Reprinted from

' M.W, Hirsch, J.E. Marsden, and M. Shub

Editors

From Topology to Computation:
Proceedings of the Smalefest

©1993 Springer-Verlag New York, Inc.
Printed in the United States of America.

Springer-Verlag
New York Berlin Heidelberg London Paris
Tokyo Hong Kong Barcelona Budapest

s



o]



45

Steve Smale and Geometric
Mechanics

JERROLD E. MARSDEN*

1. Some Historical Comments

In the period 1960-1965, geometric mechanics was “in the air.” Some key
papers were available, such as Arnold’s work on KAM theory and a little had
made it into textbooks, such as Mackey’s book on quantum mechanics and
Sternberg’s book on differential geometry. In this period, Steve was work-
ing on his dynamical systems program. His survey article (Smale [1967])
contained important remarks on how geometric mechanics (specifically
Hamiltonian systems on symplectic manifolds) fits into the larger dynamical
systems framework. In 1966 at Princeton, Abraham ran a seminar using a
preprint of the survey article and it was through this paper that I first en-
countered Smale’s work. After he visited the seminar, the importance of what
he was doing was obvious; also, it became evident that there was great power
in asking simple, penetrating, and sometimes even seemingly naive questions.
I should add that in the mathematical physics seminar at Princeton that I
also had the good fortune of attending, Eugene Wigner had a remarkably
similar aura.

Smale’s dynamical systems work suggested developing similar ideas like
structural stability, dynamic bifurcations, and genericity in the context of
mechanics. Structural stability aspects were developed by Abraham, Buchner,
Robinson, Robbin, and others. The generic bifurcations of equilibria, relative
equilibria, Hamiltonian—Krein-Hopf bifurcations that can occur in Hamil-
tonian systems has been studied by Williamson, Arnold, Meyer, van der
Meer, Duistermaat, Cushman, Golubitsky, Stewart, and others. See Abraham
and Marsden [1978], Marsden [1992] and Delliniz, Melbourne and Marsden
[1992] for further information and references.

In 1966-1967, two important personal events occured. First, Abraham
gave his lectures on mechanics at Princeton from which our book Foundations
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of Mechanics arose. Second, Arnold’s [1966] paper on rigid-body mechanics
and ideal fluid mechanics appeared. The latter paper influenced me pro-
foundly; it showed how the dynamics of these systems could be interpreted as
geodesic flow on SO(3) with a left-invariant metric and on Difly,(©2)—the
volume-preserving diffeomorphism groups of, say, a region Q in R*—with
the right-invariant metric defined by the kinetic energy of the fluid. This
paper, together with the emerging work of Kostant and Souriau on the role
of symmetry groups and the momentum map, laid important ideas latent in
the traditional approach to mechanics, in clear and concise geometric terms.

Smale gave a course of lectures on mechanics in the fall of 1968 at Berke-
ley, the semester I arrived. This led to his two-part paper Topology and
Mechanics (Smale [1970]).

In the same period, I completed a paper with Ebin (Ebin and Marsden
[1970]) in which we put Arnold’s work on fluid mechanics in the context of
Sobolev (H*) manifolds and showed the remarkable fact that Arnold’s geode-
sic flow on H*-Difl,,(Q) (the volume-preserving diffeomorphisms of Q to
itself of Sobolev class H*) comes from a smooth geodesic spray. This fact is
remarkable because it allows one to solve the initial value problem using
only Picard iteration and ordinary differential equations theory on TH*-
Diff, ,(€2) and one would not expect this since the Euler equations for fluid
mechanics are rather nasty PDEs, not ODEs! This led to a number of inter-
esting analytic and numerical developments in fluid mechanics. Around this
same time, I began work with Fischer on the Hamiltonian structure of gen-
eral relativity (see, for example, Fischer and Marsden [1972]). At this stage I
had only a rough idea how these two topics might be related to Smale’s work.

Already around 1971, with so much happening in geometric mechanics,
Abraham and I started work on the second edition of Foundations of Me-
chanics with the help of Ratiu and Cushman. Doing so prompted thoughts
about how all of these ingredients might fit together. Especially interesting
was the question of how Smale’s papers might be linked with Arnold’s. Smale
used symmetry ideas in the context of tangent and cotangent bundles of
configuration spaces with Hamiltonians of the form kinetic plus potential
energy; that is, he dealt with simple mechanical systems. The examples and
some of the theory were concerned with abelian symmetry groups. In this
context, Smale’s work contained some of the essential ideas of what we now
call reduction theory. It was natural to attempt to put Smale’s ideas and those
of Arnold in the more general and unifying context of symplectic manifolds.
Doing so led to the paper with Weinstein (Marsden and Weinstein [1974])
that was completed in early 1972. Some of these ideas were found indepen-
dently by Meyer [1973] whose paper appears in the proceedings of the 1971
conference organized by Peixoto that was, in effect, a large conference on
Steve’s work on dynamical systems as a whole.

This effort led to the now fairly well-developed area of reduction theory.
There are expositions of this subject available in the 10 or so texts and
monographs that are currently devoted to geometric mechanics (Abraham
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and Marsden [1978], Guillemin and Sternberg [1984], and Arnold [1989]
are examples). We will come back to a description of one of the reduction
theorems later (the cotangent bundle reduction theorem) and give an indica-
tion of why this approach made so much fall beautifully into place. Briefiy, if
one starts with a cotangent bundle T*Q, and a Lie group G acting on @, then
the quotient (T*Q)/G is a bundle over T*(Q/G) with fiber g*, the dual of the
Lie algebra of G One has the following structure of the Poisson reduced
space (T*Q)/G (its symplectic leaves are the symplectic reduced spaces of
Marsden and Weinstein [1974]).

™o Phase space
. Reconstruction and
G Reduction geometric phases
TG Reduced phase space

*

;
|

™(Q/G) Smale

FIGURE 1

Thus, one can say—perhaps with only a slight danger of oversimplifica-
tion—that reduction theory synthesises the work of Smale, Arnold (and their
predecesors of course) into a bundle, with Smale as the base and Arnold as
the fiber. This bundle has interesting topology and carries mechanical con-
nections (with associated Chern classes and Hannay-Berry phases) and has
interesting singularities (Arms, Marsden, and Moncrief, Guillemin and Stern-
berg, Atiyah, and others). We will describe some of these features later.

2. Highlights from Topology and Mechanics

One of Smale’s main goals was to use topology, especially Morse theory, to
estimate the number of relative equilibria in a given simple mechanical sys-
tem with symmetry, such as the n-body problem, and to study the associated
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bifurcations as the energy and momentum are varied. This approach proved
to be quite successful and has been carried on by Palmore, Cushman,
Fomenko, and others to give more detailed information in the n-bedy prob-
lem and basic information in other problems like vortex dynamics, rigid-
body mechanics, and other integrable systems.

One should also mention that this paper of Smale did a lot for the subject
itsell. The paper attracted worldwide attention and brought many excellent
young people into the field. The idea of using topology and geometry in a
classical subject to bring new insights and fresh ideas must have been quite
appealing.

Smale’s strategy was to study the topology of the level sets of the energy-
momentum map H x J: P— R x g* on a given phase space P with a given
Hamiltonian H and a symplectic group action having a momentum mapping
J: P — g*. He lays out a program for studying bifurcations in the level sets of
the energy-momentum mapping as the level value changes. In doing so, he
sets out the basic equivariance properties of momentum maps, apparently
independent of the other people normally credited with introducing the mo-
mentum map, namely, Lie, Kostant, and Souriau. (An interesting historical
note is that Lie had most of the essential ideas, including—according to
Weinstein—the fact that the momentum map is a Poisson map, its equivari-
ance, the symplectic structure on the coadjoint orbits, and more, all back in
1890!) Smale also made the important observation that a point ze P is a
regular point of J iff the symmetry (isotropy) group of z is discrete. This idea
surfaces again in the study of the solution space of the Einstein or Yang-
Mills equations, as we shall see below.

One of the most important objects that Smale introduced was the amended
potential V, that plays a vital role in current developments in stability and
bifurcation of relative equilibria. The amended potential is a geometric gener-
alization of the classical construction of the “effective potential” in the
(planar) two-body problem, which is obtained by adding to the given poten-
tial ¥(r), the centrifugal potential at angular momentum value y; in this
simple case,

n

2
V;‘= V+?.

g

In this situation, reduction corresponds to the elimination of the angular
variable 8 (division by the group G = S') and the replacement of the poten-
tial ¥V by the potential V.

As we shall see later, in special situations, such as the abelian case, the
reduction of a simple mechanical system is again a simple mechanical system,
but the general situation, even for groups like the rotation group, is more
complicated. The fact that the abelian reduction of a simple mechanical sys-
tem is again a simple mechanical system is essentially contained in Smale’s
paper, but it has a long history with a surprising amount contained in the
work of Routh around 1860 in his books on mechanics. See, for example,
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Routh [1877]. In fact, Routh’s work contains results that get rediscovered
from time to time in the modern literature, but that is another story.

For problems like rigid-body mechanics and fluid mechanics, one has to
deal with Lie-Poisson structures on g* (the “Arnold fiber”) and magnetic
terms on T*(Q/G) (the “Smale base”). The magnetic terms modify the canoni-
cal symplectic structure on T*(Q/G) with the addition of the y-component of
the curvature of a connection on Q — Q/G called the mechanical connection.
This connection, defined below, is given implicitly in Smale’s paper (it is
introduced in §6 of his paper).

Smale studies relative equilibria by applying critical point theory to V.
The function V, contains much of the information of E x J through the
general fact proved by Smale that a point of @ is the configuration of a
relative equilibrium if and only if it is a critical point of V,. (Some of these
concepts are recalled in the next section.)

Smale’s examples deal with the abelian case (when the “Arnold fiber” has
trivial Poisson structure); in this situation, V, defines a function on Q/G, and
on this quotient space, one expects the critical points to be generically non-
degenerate. In the general case (such as a rotating rigid body with internal
structure), one has to carelully synthesize the analysis of Arnold and Smale to
get the sharpest information.

This basic theory, and some simple but very informative examples, com-
prise part I of “Topology and Mechanics.” Part II is concerned with the
planar n-body problem in which G = S? is the planar rotation group and Q
is R2", minus collision points. The study of relative equilibria is done by
determining the global topology of the level sets of E x J and their quotients
by S!—Theorems A and B of the paper. Theorem C relates this to critical
points of ¥, and Theorem D determines the bifurcation set. Theorem E re-
lates the topology of the rduced phase space to that of the configuration
space. Corollaries give more details for n = 2 and n = 3. An interesting con-
sequence of these results is Moulton’s theorem stating that there are n!/2
classes of colinear relative equilibria. The fact that one is looking for colinear
relative equilibria enables one to reduce the problem to one of finding critical
points of a function on real projective n — 2 space minus collisions. In fact, a
combinational argument shows that this space has n!/2 components and the
corresponding function has a single nondegenerate maximum on each com-
ponent. There have, of course, been many important contributions to the
n-body problem since 1970, such as those of Palmore, McGehee, Mather,
Meyer, and others. The book of Meyer and Hall [1991] can be consulted for
some of the relevant literature.

3. A Glimpse at Reduction Theory

In this section we will focus on some of the ways Smale’s paper is connected
with some of the current research in geometric mechanics. No attempt is
made at thoroughness here—the focus is on selected topics of personal inter-
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est only! In particular, we focus on some aspects of reduction theory, one of
the most fruitful outgrowths of Smale’s and Arnold’s work. Of course, others
also deserve much credit for setting the foundations, especially Lie, Kostant,
Kirillov, and Souriau.

Let P be a symplectic manifold and G be a group acting symplectically on
P. Let g be the Lic algebra of G and g* its dual. Let G act on g* by the
coadjoint action and let J: P — g* be an equivariant momentum map; that
is, J is equivariant and J generates the group action in the sense that for each
leg,

Xa.o=2¢p

where X, is the Hamiltonian vector field determined by the function f and ¢,
is the infinitesimal generator of the action on P.
If G, is the isotropy subgroup of u € g*, the reduced space at u is

P, = I"H(u)/G,

Equivariance guarantees that G, acts on J™!(u), so the quotient makes sense.
If 4 is a (weakly) regular value and the quotient is nonsingular, the reduction
theorem states that P, is a symplectic manifold and that G-invariant Hamil-
tonian systems on P decend to Hamiltonian systems on P.

Given a G-invariant hamiltonian H on P, a relative equilibrium (in the
terminology of Poincaré) is a point in P whose dynamic orbit equals a one-
parameter group orbit. Relative equilibria correspond to critical points of
H x J and to (dynamically) fixed points on P,.

There are three interrelated special cases. First, if P = T*G, then the re-
duced space at u is the coadjoint orbit through x and its reduced symplectic
structure is that of Kirillov, Kostant, and Souriau. Second, if 4 = 0 and
P = T*Q (with the canonical cotangent structure), then P, = T*(Q/G) with
the canonical symplectic structure. Finally, if G is abelian (or G = G,), then
P, = T*(Q/G) although the structure on T*(Q/G) need not be canonical.

We need to also recall that the coadjoint orbits @ < g* are the symplectic
leaves in the Lie- Poisson structure

oF 8K

where one uses “— " for left actions and “ + ” for right actions. Here §F/du e g
is the generalized functional derivative defined by

<§—z,v> =DF(u)-v

for all v e g*. As is well-known [or follows using Poisson reduction in the
form (T*G)/G = g*], this bracket makes g* into a Poisson manifold. This
term “Lie-Poisson” structure was coined by Marsden and Weinstein [1983]
since this expression occurs explicitly in Lie’s work around 1890.

If @ is the coadjoint orbit through y, then following Marle [1976] and
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Kazhdan, Kostant, and Sternberg [1978], one finds a symplectic identification
P, =JY(0)/G < P/G

which shows that P, may be identified with a symplectic leaf in the Poisson
reduced space P/G. An account of this, along with some additional informa-
tion is given in Marsden [1981] . Reduction theory has been applied to a
large number of interesting situations—the literature is too vast to survey
here. We just mention a few: see Cushman and Rod [1982] for a penetrating
application to resonances, Deprit [1983] for a solution of the problem of
Jacobi’s elimination of the node in the n-body problem, Bobenko et al.
[1989] for integrable systems and a group-theoretic resolution of the inte-
grability of the Kowalewski top, Marsden and Weinstein [1982, 1983] and
Marsden, Ratiu and Weinstein [1984] for applications in fluid and plasma
dynamics, and David, Holm, and Tratnik [1990] for applications to polariza-
tion lasers. Consult Guillemin and Sternberg [1984] for some applications
involving representation theory.

Perhaps the most interesting case is the one considered by Smale: P =
T*Q with the canonical symplectic structure. We assume G acts on Q and
hence by cotangent lift on T*Q. We also assume we are dealing with a Hamil-
tonian of the form kinetic plus potential energy, where the metric g on Q is
G-invariant and where the potential V: Q — R is G-invariant.

The cotangent bundle reduction theorem states that the reduced space P, is
a bundle over T*(Q/G) with fiber O, the orbit through p. The corresponding
Poisson statement is that the space (T*Q)/G is a g*-bundle over T*(Q/G).
The corresponding description of the symplectic or Poisson structure is a
nontrivial synthesis of the Lie-~Poisson structure on g* and the canonical
(plus magnetic) structure on T*(Q/G). This was worked out in Montgomery,
Marsden, and Ratiu [1984] motivated by the cases of the Hamiltonian struc-
ture for the interaction of a fluid or plasma with an electromagnetic field and
the work of Sternberg and Weinstein on the geometry of Wong’s equations
that describe the motion of a particle in a Yang—Mills field (see Montgomery
[1984] and references therein).

The proof of the cotangent bundle reduction theorem (see, for example,
Marsden [1992] for a recent account) utilizes two crucial ideas, each of which
is in Smale’s paper (one of them implicitly). The first is the mechanical connec-
tion and the second is the associated momentum shift.

The locked inertia tensor is the map I: Q — g* ® g* = L(g, g*) defined by

CUPE 1> = KSol@), nol9) D),

where (-, -> denotes the natural pairing and -, *)) is the metric pairing. If
the action is locally free, then 0(q) is a positive definite symmetric tensor.
Define a: TQ — g by

a(v,) = 3(g) ™' J(FL(v,)),
where v, € T,Q and FL: TQ — T*Q is the Legendre transformation deter-
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mined by the metric. The above formula for a is equivalent to the one given
by Smale.

The first person to note and exploit the fact that a: TQ —»g is a G-
connection on the bundle Q — Q/G seems to have been Kummer [1981]. The
u-component of the curvature of « is added to the canonical symplectic
structure on T*(Q/G) in the reduction process. This was observed, without
the language of connections, and the phrase “magnetic term” coined by
Abraham and Marsden [1978].

The picture of Q - Q/G as a G-bundle carrying the connection a is the
beginning of the story of the “gauge theory of deformable bodies” and the
remarkable work of Wilczek, Shapere, and Montgomery on the link between
optimal control and the motion of a colored particle moving in the Yang-
Mills field o. See Shapere and Wilczek [1989], Montgomery [1990] and
references therein.

The u-component of a defines a one-form a,: ¢ — T*Q. One of the prop-
erties of a connection translates to

a, €37 (p),

which is the way Smale thought of a. The mechanical connection was ex-
plicitly used by Smale to describe the amended potential as the composition
of the Hamiltonian with a,.

The momentum shift T*Q — T*Q taking a covector p, at g to the covector
P, — a,(q) therefore maps J(u) to J7*(0). This, in effect, replaces reduction at
u by reduction at 0, which gives T*(Q/G). It is by this means that the cotan-
gent bundle reduction theorem is proved.

Reduction has its counterpart, reconstruction, which is part of the theory.
This concerns how one constructs dynamic trajectories in J™!(u) = P given
the reduced dynamic trajectory in P,. It turns out that « induces a connection
on the G,-bundle J~' () — P,, and the horizontal lift and holonomy of this
connection play a basic role in reconstruction and in the interpretation of
geometric phases (Hannay—Berry phases). See Marsden, Montgomery, and
Ratiu [1990] for details. In particular, in this reference one will find a beauti-
ful formula of Montgomery for the phase shift of a rigid body—when a rigid
body undergoes a periodic motion in its reduced (body angular-momentum
space), then the actual body does not return to its original position, but
undergoes a rotation about the constant spatial angular momentum vector
through an angle given by

Al =—-A+ gﬂ,
2l
where A is the solid angle on the sphere of radius || #|| enclosed by the trajec-
tory in body angular-momentum space, E is its energy, and T is the period.
The first term, the geometric phase, is the holonomy of the canonical one form
regarded as an S' conncction on the Hopf bundle J™! () —» S2. This type of
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formula proves to be useful in a number of problems, such as the control of
the attitude of a rigid body with internal rotors; see Bloch, Krishnaprasad,
Marsden, and Sanchez de Alvarez [1992].

Geometric phases come up in a variety of other problems as well, and the
ideas of reduction and reconstuction can be useful for understanding them.
Some of these are described in Marsden, Montgomery, and Ratiu [1990] and
Montgomery [1990). Many other applications involve integrable systems—
one of these is the phase shift that one sees when two solitons interact. This is
described in Alber and Marsden [1992]. Others that seem likely are phe-
nomena like Stokes’ drift in fluid mechanics.

4. Other Directions

Here we describe a few other recent research directions, each of which has a
specific link with Smale’s paper.

4.1. General Methodology

Most academics get judged on specific contributions—in mathematics, one is
ideally judged on specific theorems. In many circumstances, this is a sound
procedure, but what often turns out to be more valuable for science as a
whole is the point of view or pedagogical approach that is developed. Smale
(along with Poincaré, Arnold, Atiyah, Singer, and a few others) gave us the
valuable and influential point of view of dynamical systems and, more gener-
ally, of global or geometric analysis. This view has profoundly influenced a
whole generation of workers and has had a pervasive effect, often taken for
granted. It has also indirectly influenced areas Steve never worked in. For
instance, global analysis ideas have proved useful in nonlinear elasticity, even
to the point of designing better numerical codes. The book of Marsden and
Hughes [1983] is typical of many works showing this impact.

4.2. Stability of Relative Equilibria

The context of the cotangent bundle reduction theorem provides a setting for
another synthesis of the works of Arnold [1966] and Smale [1970]. This
concerns explicit (computable) criteria for the dynamic stability of relative
equilibria. The main recent works on this point are Simo, Posbergh, and
Marsden [1990] and Simo, Lewis, and Marsden [1991].

The Lie-Poisson reduction methods of Arnold are built around the fact,
mentioned above, that (T*G)/G = g*. In this case, Arnold worked out ex-
plicit stability criteria and applied them to rigid bodies and fluids. Working
in the context of fluids, to overcome technical difficulties with the PDEs
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involved, he developed what is now known as the Arnold method or the
energy-Casimir method in Arnold [1969] and related references. This tech-
nique was developed by a number of authors and was applied to a variety of
fluid and plasma problems; Holm et al. [1985] contains a fairly complete
survey and bibliography to that date.

In the general case, Smale’s work suggests that one should test for stability
by looking at the second variation §%¥, at a critical point in Q. However,
should one view it on Q/G, or on g* x Q/G? How does the Arnold stability
criterion fit in? This is an interesting point because the philosophies of the
two approaches are rather different. From the point of view of Smale, things
are considerably simpler in the abelian case and here the criterion is clear—
test 62V, for positive definiteness on Q/G. A more general suggestion is to test
82V, for definiteness on Q/G, (this criterion is an exercise in Foundations of
Mechanics but is implicit in Smale’s paper). Note that if @ = G, then Q/G, is
the orbit through x, so one can expect 62V, to correspond to the Arnold
criterion on a coadjoint orbit. However, Arnold’s philosophy was different:
the energy-Casimir method is more tractable if one relaxes the restriction to
orbits in the spirit of the Lagrange multiplier theorem. Namely, we add to the
Hamiltonian a function that Poisson commutes with every other function,
that is, with a Casimir function. (As an aside, we note for amusement only
that some would like to call such a Casimir function a “Casimirian,” so it
would sound just like a Hamiltonian or a Lagrangian. Unfortunately, En-
glish is neither logical nor perfect—we also do not call a “Green’s function”
a “Greenian,” even though it probably is more correct to do that.)

At this point in the history of geometric mechanics, it was not clear whether
the energy-Casimir method of Arnold or the second variation method sug-
gested by Smale’s work was the more appropriate. A motivation for looking
more deeply into this problem came from nonlinear elasticity. Here, the com-
plexity of the orbits of g* means that Casimir functions are difficult or impos-
sible to find. Arnold already realized this for three-dimensional ideal flow
(where the only known Casimir is the helicity) and this fact surely was a
discouragement for the method. Abarbanel and Holm [1987] made some
progress on this problem by working directly in material representation,
before reduction. (It would be interesting to return to this and related ques-
tions in plasma physics studied by Morrison [1987] in the light of the block
diagonalization work described below, and the work in progress of Bloch,
Krishnaprasad, Marsden and Ratiu on instability criteria with the addition
of dissipation obtained using Chetaev’s method.)

All of these factors led to the development of the energy-momentum method
(or block-diagonalization, or reduced energy-momentum method). The key
to this method is the development of a synthesis of the Arnold and Smale
methods. One splits the space of variations of (a concrete realization of) Q/G,
into variations in G/G, and variations in Q/G. With the appropriate split-
ting, one gets the block-diagonal structure
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Arnold form 0
8V, = ,
0 Smale form

where the Smale form means 62V, computed on Q/G. This method turns out
to be an extremely powerful one when applied to specific systems such’as
spinning satellites with flexible appendages.

Perhaps even more interesting is the structure of the linearized dynamics
near a relative equilibrium. That is, both the augmented Hamiltonian H, =
H — (J,&) and the symplectic structure can be simultaneously brought into
the following normal form:

Arnold form 0 0
0*H, = 0 Smale form 0
0 0 Kinetic energy > 0
and
Coadjoint orbit form * 0
Symplectic Form = —* Magnetic (coriolis) [
0 -1 0

where the columns represent the coadjoint orbit variable (G/G,), the shape
variables (Q/G), and the shape momenta, respectively. The term = is an interac-
tion term between the group variables and the shape variables. The magnetic
term is the curvature of the y-component of the mechanical connection, as we
described earlier.

For G = S0(3), this form captures all the essential features in a well-
organized way: centrifugal forces in V,, coriolis forces in the magnetic term,
and the interaction between internal and rotational modes. In fact, in this
case, the splitting of variables solves an important problem in mechanics:
how to efficiently separate rotational and internal modes near a relative
equilibrium.

4.3. Bifurcation and Symmetry Breaking

Smale realized, as pointed out earlier, that the symmetry group of a point
in phase space determines how degenerate it is for the momentum map.
Correspondingly, one expects, from the work of Golubitsky and co-workers,
that these symmetry groups will play a vital role in the bifurcation theory of
relative equilibria and its connections with dynamic stability theory. The
beginnings of this theory has started and it will be tightly tied with the
normal form methods of Subsection 4.2. Smale concentrated on the topology
of the level sets of H x J and their associated bifurcations as the level
sets vary. However, in many problems one also wants to vary other system
parameters as well.
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A simple example will perhaps help here. Consider the dynamics of a parti-
cle moving without friction in a rotating circular hoop, as in Fig. 2.

o ©

_ acceleration

_/9/ £ due 1o gravity

FIGURE 2. A ball in a rotating hoop.

As the angular velocity w of the hoop increases past ,/g/R, a Hamiltonian
pitchfork bifurcation occurs near the central equilibrium point, as in Fig. 3.

=>

et
Hamiltonian pitchfork bifurcationas @ T \Jg/R

FIGURE 3. The Hamiltonian bifurcation for the ball in the rotating hoop.

The stability of the central point, which has Z, symmetry, gets transferred
to the bifurcating solutions, for which the Z, symmetry is lost.

Related ideas appear in the work of Golubitsky and Stewart [1987] and in
the study of a rotating planar liquid drop (with a free boundary held with a
surface tension 7) in Lewis, Marsden, and Ratiu [1987] and Lewis [1989]. In
the latter, a circular drop loses its circular symmetry to a drop with Z, x Z,
symmetry as the angular momentum of the drop is increased (although the
stability analysis near the bifurcation is somewhat delicate). There are also
interesting stability and bifurcation results in the dynamics of vortex patches,
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especially those of Wan in a series of papers starting with Wan and
Pulvirente [1984].

4.4. Discrete Symmetries

In mechanics, the time-honored discrete symmetry is reversibility—the anti-
symplectic involution (g, p) = (g, — p). However, there are many interesting
discrete symmetries that are symplectic—the spatial Z, symmetry of the ball
in the hoop in Fig. 2 being a simple example. In bifurcation theory with
symmetry, the Golubitsky school shows that discrete symmetries (and their
corresponding fixed point sets, etc.) play an important role in the theory. A
similar thing is true in the Hamiltonian case. For instance, discrete and con-
tinuous symmetries play a key role in the wonderful work of Bobenko,
Reyman, and Semenov-Tian-Shansky [1989] that puts the integrability
of the Kowalewski top into a reduction-theoretic framework. These ideas
have been put into a general framework of discrete reduction by Harnard,
Hurtubise, and Marsden [1991]. It would be of interest to go back to Smale’s
program with these discrete symmetry ideas to see their effect.

4.5. Singularity Structures in Solution Spaces

We already noted that Smale observed that singular points of J are points
with symmetry. This is a simple but a profound observation with far-
reaching implications. Abstractly, it turns out that level sets of J typically
have quadratic singularities at its singular (=symmetric) points, as was shown
by Arms, Marsden and Moncrief [1981]. In the abelian case, the images of
these symmetric points are the vertices, edges, and faces of the convex poly-
hedron J(P) in the Atiyah-Guillemin—Sternberg—Kirwan convexity theory.
(See Atiyah [1982] and Guillemin and Sternberg [1984].)

These ideas apply in a remarkable way to solution spaces of relativistic
field theories, such as Einstein’s equations of general relativity and the Yang-
Mills equations. Here the theories have symmetry groups and, appropriately
interpreted, corresponding momentum maps. The relativistic field equations
split into two parts— Hamiltonian hyperbolic evolution equations and ellip-
tic constraint equations. The solution space structure is determined by the
elliptic constraint equations, which, in turn, say nothing other than the mo-
mentum map vanishes.

A fairly long story of both geometry and analysis is needed to really estab-
lish this, but the result is easy to understand in the terms we have given: The
solution space has a quadratic singularity precisely at those field points that
have symmetry. For further details, see Fischer, Marsden, and Moncrief
(1980] and Arms, Marsden and Moncrief [1982].

Whereas these results were motivated by perturbation theory of classical
solutions (gravitational waves as solutions of the linearized Einstein equa-
tions, etc.), there is some evidence that these singularities have quantum im-
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plications. For example, there appears to be evidence that, in the Yang—M ills
case, wave functions tend to concentrate near singular points (see, for exam-
ple, Emerich and Romer [1990]). It would be of interest to explore these
ideas further using the theory developed by Sjamaar [1990] and Sjamaar and
Lerman {1991].

4.6. Mechanical Integrators

With Steve’s more recent interests in computation, it might be appropriate to
note that there is quite a bit of activity in developing numerical codes that
respect the underlying structure of a mechanical system with symmetry. For
example, one can develop codes that preserve exactly the energy-momentum
map H x J or that preserve the symplectic structure and J (it turns out that
one cannot do all of these; see Ge and Marsden [1988]). There are too many
references to adequately survey here, but the one just cited, Channell and
Soovel [1990], references therein, and recent works of Feng, Krishnaprasad,
and Simo, will give one a start.

To obtain an integrator preserving J is related to finding an algorithm
Fu: P — P that is consistent with the symmetry. To get one that preserves H,
one can base the analysis on a discretization of the variational principle,
and to get one preserving the symplectic structure, one can discretize the
Hamiiton-Jacobi equation.

One of the interesting things about these integrators is that they seem to
perform better than conventional ones (such as Runga-Kutta schemes) in
long-term integrations where chaotic dynamics becomes important.

4.7. Homoclinic Chaos

Of course, Smale is noted for the famous “horseshoe” that is associated to
homoclinic tangles. The technical way that this is handled is via what is
usually called the Birkhoff-Smale theorem, which associates an invariant
Cantor set having a well-understood symbolic dynamics to a homoclinic
tangle. This phenomena had its origins in the work of Poincaré on the three-
body problem and led to the Poincaré-Melnikov—Arnold technique for ex-
plicitly finding homoclinic tangles in specific systems. (See Wiggins [1988] for
a thorough account of these topics.) We note that the method has proved
effective in establishing homoclinic chaos for PDEs by using infinite-
dimensional versions of the Poincaré—Melnikov-Arnold theorem and the
Birkhoff-Smale theorem; see Holmes and Marsden [1981].

It is also interesting to note that horseshoes and reduction fit nicely to-
gether and this is needed when one proves that various systems with symme-
try (such as rigid bodies with attachments) have homoclinic chaos (see
Holmes and Marsden [1983]). Here ones sees that Smale’s work on chaos in
dynamical systems and his work on symmetry and mechanics fit together
in a mutually suportive way. This is, of course, just one example of the
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many connections running through different parts of Smale’s work when it is
viewed on a global scale.

Epilogue

In this paper, I have sketched only some of Smale’s involvement with me-
chanics. He was also interested in problems such as rotating fluid masses and
provided much good advice about such problems. He was also interested in
elementary particles, and using topology to help classify them—see Abraham
[1960). This subject is of course now in vogue with people like Witten, who
is a good example of someone who has a blend of analysis, geometry, and
topology in the Smale spirit.

A curious twist in Smale’s work involves his recent work and the work of
others on linear programming and computational complexity described else-
where in this volume. We are now witnessing the beginnings of deep links
between this work and mechanics by people like Deift, Brockett, Bloch,
Flaschka, Ratiu, and others. For example, efficient ways of diagonalizing
martices can be done by following the dynamics of integrable Hamiltonian
systems (for instance, of Toda type) on appropriate spaces of matrices. This
is one of many nice illustrations of the conference theme “unity and diversity”
that runs through Smale’s work and the approach he takes to his topics.
Whereas there is a broad diversity in the subject matter, there is a deep unity,
not only the obvious one of using global analysis methodology throughout
his work, but nonobvious ones, like the preceeding link between computa-
tional techniques and mechanics, that repeats in unexpected yet beautiful
ways in each of the subjects that he treated.
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