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On uniformly rotating fluid drops
trapped between two parallel plates

H.-P. KRUSE J.E. MARSDEN J. SCHEURLE

ABSTRACT. This contribution is about the dynamics of a liquid bridge between
two fixed parallel plates. We consider a mathematical model and present some
results from the doctorial thesis [10] of the first author. He showed that there is
a Poisson bracket and a corresponding Hamiltonian, so that the model equations
are in Hamiltonian form. The result generalizes previous results of Lewis et al.
{12] on the dynamics of free boundary problems for “free” liquid drops to the case
of a drop between two parallel plates, including, especially the effect of capillarity
and the angle of contact between the plates and the free fluid surface. Also,
we prove the existence of special solutions which represent uniformly rotating
fluid bridges, and we present specific stability conditions for these solutions.
These results extend work of Concus and Finn (2] and Vogel [18),{19] on static
capillarity problems (see also Finn [5]). Using the Hamiltonian structure of the
model equations and symmetries of the solutions, the stability conditions can be
derived in a systematic way. The ideas that are desribed will be useful for other
situations involving capillarity and free boundary problems as well.

1 Introduction

We consider the motion of an ideal, i.e., incompressible and inviscid fluid of
finite volume between two parallel flat plates. The plates are assumed to be
at rest. We only take into account surface tension along the free surface of the
fluid and adhesion forces along the surfaces of contact between the fluid and the
plates. The influence of other forces such as gravity is neglected (¢f. Concus
and Finn [3]). Also, the complete separation of the fluid from one of the plates
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will be excluded, i.e., we assume that the fluid always forms a bridge between
the two plates.

In the theory of capillary phenomena, the boundary conditions that people
use for the angle of contact of the liquid with the wall is still a point of contro-
versy if the liquid is not at rest. In the latter case, Gauss [6] gave a justification
of the particular boundary conditions that people use, based on the principle
of virtual work. In the present situation, we argue that there is a distinguished
natural choice for these boundary conditions dictated by the Hamiltonian struc-
ture. They can be derived as part of the variational principle underlying the
Hamiltonian equations. In particular, this gives some justification for the as-
sumption of a constant contact angle even in the dynamic case.

A standard way to find Hamiltonian structures for mechanical problems is
to pass from the material to the spatial representation and derive the reduced
Poisson structure (see e.g. Marsden et al. [15], [16]). With regard to this
Poisson structure, the equations of motion read as follows

(1.1) F={F,H)} forall FED.

Here {-,} denotes the Poisson bracket on the reduced phase space N, D is the
class of smooth real-valued functions on N, F' denotes the derivative of F along
solution curves, and H € D is the corresponding Hamiltonian which describes
the total energy. For fluid flow problems, this method dates back to Arnold
[1) who considered pure rigid wall boundary conditions (cf. also Marsden and
Weinstein [17]). Lewis et al. {12] have applied this method to a free boundary
value problem in fluid dynamics for the first time. But this problem does not
involve capillarity. The chief difficulty with free boundary value problems is the
treatment of the boundary conditions. The situation is subtle, because the free
boundary must be included as a dynamic variable. Thus, the Poisson bracket
picks up boundary terms and this makes the interaction with the remaining
terms subtle in terms of questions like the Jacobi identity. Because of this
subtleties, one cannot just quote general reduction theory here. Rather one
can only use this as a guide. For a dynamic problem involving capillarity, free
surfaces and the contact angle as in the present case, things are even more subtle,
because the curves of contact between the free fluid surface and the plates must
be included amongst the dynamic variables in addition. For a derivation, along
these lines, of the Hamiltonian structure which we are going to describe here,
we refer to [10].

Uniformly rotating fluid drops are relative equilibrium solutions, in the shape
of surfaces of revolution around an axis perpendicular to the plates. Our re-
presentation of these drop shapes in terms of Delauny curves determines them
precisely for sufficiently small angular velocities. To analyze their stability, an
energy method appropriate for rotating systems is used. If one restricts the sta-
bility analysis to rotationally symmetric initial perturbations of the given drop,
then the definiteness of the relevant quadratic form can be determined using
Sturmian theory which leads to specific stability criteria. In such a stability
analysis, one has to be careful about the choice of a potential function, as there
are several candidate potential energy functions that give the relative equilibria
in terms of a variational principle. These make a difference, since the stability
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conditions need not be optimal if one does not make the best choice. The choice
is also important for locating bifurcation points correctly (cf. Lewis [11], [13]).
We indeed obtain the optimal stability conditions. Our choice of the potential
function is suggested by the so-called reduced energy-momentum method which
is a general method to test relative equilibria of Hamiltonian systems with ro-
tational symmetries for their (nonlinear) stability (see e.g. Marsden {14, §5]).
However, we also have to take into account the volume constraint since the
fluid is assumed to be incompressible. The fact that the Hamiltonian system is
infinite-dimensional in the present situation makes a rigorous stability analysis
subtle in terms of questions like general existence and uniqueness of solutions
(cf. Kroner [9]) or consistency of various topologies which are involved. We do
not address such issues here. Rather we use a formal notion of stability (cf.
Holm et al. [7]).

For static drops, some results along these lines were already known before (see
Concus and Finn [2], and Vogel [18], [19]). For numerical results with rotation
and even with gravity included, see Hornung and Mittelmann [8].

The following part of this paper is organized as follows. In section 2, we first
state and discuss the basic equations of motion in conventional form. Then we
describe their Hamiltonian structure, i.e., the corresponding Hamiltonian and
Poisson bracket. In section 3, we outline the construction of uniformly rotating
drop solutions by means of Delauny curves and formulate the stability criteria.
As a simple example, we consider cylindrical drops.

2 The equations of motion

We assume that at any instant of time ¢, the free surface of the fluid drop is
given as the graph of a real-valued function

(2.1) r=%(g,zt) (r>00<p<2r,0<2<h),

where r, ¢, z are cylindrical coordinates in the Euclidean 3-space with origin at
one plate and the z-axis perpendicular to the plates; k denotes the distance of
the two plates. Note that this assumption excludes the complete separation of
the fluid drop from one of the plates. Then we have the following equations for
spatial representations

v=2o(rp,zt), p=p(rezt), T=3I(pz2t)

of the velocity field, the pressure field and the free surface of the fluid:

%+(0-V)v =-Vp in Dg

V.v=0 in Dg

a8 __ w- —
(2.2) -ﬁz—er—_':‘ on r=X

P=TK on r=%

v-n=0 on X, UX,

cosy; = =t on ¢; (j=1,2)
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Here, V is the Nabla operator; at any instant of time, Dy denotes the region
between the plates which is occupied by the fluid; for j = 1 and j = 2, &;
is the region in the j-th plate P; which is wetted by the fluid, and ¢; denotes
the boundary curve of Xj, i.e., the curve of intersection of the free surface
r = ¥ with the plate P;. The outer unit normal with respect to Dy is always
denoted by n. The first two equations are just Euler’s equations for ideal fluids,
i.e., the balance equation for linear momentum and the continuity equation
which models incompressibility of the fluid. The third equation constitutes a
kinematic condition for the evolution of the free surface. Here and subsequently,
e denotes the unit vector in radial direction. Along the free surface, the pressure
is supposed to be balanced by surface tension. In the fourth equation, x denotes
the mean curvature of the free surface, and 7 > 0 is the material constant
of surface tension. As usual, along the rigid walls, we assume slip boundary
conditions given by the fifth equation. Finally, y; denotes the angle of contact
of the fluid with the plate P;, i.e., the angle between the outer unit normal n;
of I; inside P; and the outer unit conormal of the free surface r = T along the
curve c;. It is assumed to be constant and given by the sixth equation in (2.2)
where o; denotes the adhesion coefficient with respect to the plate P;, which is
another material constant. For simplicity, we have set the fluid density equal to
one here.

As indicated in section 1, these equations are Hamiltonian in the sense of
mechanics on Poisson manifolds. The Hamiltonian function is given by

2.3) H(Z,v) = -;-/"vllde + r/dA - Zaj/dA,
Dg o) i=1,2 p>)

where the volume integral describes the kinetic energy of the fluid drop, || - || is
the Euclidean norm, and the surface integrals describe the potential energies.
The dynamic variables are the free boundary ¥ and the spatial velocity field v,
a divergence-free smooth vector field in the region Dg bounded by ¥ and the
plates P;. Also, v is supposed to satisfy the slip boundary condition along X,
and ¥y. The surface X is represented by a sufficiently smooth function I(yp, z)
as in (2.1). We assume that the volume of Dy is prescribed. The (reduced)
phase space A can be identified with all such pairs (Z,v). Variations of ¥ and
v are denoted by 6T and §v, respectively. The Poisson bracket will be defined
for functions F,G : N/ — R, which possess functional derivatives defined as
follows. '

We say that such a function F has a functional derivative with respect to T at
(Z,v) € N, if there exist maps $£(Z,v): T > R and %?(E,‘u) ;>R (=
1,2), such that

d

de

F(Ze,v) = Z—g(z,v)asz+ > /%"EF(z,v)azds
=0
z G5

j=1,2

holds for any curve € — X, of admissible surfaces with £y = £ and f;L:o X =
6. Here c; denotes the curve of intersection of ¥ with the plate P; as above;
for path integrals, the element of integration is denoted by ds. Similarly, we say
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that a function F has a functional derwatwe with respect to v at (X,v) €N, if
there exists a divergence-free vector field & (2 v) in Dy, the normal component
of which vanishes along ¥, and X5, such tha.t

d

5F
I F(Z,v)= E(E, v)bvdV

Dy

e=0

holds for any curve £ — v, of admissible vector fields with vo = v and ;f; |€=0 U,
by

Let D be the set of all functions F : N/ — R, which have functional derivatives
as defined above at any point (Z,v) € N. We have H € D. In fact,

§H P YT
TEY = Gl + e n
8;H .
(2.4) 62 “=(%,v) = (rcosvy;—oj5)e.-n; (j=1,2)
E}—(E,v) = v

We now define a Poisson bracket on N as follows. For functions F,G € D, we
set

#.6} = [(Vxo) (G x v

6F ,6G 6G 6F 1
_/‘[E(En) - E(Rn)] —e,--ndA
/ &;F 6G _ 6;G ¢6F n) 1 d
8T Vov 6T ‘Vov €N 8
J—12

With this Poisson bracket, using the divergence theorem, it is not hard to show
that for any solution (v,p, X) of the basic equation (2.2), the relation (1.1) is
satisfied along the curve ¢ ~— (Z,v) in M. Conversely, given any such curve
for which the relation (1.1) is satisfied, one can construct a pressure field p in
Dg, such that (v,p, X) is a solution of (2.2) (see Kruse [10]). The pressure field
satisfies the following boundary value problem, where A is the Laplace operator.

Ap =-V:((v-V)v) in Dy
(2.5) P =Tk on ¥
Vp-n =—((v-V)v):n onZ; (j=1,2)

In that sense, the equations in (2.2) are equivalent to the Hamiltonian equation

(1.1).
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3 Uniformly rotating liquid drops

Now we look for special solutions of (2.2), for which the fluid drops rigidly ro-
tate around the z-axis with constant angular velocity w, in the shape of surfaces
of revolution

L=f(z) (0<z<h).

Obviously, such solutions are invariant under the group of rotations around
the z-axis which is a symmetry group of the problem. With respect to the
material representation, they are relative equilibria. For that kind of solutions,
the basic equations reduce to the following boundary value problem for a non-
linear second-order ODE:

™ -— %wzj’2 =c¢ (ceR)
(3.2) () = \/1_—_2———6_:‘-5 = p1
1
ﬂm=—j%g=m

Here, the mean curvature x of the free surface is given by

_ 1 _ fll
YT AR @ ()RR

in terms of f; f' and f” are derivatives with respect to z, and c is an arbitrary
real constant which is related to the pressure field as follows:

K=

1
(3.2) p=c+3 w?r?

Note that, in terms of f, the volume of the drop is given by

h
(3.3) vol(fy == | fidz.
/

Theorem 3.1 Let the constents h, T, p1, p2 a8 well as a number K > 0 be given.
Then there exists a constant wg such that for all w € [—wp,wp), (3.1) has a
solution (f,¢) with vol(f) < K.

Proof: For w = 0, equation (3.1) says that the surface of revolution generated
by f must have constant mean curvature. There is a simple construction of such
functions f due to Delauny [4]. One rolls up an ellipse along the z-axis inside
a plane without sliding. Then each focus describes a curve which generates a
surface of constant mean curvature through rotation about the z-axis. Thus,
using the parameters of the ellipse to fit the boundary conditions as well as the
volume constraint, we can construct a solution f of (3.1) for w = 0. Furthermore,




ON UNIFORMLY ROTATING FLUID DROPS 313

for small |w| # 0, we can use Delauny curves as a first approximation for the '
solution. Thus, the theorem follows by a perturbation argument.

To fit the boundary conditions, we use the shooting method. To this end, we
consider the following initial value problem:

TKg — %w2¢2 = ;
(3.4) ¢(0) = rf(0)
$'0) = m;m

Here r is a parameter, r € (0,1), and ¢ = ¢(f) = 7x5, where f = f(z),z € R,
represents a Delauny curve given by the parametrization

ff=a%(1-2¢ cos% +¢€?).

Here -
s=28(z)= / a1+ f’(z)2)§'dz +30, 8 €R,
0

denotes the arc length parameter of the Delauny curve, a is the length of the
major semiaxis of the underlying ellipse and e the numerical excentricity of this
ellipse. Note that 0 < e < 1 and 0 < f < 2a. Also, f is a periodic function of
z with period equal to the circumference of the underlying ellipse. Taking the
derivative with respect to z in the formula for f2, we immediately find

fl = SiIl (i.) .
1—ecos(2)
This function is 27-periodic and odd in £ = £ and attains arbitrarily large

positive and negative values near z = 0, as e approaches 1. Therefore, e can be
chosen such that

max |f'| > max(|p1], |p2])

holds. Then we have f'(0) = p; provided that the constant s is chosen appro-
priately, and we can find values zg, z; > h such that f'(zp) > p2 and f/(z;) < pa.
Without loss of generality, we assume that zp > z; holds. Finally we assume
that a is chosen such that 47 ha? < K is satisfied.

Then a straightforward computation shows that for w = 0 and r € (0, 1),

z
#2)=ri(), z€R,
is a solution of (3.4) such that in addition,the following inequalities hold:

¢'(rz0) > p2
(3.5) $'(rzn)) < p2
vol(¢p) < K

Note that scaling f by r as above is equivalent to replacing a by ra. Finally
we use the well known theorem of continuous dependence on parameters for the
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solution of an initial value problem such as (3.4) to argue that, in particular
for :‘ <r< ;_h— and 0 < z < 2h, there is a solution ¢ = ¢(z) of (3.4) and
(3.5) even for suﬁicmntly small |w| # 0, say for |w| < wg. This solutlon depends
continuously on r, and by (3.5), ¢'(h) = ¢'(r20) > p2 for r = ;5 and ¢'(h) =

@' (rz1) < po for r = % Hence, by the intermediate value theorem, for any
w € [—wp,wp) there exists a value of r € [ '3 421 such that the corresponding
function f = ¢(z) solves the boundary value problem (3.1) for a certain value

of ¢ € R. This proves the theorem.
To analyze the stability of these special solutions, we use the augmented po-

tential function V,, : N'— R given by
1
Vo = V(D) - 21(8)?,

where V,, denotes the total potential energy of a drop (cf. 2.3), and I(¥) =
-[Dn r? dV is its moment of inertia about the z-axis. For axially symmetric drop

shapes given by a function f(z), it follows that

h
(3.6) Vo=Vu(f) = 27r1‘/f\/1+ (f)2dz — oy f(h)? — oamf(0)?
0

h
T o9 4
- — dz .
4w/fz
0

Moreover, if f is a solution of (3.1), then f is a critical point of the functional
V., = Vi, —cwol on the function space C*[0, k] (see Kruse [10]), where the values
of w and ¢ are the same as in (3.1). This modification of V,, is consistent with
the volume constraint vol(f) = const..

The potential function V,, is appropriate for our situation. In fact, let f be
a solution of (3.1) and denote the corresponding surface of revolution by Iy
and the velocity field corresponding to the angular velocity w by v,. Define an
augmented Hamiltonian (energy-momentum functional) on N by

H,=H-w(J = J(Zf,v)),

where J = J(Z, v) is the momentum map that assigns to each drop state (Z,v) €
N the corresponding angular momentum about the z-axis. This is a conserved
quantity for our system due to the rotational symmetry. Hence, H, is also a
conserved quantity. Furthermore, (X¢,v,) is a critical point of H,. Also, if f
is a strict minimum of V,, subject to the volume constraint, then (Xz,v,) is a
strict minimum of H,, restricted to the subset of pairs (£,v) € N, such that
¥ is axially symmetric. Hence, H,, is a kind of Liapunov function for (Xy,v,).
This is a consequence of the fact that H, can be rewritten as

(3.7) H,=K,+V,+wlJ(Zf,v,)
with the augmented energy functional K, given by

1
K, = = / lv = vo||*dV ;
Dy
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cf. Marsden [14, §5]. By this reference, one expects to obtain sharper (opti-
mal) stability conditions if instead of V,, one works with the so-called amended
potential function V, : N' — R given by

L
Vi = %(E) + 1(5) 14

with g = J(Zy,v,). However, as far as the stability analysis below is concerned,
these two potential functions lead to the same results. Because V, is singular
at £ = Xy with f = 0, we have chosen to work with V,, here.

These ideas motivate the following stability criterium. A solution (Z¢,v,) is
said to be formally stable with respect to rotationally symmetric initial pertur-
bations, if the second variation of V,, at f € C[0, h] is positive definite subject
to the volume constraint, which amounts to saying (cf. Vogel [18]) that the
quadratic form

h
(3.8) p#) = [ (P& - Q) d
0
with "
T T
P=awowr » e raeeme e

is positive definite on the function space

C}. [0,h] = { ¢ €C? [0, A]

h
0/f¢dz=o}.

For w = 0, this stability criterium agrees with that in Vogel [18]. According to
Vogel [18, Theorem 3.1), B(¢) is positive definite on C} [0, A], if the associated
Sturm-Liouville eigenvalue problem

(3.9) Ligl=2¢ , ¢(0)=¢'(R)=0

with
Ligl=—(P¢) +Q¢

has eigenvalues A; < 0 < Az < ..., and the solution % of the boundary-value
problem

(3.10) Lyl=f , ¥ (0)=9'(R)=0

has the property foh 3 dz < 0. Thus, one can use Sturmian theory to verify the
definiteness of the relevant quadratic form.

We conclude with a simple example. Suppose that oy = o2 = 0 holds. Then
f(z) = d is a solution of (3.1) for any w, any d > 0 and a certain constant
c. These solutions represent rigidly rotating cylindrical drops. In this case,
the eigenvalues of the associated Sturm-Liouville eigenvalue problem (3.9) can
be computed explicitly, since the operator L[¢] has constant coefficients. The
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smallest eigenvalue A; = —(7/d + w?d®) is always negative. The other eigen-
values are given by Ap+y = 7dn?n2/h?—7/d—w?d? ,n € N. Hence, the condition
A2 > 0 leads to the explicit stability criterium

h? + w?h2d <1
w2d?

(3.11) -
The solution 3 = —W of (3.10) clearly has the required property. .
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