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This paper aims to introduce readers with backgrounds in classical molecular dynamics to 
some ideas in geometric mechanics that may be useful. This is done through some 
simple but specific examples: (i) the separation of the rotational and internal energies in an 
arbitrarily floppy N-body system and (ii) the reduction of the phase space 
accompanying the change from the laboratory coordinate system to the center of mass 
coordinate system relevant to molecular collision dynamics. For the case of two-body 
molecular systems constrained to a plane, symplectic reduction is employed to 
demonstrate explicitly the separation of translational, rotational, and internal energies and the 
corresponding reductions of the phase space describing the dynamics for Hamiltonian 
systems with symmetry. Further, by examining the topology of the energy-momentum map, a 
unified treatment is presented of the reduction results for the description of (i) the 
classical dynamics of rotating and vibrating diatomic molecules, which correspond to bound 
trajectories and (ii) the classical dynamics of atom-atom collisions, which correspond 
to scattering trajectories. This provides a framework for the treatment of the dynamics of larger 
N-body systems, including the dynamics of larger rotating and vibrating polyatomic 
molecular systems and the dynamics of molecule-molecule collisions. 

I. INTRODUCTION 

Basic interests in molecular physics include the study 
of (i) the structure and dynamics of molecules, clusters, 
and complexes (such as hydrogen-bonded complexes and 
van der Waals molecules) and (ii) the dynamics of mo- 
lecular collisions, including the cases of atom-atom elas- 
tic scattering, atom-molecule inelastic scattering, and 
atom-molecule reactive scattering. While molecules nat- 
urally obey the laws of quantum mechanics, one fruitful 
approach has been to first examine the dynamics deter- 
mined by the laws of classical mechanics. This has been 
true both for the case of rotating, vibrating molecules’ 
and for the case of molecular collisions,2-8 including ion- 
molecule reactions.’ In fact, quantum mechanics was de- 
veloped by assuming a correspondence with classical 
mechanics,t” and this is one of the directions in which the 
geometric approach to quantum mechanics has continued 
to develop.‘1-‘3 This approach builds upon a background 
in classical mechanics.14*‘2P’5 

Beginning with principles and examples that are fa- 
miliar to classical molecular dynamicists, we will intro- 
duce some ideas from geometric mechanics. Specifically, 
we begin with Hamilton’s equations in curvilinear coor- 
dinates and will show that they can be expressed geomet- 
rically in coordinate-free form in phase space. Other ideas 
to be discussed geometrically, include the separation of 
energies (cf. Ref. 16) accompanying the appropriate 
choice of a coordinate system, the description of dynam- 
ics in a moving coordinate system (cf. Ref. 17) in terms 

of dynamics on a reduced phase space,‘* and the decou- 
pling of the dynamics corresponding to the internal and 
rotational motions.” 

These ideas will be motivated by looking specifically 
at (i) the dynamics of atomic clusters,” which are also 
relevant to the dynamics of van der Waals molecules,‘i 
and (ii) the dynamics underlying atom-atom differential 
cross sections.3 

Finally, we explicitly treat the two-body problem in a 
central force field potential. After geometrically deriving 
the separation of energies and the reduced phase spaces, 
we eventually look at the topology of the reduced phase 
spaces for the case of a molecular interaction potential. 
The reduced phase spaces of different topological types 
correspond to different physical situations, including the 
rotating, vibrating diatomic molecule and atom-atom 
elastic scattering. 

This work provides a framework for the geometric 
treatment of the dynamics of N-body systems previously 
treated by other approaches, such as atom-diatom van 
der Waals complexes and atom-linear molecule van der 
Waals complexes (see, e.g., Ref. 22), or the dynamics of 
a diatomic molecule in a time-dependent potential, such 
as an electromagnetic field (see, e.g., Ref. 23). Another 
possible future area of application is in geometric compu- 
tational quantum mechanical molecular dynamics 
studies.24 

While the rotating, vibrating molecule has recently 
been examined geometrically,25f26 the previous results did 
not discuss the optimal decoupling of the internal and 
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rotational dynamics.” Interest has been expressed in the 
geometric approach to molecular collision dynamics2’ 
and in the topology of the scattering dynamics.3 The to- 
pology of the Kepler problem has been examined 
previously.28-30 However, the earlier studies have not ap- 
plied reduction techniques to the molecular problem, and 
the topological relationship between bound and scattering 
trajectories has not been discussed. 

II. HAMILTON’S EQUATIONS IN CURVILINEAR 
COORDINATES FOR THE STUDY OF CLASSICAL 
MOLECULAR DYNAMICS 

The Hamiltonian H in curvilinear coordinates for a 
system with N degrees of freedom is 

Hz: ,$ i 8PIpi + VP (2.1) 
t-1 j-l 

written in terms of the fundamental metric tensor gii 
(Ref. 17) with inverse gi’, i.e., 

8=g; ‘, i, j= 1,2 ,..., N, (2.2) 

momenta pk (k = 1, 2,..., N), and potential energy V. 
Then Hamilton’s equations take the explicit form 

. aH 
qk=& 9 

k= 1,2 ,..., N, 

(2.3) . aH 1 
‘=ap,=,PI 

aH av p’e 
Pr= - dr= -ar+mr3, 

dH 
pk= ---J&y 

g’$pj+ V) , k= 1,2,...,N. 

(2.4) 

In the examples, we will treat cases where gi’ is diag- 
onal, i.e., 

g”=6i#, i, j= 1,2 ,..., N, (2.5) 

and the potential energy V is a function of the coordinates 
qk (k = 1, 2,..., N) alone. In these cases, Hamilton’s 
equations simplify to 

&=tikpk, k= 1,2,...,N (2.6) 

N a 
dk= - gk-; i;l a4k (g”)p;, k= 1,2 ,..., N. (2.7) 

When a change of variables to an appropriate curvi- 
linear coordinate system such that k;k = 0 for some k can 
be carried out, then one can reduce the dimensionality of 
the phase space describing the Hamiltonian system. This 
can be seen in the following simple example. 

Polar coordinates 

x=r cos 8, (2.8) 

y=rsin 8, (2.9) 

are a special case of curvilinear coordinates with funda- 
mental metric tensor gii satisfying 
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(2.10) 

and with corresponding inverse 

1 0 
g”= 

i i 

1 . 
O7 

(2.11) 

Thus, expressed in polar coordinates, the Hamiltonian H 
for a system with a potential V describing a central force 
field takes the form 

fW,Qwd =&p: + T& * ;P; + V(r). (2.12) 

Then Hamilton’s equations in this coordinate system are 

(2.13) 

(2.14) 

. aH 1 
8=-=-p* 

ape mr 

aH 
k;e= -Y&=0. 

(2.15) 

(2.16) 

Hence the angular momentum pe is a constant and we 
obtain on the reduced phase space (r,p,) the reduced 
Hamiltonian Hp,( r,p,), which we now express in the form 

Hpo(r,p,) = ( 1/2m )pf + V,,(r), 

with effective potential VP,(r) 

(2.17) 

V PO (r)=V(r) + (1/2mr2)p2 e (2.18) 
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parametrically dependent on pe. This is the effective po- 
tential familiar to molecular dynamicists (see, for exam- 
ple, Refs. 6, 3, 7, or 8). It is comprised of the original 
potential for the potential for the central force plus a 
potential energy term describing a centrifugal barrier. 
Hamilton’s equations on the reduced phase space are 

JHP, av,, 

Pr= - dr= 
-- 

ar a 

(2.19) 

(2.20) 

The reduced Hamiltonian has been employed with 
the appropriate mass m (i) in the form given above by 
molecular collision dynamicists to describe the classical 
dynamics of atom-atom collisions3*6*7 and (ii) in the cor- 
responding quantum mechanical form by molecular spec- 
troscopists to treat the rotating, vibrating diatomic 
molecule.31-33 In these cases, examples of molecular in- 
teraction potentials that have been employed include the 
Lennard-Jones34P35 potential and the Morse36 potential, 
respectively. Both of these potentials have the essential 
qualitative features of (i) attaining a very large positive 
value as the internuclear separation r approaches 0, (ii) 
attaining a finite negative value (the well depth) at the 
equilibrium internuclear separation, and (iii) vanishing 
as the internuclear separation tends to 00, allowing the 
description of molecular dissociation. 

The Lennard-Jones potential V,(r) takes the form 

V&9 =k[ (o/r)12 - (cr/r)6], (2.21) 

where E is the well depth and the potential vanishes at 
r = U. The corresponding effective potential then takes 
the form 

Vu,p,(r) = VU(~) +pv2mr 2. (2.22) 

This can be expressed in dimensionless form (called “re- 
duced” units in the chemical physical literature). Follow- 
ing Hirschfelder, Curtiss, and Bird,6 we define the follow- 
ing variables in dimensionless units: 

r *‘r/o, (2.23) 

P = V/E, (2.24) 

p8 =pe/( 2mea 2, “2 (2.25) 

co= VP/E (2.26) 

Then, in dimensionless units, the effective potential cor- 
responding to the Lennard-Jones potential is given by 
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PLpe(r *)=4[ (r *> -I2 - (r *) -6] +pz2/r *2. 
(2.27) 

Above the value p$ = 1.569, the effective potential has no 
inflection point and hence is purely repulsive for all val- 
ues of r * (Ref. 6, p. 554; Ref. 7, p. 54). 

The Morse potential V,(r) takes the form 

V,(r) =&-2a(r-rO) - 2&-a(‘-rO), (2.28) 

where D is the equilibrium dissociation energy, r. is the 
equilibrium internuclear separation, and a is a positive 
constant determining the shape of the potential well. The 
corresponding effective potential is 

VM,p,( r) =De - 2a(r- ‘0) - 2De - dr- b) + p28/2mr 2. 
(2.29) 

We now define the following variables in dimensionless 
units: 

r *=r/r 07 (2.30) 

V* = V/D, (2.31) 

a* =aro, (2.32) 

p$=pe/(2mDri)“2, (2.33) 

V&= VP/D. (2.34) 

Then the dimensionless effective potential corresponding 
to the Morse potential is 

V*M,pg(r*)=e-2a*‘r*-I) -2e-“*(‘*-‘) +pQ2/r*2e 

(2.35) 

Note that the dimensionless effective potential corre- 
sponding to the Morse potential contains an adjustable 
parameter a* that determines the width of the potential 
well and that did not appear in the dimensionless effective 
potential corresponding to the Lennard-Jones potential. 
We choose a* = 5 so that the potential wells of 
PM,ppe(r *) and PU,pO(r *) have approximately the same 
width when plotted as a function of r *. Numerically, we 
find that the value pe - * - 1.413 is the critical value for the 
Morse potential with a* = 5, i.e., for values of p8 
> 1.413, the effective potential is purely repulsive for all 
values of r *. 

These ideas also extend to larger N-body problems, 
such as the dynamics of atomic clusters (discussed in the 
next section), weakly bound van der Waals molecules,21 
atom-atom collisions (discussed in Sets. IV and VI), and 
polyatomic reactions (discussed briefly in Sec. VII; see 
Ref. 8). As motivation for the more general and more 
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mathematical treatment contained in Sets. V and VI, the 
next two sections (III and IV) each present a physical 
example followed immediately by its corresponding geo- 
metric treatment. 

Ill. SEPARATION OF THE ENERGY OF ROTATION 
AND THE INTERNAL VIBRATIONAL ENERGY 

A. Instantaneous rigid body momentum 

Jellinek and Li2’ showed that the total kinetic energy 
of any nonrigid N-body system can be expressed as the 
sum of its “overall rotational energy,” which we will call 
simply the rotational energy, and its internal vibrational 
energy.We recall their result in Eq. (3.8) below. 

Let {ri : i = l,...,N) be the coordinates of the particles 
and {pi : i= l,...,N) be the momenta of the particles. A 
force-free rotation of a true rigid body is characterized by 
the time evolution of its angular velocity wrb( t). Let 
I*(t) be the instantaneous inertia tensor of the rigid body 
with respect to the lab-oriented system of coordinates 
(assumed for simplicity to be an inertial frame). The 
rigid body total angular momentum Lrb in the lab frame 
is 

L*=I’b(t)*&(t) (3.1) 

and is a constant of the motion. For a nonrigid system, 
one defines the instantaneous angular velocity o;*“(t) as 
follows: The total angular momentum L of the nonrigid 
system is the product of the instantaneous inertia tensor 
I(t) and the instantaneous angular velocity o’;““(t) : 

L=I(t)*oyqt). (3.2) 

Define the rigid body momentum P;‘~ 

p;rb”=mi(wLh”Xri), i=l,...,N (3.3) 

and the difference Api between it and the momentum pi 

Api=pi - pi‘*“, i= l,..., N. (3.4) 

Then the total vibrational angular momentum vanishes, 
i.e., 

,?l riXAPi=O (3.5) 

because the total angular momentum of the system is 
given by 

N 

L= E riXpi, = ; riXp;rb”+ C riXApi (3.6) 
i=l i=l i=l 

and the instantaneous rigid body angular momentum sat- 
isfies 
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(3.7) 

Then the total kinetic energy of the nonrigid system is 

;* J&j, i!!$+ i* g+ ;, p:y? 
’ (3.8) 

The last term is the Coriolis term (cf. Refs. 14 and 37) 

N p;rb”.Api N 

c 
i=l mi 

= igl (~~wXri)*bi9 

“rb” =WL riX Api, 

=o, (3.9) 

which vanishes since the total vibrational angular mo- 
mentum vanishes. Thus the total kinetic energy separates 
into two terms. The vanishing of the Coriolis term is 
crucial for the separation of energies in the general N- 
body case. 

The identity (3.8) is used as one ingredient in the 
reduced energy-momentum method discussed below. 
While equation (3.8) separates the energy, it does not 
separate the dynamics. The block diagonalization results 
of Simo, Lewis, and Marsden” do “separate” the dynam- 
ics near a relative equilibrium and will be sketched below. 

B. Application of the reduced energy-momentum 
method 

Let Q be the configuration manifold and P be the 
associated canonical phase space, i.e., the cotangent bun- 
dle P = T*Q. The phase space is endowed with the ca- 
nonical symplectic two-form a. Let H : P+R be a 
Hamiltonian function of the form kinetic plus potential 
energy . We assume that the Hamiltonian system pos- 
sesses symmetry induced by a Lie group G, which acts on 
P by canonical transformations. Let 3 be the Lie algebra 
of G. Let Y * denote the dual of the Lie algebra 9, and 
let J : P-+ 3 * be the corresponding conserved quantity. 
The Hamiltonian H : P-R can be expressed asI 

H(z)=&-p,(z)~~-, +$J(z)+--‘(q)J(z) + V(q) 
(3.10) 

HerepJ(z) is the momentum associated with the “instan- 
taneous angular velocity” c(z) of the rotating body, i.e., 
the Legendre transformation FL of the instantaneous ve- 
locity field 

P.,(Z) =WlXz)&) IgTfQ, (3.11) 
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where la is the infinitesimal generator 

t&z) =i [exp(et)-ql,=o for G;qk9 XQ, 
(3.12) 

4(q) is the instantaneous moment of inertia (also called 
the locked inertia tensor), which is related to the angular 
velocity c and the angular momentum p by p = N(q)c 
when J(z) = p. Y(q) is the potential energy. The 
amended potential VP : Q-+R (Refs. 29 and 12) satisfies 

qk?) = V(q) + &J- l(q)p. 

The shifted momentum F is defined by 

(3.13) 

p=p - pJ(z). 

Hence, the Hamiltonian can also be written 

(3.14) 

H(z)=tl$-l + v,,,,(q). (3.15) 

We now define the reduced Hamiltonian HP : Pp 
-, R on the reduced phase space Pcl = J - i (p)/G,, where 
G,, is the isotropy subgroup of p, by 

H&i) =;IP&- I+ f$(q,u) (3.16) 

for zP = (qp,pJ = rp(q,j)eP, in terms of the canonical 
projection r,, : J - ‘(p) + Pp. In the reduced Hamil- 
tonian NP(zP), the kinetic energy of the original Hamil- 
tonian appears as the sum of two decoupled terms: the 
rotational energy -$*.F - i (q,Jp, i.e., the energy associ- 
ated with the total angular momentum II, in the amended 
potential and the internal vibrational energy f 1~~ Ii- 1. 

The second variation of the reduced Hamiltonian 
@Hpe( Fe) at a relative equilibrium Z, = ( qnO) EJ - ' ( 0) is 
block diagonal” with respect to certain spaces YeRIo, 
.Venrr, and flrNT. The spaces YeRIG and YOrNT of 
pure configuration variations are defined by lifting the 
elements of certain spaces Ynro and TINT to the space 
Ye of admissable variations of the reduced Hamiltonian 

YORIG = C ( Aq,O) :&G’-ml (3.17) 

~oINT~c~~q,~~:~q~~~NT~, (3.18) 

where 7;” is the space of admissible configuration varia- 
tions 

~~C6q~r9~Q:(sq,5e(qe))g=0 W~J, (3.19) 

and Y is shown” to be decomposed into two subspaces, 
the subspace .%‘-a,, of rotational modes and the subspace 
Ynrr of internal vibrational modes 

y = yRIG @ rINF (3.20) 

The space =rNr of pure momentum variations is de- 
fined by lifting the element of the annihilator to the tan- 
gent space .Y *qe to the orbit G*q, [written (3 *q,)A] to 
Yo: 

~INT-{C(O,~):~~(~“q,)A}. (3.21) 

It is shown” that near a relative equilibrium, the linear- 
ized dynamics describing the rotational and internal mo- 
tions are expressible in a normal form. 

IV. THE REDUCED PHASE SPACE FOR BEAM 
SCATTERING DIFFERENTIAL CROSS SECTION 
MEASUREMENTS 

A. The laboratory to center of mass transformation 

Besides the analysis of experimental molecular spec- 
troscopy results (see, for example, Ref. 21)) another ex- 
perimental approach for the determination of interatomic 
potentials is the analysis of crossed beam elastic scatter- 
ing measurements.38’39’8 In order to interpret the results 
of such an experiment, the transformation of the coordi- 
nates from the laboratory (again assumed to be inertial) 
to the center of mass coordinate system4’5P’4’8 is essential. 
Note that in the analysis of elastic scattering experiments, 
one uses the velocity phase space instead of the momen- 
tum phase space; this will be discussed further below. 

Levine and Bernstein’ have outlined the setup: In a 
typical experiment, one crosses a beam of particles of 
mass ml and velocity v1 with a beam of particles of mass 
m2 and velocity v2. The beams intersect in a small region 
and the intensity of scattered particles of mass ml is mea- 
sured as a function of the angle of deflection from the 
original beam direction. 

The position of the center of mass r,, is defined by 

(ml + m2)rcm=mlrl + m2r2. (4.1) 

Thus the velocity of the center of mass v,, satisfies 

(ml + m)v,,=mlv1 + m2v2. (4.2) 

By conservation of total linear momentum, v,, is the 
constant velocity of the center of mass in the laboratory 
system. 

Let s1 and s2 be the position of the particle of mass 
ml and m2, respectively, in the center of mass system, i.e., 

rl =rcm + s1 (4.3) 

r2=rcm + s2. (4.4) 

Let w1 and w2 be the velocity of the particle of mass ml 
and m2, respectively, in the center of mass system 
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Vl =vcm + Wl, (4.5) 

v2=v,, + w2. 

Let the relative velocity v be defined to be 

(4.6) 

v=v2 -v*. (4.7) 

Deiine r;, r;, rim, vi, vi, vim, s;, s;, w;, w;, and v’ to be 
the corresponding vectors after the collision. By conser- 
vation of total linear momentum, we have vim = v,, and 
hence ri, = rem + v,,c. For an elastic collision, the mag- 
nitudes of the initial and final velocities are equal, i.e., 
I vl I = I vl I. By looking at the velocities vi and vi after 
the collision in the laboratory system, it is not obvious 
whether a final velocity is due to a large impact parameter 
deflection (forward scattering in the center of mass sys- 
tem) or due to a head-on collision (rebound collision in 
the center of mass system). However, this can be readily 
determined by looking at the Newton diagram4*5 for the 
collision, i.e., by looking at the velocities w; and wb in the 
center of mass system after the collision. 

Furthermore, after making the transformation to the 
center of mass coordinate system, the differential cross 
section I( 0)) i.e., the intensity of deflections as a function 
of the scattering angle 8, can then be expressed classically 
in terms of the impact parameter b and the deflection 
function ,y for one pair of colliding particles as 

with 

x=rr-26 

in terms of the classical turning point ro, the intermolec- 
ular potential V(r), and the total energy E. Hence, given 
an experimentally determined differential cross section, 
one can gain information about the intermolecular poten- 
tial. While molecular interactions are quantum mechan- 
ical and the classical mechanical treatment includes sin- 
gularities, e.g., at the glory angle and at the rainbow 
angle, the classical differential cross section provides im- 
portant information about the intermolecular potential 
(see, for example, Ref. 8 for further discussion). 

In this example, it is the velocity phase space (versus 
the momentum phase space) that is important. One first 
employs the well-known fact that the two-body central 
force problem can be reduced to a one-body problem. l4 In 
order to determine the relationship between (i) the angle 
defined by the difference between the final and initial di- 
rections of the relative position vector between the parti- 
cles and (ii) the scattering angle of one of the particles in 
the laboratory coordinate system, one must perform the 
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above transformation between the laboratory and center 
of mass systems. Specifically, one must look at the veloc- 
ities (instead of the momenta) in the center of mass sys- 
tem. This is due to the fact that, in the center of mass 
coordinate system, the total linear momentum is zero, 
and the two particles move, of course, with equal and 
opposite momenta. In the next subsection, we will give 
the geometric relationship between the initial velocity 
phase space and the reduced velocity phase space. 

Note that, while equations (4.8) and (4.9) determin- 
ing the differential cross section are derived by employing 
conservation of energy and conservation of angular mo- 
mentum, they are not Hamilton’s equations on the re- 
duced phase space [cf. Eqs. (2.19) and (2.20)]. However, 
the energy and angular momentum dependence of the 
topology of the dynamics on the internal phase space will 
be discussed further below (cf. Sec. VI). 

B. Definition of tangent bundle reduction via the 
symplectic reduction theorem and the 
Legendre transformation 

We first summarize the results of application of the 
symplectic reduction theorem.” For the N-body prob- 
lem, let the configuration manifold Q  be R3N and let the 
phase space P be the cotangent bundle T*Q = T*R3N 
with the canonical symplectic structure. Let the Lie 
group G  = R3 act by translation on Q  = R3N for each 
component of the configuration manifold, inducing an 
action by cotangent lifts on T*Q, i.e., for xeR3 

X’(ql,..., &PI ,..., PN) = (ql + x,...,qN + %h-**,PN)- 
(4.10) 

The momentum map is 

J(q, ,..., QN,Pl,...,PN) ‘PI + ’ * ’ + PN=PO, (4.11) 

corresponding to the total linear momentum. The re- 
duced phase space J - * ( po)/GP,, where Gp, is the isot- 
ropy subgroup ofpo in G , is symplectically diffeomorphic 
to T*R3(N-‘) with the canonical symplectic structure. 
Coordinates in the reduced phase space are often chosen 
to be Jacobi coordinates. 

Furthermore, the dynamics can then be described on 
the reduced phase space. The Hamiltonian flow on the 
original phase space induces a Hamiltonian flow on the 
reduced phase space. The reduced Hamiltonian HP0 on 
the reduced phase space is 

where H is the G-invariant Hamiltonian on the original 
phase space, rpo : J - ’ ( po) -+ Pp, is the canonical pro- 
jection and ip, : J - ’ ( po) --+ P is the inclusion. 
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In order to define a tangent bundle reduction consis- 
tent with the above cotangent bundle reduction, we em- 
ploy the Legendre transformation FL : TQ- T*Q, which 
relates the Lagrangian formulation on TQ and the Hamil- 
tonian formulation on T*Q.12 The tangent bundle reduc- 
tion is defined so that the Legendre transformation com- 
mutes with reduction, i.e., 

reduction 
TQ, - TQ2 
FL n, 

reduction 
T*QI - T*Q2 

(4.13) 

where T*Q2 = (T*Q,>,. In other words, one has 

TQF~--‘WTQI)I,. (4.14) 

Specifically, we have 

TR3(N- ‘)EFL - ‘( [FL( TR3N)]Po). (4.15) 

V. SEPARATION OF ENERGIES AND REDUCED 
PHASE SPACES BY SYMPLECTIC REDUCTION: THE 
EXAMPLE OF TWO PARTICLES IN A CENTRAL 
FORCE FIELD 

We illustrate the separation of translational, rota- 
tional, and internal motions in the classical dynamics of 
two particles restricted to motion in a plane. 

The configuration space Q of the system is R2 
x R2. Coordinates on Q are pairs (rl,r2) of vectors in 
R2 describing the positions of the masses ml and m2, 
respectively, in an inertial frame. Further, we will assume 
that r2 - r+R2\{O} so that the two particles do not oc- 
cupy the same position in configuration space. The La- 
grangian L on the tangent bundle TQ is given by 

L(r9ki&) =fmlllhl12 + ~m21ji2112 - V(llr2 - rlll>, 
(5.1) 

where we assume that the potential energy V depends 
only on the distance l/r2 - rill between masses ml and 
m2. 

We apply the Legendre transformation to obtain the 
Hamiltonian H on the cotangent bundle T*Q 

Hhr2,rwd = 2m, M+z+ V(llr2-rrll). (5.2) 

The Euclidean group E(2) = R2 @ SO(2) acts on this 
system on T*Q by translation by and rotation about the 
center of mass of the system. In the case of identical 
particles, there is a further discrete symmetry Z2 corre- 
sponding to the interchange of the two particles. 
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A. Separation of the translational energy from the 
sum of the rotational and internal energies 

The center of mass roeR2 of the system is defined by 
the equation 

(ml + m2h=mlrl+ m2r2. (5.3) 

The total linear momentum po~R2 of the system is a con- 
served quantity and satisfies the relationship 

Po=Pl+ Pz- (5.4) 

Hence, we define the relative coordinate r and the relative 
momentum p: 

rrr2 - rl (5.5) 

P=P2-P1, (5.6) 

and we obtain the following linear equations relating rl, 
r2, ~1, and PZ to rs, r, PO, and P: 

rl=r0 + [ml/Cm1 + m2)lr, (5.7) 

r2=ro - [m2/(ml + m2) lr (5.8) 

PI =$o - 5P (5.9) 

P2’iPO + 5p. (5.10) 

We can transform from Cartesian coordinates (r1,r2) to 
these coordinates (r,ro) to recoordinatize the original 
phase space (rl,r2,pl,p2) as the phase space (r,ro,p,pd 
and then restrict to the reduced phase space (r,p) since 
p. is a constant and r. is a function of time satisfying 

1 
r0(f) =rdO) + 

ml+m2 
Pot* 

This is an example of an equation describing a moving 
coordinate system or, equivalently, an equation describ- 
ing a time-dependent holonomic constraint (cf. Ref. 17). 
This is the physical motivation for the first cotangent 
bundle reduction to follow now. 

An element a of the translation group R2 acts on Q by 

QP,(rz,r2) =a*(r1,r2) = (rl + a,r2 + a), (5.12) 

its tangent map T@, acts on TQ by 

T@a(rl,r2,i&) =(~‘a(rl,r2),~a(rl,r2) * (Wd) 

= (rl + a,r2 + a,h,i2), (5.13) 

and hence the cotangent lift T*@* defined by 
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= h,r2,p1,p2) * TW+~ ’ (w2hp2) 

acts on T*Q by 

(5.14) 

T*R,hwwd = (rl + v-2 + amd. (5.15) 

The corresponding momentum map J : T*Q + R2 is 
defined by 

J(w2,p~,pd =PI + PZ. (5.16) 

We start with the original phase space T*Q with the 
canonical symplectic structure dr, A dpl + dr2 A dp2. The 
change of variables to the center of mass frame corre- 
sponds to a symplectic reduction, i.e., the quotienting of 
the inverse image (in the original phase space) of the 
constant total linear momentum p. = p1 + pz by transla- 
tions a = [PO/( ml + m2)] et. In other words, the reduced 
phase space at p. is the quotient space 

W*Q),,=J- ‘(Po,&,~, (5.17) 

where GPO is the isotropy subgroup of p. with respect to 
the coadjoint action of R2 by cotangent lifts T*@, on 
T*Q. Further, by the cotangent bundle reduction theo- 
rem, one has the symplectic diffeomorphism 

(T*Q)po=T*(Q/Gp,,). (5.18) 

Specifically, we have T*(R2~R2)p0 z r*(R2\{O}>, 
where we have assumed r2 - rleR2\{O}. Further, the re- 
duced phase space has the canonical symplectic structure 
dr A dp. (The assumption of the atoms not occupying the 
same location in configuration space is implicitly under- 
stood in our notation for the original phase space.) The 
reduced Hamiltonian HP0 on T* ( R2 \ {O}) satisfies 

Hpo(r,p) = 
llPl12 

2bv2mq + m2)) 
+ ~,,(llrll) (5.19) 

with amended potential VP, satisfying 

lIPoIl ~PoWll)= V(ll4l) + 2crn, + m2> * (5.20) 

In the new coordinate system, Hamilton’s equations 
become 

aH,o 
‘=w 

(5.21) 

aH,o $= -- 
ar ’ (5.22) 

a40 1 
i”=apo= m+m2 

Pot 
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(5.23) 

(5.24) 

and r. is a cyclic coordinate. Hence the dynamics can be 
described by the first two equations, the reduced Hamil- 
ton’s equations. In other words, the dynamics drop to the 
reduced phase space (r,p). 

6. Separation of the rotational and internal energies 

For a central force potential, the angular momentum 
PO 

Pe=xPy - YPX (5.25) 

is a conserved quantity. We make the following change of 
variables from (x,y>~R~\{o} to (r$)~(O,co ) X 5”: 

x=rcos 8, y=rsin 8, (5.26) 

to transform from Cartesian coordinates (x,y) to polar 
coordinates (r,(3) to recoordinatize the original phase 
space from its description in Cartesian coordinates 
(x,y,px,p,,) to its description in polar coordinates 
( r,8,p,,pe). We then restrict to the reduced phase space 
(r,p,) since pe is a constant and the time dependence of 8 
is given by 

e(t) =e(o) + at, (5.27) 

where w is the angular velocity. Again, the expression for 
the eliminated coordinate [in this case, e(t)] is an equa- 
tion describing a moving coordinate system or, equiva- 
lently, an equation for a time-dependent holonomic con- 
straint. 

As in the previous discussion for the initial reduction, 
an element R4 of the group SO(2) acts on the configu- 
ration space (0,~ ) X S’ by 

QRp,e) =~,&e) = he + +), (5.28) 

its tangent map TCJ~+ acts on T( (0, CO ) X S’) by 

T~Rq(~,e,kt)) = (~Rp,w~Rp,e)~ (kh ) 

= w + +,4), (5.29) 

and hence the cotangent lift T*aR4 defined by 

T*~R,(~,e,P,Pe)‘(~~~‘(r,e),(r,B)) 

=(r,e,P,Pe)‘T~~~~~‘(r,e),~B) (5.30) 

J. Math. Phys., Vol. 33, No. 4, April 1992 

Downloaded 23 Oct 2006 to 131.215.241.78. Redistribution subject to AIP license or copyright, see http://jmp.aip.org/jmp/copyright.jsp



acts on T*(( 0, CO ) x 5”) by 

T*%,(r&P,Pe) = (r# + ‘i&P&). (5.31) 

The corresponding momentum map JO : T*( (0,~ ) 
x S’) -+ R is defined by 

J&&wd =pe. (5.32) 

The change of variables to the rotating frame corre- 
sponds to another reduction, specifically, the quotienting 
of the inverse image [in T*( (0, co > X S’)] of the constant 
total angular momentum pe = Iw, where I is the moment 
of inertia, by rotations. The new reduced phase space is 
the quotient space 

T*t(Qa ) XS’),,= J, ‘(pe)/GPB, (5.33) 

where GPO is the isotropy subgroup of pe with respect to 
the coadjoint action of SO(2) ( = S’) by cotangent lifts 
T*aRb on T*( (0, cu ) X S’). In fact, again by the cotan- 
gent bundle reduction theorem, one has 

r*((O,co)XS’)~o~T*(O,co). (5.34) 

The reduced phase space has the canonical symplectic 
structure dr A dp, 

The reduced Hamiltonian H,,o,ppe on T* (0, CO ) satisfies 

HPo.pe( vA = P: 
Wqm2/h + m2)) 

+ VPo,Pe( r) (5.35) 

where the amended potential Vpwpe is given by 

VP*P~(r)=vPO(Ilrll) + 2(m,m,/($ + m2))rz 

= V(Ilrll) + /IPoll 
2(ml+ m2> 

P2e 
+ 2(mlm2/(ml + m2))r’ * (5.36) 

After two reductions, the kinetic energy of the original 
Hamiltonian H appears as the sum of three decoupled 
terms: the translational kinetic energy llpol12/2(ml 
+ m2) corresponding to the total linear momentum, the 

overall rotational kinetic energy 

Pi 
2(mpn2/(ml + m2))r * 

corresponding to the total angular momentum, and the 
vibrational kinetic energy 

Pf 
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2hm2/h + m2)) * 

There is no Coriolis term in the reduced Hamiltonian. 
Hamilton’s equations in the newest reduced system 

become 

Pr= - ar 9 

a4&9 (I=-= 
1 

ape (mlm2/(ml + m2))r *Pe=w’ 
(5.39) 

(5.37) 

(5.38) 

aHP,,P, Ji*= - 7=0 (5.40) 

and 8 is a cyclic coordinate. Again, the dynamics can be 
described by the first two equations, and the dynamics 
has dropped to the reduced phase space (r,p,). This is an 
especially simple case of a general construction. 

C. Reduced phase spaces and Hamilton’s equations 

The preceding two-step procedure exhibits two appli- 
cations of the symplectic reduction theorem and the con- 
sequent theorem that the (reduced) dynamics is describ- 
able on the reduced phase space. Further, it is an example 
of a reduction by stages, in which the phase space is 
reduced by a semidirect product group. In this case, the 
semidirect product group is the Euclidean group, 
E( 2) = R2 @ SO( 2). We now present the coordinate-free 
statements followed by their corresponding coordinatized 
forms. 

Symplectic reduction theorem:18 Let (P,Q) be a sym- 
plectic manifold on which there is a Hamiltonian left 
action of a Lie group G with equivariant momentum map 
J : P-t .9 *. Assume that ,UE~ * is a regular value of J and 
that the isotropy subgroup GP under the coadjoint action 
acts freely and properly on J- t(p). Then the reduced 
phase space PcL = J - ’ (p)/G, is a manifold with symplec- 
tic form J& satisfying 

7Tpp = p, (5.41) 

where rP : J-‘(p) -+ Pp is the canonical projection and 
iF : J-‘(p) + P is inclusion. 

Theorem on dynamics on reduced phase spaces:18 Let 
H : T*Q-+R be a G-invariant Hamiltonian, i.e., 
HOT*@* = H for all gEG. The flow Ft of the Hamiltonian 
vector field X, leaves the set J - l(p) invariant and com- 
mutes with the (induced) G,-action on J - ’ (p), so it 
induces a Hamiltonian flow fl on (T*Q), by .R,oF~ 
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= flop. The reduced Hamiltonian HP : ( T*Q), + R is 
defined (as above) by Hporp = Ho$,. Further, the Hamil- 
tonian vector fields X, and XHP are related by the canon- 
ical projection rfP. 

Next, we apply these coordinate-free ideas to derive 
the corresponding results in curvilinear coordinates: Let 
(P,R) be a symplectic manifold and H : P-R be a given 
C’ function called the Hamiltonian. Define the Hamil- 
tonian vector field X, : P- TP by the condition 

i,,,R = dH, (5.42) 

where ix&l is the interior product of XH and fl, and dH 
is the exterior derivative of H. Let (ql ,..., 8,pl ,..., pN) be 
canonical coordinates for n. Then 

N 

a= C dq’Adpi 
i=l 

(5.43) 

and 

xH=(g,-$). (5.44) 

Further, an integral curve of X, is a solution (q(t) ,p( t)) 
of Hamilton’s equations 

aH 
“i=&jj, i= I,2 ,..., IV, (5.45) 

aH 
ii= - g, i= I,2 ,..., N. (5.46) 

For the general N-body problem, the reduced Hamil- 
tonian HP on the reduced phase space (q,,pp)eP, 
= J - t (p)/G, can be determined by employing an ex- 
plicit generalization of the momentum map J defined in 
the reduced energy-momentum method, as follows: 

H,&,)=fl~& + V&i), (5.47) 

where g is the relevant fundamental metric tensor, pp is 
the shifted momentum 

P/i =P - PJ, 

VP is the amended potential 

(5.48) 

V&p) = V(qJ + -b-f- ‘(qJp9 (5.49) 

J is now the momentum map corresponding to the rele- 
vant total momentum of the N-body system, and 
.Y( qp) is the relevant mass factor. For the first reduction, 
p is the total linear momentum, J is the momentum map 
corresponding to the total linear momentum, fl is the 
total mass, p is the total momentum, and pJ is the total 

linear momentum (cf. Sections IV B and V A). For the 
second reduction, p is the total angular momentum, J is 
the momentum map corresponding to the total angular 
momentum, Y is the instantaneous moment of inertia, p 
is the total momentum minus the total linear momentum, 
and pJ is the total angular momentum (cf. Sects. 111 B 
and V B). 

Define the reduced Hamiltonian vector field X, : P 
P,, -+ TPpby 

ixH fir = dH,, 
P 

(5.50) 

where R, and H,, are determined by the symplectic re- 
duction theorem. Further, HP can be explicitly deter- 
mined as just described. Then an integral curve 
(qp( t),p,( t)) of XHcl is a solution of the reduced Hamil- 
ton’s equations 

aHp 
Q”I=apri) i= 1,2 ,..., N - 1, 

a4 ppi= -w i= 1,2 ,..., N - 1. 
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(5.51) 

As shown by the examples of the dynamics relevant 
to atomic clusters and the dynamics relevant to atom- 
atom differential cross sections described in the previous 
sections, these techniques apply both to the dynamics of 
bound molecular systems and to the dynamics of molec- 
ular collisions. A framework for describing two-body mo- 
lecular dynamics and including the dynamics of a 
(bound) diatomic molecule and the dynamics of atom- 
atom scattering as special cases is described in the next 
section. 

Vi. GLOBAL TOPOLOGY OF THE ENERGY- 
MOMENTUM MAP FOR A MOLECULAR 
INTERACTION POTENTIAL 

We follow the approach of Smale,29 who examined 
the Kepler problem and made a global topological study 
of the energy-momentum map (H x Jo) Te : TQ + R2 
defined on the tangent bundle TQ. We will consider the 
corresponding energy-momentum map (H X Jo) F*Q : 
7-Q-+ R2 defined on the cotangent bundle T*Q. These 
maps are related by the Legendre transformation FL : 
TQ-+ T*Q; specifically, 

(HXJ) TQ= (HxJ) pQ”m. (6.1) 

For simplicity of notation, in the following we will omit 
the subscript r*Q on the energy-momentum map. We 
now consider the energy-momentum map defined on the 
cotangent bundle PQ and start with the original phase 
space and make a global topological study of the energy- 
momentum map H X J,g X J : T*(M2 X R2) + R 
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X R X R2 from the original phase space to the space 
where the energy map Hand the momentum maps Je and 
J take their values E, p& and po, respectively. Here we 
have written M2 for R2\{O}. We consider the inverse 
images (or integral manifolds or “fibers”) IE,pBpO = (H 
XJex J)-‘(B ,p&po) with ( E,papo)cR4. Then the bifur- 
cation set B in R4 is defined to be the set of points in 
R4 over which the energy-momentum map fails (in the 
differentiable sense) to be locally trivial. The bifurcation 
set includes the critical values of the energy-momentum 
map, and on the bifurcation set the topological type of 
I E,pepo changes. The dynamical system on T*(M2 x R2) 
induces a dynamical system on the reduced integral man- 
ifold IE,po = IE,papo /GPO. This is a consequence of the the- 
orem on the dynamics on reduced phase spaces.‘* The 
isotropy subgroup GPO of p. is R2 for all values of 
poeR 2 . Hence, we have I,#& = I E,pe x R2 for all values of 
po, and the topologtcal type of IE,pgpO is independent of 
PO. 

The problem has now been simplified to the study of 
the reduced Integral manrfold IE,pe and the (reduced) 
energy-momentum map H x Jo : T*M2 -+ R x R. We 
can write the bifurcation set B as B = Zc C R2. We now 
choose the potential V to be a molecular interaction po- 
tential. To be specific, we choose V to be the Morse po- 
tential in dimensionless units with a* = 5. Then the bi- 
furcation set Ze in RX R is given by 

&J=&U22U23, 

with 

(6.2) 

~l={(E,pe)~R~:V~~(r~i~)=E and O< lpel Qem,,19 
(6.3) 

2,={(E,p,+R2:E=O}, (6.4) 

83=C(E,pe)ER2:VPg(rmax) =E), (6.5) 

where r,,,i, and (when it exists) r,,,,, are functions of pe 
defined as follows: 

rmin=min{~R:V&(r)=O, V;O(r) >O, and r< CO} 
r>0 

(6.6) 

rmax= min {dkV&(r) =0, F$‘(r) ~0, and r< CO}, 
r> ‘min 

(6.7) 

and Pe,,,,, is determined numerically to be 1.413 for the 
case a* = 5. The bifurcation set Z. divides the 
E,pBplane into four regions (including one region with 

two components) with integral manifolds I&,g of differ- 
ent topological types. The bifurcation set is plotted in Fig. 
1. 

The real line R acts on lE,pe as the dynamical group 
by restricting the dynamics on T*M2 because the energy 
H is an integral. The group SO(2) acts on M2 by rota- 
tions and induces an action by cotangent lifts on T*M2. 
The induced action of SO(2) on T*M2 leaves all of the 
functions V, H, and Je invariant as well as the integral 
manifolds IE,#O. (Th e angular momentum Jo is also an 
integral.) The (induced) action of SO( 2) commutes with 
the action of R, so the action of the product group SO( 2) 
XR is defined on T*M2 and on IE,p, for each 
(E,pokR2. 

Proposition: Let M2 = R2 (0). Let V be the Morse 
potential in dimensionless units with a* = 5. Let 
(E,pe)~R2 and p&O. An integral manifold IE,*, 
C T*M2 is the (not necessarily disjoint) union of homo- 
geneous spaces of SO (2) XR, i.e., spaces of the form 
(SO(2) XR)/G, where i = 1, 2 ,..., n. 

Prooj Given (E,pe)ER2 and p&O, SO(2) XR acts 
transitively on each component of IE,p, C T*M2. We then 
apply an elementary theorem characterizing transitive ac- 
tions (see, e.g., Ref. 40, p. 75): Let the group G act 
transitively on a set S and let Gibe the isotropy subgroup 
of Xi for x,&i’. Then the action of G on S is equivalent to 
the action of G on the coset space G/G, (i = 1, 2 ,..., n). 
Letting i label the Components Of IE,#e, we get IE,po = 
U ;= *G/G,. Q.E.D. 

Thus a component of an integral manifold is of one of 
the following topological types depending on the value of 
(E,pe)eR2. In order of increasing value of the energy E, 
the possible topological types of the integral manifolds 
IE,pO in the different regions of the (E,pe)-plane are (i) 
the empty set (when n = 0) : 

I -Oe - -4 

on Rl=C(E7pe)ER2:E< VPe(rmin)<Q O< lpel <pq,,,I 

UC(EJJO)~R~:E<O< Vp,(rmin), PO,,, < lpel), 
(6.8) 

(ii) a single point [when n = 1 and Gt = SO(2) XR]: 

I E,pe=pOint if (E,pe)=(v,,(r,i,),pe)= ( - l,o), 
(6.9) 

(iii) a circle (when n = 1 and Gr = R): 

I E,~~=S’ on &\I( - WI, 

(iv) a torus (when n = 1 and G1 = Z): 

(6.10) 
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FIG. 1. The bifurcation set PO 
in the Q+plane for the case of 
a Morse potential in dimension- 
less units with a* = 5. 

. . . . . . . . . . . . Sigma-3 Sipma- 
.-.-.-.- Sigma-2 

&#,=s' xs' 

on R~={(E,P~)ER* : Vp,(rmin> <E<O, 

O( IPel <Pe,,h (6.11) 

(v) the union of a torus and a circle (when n = 2, 
G,=Z, and G,=R): 

IE,pe= (S’XS’) US’ on X2, (6.12) 

such that 

(S’XS’)fls’=a), if and only if p&O, (6.13) 

(vi) the disjoint union of a torus and a cylinder (when 
n = 2, Gt = Z, and G,=Id): 

IE,pg=(S1~SIHJ(S1~R) 

on R,={(E,pe)ER2:Vp,(rmin)<O<E< V,,(r,,), 

0 < I Pe I <Pe,,,h (6.14) 

(vii) the union of a torus with a cylinder which intersect 
in a circle (when n = 2, G, = Z, and G2 = Id) : 

I ,Qe= (s’xs’) u (S’xR) on Es, (6.15) 

with 

(S’XS’) n (S’XR) =S’, 

and (viii) a cylinder (when n = 1, Gt =Id) : 

IE,pg=S1 x R 

(6.16) 

on &=CW,pd~R*:O< V&,,) <E l~el <~e,,,l 

U{(E,p&R2:O<E, pe=O} 

WE,p,)~R2:O<E l~el >pe,,,,). 
(6.17) 

A trajectory lying on a compact component of an 
integral manifold will be called a bound trajectory. A 
trajectory not contained in a compact subset of a non- 
compact component of an integral manifold will be called 
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a scattering trajectory. This is consistent with the classi- 
fication scheme of Goldstein.t4 

More specifically, scattering trajectories can be clas- 
sified as grazing, (eventually) orbiting, or rebounding. A 
grazing trajectory lies in the noncompact component of 
an integral manifold of type (vi). An (eventually) orbit- 
ing trajectory initially lies on the cylinder and eventually 
lies on the circle in the integral manifold corresponding to 
&. A rebounding trajectory lies in the noncompact inte- 
gral manifold of type (viii). This classification scheme is 
consistent with that familiar to molecular dynamicists 
(see, for example, Ref. 3, Fig. 12; Ref. 6, p. 556; or Ref. 
7, p. 55; who each discussed the dynamics in terms of the 
Lennard-Jones potential). Further, our bifurcation set 
shown in Fig. 1 for the ( E,pe)-plane for a Morse potential 
is consistent with the description of the topology of scat- 
tering in the first quadrant of the (p&E)-plane for the 
Lennard-Jones potential as plotted by Ford and Wheeler3 
Fig. 13) in terms of the dimensionless angular momen- 
tum and the dimensionless energy. 

Finally, we restate the above results in terms of re- 
duced phase spaces: A leaf IE,P/GPO of the reduced space 
JP, ‘(ps)/GPB is the (not necessarily disjoint) union of 
coset spaces of the form ((SO(2) X R)/GXi)/S1, i.e., a 
point, a circle, or a line. 

For a fixed value of pe, the reduced space [(J 
X Je) - ’ ( po,pe) /GPO]/GPe is foliated by leaves, which are 
parameterized by E and are the union of components of 
the following topological types: a point, a circle, or a line. 

(i) If E < VPe(r,in), then the leaf of the reduced 
phase space is the empty set. 

(ii) If E = VPO(rmin), then the leaf of the reduced 
phase space is topologically a point. 

(iii) If V,,(r,i,) < E < 0, then the leaf of the re- 
duced phase space is topologically a circle. 

(iv) If E = 0 and VP,( rmax) > 0, then the leaf of the 
reduced phase space is topologically the disjoint union of 
a circle and a point. 

(v) If 0 < E < V,,,(r,,), then the leaf of the re- 
duced phase space is topologically the disjoint union of a 
circle and a line. 

(vi) If E = V,,(r,,), then the leaf of the reduced 
phase space is topologically the union of a circle and a 
tangent line. 

(vii) If E > Vpg(rmax), then the leaf of the reduced 
phase space is topologically a line. 

A leaf topologically equivalent to (a) a point corre- 
sponds to a rigid diatomic molecule in case (ii) and to 
two stationary distantly separated atoms in case (iv), (b) 
a circle corresponds to the phase space trajectory of a 
vibrating diatom in cases (iii) and (v), (c) a line corre- 
sponds to the phase space trajectory of an elastic atom- 
atom collision: a grazing collision in case (v), an orbiting 

collision in case (vi), and a rebounding collision in case 
(vii). 

VII. CONCLUDING REMARKS 

For molecular N-body systems with N)3, the frame- 
work outlined above provides a starting point for the dis- 
cussion of the topology of the dynamics, which may again 
be classified in terms of bound or scattering trajectories. 

For the molecular three-body problem (we choose 
N = 3 for simplicity), the scattering trajectories can be 
either reactive, i.e., 

A+BC+AB+C (7.1) 

or 

A + BC+AC+ B, 

or nonreactive, i.e., 

(7.2) 

A + BC+A + BC. (7.3) 

Within each of these categories, the scattering trajectory 
can correspond to a collision that is either direct or com- 
plex (sometimes also called compound).8 In a direct re- 
active collision, the reaction takes place in a time shorter 
than one rotational period of the combined system, i.e., 
the time required for the reactants to rotate about each 
other. In a complex reactive collision, the reaction pro- 
ceeds via a long-lived intermediate, i.e., a complex, which 
exists for more than one classical rotational period. 

Hence, we make the following observations: Direct 
collisions generalize the scattering trajectories in the mo- 
lecular two-body systems that are grazing trajectories or 
rebounding trajectories; complex collisions generalize the 
scattering trajectories in the two-body systems that con- 
tain orbiting trajectories; and complex collisions can also 
be considered to be a generalization of bound trajectories. 

Application of the results regarding the decoupling of 
the reduced Hamiltonian at the linear level near a relative 
equilibrium” imply that the dynamics of a molecular N- 
body system can be drastically simplified at the linear 
level near a relative equilibrium. The phase curves in the 
original phase space which project to equilibrium posi- 
tions in the reduced system on the reduced phase space 
are called the relative equilibria of the original system.” 
The results on simplifying the dynamics require the tra- 
jectory to be near a relative equilibrium, so we observe 
that physically the simplification of the molecular dynam- 
ics at the linear level requires the trajectory to be either a 
bound trajectory (for N)2), an orbiting scattering tra- 
jectory (for N = 2), or a complex scattering trajectory 
(for N)3). (These conditions on the scattering trajecto- 
ries are not necessarily sufficient.) 

The geometric procedure outlined previously above 
provides a prescription for deriving reduced phase spaces 
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that simplify the dynamics at the linear level near a rel- 
ative equilibrium. It remains to extend this simplification 
of the dynamics to points other than relative equilibria. 

The reduction of the phase space for an N-body sys- 
tem with N>3 in R3 is more complicated than that dis- 
cussed above for two-body systems in R* when the total 
angular momentum J is nonzero. 

This paper has presented two physical examples of 
molecular N-body systems for which symplectic reduc- 
tion is relevant. In addition, for the case of N = 2, we 
have presented a detailed, unified treatment of the planar 
dynamics. We showed that the two examples of the ro- 
tating, vibrating diatomic molecule and atom-atom elas- 
tic scattering are systems whose internal dynamics lie on 
reduced manifolds of different topological types. This de- 
scription was unified by examination of the bifurcation set 
in the energy, angular momentum plane. Further, the 
above discussion outlines the relevance of this approach 
for the description of the dynamics of larger N-body sys- 
tems. 

’ E. B. Wilson, Jr., J. C. Decius, and P. C. Cross, Molecular Vibrations 
(Dover, New York, 1980), republication of 1955 McGraw-Hill edi- 
tion. 

*K. W. Ford and J. A. Wheeler, Ann. Phys. (NY) 7, 259 (1959). 
3K. W. Ford and J. A. Wheeler, Ann. Phys. (NY) 7, 287 (1959). 
4D. R. Herschbach, The Vortex 22, 348 (1961). 
5 D. R. Herschbach, Discuss. Faraday Sot. 33, 149 (1962). 
6J. 0. Hirschfelder, C. F. Curtiss, and R. B. Bird, Molecular Theory of 

Gases and Liquids, second printing (Wiley, New York, 1964). 
‘R. E. Weston, Jr. and H. A. Schwarz, Chemical Kinetics (Prentice- 

Hall, Englewood Cliffs, NJ, 1972). 
‘R. D. Levine and R. B. Bernstein, Molecular Reaction Dynamics and 

Chemical Reactivity (Oxford U. P., New York, 1987). 
9B. H. Mahan, Accts. Chem. Res. 1, 217 (1968). 

“B. Podolsky, Phys. Rev. 32, 812 (1928). 
“A. Weinstein, Lectures on Sympiectic Manifolds (American Mathe- 

matical Society, Providence, RI, 1977). 
“R Abraham and J. E. Marsden, Foundations of Mechanics 

(Benjamin/Cummings, Reading, MA, 1978)) 2nd ed. 

“V. Guillemin and S. Stemberg, Symplectic Techniques in Physics 
(Cambridge U. P., New York, 1984). 

14H. Goldstein, Classical Mechanics (Addison-Wesley, Reading, MA, 
1980), 2nd ed. 

‘sV I Arnold, Mathematical Methods of Classical Mechanics 
(Springer-Verlag, New York, 1978). 

16C. Eckart, Phys. Rev. 47, 552 (1935). 
“L. Brillouin, Tensors in Mechanics and Elasticity (Academic, New 

York, 1964), first published in 1938 by Masson et Cie, Paris, France. 
‘*J. E. Marsden and A. Weinstein, Rep. Math. Phys. 5, 121 (1974). 
19J. C. Simo, D. Lewis, and J. E. Marsden, Arch. Rational Mech. Anal. 

115, 15 (1991). 
z”J. Jellinek and D. H. Li, Phys. Rev. Lett. 62, 241 (1989). 
“W. Klemperer, Faraday Discuss. Chem. Sot. 62, 179 ( 1977). 
“K. R. Leopold, G. T. Fraser, F. J. Lin, D. D. Nelson, Jr., and W. 

Klemperer, J. Chem. Phys. 81, 4922 (1984). 
“F. J. Lin and J. T. Muckerman, Comput. Phys. Commun. 63, 538 

(1991). 
24F. J. Lin, Bull. Am. Phys. Sot. 36, 1796 (1991). 
25A. Guichardet, Ann. Inst. Henri Poincarb 40, 329 (1984). 
26T. Iwai, Ann. Inst. Henri Poincart 47, 199 (1987). 
“A. Tachibana and T. Iwai, Phys. Rev. A 33, 2262 (1986). 
‘*W. Kaplan, Am. Math. Month. 49, 316 (1942). 
“8. Smale, Invent. Math. 10, 305 (1970). 
‘OS. Smale, Invent. Math. 11, 45 (1970). 
“C. L. Pekeris, Phys. Rev. 45, 98 (1934). 
32 G. Herzberg, Molecular Spectra and Molecular Structure, Vol. I: Spec- 

tra of Diatomic Molecules (Van Nostrand Reinhold, New York, 
1950), 2nd ed. 

33C H Townes and A. L. Schawlow, Microwave Spectroscopy (Dover, . . 
New York, 1975), republication of 1955 McGraw-Hill edition. 

34J. E. Jones, Proc. R. Sot. London Ser. A 106,441 (1924). 
35J. E. Jones, Proc. R. Sot. London Ser. A 106, 463 (1924). 
36P. M. Morse, Phys. Rev. 34, 57 (1929). 
37G. Her&erg, Molecular Spectra and Molecular Structure, Vol. Ik 

Infrared and Raman Spectra of Polyatomic Molecules (Van Nostrand 
Reinhold, New York, 1945). 

38J M Farrar, T. P. Schafer, and Y. T. Lee, in Transport Phenomena, . . 
edited by J. Kestin (A.I.P. Conference Proceedings, No. 11, 1973), p. 
279. 

“R. T Pack, J. J. Valentini, C. H. Becker, R. J. Buss, and Y. T. Lee, J. 
Chem. Phys. 77, 5475 (1982). 

40N. Jacobson, Basic Algebra I, (Freeman, New York, 1985), 2nd ed. 
4’ W. J. Satzer, Jr., Indiana Univ. Math. J. 26, 951 ( 1977). 
42 J E Marsden, Lectures on Mechanics, London Mathematical Society . . 

Lecture Note Series (Cambridge U.P., New York, 1992) (to be pub- 
lished) . 

J. Math. Phys., Vol. 33, No. 4, April 1992 
Downloaded 23 Oct 2006 to 131.215.241.78. Redistribution subject to AIP license or copyright, see http://jmp.aip.org/jmp/copyright.jsp


