4.14). Since l(Ω) = 1

2 〈IΩ,Ω〉, and I

is symmetric, we get

δ

∫ b

a
l dt =

∫ b

a
〈IΩ, δΩ〉dt

=

∫ b

a
〈IΩ, Σ̇ + Ω × Σ〉dt

=

∫ b

a

[〈
−

d

dt
IΩ,Σ

〉
+ 〈IΩ,Ω × Σ〉

]

=

∫ b

a

〈
−

d

dt
IΩ + IΩ × Ω,Σ

〉
dt

where we have integrated by parts and used the boundary conditions Σ(b) = Σ(a) =
0. Since Σ is otherwise arbitrary, (4.14) is equivalent to

−
d

dt
(IΩ) + IΩ × Ω = 0,

which are Euler’s equations. �

The body angular momentum is defined in the usual way, by

Π = IΩ

so that in principal axes,

Π = (Π1,Π2,Π3) = (I1Ω1, I2Ω2, I3Ω3).
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Assuming that no external moments act on the body, the spatial angular mo-
mentum vector π = RΠ is conserved in time. This follows by general considerations
of symmetry, but it can, of course, be checked directly from Euler’s equations:

dπ

dt
= ṘIΩ + R(IΩ × Ω) = R(R−1ṘIΩ + IΩ × Ω)

= R(Ω × IΩ + IΩ × Ω) = 0.

There is a generalization of Theorem 4.1 on SO(3) and so(3) to general Lie
groups using the Euler-Lagrange equations and the variational principle as a starting
point. We shall also make the direct link with the Lie-Poisson equations.

Theorem 4.3. Let G be a Lie group and L : TG → R a left invariant Lagrangian.
Let l : g → R be its restriction to the identity. For a curve g(t) ∈ G, let ξ(t) =
g(t)−1 · ġ(t); i.e., ξ(t) = Tg(t)Lg(t)−1 ġ(t). Then the following are equivalent

i g(t) satisfies the Euler-Lagrange equations for L on G

ii the variational principle

δ

∫ b

a
L(g(t), ġ(t))dt = 0 (4.15)

holds, for variations with fixed endpoints

iii the Euler-Poincaré equations hold:

d

dt

δl

δξ
= ad∗

ξ

δl

δξ
(4.16)

iv the variational principle

δ

∫
l(ξ(t))dt = 0 (4.17)

holds on g, using variations of the form

δξ = η̇ + [ξ, η] (4.18)

where η vanishes at the endpoints.

In coordinates, the Euler-Poincaré equations read as follows

d

dt

∂l

∂ξd
= cb

ad

∂l

∂ξb
ξa. (4.19)

Let us discuss the proof of this theorem. First of all, the equivalence of i and
ii holds, of course, on the tangent bundle of any configuration manifold Q, and
in particular, on G. Secondly, ii and iv are equivalent. To see this, one needs to
compute the variations δξ induced on ξ = g−1ġ = TLg−1 ġ by a variation of g. We did
this explicitly for SO(3) above. To calculate it in general, we need to differentiate



5 The Abelian case 12

g−1ġ in the direction of a variation δg. If δg = dg/dε at ε = 0, where g is extended
to a curve gε, then, roughly speaking,

δξ =
d

dε
g−1 d

dt
g

while if η = g−1δg, then

η̇ =
d

dt
g−1 d

dε
g.

The difference δξ − η̇ is thus the commutator, [ξ, η].
To complete the proof, we show the equivalence of iii and iv. Indeed, using the

definitions and integrating by parts,

δ

∫
l(ξ)dt =

∫
δl

δξ
δξ dt

=

∫
δl

δξ
(η̇ + adξη)dt

=

∫ [
−

d

dt

(
δl

δξ

)
+ ad∗

ξ

δl

δξ

]
η dt

so the result follows. �

Since the Euler-Lagrange and Hamilton equations on TQ and T ∗Q are equiva-
lent, it follows that the Lie-Poisson and Euler-Poincaré equations are also equivalent.
To see this directly , we make the following Legendre transformation from g to g∗:

µ =
δl

δξ
, h(µ) = 〈µ, ξ〉 − l(ξ).

Note that
δh

δµ
= ξ +

〈
µ,

δξ

δµ

〉
−

〈
δl

δξ
,
δξ

δµ

〉
= ξ

and so it is now clear that the Euler-Poincaré equations are equivalent to the Lie-
Poisson equations on g∗, namely

dµ

dt
= ad∗

δh/δµµ

which is equivalent to Ḟ = {F, h} relative to the Lie-Poisson bracket (see Marsden
[1992] for more information and references).

5 The Abelian case

In this section we consider a simple mechanical system with Lagrangian L of the form
kinetic minus potential energy, where the configuration manifold Q is a Riemannian
manifold. Furthermore, assume that the symmetry group G is abelian. As before,
the goal is to reduce the Euler-Lagrange equations for L on TQ to equations on
TQ/G where we assume that TQ/G is a smooth manifold. As we have seen in
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the last section, in the special case Q = G, the reduced equations are the Euler-
Poincaré equations on the Lie algebra g corresponding to G. In the more general case
considered here, the reduced equations are going to be a combination of standard
Euler-Lagrange-d’Alembert equations for the base variables of TQ/G and the Euler-
Poincaré equations for the fiber, which are conservation laws in the case of abelian
groups. To make the exposition as transparent as possible, we work out everything in
coordinates here. For an abelian group G we identify the symmetry group using a set
of cyclic coordinates. We assume that G acts on Q by xα 7→ xα(α = 1, . . . ,m) and
θa 7→ θa+ϕa(a = 1, . . . k) with ϕa ∈ [0, 2π), where x1, . . . , xm, θ1, . . . , θk are suitably
chosen (local) coordinates on Q. Then G-invariance implies that the Lagrangian
L = L(x, ẋ, θ̇) does not explicitly depend on the variables θa, i.e., these variables
are cyclic. In these coordinates we have

L(x, ẋ, θ̇) =
1

2
gαβ(x)ẋαẋβ + gaα(x)ẋαθ̇a +

1

2
gab(x)θ̇aθ̇b − V (x). (5.1)

Moreover, the infinitesimal generator ξQ on Q of an element ξ = (ξ1, . . . , ξk) is given
by

ξQ = (0, . . . , 0, ξ1, . . . , ξk),

where there are m zeros. Therefore we have the following action coefficients—
see (2.2):

Kβ
a = 0, Kb

a = δb
a.

The components of the momentum map J : TQ → g∗ for G are given by

Ja =
∂L

∂θ̇a
= gaαẋα + gabθ̇

b,

i.e., they are the classical momenta conjugate to the variables θ̇a. Note that the
momentum map is G-equivariant here, i.e., its components are conserved quantities
for the equations of motion. Thus, the level surfaces of J in TQ are invariant. In the
present coordinates this also follows immediately from the standard Euler-Lagrange
equations for L

d

dt

(
∂L

∂ẋγ

)
−

∂L

∂xγ
= 0 (γ = 1, . . . ,m)

(5.2)

d

dt

(
∂L

∂θ̇c

)
= 0 (c = 1, . . . , k).

We come back to this fact later when we talk about the relation to the Routhian
procedure of reduction.

Note that (5.2) are local equations, since the coordinates x, ẋ, θ̇ correspond to a
(local) trivialization of the bundle TQ/G. Since these equations are independent of
θ, they locally drop to the quotient. In order to give the dropped equations a global
(intrinsic) meaning, we now introduce the velocity shift. To this end we replace the
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variables θ̇a by ξa given by means of the mechanical connection A as follows:

ξa = Aa = I
abgijK

i
bq̇

j

= I
abgbj q̇

j

= I
abgbαẋα + I

abgbcθ̇
c

= θ̇a + Aa
αẋα,

where
Aa

α = I
abgbα

are the components of the connection. Thus

θ̇a =
˙̃

θa(x, ẋ, ξ) = ξa − Aa
αẋα,

In particular, as a Lie algebra valued 1-form A has components

Aa = dθa + Aa
αdxα.

Thus, we replace θ̇ by the locked angular velocity ξ ∈ g, the generator ξQ of which
gives the velocity component tangential to the group orbit at a given configuration
of the system. In terms of the transformed Lagrangian

l(x, ẋ, ξ) = L(x, ẋ,
˙̃
θ(x, ẋ, ξ))

the equation of motion (5.2) reads as follows

d

dt

∂l

∂ẋγ
−

∂l

∂xγ
=

∂l

∂ξa
Ba

γαẋα (γ = 1, . . . ,m)

(5.3)

d

dt

∂l

∂ξc
= 0 (c = 1, . . . , k)

as a straightforward computation using the chain rule shows. Here

Ba
γα = Aa

α,γ − Aa
γ,α

can be viewed as the components of the curvature B of the connection A which in
the abelian case, is given by the exterior derivative of A:

Ba = [dA]a =
∑

γ<α

Ba
γαdxγ ∧ dxα.

So, the first set of equations in (5.3) are forced Euler-Lagrange equations with
Lagrangian l as a function of the base variables (x, ẋ). The second set of equations
are Poincaré equations in ξ, which are degenerate because we are dealing with an
abelian group G here. Since these equations as well as l do not depend on the
θ-variables, they drop to the quotient (TQ)/G just as they are stated. As we shall
see in the next section, this is the principal structure of the equations on (TQ)/G
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even for non-abelian groups G. Here one does not even need the assumption of a
simple mechanical system.

In our previous paper (Marsden and Scheurle [1993]) we carried out a further
reduction to J−1(µ)/Gµ in the case of a simple mechanical system and assuming
that the quotient is a smooth manifold again, i.e., µ is a regular value of J and
Gµ acts freely on the level set J = µ. Recall that Gµ is the isotropy subgroup
of µ. For abelian groups, locally, i.e., in coordinates, this reduction amounts to
the classical Routhian procedure, which leads to Euler-Lagrange equations for the
classical Routhian Rµ

class. Note that in the abelian case, Gµ = G and J−1(µ)/Gµ ≈
T (Q/G). We have modified this procedure to give it an intrinsic (global) meaning
and to include the case of nonabelian groups G. In terms of the setting of this
section, the Routhian Rµ is defined by a (partial) Legendre transformation of l with
respect to ξ:

Rµ(x, ẋ) = [l(x, ẋ, ξ) − 〈µ, ξ〉]|ξ=ξ̃(x,ẋ,µ)

where ξ̃(x, ẋ, µ) is the unique solution for ξ of the equation

∂l

∂ξ
(x, ẋ, ξ) = µ

for a particular value of µ ∈ g∗. So, now we replace the variable ξ by µ in the
equations (5.3). Then the second set of equations in (5.3) just become

d

dt
µc = 0 (c = 1, . . . , k)

which expresses the fact, that µ is conserved for the motion. Thus, fixing a particular
value for µ, the restriction of (5.2) to the level set J = µ is given by the first set of
equations in (5.3). Rewriting those in terms of the Routhian Rµ rather than l leads
to

d

dt

∂Rµ

∂ẋγ
−

∂Rµ

∂xγ
= µaB

a
γαẋα = [iẋBµ]γ (γ = 1, . . . ,m), (5.4)

i.e., on J = µ we have Euler-Lagrange equations for the Routhian Rµ with forcing
given by the magnetic 2-form Bµ which in the present coordinates is defined as
follows:

Bµ =
∑

γ<α

µaB
a
γαdxγ ∧ dxα.

Note that Bµ = dAµ is the exterior derivative of the 1-form Aµ : Q → T ∗Q given by

Aµ = µadθa + µaA
a
αdxα

(cf. (2.9). Note that in contrast to Aµ, Bµ does not depend on the θ-variables just
as Rµ does not. Therefore all terms in (5.4) drop further to the quotient J−1(µ)/G
and the structure of these equations is preserved there.

Moreover, locally these equations are even standard Euler-Lagrange equations
on the quotient. Namely, as a closed 2-form Bµ is locally exact. Therefore, locally
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the right-hand side of (5.4) can be included into the left-hand side by replacing Rµ,
by the classical Routhian

Rµ
class =

[
L(x, ẋ, θ̇) − µaθ̇

a
]

θ̇a=
˙̃

θa(x,ẋ,µ)

= Rµ + µagαaẋ
α
I
ca,

where
θ̇a =

˙̃
θa(x, ẋ, µ) = [µc − gαcẋ

α]Ica

is the unique solution of the equation J = µ with respect to θ̇. It is to be noted
that globally, Bµ is not exact on the quotient J−1(µ)/G in general. In the present
context this can be seen from the fact that the 1-form Aµ explicitly depends on the
θ-variables.

Also, there is a variational principle behind the equations (5.4), namely in the
sense of Lagrange-d’Alembert:

δ

∫ b

a
Rµdt =

∫ b

a
iẋBµδx.

In this variational principle, the variation of the integral of Rµ is taken over curves
on Q/Gµ, that satisfy the fixed endpoint condition. This variational principle allows
one to generalize the Routhian reduction procedure even for nonabelian groups G.
Here is what was proved in Marsden and Scheurle [1993].

Theorem 5.1. Let Q be a Riemannian manifold and let a (not necessarily abelian)
Lie group G act freely on it. Let J be its momentum map on TQ. Assume that
µ ∈ g∗ is a regular value of J . Consider a simple mechanical system given by a
Lagrangian L : TQ → R which is G-invariant. Define the Routhian Rµ : TQ → R

to be
Rµ(q, v) = L(q, v) − 〈A(q, v), µ〉

where A is the mechanical connection as defined in (2.4).
Suppose that q(t) satisfies the Euler-Lagrange equations for L and lies on the

level set J(q(t), v(t)) = µ. Then the induced curve on Q/Gµ satisfies the re-

duced Lagrangian variational principle, i.e., the variational principle of Lagrange-
d’Alembert on Q/Gµ with magnetic term Bµ = dAµ, where Aµ is defined as in (2.9),
and the Routhian Rµ dropped to T (Q/Gµ).

Remark In the special case Q = G, e.g. in the rigid body case, the reduced vari-
ational principle becomes degenerate and leads to first order equations on Q/Gµ =
G/Gµ.

6 Bundles and Local Trivializations

In this section we set up the machinery for the derivation of the reduced Euler-
Lagrange equations.



6 Bundles and Local Trivializations 17

As above, let G be a Lie group that acts on the left freely and properly on
a (configuration) manifold Q and let S = Q/G be the shape space. Under these
hypotheses, the natural projection πS : Q → S defines a principal G-bundle. In
particular, the bundle πS admits local trivializations; that is, Q is covered by open
sets U ⊂ Q and there are diffeomorphisms

Ψ : U → V × G

where V ⊂ S is open such that Ψ has the form Ψ(q) = (πS(q),ΨG(q)) and

Ψ(g · q) = (πS(q), gΨG(q)).

In other words, in this local trivialization, the action of G is given by the trivial
action on the first fiber and left multiplication on the second fiber. This follows
readily from the freeness and properness of the action and the fact that πS is a
submersion.

Note that in our conventions, the bundle πS : Q → S is a left principal bundle.
Of course it would be a right principal bundle if the original action were a right
action.

Examples

A If Q = G with G acting by left multiplication, then S is a point and we can
choose U = G, and V = S.

B Let Q = TG, with G acting by the lifted left action. Then we can choose
U = TG, V = S = g, the Lie algebra of G and Ψ = λ

λ : TG → g × G

given by
λ(Vg) = (TLg−1 · Vg, g),

where Lg−1 denotes left multiplication by g−1. �

Under the above circumstances, not only is Q a principal G-bundle, but so is TQ.
A local trivialization for Q clearly induces one for TQ given by (Id × λ) ◦ TΨ:

TΨ : TU ⊂ TQ → TV × TG

(Id × λ) : TV × TG → TV × g × G.

Thus, the base space (TQ)/G is locally diffeomorphic to TS × g.
We let qi denote coordinates on Q and (qi, q̇i) be the induced coordinates on

TQ. If we use coordinates corresponding to the above local trivialization, we can
write coordinates on TQ/G as

(xα, ẋα, ηa) ∈ TV × g
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so that TQ itself is coordinatized by

(xα, ẋα, ηa, ga)

where ga denote coordinates on G. Notice especially that if (xα, ga) denote local
coordinates on Q, which is locally S ×G, then ηa are the Lie algebra coordinates of
g−1ġ.

Now let L : TQ → R be a given left invariant Lagrangian. Then L induces a
reduced Lagrangian

l : TQ/G → R.

In local coordinates corresponding to a local trivialization, we thus represent l by a
function

l(xα, ẋα, ηa).

In a local trivialization, L defines a map L : TV × TG → R and G acts only
in the second factor. We can take Hamilton’s principle and (locally) divide the
variations δq of q into those only in x and those only in g. In x, we will get the
usual Euler-Lagrange equations, while in g, we can apply the results of §2 to get
the Euler-Poincaré equations. This argument therefore proves that:

Theorem 6.1. The Euler-Lagrange equations for L on Q are equivalent to the
Hamel equations for l in a local principal bundle trivialization:

d

dt

∂l

∂ẋα
−

∂l

∂xα
= 0 (6.1)

d

dt

∂l

∂ηa
= cb

adη
d ∂l

∂ηb
(6.2)

Notice that in a local trivialization, one can reconstruct the motion on TQ, or
locally TV × TG by solving the equation

g−1ġ = η,

just as in the case of the Euler-Poincaré equations.

7 Connections, Curvature, and the Velocity Shift

To make the Hamel system (6.1), (6.2) independent of the choice of local trivializa-
tion as well as to put the Lagrangian into a simpler form, it is useful to introduce a
connection. Here, a “simpler form” means, that one can complete the square in the
kinetic energy, which is important for studying the stability of relative equilibria.
We shall see this simplification explicitly in the examples in the next sections.

We recall that a connection on Q is a g-valued one form:

A : TQ → g

that is
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1. equivariant with respect to the action of G on TQ and the adjoint action Adg

of G on g, and

2. satisfies A(ξQ(q)) = ξ for each ξ ∈ g.

Often one chooses A to be the mechanical connection, but in this section, A can
be an arbitrary connection.

The vertical space at q ∈ Q is spanned by the set of ξQ(q) for ξ ∈ g and the
horizontal space is

horq = {v ∈ TqQ | A(v) = 0}.

Condition 2 can be rephrased as saying that for each µ ∈ g∗,J(Aµ) = µ, where Aµ

is the one form obtained by pairing α with µ.
Clearly, every vector v ∈ TqQ can be uniquely written as a horizontal vector plus

a vertical one; in fact, we can write

v = horqv + verq v

where verqv = (A(vq))Q(q) and horqv = v − verqv.

Example

If Q = G, there is a canonical connection given by the right invariant one form
equaling the identity at g = e. That is, for v ∈ TgG, we let

AG : TG → g; AG(v) = TRg−1 · v.

Note that AG is uniquely determined by condition 2. �

In a local trivialization where we can locally write

Q = S × G,

then a connection A as a 1-form has the form

A(xα, ga) = Aa
α(xα, ga)dxα + AG(ga)

for functions Aa
α(xβ), which are called the connection coefficients. If we identify

TG = G × g by the map λ, we can write A as a mapping on TQ,

A(xα, ẋα, ga, ġa) = (0, Aa
αẋα + ηa)

where η = g−1ġ. The element η is, relative to this local trivialization, the body

angular velocity .
In a local trivialization, a vector is vertical if it’s ẋ component is zero and is

horizontal if A applied to it is zero. Thus, the horizontal-vertical decomposition is,
at the identity,

(ẋα, ηa) = (ẋα,−Aa
αẋα) + (0, Aa

αẋα + ηa). (7.1)



7 Connections, Curvature, and the Velocity Shift 20

We will, according to previous considerations, call

ξa = Aa
αẋα + ηa (7.2)

the “locked” angular velocity; i.e., ξ is the value of A.
Now we consider our earlier Lagrangian l(xα, ẋα, ηa) and rewrite it in terms of

ξ. That is, let
llock(x

α, ẋα, ξa) = l(xα, ẋα, ξa − Aa
αẋα). (7.3)

Now let us rewrite the Hamel equations in terms of llock. In the introduction, we
dropped the subscript “lock”, but we keep it here to avoid notational confusion. To
do this, we compute the Euler-Lagrange derivative in coordinates using the chain
rule:

d

dt

∂llock

∂ẋα
−

∂llock

∂xα
=

d

dt

(
∂l

∂ẋα
−

∂l

∂ηa
Aa

α

)
−

∂l

∂xα
+

∂l

∂ηa

∂Aa
β

∂xα
ẋβ. (7.4)

Now use the Hamel equations to simplify the right-hand side of (7.4). We get

−
d

dt

(
∂l

∂ηa

)
Aa

α −
∂l

∂ηa

∂Aa
α

∂xβ
ẋβ +

∂l

∂ηa

∂Aa
β

∂xα
ẋβ

= −cd
baη

b ∂l

∂ηd
Aa

α −
∂l

∂ηa

∂Aa
α

∂xβ
ẋβ +

∂l

∂ηa

∂Aa
β

∂xα
ẋβ

=
∂llock

∂ξd

(
−cd

ba

[
ξb − Ab

βẋβ
]
Aa

α −
∂Ad

α

∂xβ
ẋβ +

∂Ad
β

∂xα
ẋβ

)

=
∂llock

∂ξd

(
−cd

baξ
bAa

α

)
+

∂llock

∂ξd
Bd

αβ ẋβ

where

Bd
αβ =

∂Ad
β

∂xα
−

∂Ad
α

∂xβ
+ cd

baA
b
βAa

α

are the components of the curvature of A. To summarize,

d

dt

∂llock

∂ẋα
−

∂llock

∂xα
=

∂llock

∂ξd
Bd

bαξb +
∂llock

∂ξd
Bd

αβẋβ (7.5)

where
Bd

bα = cd
abA

a
α

is the interaction term. For the Euler-Poincaré part, we get

d

dt

∂llock

∂ξb
= ca

db

∂llock

∂ξa

(
ξd − Ad

αẋα
)

i.e.,
d

dt

∂llock

∂ξb
= ca

db

∂llock

∂ξa
ξd +

∂llock

∂ξa
Ba

bαẋα. (7.6)

This completes the derivation of the reduced Euler-Lagrange equations, as stated in
the introduction. A detailed description of the split of the variational principle into
horizontal and vertical parts, and further examples will be given in a forthcoming
paper. For the present paper, we limit ourselves to two of the most basic, but still
instructive examples given in the following sections.
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8 A Particle in a Magnetic Field

In this section we will give a simple, but concrete illustration for the reduced Euler-
Lagrange equations. Our example is readily generalized to the case of a particle
moving in a Yang-Mills field; see Montgomery [1984] and references therein.

We first review the standard Hamiltonian formulation for the motion of a particle
in a magnetic field. Let B be a closed two-form on R

3 and B = Bxi + Byj + Bzk

the associated divergence free vector field, i.e., iB(dx ∧ dy ∧ dz) = B, or

B = Bxdy ∧ dz − Bydx ∧ dz + Bzdx ∧ dy.

Thinking of B as a magnetic field, the equations of motion for a particle with charge
e and mass m are given by the Lorentz force law :

m
dv

dt
=

e

c
v × B (8.1)

where v = (ẋ, ẏ, ż). On R
3 × R

3 i.e., on (x,v)-space, consider the symplectic form

ΩB = m(dx ∧ dẋ + dy ∧ dẏ + dz ∧ dż) −
e

c
B. (8.2)

For the Hamiltonian, take the kinetic energy:

H =
m

2
(ẋ2 + ẏ2 + ż2) (8.3)

writing XH(u, v,w) = (u, v,w, (u̇, v̇, ẇ)), the condition defining XH , namely iXH
ΩB =

dH is

m(udẋ − u̇dx + vdẏ − v̇dy + wdż − ẇdz)

−
e

c
[Bxvdz − Bxwdy − Byudz + Bywdx + Bzudy − Bzvdx]

= m(ẋdẋ + ẏdẏ + żdż) (8.4)

which is equivalent to u = ẋ, v = ẏ, w = ż,mu̇ = e(Bzv − Byw)/c,mv̇ = e(Bxw −
Bzu)/c, and mẇ = e(Byu − Bxv)/c, i.e., to

mẍ =
e

c
(Bz ẏ − Byż)

mÿ =
e

c
(Bxż − Bzẋ) (8.5)

mz̈ =
e

c
(Byẏ − Bxż)

which is the same as (8.1). Thus the equations of motion for a particle in a magnetic
field are Hamiltonian, with energy equal to the kinetic energy and with the symplectic
form ΩB .

If B = dA; i.e., B = ∇×A, where A is a one-form and A is the associated vector
field, then the map (x,v) 7→ (x,p) where p = mv + eA/c pulls back the canonical
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form to ΩB , as is easily checked. Thus, equations (8.1) are also Hamiltonian relative
to the canonical bracket on (x,p)-space with the Hamiltonian

HA =
1

2m
‖p−

e

c
A‖2. (8.6)

Even in Euclidean space, not every magnetic field can be written as B = ∇×A.
For example, the field of a magnetic monopole of strength g 6= 0, namely

B(r) = g
r

‖r‖3
(8.7)

cannot be written this way since the flux of B through the unit sphere is 4πg, yet
Stokes’ theorem applied to the two hemispheres would give zero. Thus, one might
think that the Hamiltonian formulation involving only B (i.e., using ΩB and H) is
preferable. However, one can recover the magnetic potential A by regarding A as a
connection on a nontrivial bundle over R

3\{0}.
We now recall how to write the equations of a charged particle in a magnetic field

in terms of geodesics; that is, the Kaluza-Klein description using an S1-reduction.
When generalizing the process described here to the case of a particle in a Yang-Mills
field, we replace the magnetic potential A by the Yang-Mills connection.

Above, we saw that if B = ∇ × A is a given magnetic field on R
3, then with

respect to canonical variables (q,p), the Hamiltonian is

H(q,p) =
1

2m
‖p −

e

c
A‖2. (8.8)

We can obtain (8.8) via the Legendre transform if we choose

L(q, q̇) =
1

2
m‖q̇‖2 +

e

c
A · q̇ (8.9)

for then

p =
∂L

∂q̇
= mq̇ +

e

c
A (8.10)

and

p · q̇− L(q, q̇) = (mq̇ +
e

c
A) · q̇−

1

2
m‖q̇‖2 −

e

c
A · q̇

=
1

2
m‖q̇‖2

=
1

2m
‖p −

e

c
A‖2 = H(q,p). (8.11)

Thus, the Euler-Lagrange equations for (8.9) reproduce the equations for a particle
in a magnetic field. (If an electric field E = −∇ϕ is present as well, subtract eϕ
from L, treating eϕ as a potential energy.) Let the Kaluza-Klein configuration

space be
QK = R

3 × S1 (8.12)
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with variables (q, θ) and consider the one-form

ω = A + dθ (8.13)

on QK regarded as a connection one-form. Define the Kaluza-Klein Lagrangian by

LK(q, q̇, θ, θ̇) =
1

2
m‖q̇‖2 +

1

2
〈ω, (q, q̇, θ, θ̇)〉2

=
1

2
m‖q̇‖2 +

1

2
(A · q̇ + θ̇)2. (8.14)

The corresponding momenta are

p = mq̇ + (A · q̇ + θ̇)A and pθ = A · q̇ + θ̇. (8.15)

Since (8.14) is quadratic and positive definite in q̇ and θ̇, the Euler-Lagrange equa-
tions are the geodesic equations on R

3×S1 for the metric for which LK is the kinetic
energy . Since pθ is constant in time as can be seen from the Euler-Lagrange equation
for (θ, θ̇), we can define the charge e by setting

pθ = e/c; (8.16)

then (8.15) coincides with (8.10). The corresponding Hamiltonian on T ∗QK endowed
with the canonical symplectic form is

HK(q, p, θ, pθ) =
1

2m
‖p − pθA‖2 +

1

2
p2

θ. (8.17)

Since pθ is constant, HK differs from H only by the constant p2
θ/2.

These constructions generalize to the case of a particle in a Yang-Mills field where
ω becomes the connection of a Yang-Mills field and its curvature measures the field
strength which, for an electromagnetic field, reproduces the relation B = ∇×A. We
refer to Montgomery [1985] for details and further references. Finally, we remark
that the relativistic context is the most natural to introduce the full electromagnetic
field. In that setting the construction we have given for the magnetic field will
include both electric and magnetic effects.

From the point of view of the present paper, we regard the equations (8.1) as the
Euler-Lagrange equations with a curvature term on the right hand side, and regard
it as being obtained from LK by Lagrangian reduction. The reduced Euler-Lagrange
equations then become (8.1), corresponding to (1.3), together with the conservation
of pθ, corresponding to (1.4), which, in the abelian case, becomes a conservation
law. Of course, in this abelian case, reduction by the Routh procedure is essentially
indistinguishable from the general Euler-Lagrange reduction procedure given in the
present paper.

9 The Rigid Body with Rotors

In this section, we show the role of the mechanical connection in this system, and
why it is useful to employ it.
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For a rigid body with three rotors aligned with, say, the principal axes, we take
the configuration space to be

Q = SO(3) × S1 × S1 × S1

with elements denoted
(R, θ1, θ2, θ3)

where the angles are relative to the carrier. To illustrate the general theory, we
shall choose G = SO(3). As in the rigid body, the body angular velocity is given
by Ω̂ = R−1Ṙ, which corresponds to η in the general theory, and Ωr = (θ̇1, θ̇2, θ̇3),
which corresponds to xα in the theory (with the given choice of G).

The Lagrangian is given on Q by the total kinetic energy:

L =
1

2
〈Ω, IΩ〉 +

1

2
〈Ω + Ωr,K(Ω + Ωr)〉

where I,K are inertia tensors. Through the given definitions, this may be regarded
as a function on TQ, and so the equations of motion for the system are the Euler-
Lagrange equations. Clearly, we can also regard L as a function on TQ/G. However,
eventually, one wants to add controls to this situation as in Bloch, Krishnaprasad,
Marsden, and Sanchez [1992]. This aspect in the present context will be discussed
in another publication.

For this example, one checks that the locked inertia tensor is given by

I = R(I + K)R−1

while the momentum map is

J = R[(I + K)Ω + KΩr] = RΠ = µ

where µ is the spatial (fixed) angular momentum and where

Π = [(I + K)Ω + KΩr] =
∂L

∂Ω

is the body angular momentum. The mechanical connection is computed to be

A = R−1Ṙ + (I + K)−1KΩr.

The equations of motion are the following:

d

dt

∂L

∂θ̇i
−

∂L

∂θi
= 0,

d

dt
Π = Π × Ω

so that, from the first equation, l = K(Ω + Ωr) = constant. Note that

µ = R(IΩ + l)
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and that the shifted, or locked, velocity

ξ = Ω + (I + K)−1KΩr

completes the square in L. That is,

llock =
1

2
〈ξ, (I + K)ξ〉 +

1

2
〈KΩr, (I + K)−1IΩr〉

which “decouples” Ω and Ωr. If we rewrite the above equations of motion in terms
of llock and ξ, θ, θ̇, we get the form of the reduced Euler-Lagrange equations that
was given in the introduction.

Finally, we notice that to recover the attitude from

Π = (I + K)ξ,

note that
(I + K)R−1Ṙ + KΩr = (I + K)ξ.

Regarding ξ (or Π) and Ωr as known, then Ω = R−1Ṙ = ξ − (I + K)−1KΩr

where the last term is the connection. Formulas like this are also important in
the determination of phases for the rigid body with internal rotors, as in Bloch,
Krishnaprasad, Marsden and Sanchez [1992].
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