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Abstract

One of the goals of this paper is to describe explicitly the generic movement

of eigenvalues through a one-to-one resonance in a (linearized) Hamiltonian sys-

tem. We classify this movement, and hence answer the question of when the

collisions are “dangerous” in the sense of Krein by using a combination of group

theory and definiteness properties of the associated quadratic Hamiltonian. For
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example, for systems with S1 symmetry, if the representation on an associated

four dmensional symplectic space consists of two complex dual subspaces, then

generically the eigenvalues split if the Hamiltonian is indefinite, and they pass

if the Hamiltonian is definite. The result is to be contrasted with the bifurca-

tion of steady states (zero eigenvalue) where one can use either group theory

alone (Golubitsky and Stewart) or definiteness properties of the Hamiltonian

(Cartan-Oh) to determine if the eigenvalues split or pass on the imaginary axis.

The results are illustrated for the rotating orthogonal double planar pendulum.

1 Introduction

Hamiltonian vector fields can undergo a variety of generic bifurcations as a single

bifurcation parameter is varied. Consider the following two types of local bifurcation

from an equilibrium.

1. Steady-state bifurcation when the linearized vector field at the equilibrium has

a zero eigenvalue of multiplicity two.

2. 1−1 resonance when the linearization has a pair of purely imaginary eigenvalues

of multiplicity 2.

Without loss of generality, we may assume in 2. that these eigenvalues are ±i.

Let ω denote the symplectic form. In case 1, the kernel of the linearization

is a two-dimensional symplectic subspace. As the bifurcation parameter is varied,

generically the eigenvalues go from purely imaginary to real (or vice versa). In case

2, the sum of the eigenspaces of the eigenvalues ±i can be written as the sum of

two ω-orthogonal two-dimensional symplectic subspaces. This time, generically the

eigenvalues go from purely imaginary into the right and left-hand complex plane (or

vice versa). We describe the behaviour of the eigenvalues in each of these cases by

saying that the eigenvalues split, see Figure 1. The 1−1 resonance with splitting is

often called the Hamiltonian Hopf bifurcation, see [9].
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It transpires that in many applications the eigenvalues do not behave in the man-

ner described by the generic theory above. Rather than split at 0 or ±i, the eigenval-

ues remain on the imaginary axis and pass, see Figure 2. However it follows from work

of Galin [4], that at least three parameters are required for passing to be expected.
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Figure 1: The splitting case; (a) for the steady state bifurcation, (b) for the 1−1

resonance

The reason that passing is seen so often in bifurcations of Hamiltonian vector

fields is that in many applications there is symmetry present. As is well known in

bifurcation theory (see for example [6]) the presence of symmetry can greatly influence

the generic behavior. Indeed, for certain symmetry groups (the most notable example

being the circle group S1), passing of eigenvalues may be generic in a one parameter

family.

In the steady state case, the dichotomy in eigenvalue movements can be un-

derstood using definiteness properties of the Hamiltonian, a method we shall call
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Figure 2: The passing case; (a) for the steady state bifurcation, (b) for the 1−1

resonance

energetics, or group-theoretically (see Golubitsky-Stewart [5]). For the energet-

ics method, see Oh [13]. We note that Krein theory uses primarily the energetics

approach, but in a way different from that used in this paper. It turns out that

energetics or group theory alone is not sufficient to characterize the movement of

eigenvalues in the 1−1 resonance.. One of the main purposes of this paper is to

show that a combination of group theory and energetics yields a particularly clean

characterization of the splitting and passing cases.

A more basic effect of the symmetry is to force multiplicity of certain eigenvalues,

so that the dimensions given above for the various eigenspaces are often invalid even

generically. We prove results on the generic structure of the eigenspaces corresponding

to the steady-state bifurcation and the 1−1 resonance (c.f. Golubitsky-Stewart

[5, Theorem 3.3] and van der Meer [10, p. 1046]). Assume that the Hamiltonian
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is invariant under a compact Lie group Γ that preserves the symplectic structure.

Theorem 3.2 states that in the case of a steady-state bifurcation, generically the

generalized zero eigenspace E0 is either nonabsolutely Γ-irreducible or the direct sum

of two isomorphic absolutely Γ-irreducible subspaces. (A Γ-invariant subspace V is

absolutely Γ-irreducible if the only linear mappings V → V that commute with the

action of Γ are real multiples of the identity. An Γ-irreducible subspace that is not

absolutely Γ-irreducible is called nonabsolutely Γ-irreducible.)

In the case of 1−1 resonance, Theorem 3.3 states that generically the sum of

the generalized eigenspaces of ±i, E±i, can be written as the sum of two symplectic

ω-orthogonal subspaces U1 and U2, where each of the Uj is either nonabsolutely Γ-

irreducible or the direct sum of two isomorphic absolutely Γ-irreducible subspaces.

Although neither of these results are new, this is the first time that a complete

proof has been given. (The proof of the first result in [5] contains nontrivial gaps,

and the second result is stated but not proved in [10].)

Our main result, Theorem 4.4, is concerned with the generic movement of eigenval-

ues in 1−1 resonance with symmetry. The steady-state bifurcation is well understood

both group-theoretically ([5]) and in terms of energetics ([13]). We combine these re-

sults in Theorem 4.1. Recall that E0 is generically either the direct sum of two

absolutely irreducible subspaces or is nonabsolutely irreducible. These possibilities

correspond precisely to the splitting or passing of eigenvalues. On the other hand,

the linearization of the vector field induces a quadratic form on E0. This quadratic

form changes from definite to indefinite in the splitting case, but remains definite in

the passing case.

The movement of eigenvalues in the 1−1 resonance is rather more delicate. The

results are summarized in Theorem 4.4. We show that it is necessary to combine

the group-theoretic and energetic approaches in order to characterize the dichotomy,

splitting or passing, in the eigenvalue movements. The interesting cases are when U1

and U2 are isomorphic. If U1 and U2 carry distinct representations of Γ then the res-

onance decouples and the eigenvalues move independently along the imaginary axis.
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In order to understand the cases where U1 and U2 are isomorphic, we make use of

results of Montaldi-Roberts-Stewart [11] on the interrelationship between the

symmetric and the symplectic structure. At this stage it becomes necessary to distin-

guish between the two types of nonabsolutely Γ-irreducible representations: complex

and quaternionic. Provided U1 and U2 are not complex irreducibles, generically the

eigenvalues split. If the Uj are isomorphic complex irreducibles, then in the termi-

nology of [11] they are either of the same type or dual. If U1 and U2 are complex of

the same type, then generically the eigenvalues pass. Finally, in the case of complex

duals the eigenvalues can generically pass or split and these possibilities correspond

precisely to definiteness and indefiniteness of the quadratic form induced on U1 ⊕U2

by the linearization.

The paper is organized as follows. First, in Section 2 we review the nonsymmetric

case. Using the Galin normal forms listed in [4], it is easy to verify that splitting is

generic in the steady-state bifurcation and in the 1−1 resonance. We also describe

the energetic viewpoint in this context.

In Section 3 we formulate results on the generic (group-theoretic) structure of

E0 and E±i for a one-parameter family of linear Hamiltonian vector fields. Then, in

Section 4 we give group-theoretic and energetic characterizations of the movement

of eigenvalues in the steady-state bifurcation. We also state and prove our main

theorem, where we combine the group-theoretic and energetic methods to give a

complete characterization of eigenvalue movements in the 1−1 resonance. Finally,

in Section 5, we consider an example, namely a rotating orthogonal planar double

pendulum.

2 The nonsymmetric case

In this section, we review the situation when there is no symmetry present. The

results follow easily from work of Galin [4]. First, the codimension formula of

Galin (see also Arnold [2, Appendix 6]) implies that in a one-parameter family,
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associated to each eigenvalue is precisely one Jordan block of dimension at most

two. Since zero eigenvalues of symplectic matrices have even multiplicity, it follows

that in the steady-state bifurcation, generically dimE0 = 2 and the restriction of

the linearization is nilpotent. In the 1−1 resonance, by definition dim E±i ≥ 4, so

generically this dimension is precisely four. Again, the restriction of the linearization

is nilpotent.

Let A(λ) denote a one-parameter family of linear Hamiltonian vector fields un-

dergoing one of the above bifurcations at λ = 0. In each case we can write A(λ)

in Galin normal form and explicitly compute the eigenvalues. The relevant normal

forms in [4] are (36) and (35) respectively.

In the steady-state bifurcation, the Galin normal form of the linearized vector

field is

A(λ) =





0 1

λ 0



 .

The eigenvalues are given by ±
√

λ, so as λ increases through zero the eigenvalues

move together along the imaginary axis and split onto the real axis.

In the 1−1 resonance, the Galin normal form is

A(λ) =

















0 −1 ρ 0

1 0 0 ρ

λ 0 0 −1

0 0 1 0

















,

where ρ = ±1. This time a computation yields the eigenvalues

±
√

1

2

{

−(ρλ + 2) ±
√

λ(λ + 8ρ)
}

.

In particular, for λ close to 0, the eigenvalues are purely imaginary precisely when

the expression λ(λ + 8ρ) is positive. Thus the eigenvalues split as required.

We now give a description in terms of energetics. A symplectic linear map A on

a symplectic space Z induces a quadratic form Q on Z via the formula

Q(z) = ω(z, Az) . (2.1)
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Moreover Q(z) = 〈z, JAz〉 so that the quadratic form is represented by the symmetric

matrix B = JA.

Generalized eigenspaces are symplectic ([14]) and so we may speak of the quadratic

form Q induced on E0 or E±i by A(0). In the steady state case we will denote by Q(λ)

the quadratic form which is induced on the generalized eigenspaces of the eigenvalues

going through 0 for λ = 0. Note that Q(λ) is degenerate if and only if A(λ) has

a zero eigenvalue. In particular, in the case of 1−1 resonance, Q is nondegenerate.

In the steady-state bifurcation, Q(0) is degenerate, but Q(λ) is nondegenerate for λ

close but not equal to zero.

The following ‘stability’ theorem is a basic part of Krein theory, see Krein [8]

and Moser [12].

Theorem 2.1 (Krein) Suppose that A is a symplectic matrix defined on a symplec-

tic vector space Z. Let Q be the quadratic form induced on Z by A. If Q is definite,

then A is semisimple and the eigenvalues of A lie on the imaginary axis.

Suppose that A(λ) undergoes a steady-state bifurcation with dimE0 = 2. Then

definiteness or indefiniteness of the quadratic form Q(λ) is governed by the sign

(positive or negative) of det B(λ). But in canonical coordinates, det J = 1 so that

det B(λ) = det A(λ). It follows that definiteness corresponds to purely imaginary

eigenvalues and indefiniteness to real ei genvalues. Thus we have proved the following

result.

Theorem 2.2 Suppose that a Hamiltonian system undergoes a steady-state bifurca-

tion. Let Q(λ) denote the quadratic form induced on the corresponding generalized

eigenspaces via equation (2.1). Then generically dim E0 = 2, and the eigenvalues

move together along the imaginary axis and then split along the real axis (or vice

versa). Simultaneously, the quadratic form Q changes from definite to indefinite (or

vice versa).
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Theorem 2.3 Suppose that a Hamiltonian system undergoes a 1− 1 resonance.

Let Q denote the quadratic form induced on E±i via equation (2.1). Generically

dim E±i = 4, Q is indefinite, and we have the splitting case.

Proof It only remains to show that Q is indefinite. But if Q were definite, then by

the stability theorem the eigenvalues would be constrained to lie on the imaginary

axis and could not split.

3 The generic structure of eigenspaces

In this section, we describe the group-theoretic structure of the generalized eigen-

spaces E0 and E±i in a generic one-parameter family of linear Hamiltonian vector

fields with symmetry. In subsection 3.1 we state the main results of this section.

These results are proved in subsection 3.2.

3.1 Statement of results

Let Z be a symplectic vector space with symplectic form ω. Assume that a compact

Lie group Γ is acting symplectically on Z, that is,

ω(γv, γw) = ω(v, w) ∀γ ∈ Γ ; v, w ∈ Z . (3.1)

Let spΓ(Z) denote the Lie algebra of linear infinitessimally symplectic maps com-

muting with Γ:

B ∈ spΓ(Z) ⇐⇒































(i) B : Z → Z is linear ,

(ii) ω(Bv, w) + ω(v, Bw) = 0 ∀v, w ∈ Z ,

(iii) γB = Bγ ∀γ ∈ Γ .

Suppose that A is an element of spΓ(Z). Let E0 and E±i denote the generalized

eigenspaces of A corresponding to the eigenvalues 0 and ±i respectively.
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In this paper we are primarily interested in the behavior associated with A that is

generic, or to be expected, in a one-parameter family. However, the generic behavior

is nontrivial even when there are no parameters. Of course a zero eigenvalue may

be perturbed away so generically E0 = 0. The generic situation for E±i is more

complicated because purely imaginary eigenvalues occur generically in the context of

Hamiltonian systems. Moreover, these eigenvalues may generically have multiplicities

forced by Γ-equivariance. Now generically we still have that E±i = 0 since we can

simply scale the eigenvalues along the imaginary axis. However it is convenient to

disregard such scalings, since we can always normalize and bring the eigenvalues back

to ±i. In this framework, it is generically possible that E±i is nontrivial.

Theorem 3.1 Suppose that A has an eigenvalue i. Then, disregarding the possibility

of scaling the eigenvalue, generically either

(a) E±i is nonabsolutely Γ-irreducible, or

(b) E±i = V ⊕ V , V absolutely Γ-irreducible.

Now we can state our results for one-parameter families. In this case it is possible

to have zero eigenvalues or resonant purely imaginary eigenvalues. Purely imagi-

nary eigenvalues are in resonance when E±i does not have one of the forms listed in

Theorem 3.1.

Theorem 3.2 Suppose that A has a zero eigenvalue. Generically in a one-parameter

family, either

(a) E0 is nonabsolutely Γ-irreducible, or

(b) E0 = V ⊕ V , V absolutely Γ-irreducible.

Theorem 3.3 Suppose that A has a resonant eigenvalue i. Generically in a one-

parameter family, E±i = U1 ⊕ U2 where for j = 1, 2 either

(a) Uj is nonabsolutely Γ-irreducible, or
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(b) Uj = V ⊕ V , V absolutely Γ-irreducible.

Remark 3.4 (a) In Theorem 3.1 the generalized eigenspace E±i is symplectic, that

is ω|E±i
is nondegenerate (see Proposition 3.7 below). Similarly E0 is symplectic in

Theorem 3.2. In Theorem 3.3 the subspaces U1 and U2 may be chosen to be symplectic

and also to be ω-orthogonal. Recall that two subspaces U1 and U2 are ω-orthogonal if

ω(u1, u2) = 0 for all u1 ∈ U1 and u2 ∈ U2.

(b) When there is no symmetry present, we may take Γ to be the trivial group. The

irreducible representations are absolutely irreducible and one-dimensional. Hence we

recover the expected dimensions of the relevant generalized eigenspaces, as described

in Section 2.

3.2 Proofs

3.2.1 Preliminaries

Let < , > be a Γ-invariant inner product on Z. We may define a linear map J : Z → Z

uniquely by

ω(v, w) =< v, Jw > for all v, w ∈ Z. (3.2)

Then J is an isomorphism that commutes with Γ and is skew-symmetric, that is, JT =

−J . Conversely, given such a J , we may use equation (3.2) to define a symplectic

form ω that satisfies (3.1).

A Γ-invariant subspace W ⊂ Z that is symplectic is called Γ-symplectic. The

restricted symplectic form ω|W induces an isomorphism JW : W → W . Note that

JW is not the same as J |W . Indeed, J will not in general leave the subspace W

invariant. Finally, we recall that a subspace W ⊂ Z is isotropic if ω(w1, w2) = 0 for

all w1, w2 ∈ W .

We now state several basic results from Golubitsky-Stewart [5]. The first

four results are Theorem 2.1, Proposition 2.3, Proposition 3.1 and Lemma 2.4(b) of
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that paper. The fifth result is implicit in the proof of [5, Theorem 2.1], though our

choice of JV is more constructive.

Proposition 3.5 Z has the decomposition into Γ-symplectic ω-orthogonal subspaces

Z =
⊕

Ui (3.3)

Each Ui is either nonabsolutely irreducible or has the form V ⊕V where V is absolutely

irreducible.

Proposition 3.6 If E ⊂ Z is Γ-symplectic, then there is an ω-orthogonal, Γ-sym-

plectic complement F so that Z = E ⊕ F ,

Proposition 3.7 The generalized eigenspaces of a linear map A ∈ spΓ(Z) are Γ-

symplectic.

Proposition 3.8 If V is Γ-irreducible, then V is either isotropic or symplectic.

Proposition 3.9 (a) If V is isotropic, then V ∩ JV = {0} and V ⊕ JV is Γ-sym-

plectic.

(b) If V is absolutely Γ-irreducible, then V is isotropic.

3.2.2 Proof of the Theorems

We shall begin with the proof of Theorem 3.2. Then the proofs of Theorem 3.1 and

Theorem 3.3 are similar. Almost all of this can be done in a coordinate-free setting.

However, a computation is required to exclude certain possibilities in Theorems 3.2

and 3.1.

Lemma 3.10 Let A(λ) be a one-parameter family in spΓ(Z) such that A = A(0)

has a zero eigenvalue. Generically either

(a) E0 = V , or
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(b) E0 = V ⊕ JUV

where V is a Γ-irreducible subspace of ker A.

Proof Since the kernel of A is Γ-invariant it possesses a Γ-irreducible subspace V . If V

is symplectic, set U = V . Otherwise, V is isotropic and we take U = V ⊕JV , (where

J = JE0
). In each case U is Γ-symplectic and has an ω-orthogonal, Γ-symplectic

complement Y in E0 (cf. Propositions 3.7 and 3.6). Also, E0 has an orthogonal

symplectic complement Z0 in Z. In symbols we have

Z = E0 ⊕ Z0, E0 = U ⊕ Y.

If Y = 0, there is nothing to do. Otherwise, define B ∈ spΓ(Z) in block-diagonal

form as follows:

B|U = B|Z0
= 0, B|Y = JY .

Set Aε = A + εB. Clearly, we have

E0(Aε) ⊂ E0, V ⊂ ker Aε.

We claim that E0(Aε) is a proper subspace of E0 for ε in a full deleted neighborhood

of zero. If the claim is true then we may proceed inductively until Y = 0 thus proving

the Lemma. Note that V is fixed throughout the induction, but in general U may

vary since J = JE0
depends on E0,

It remains to verify the claim. Choose a nonzero vector y ∈ Y . It is sufficient to

show that y is not a generalized eigenvector corresponding to the eigenvalue 0 for all

ε in a deleted neighborhood of the origin. Suppose for contradiction that Ak
ε y = 0

for infinitely many ε, where k = dim E0 say. Expanding Ak
ε , we have

(Pk−1(ε) + εkBk)y = 0,

for infinitely many ε, where Pk−1(ε) is a matrix valued polynomial of degree k − 1 in

ε. Equating components in the vector equation, and using properties of polynomials,

we see that equality holds for all ε. Moreover, comparing coefficients of εk, we have

Bky = 0.
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But ker Bk ∩ Y = {0} so we have the required contradiction.

Proof of Theorem 3.2 We must show that V is generically nonabsolutely Γ-

irreducible in case (a) of the Lemma and absolutely Γ-irreducible in case (b).

Nonabsolute irreducibility in case (a) is automatic by Proposition 3.9 since E0 = V

is symplectic and hence cannot be absolutely Γ-irreducible. Case (b) follows from a

relatively tedious computation, see Remark 4.7.

Proof of Theorem 3.1 The proof is completely analogous to that of the previ-

ous Lemma and Theorem. This time we choose a Γ-irreducible subspace V in the

eigenspace of ±i and construct U as before. Now write

Z = E±i ⊕ Z0, E±i = U ⊕ Y

and replace Ak
ε by [A2

ε + I]k in the proof of the previous Lemma.

Again U cannot be absolutely Γ-irreducible. Also it cannot be the direct sum of

two nonabsolutely Γ-irreducible subspaces, see Remark 4.7.

Lemma 3.11 Let A(λ) be a one-parameter family in spΓ(Z) such that A = A(0) has

a resonant eigenvalue i. Generically E±i = U1 ⊕ U2 where U1 and U2 are symplectic

ω-orthogonal subspaces and for j = 1, 2 either

(a) Uj = V , or

(b) Uj = V ⊕ JUj
V

where V is a Γ-irreducible subspace of the eigenspace of ±i.

Proof The proof is similar to that of the previous Lemma. This time we choose

a Γ-irreducible subspace V in the eigenspace of ±i and construct U1 as before. By

hypothesis, this is not the full generalized eigenspace, so we may construct a second

symplectic subspace U2. Write

Z = E±i ⊕ Z0, E±i = U1 ⊕ U2 ⊕ Y
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and as before replace Ak
ε by [A2

ε + I]k in the proof of the previous Lemma.

Proof of Theorem 3.3 Again we must show that V must be nonabsolutely Γ-

irreducible in case (a) and absolutely Γ-irreducible in case (b).

By construction, the Uj are symplectic, so V must be nonabsolutely Γ-irreducible

in case (a). It remains to consider the case E±i = U1 ⊕ U2 where U1, say, is of type

V ⊕ V and V is nonabsolutely Γ-irreducible. In fact we show that this case reduces

to U ⊕ U where U is of type (a). Begin by perturbing U2 away as in the proof of

the previous Lemma. Then E±i = U1 is the sum of two isomorphic Γ-irreducible

subspaces, so every Γ-irreducible subspace of E±i is isomorphic to V . By Proposition

3.5 we may write E±i = U ⊕ U where each copy of U is symplectic and isomorphic

to V . Hence this one copy of U of type (b) in the Lemma splits into two isomorphic

copies of U of type (a) in the theorem.

4 Movement of eigenvalues

Suppose that A(λ) is a one-parameter family of linear Hamiltonian vector fields com-

muting with the action of a compact Lie group Γ. Suppose further that A(λ) under-

goes a steady-state bifurcation or 1−1 resonance at λ = 0. Theorems 3.2 and 3.3

give the generic structure of the generalized eigenspaces E0 and E±i.

When there is no symmetry present, these structures reduce to those described in

Section 2. Moreover we were able to determine the generic movement of eigenvalues

and to give an energetic description. In particular, the eigenvalues generically split

off the imagainary axis in each bifurcation.

When there is symmetry present, it is no longer true that the eigenvalues generi-

cally split. In this section, we show that the eigenvalues split off the imaginary axis

or pass along the axis. Moreover this movement can be completely characterized in

terms of group theory and energetics. In fact, in the steady-state bifurcation it is

already known that the movement can be characterized using group theory alone ([5])

or by energetics alone ([13]). We combine these two results in Theorem 4.1 below.
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The movement of eigenvalues in the 1−1 resonance is rather delicate and cannot

be characterized by group theory alone or energetics alone. Even the statement of the

result (Theorem 4.4 below) requires familiarity with the terminology of Montaldi-

Roberts-Stewart [11]. In subsection 4.1 we introduce this terminology and state

Theorems 4.1 and Theorem 4.4. We also state some of the results in [11] that we

shall require, including an equivariant version of Darboux’s Theorem. In subsection

4.2 we prove Theorems 4.1 and 4.4.

4.1 Statement of Results

We begin by stating the combined results of [5] and [13] for the steady-state bifurca-

tion.

Theorem 4.1 Suppose that the hypotheses of Theorem 3.2 hold. Let Q(λ) denote

the quadratic form induced on the corresponding generalized eigenspaces via equation

(2.1). Generically, precisely one of the following occurs:

(a) E0 is nonabsolutely irreducible, Q(λ) is definite for λ 6= 0, and the

eigenvalues pass with nonzero speed.

(b) E0 is the direct sum of two isomorphic absolutely irreducible subspaces,

Q(λ) changes from definite to indefinite, and the eigenvalues split.

In order to state the corresponding result for the 1−1 resonance, it is necessary

to recall some terminology and results from Montaldi-Roberts-Stewart [11].

If U is a symplectic representation then — by ignoring the symplectic structure —

we obtain an ordinary representation, which is called the underlying representation. A

Γ-irreducible symplectic representation is a representation that has no proper nonzero

Γ-invarian t symplectic subspaces. It follows from Proposition 3.5 and Proposition

3.9, part (b), that Γ-irreducible symplectic representations are either nonabsolutely

Γ-irreducible or the sum of a pair of isomorphic absolutely Γ-irreducible subspaces.

Moreover, the following Theorem holds, which is part of [11, Theorem 2.1].
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Theorem 4.2 (a) In the real and quaternionic cases the isomorphism type of the

Γ-irreducible symplectic representation is uniquely determined by that of its un-

derlying representation.

(b) In the complex case there are precisely two isomorphism types of Γ-irreducible

symplectic representations for a given complex Γ-irreducible underlying repre-

sentation. They are said to be dual to each other.

According to the two different possibilities occuring in part (b) we will speak of

complex irreducibles of the same type and complex duals.

Remark 4.3 The real, complex and quaternionic cases mentioned in Theorem 4.2

refer to the following well known fact (see e.g. [6]): Let U be Γ-irreducible and D be

the space of linear mappings U → U which commute with Γ. Then D is isomorphic

to either IR, C or IH, where IH denotes the quaternionics. Moreover, U is absolutely

Γ-irreducible if D ∼= IR and nonabsolutely Γ-irreducible if either D ∼= C or D ∼= IH.

After these preparations we state our main Theorem of this Section.

Theorem 4.4 Suppose that the hypotheses of Theorem 3.3 hold. Let Q denote the

quadratic form induced on E±i via equation (2.1). Generically, precisely one of the

following occurs:

(a) U1 and U2 are not isomorphic and the eigenvalues pass independently

along the imaginary axis. (Q may be indefinite or definite.)

(b) U1 = U2 = V ⊕ V , V real, or U1 = U2 = W , W quaternionic, the

eigenvalues split, and Q is indefinite.

(c) U1 and U2 are complex of the same type, the eigenvalues pass and Q is

indefinite.

(d) U1 and U2 are complex duals and the eigenvalues pass or split depending

on whether Q is definite or indefinite.
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Eigenspace structure Induced quadratic form

definite indefinite

V ⊕ V ⊕ V ⊕ V not generic splitting

W ⊕ W (quaternionic) not generic splitting

W ⊕ W (complex of the same type) not generic passing

W ⊕ W (complex duals) passing splitting

U1 ⊕ U2 (nonisomorphic) ‘independent passing’

Table 1: Generic eigenvalue movement

The statement of the last Theorem is roughly summarized in Table 1.

Finally we state two more results of [11]. The first is an equivariant version of

Darboux’s Theorem, which is implicit in Theorem 2.4 of that paper.

Proposition 4.5 Suppose that U is a Γ-irreducible symplectic representation. Then,

up to isomorphism, there is precisely one symplectic form on U in the real and quater-

nionic cases and precisely two in the complex case.

In the terminology of [11] a symplectic representation U is said to be cyclospec-

tral if every element of spΓ(U) has all its eigenvalues on the imaginary axis. Cy-

clospectral representations are characterized in the following Theorem.

Theorem 4.6 A symplectic representation U of Γ is cyclospectral if and only if, in

its decomposition (3.3)

(a) There are no real Γ-irreducible representations.

(b) There are no complex duals.
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(c) There are only pairwise nonisomorphic quaternionic Γ-irreducible representa-

tions.

4.2 Proofs

Proof of Theorem 4.1 Suppose that E0 is nonabsolutely irreducible. Then it

follows from Remark 4.3 that A(λ) = a(λ)I where a(λ) ∈ C or IH and a(0) = 0. It

follows (see e.g. [7]) that the eigenvalues of A(λ) are the same as the eigenvalues of

a(λ) repeated with multiplicity equal to dim E0. By Proposition 4.5 we may choose

coordinates so that J = ±i (since these are candidates for J and are distinct if W

is complex). The quadratic form Q(λ) is represented by the symmetric real matrix

B(λ) = ±ia(λ)I. It follows that a(λ) = ib(λ) where b(λ) is real. In particular, the

eigenvalues of A(λ) are purely imaginary. In addition, a′(0) = ib′(0) and b′(0) is

generically nonzero, so that the eigenvalues pass through zero with nonzero speed.

Finally B(λ) is a real scalar multiple of the identity and so is definite for λ 6= 0 as

required.

Now suppose that E0 = V ⊕V where V is real. By Proposition 4.5 we may choose

coordinates so that J =





0 −I

I 0



. Again by [7] we may work with 2 × 2 matrices

provided we include multiplicities equal to dim V . But then we are back in the case

where there is no symmetry and we can apply Theorem 2.2.

Proof of Theorem 4.4 (a) Since U1 and U2 are nonisomorphic, there is a corre-

sponding blockdiagonal structure of A(λ) on E±i corresponding to the decomposition

E±i = U1⊕U2. Since the eigenvalues on each Uj are simple up to multiplicities forced

by symmetry, it follows that the eigenvalues belonging to each block remain on the

imaginary axis and behave independently as λ is varied. Similarly, the quadratic

forms induced on the Uj separately are definite. Depending on whether they are

definite of the same sign or of opposite signs, the quadratic form on E±i is definite

or indefinite.

(b) The case U1 = U2 = V ⊕V reduces to the four-dimensional situation of Theorem
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2.3. We turn to the quaternionic case which is more difficult since we do not have a

list of normal forms. Once we have verified that the eigenvalues split, it follows that

Q is indefinite by Theorem 2.1. For simplicity from now on we suppress multiplicities

forced by the dimension of the underlying Γ-irreducible representation. Again, we

may choose coordinates so that J : V ⊕ V → V ⊕ V has the form

J =







0 −1

1 0





 .

Consequently, on E±i the mapping A(λ) has the form

A(λ) =





























0 a(λ) u1(λ) + iu2(λ) v1(λ) + iv2(λ)

−a(λ) 0 −v1(λ) + iv2(λ) u1(λ) − iu2(λ)

−u1(λ) − iu2(λ) v1(λ) − iv2(λ) 0 b(λ)

−v1(λ) − iv2(λ) −u1(λ) + iu2(λ) −b(λ) 0





























,

where a, b, u1, u2, v1, v2 are real-valued functions. The computation of the eigenvalues

of A(λ) (using MATHEMATICA) leads to

σ(λ) = ± 1√
2

√

p(λ) ±
√

q(λ),

with

p = −
(

a2 + b2 + 2(u2
1 − u2

2 + v2
1 − v2

2)
)

,

q = p2 − 4
(

ab − (u2
1 + u2

2 + v2
1 + v2

2)
)2

=
(

(a − b)2 + 4(u2
1 + v2

1)
) (

(a + b)2 − 4(u2
2 + v2

2)
)

.

By assumption p(0) = −2, q(0) = 0. Since the first factor of q is the sum of

three squares, it is generically the case that the second factor vanishes. Using this

we compute at 0 that

q′ = 4((a + b)2)′ − 32(u2u
′
2 + v2v

′
2)
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We claim that generically q′(0) 6= 0 and we have the splitting case. It is clear that

generically q′(0) 6= 0 whenever

a(0) 6= −b(0) or u2(0) 6= 0 or v2(0) 6= 0.

Therefore we consider the matrix

A(0) =

















0 a u v

−a 0 −v u

−u v 0 −a

−v −u a 0

















,

and show that this situation is not generic. This matrix has semisimple eigenvalues

±i(a2 + u2 + v2).

We perturb A(0) in the following way:

Aε(0) =

















0 a + 2ε u + iε v

−a − 2ε 0 −v u − iε

−u − iε v 0 −a

−v −u + iε a 0

















,

where the eigenvalues σε of this perturbed matrix are still purely imaginary, namely

σε = ±
√

−((a + ε)2 + u2 + v2).

This completes the proof of the quaternionic case.

(c) In this case Theorem 4.6 guarantees that the eigenvalues remain on the imaginary

axis. By Proposition 4.5 we may choose coordinates so that J =





i 0

0 i



. A

computation similar to that for the case of complex duals below shows that the

eigenvalues generically pass with nonzero speed and that Q is indefinite.

(d) By Theorem 4.2 and Proposition 4.5 we may assume that

J =







i 0

0 −i





 .
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Therefore we have to investigate the eigenvalues of the matrix

A(λ) =











iα1(λ) a2(λ)

a2(λ) iα4(λ)











, (4.1)

where a2 is a complex-valued function and α1, α4 are real. These eigenvalues are

σ(λ) = p(λ) ±
√

q(λ) ,

where

p =
i

2
(α1 + α4) ,

q = −1

4
(α1 − α4)

2 + |a2|2 .

The eigenvalues of the matrix B = JA(0) are

1

2

(

(α4 − α1) ±
√

(α1 + α4)2 + 4|a2|2
)

.

By assumption there are exactly two possibilities:

(i) p(0) = 0, q(0) = −1:

In this case the eigenvalues of B are given by −α1 ±
√

α2
1 − 1 and B is definite.

Hence the eigenvalues of A(λ) remain on the imaginary axis and pass with

nonzero speed provided p′(0) = i
2
(α′

1(0) + α′
2(0)) 6= 0.

(ii) |p(0)| = 1, q(0) = 0.

We claim that in this case generically q′(0) 6= 0 and therefore we have the

splitting case. We compute

q′(0) = −1

2
(α1(0) − α4(0))(α′

1(0) − α′
4(0)) + 2|a2(0)||a2|′(0)

and the eigenvalues are generically splitting at ±i as long as

α1(0) 6= α4(0) or a2(0) 6= 0.
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But the situation α1 = α4 = 1, a2(0) = 0 can be perturbed to

Aε(0) =











i(1 + ε) ε
2

ε
2

i











since Aε(0) still has the eigenvalue i(1 + ε
2
). Finally B is indefinite since the

eigenvalues split.

Remark 4.7 It is easily seen from the proof of Theorem 4.4 that it is not generic in

a one-parameter family for A(0) to have only zero eigenvalues on the space W ⊕W if

W is complex or quaternionic Γ-irreducible. To see this one only has to consider the

eigenvalues of A(0) for these cases while setting its determinant equal to zero. This

is the computation that was required to complete the proof of Theorem 3.2. Similarly

it is not generic for a matrix A ∈ spΓ(Z) to have only eigenvalues ±i on the space

W ⊕ W , as required in Theorem 3.1.

Example 4.8 a) We consider a symplectic Γ ∼= S1 × S1-action on C2, namely

(θ, φ)(z1, z2) = (eiθz1, e
iφz2),

where the symplectic form ω is defined by J =





i 0

0 −i



. Both copies of C

are nonisomorphic Γ-irreducible and therefore we know that always the passing

case has to occur.

For example, the Hamiltonian

H(z1, z2, λ) =
1

2

(

λ|z1|2 − |z2|2
)

,

which in real coordinates takes the form

H(p1, p2, q1, q2, λ) =
1

2

(

λ(p2
1 + q2

1) − (p2
2 + q2

2)
)

,
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is invariant under this action and A(λ) becomes

A(λ) =





iλ 0

0 i



 .

Independent passing in a 1−1-resonance occurs for λ = ±1 whereas we have

passing in the steady state bifurcation case for λ = 0.

Observe that H is also invariant under the action of the transformations

z1 → z̄1 , z2 → z̄2,

but these transformations do not commute with J and therefore lead to non-

symplectic actions.

b) Again we consider the space C2, where now the symplectic form ω is induced

by J =





i 0

0 i



. A symplectic Γ ∼= S1-action on C2 is given by

θ(z1, z2) = (eiθz1, e
iθz2).

Since both copies of C are complex irreducible of the same type, we have passing,

generically with nonzero speed.

As an example we consider the Γ-invariant Hamiltonian

H(z1, z2, λ) = λ
[

1

2
|z1|2 − Im(z1z̄2)

]

+ Re(z1z̄2),

which in real coordinates becomes

H(p1, p2, q1, q2, λ) = λ
[

1

2

(

p2
1 + q2

1

)

+ (p1q2 − p2q1)
]

+ (p1p2 + q1q2).

Here A(λ) has the form

A(λ) =





iλ λ + i

−λ + i 0





and the eigenvalues of A(λ) are iλ
2
±
√

−(λ2 + 5

4
). A 1−1 resonance occurs for

λ = 0 and the eigenvalues pass with nonzero speed.
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c) We take the canonical symplectic structure on IR8 and consider a symplectic

action of O(2) on IR8, where O(2) is generated by

Rϕ =

















cos(ϕ)I − sin(ϕ)I 0 0

sin(ϕ)I cos(ϕ)I 0 0

0 0 cos(ϕ)I − sin(ϕ)I

0 0 sin(ϕ)I cos(ϕ)I

















, κ =

















I 0 0 0

0 −I 0 0

0 0 I 0

0 0 0 −I

















with I ∈ IR2,2.

Using the canonical basis in IR8, we define the isomorphic Γ-irreducible sub-

spaces

V1,1 = IR{e1, e3}, V1,2 = IR{e5, e7},

V2,1 = IR{e2, e4}, V2,2 = IR{e6, e8},

and obtain the decomposition

IR8 = U1 ⊕ U2, (4.2)

where

U1 = V1,1 ⊕ V1,2 , U2 = V2,1 ⊕ V2,2

are Γ-irreducible symplectic representations. Therefore we know by Theorem 4.4

that generically the splitting cases occur – with an 8-dimensional corresponding

generalized eigenspace in the 1−1-resonance and a 4-dimensional generalized

eigenspace in the steady state bifurcation.

For example, the Hamiltonian

H(p1, p2, p3, p4, q1, q2, q3, q4, λ) = λ
[

1

2
(p2

1 + p2
3) − (p1q1 + p3q3)

]

−

−
[

1

2
(q2

1 + q2
2 + q2

3 + q2
4) + (p1q2 − p2q1) + (p3q4 − p4q3)

]
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is invariant under this O(2)-action and one computes using the coordinates

given by the decomposition (4.2)

A(λ) =

















λI −I I 0

I 0 0 I

λI 0 −λI −I

0 0 I 0

















.

Therefore the eigenvalues of A(λ) are

1√
2

(

±
√

−2 + λ + λ2 ±
√
−8λ − 3λ2 + 2λ3 + λ4

)

and for λ = 0 the splitting case in the 1−1-resonance occurs.

5 An example: The rotating orthogonal planar

double pendulum

This example is due to Bridges [3]: We consider a rotating orthogonal planar double

pendulum as illustrated in Figure 3.

The angular velocity of the rotation is assumed to be Ω∗. The two masses m1, m2

are forced to move in two planes, which are orthogonal to each other. In contrast

to the treatment in Bridges [3] we immediately restrict to the case where the two

pendulums have equal length, because this will lead to an S1-symmetry in the problem

as we will see down below.

We set

Ω2 =
Ω2

∗
g

, m =
m1

m2

.

Ω will be our bifurcation parameter. Scaling time by
√

1/g we obtain the Lagrangian

L =
1

2
(m + 1)[θ̇2

1 + Ω2 sin2 θ1] +
1

2
[θ̇2

2 + Ω2 sin2 θ2]

+θ̇1θ̇2 sin θ1 sin θ2 + Ω[sin θ1 cos θ2θ̇2 − cos θ1 sin θ2θ̇1]

+(m + 1)(cos θ1 − 1) + (cos θ2 − 1) .
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Figure 3: The rotating orthogonal double pendulum

Let

φ1 =
∂L

∂θ̇1

= (m + 1)θ̇1 + θ̇2 sin θ1 sin θ2 − Ω cos θ1 sin θ2 ,

φ2 =
∂L

∂θ̇2

= θ̇2 + θ̇1 sin θ1 sin θ2 + Ω sin θ1 cos θ2

be the conjugate momenta.

The corresponding Hamiltonian H(θ1, θ2, φ1, φ2, Ω) has a Taylor expansion of the

following form:

H(θ1, θ2, φ1, φ2, Ω) = H2(θ1, θ2, φ1, φ2, Ω) + H4(θ1, θ2, φ1, φ2, Ω) + . . . ,

since all terms of odd order have to vanish as a consequence of the ZZ2×ZZ2-symmetry

of the spinning orthogonal double pendulum. The representation of ZZ2 × ZZ2 in IR4
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is generated by the transformations (with respect to (θ1, θ2, φ1, φ2))
















−1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 −1

















,

















1 0 0 0

0 −1 0 0

0 0 −1 0

0 0 0 1

















. (5.1)

Observe that this action of ZZ2 × ZZ2 is not symplectic (cf. (3.1)).

The expression for H2 is (cf. Bridges [3])

H2(θ1, θ2, φ1, φ2, Ω) =
1

2(m + 1)
φ2

1 +
1

2
φ2

2 + Ω(
1

m + 1
φ1θ2 − θ1φ2)

+
1

2
(m + 1)(1 − m

m + 1
Ω2)θ2

1 +
1

2
(1 − m

m + 1
Ω2)θ2

2 .

Changing coordinates by






















q1

q2

p1

p2























=























0 0 0 −
√

m + 1

0 0 −1 0

0 1√
m+1

0 0

1 0 0 0













































θ1

θ2

φ1

φ2























we obtain

H2(p1, p2, q1, q2, Ω) =
1

2(m + 1)
(q2

1 + q2
2) −

Ω√
m + 1

(p1q2 − p2q1)

+
1

2
(m + 1)(1 − m

m + 1
Ω2)(p2

1 + p2
2) .

Now we can easily see that H2 is also S1-invariant, where S1 is acting symplectically

on (p1, p2, q1, q2) by




















cos β − sin β 0 0

sin β cos β 0 0

0 0 cos β − sin β

0 0 sin β cos β





















, β ∈ [0, 2π) . (5.2)
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A computation of AΩ = JD2H2(0, 0, 0, 0, Ω) yields

AΩ =





























0 − Ω√
m+1

− 1

m+1
0

Ω√
m+1

0 0 − 1

m+1

m + 1 − mΩ2 0 0 − Ω√
m+1

0 m + 1 − mΩ2 Ω√
m+1

0





























. (5.3)

Hence AΩ ∈ spΓ(IR4), where the elements of Γ ∼= S1 are given by (5.2). Since the

action of ZZ2×ZZ2 as defined in (5.1) is not symplectic, AΩ is not ZZ2×ZZ2-equivariant.

Computing the eigenvalues λ(Ω) of AΩ we obtain

λ2(Ω) = −(1 +
1 − m

1 + m
Ω2) ± 2

Ω√
m + 1

√

1 − m

m + 1
Ω2 .

Furthermore
dλ2

dΩ
(0) = ±2

√

1

m + 1
6= 0 .

Therefore the eigenvalues pass on the imaginary axis for Ω = 0 with nonzero speed.

As pointed out in Bridges [3], also a Hamiltonian Hopf bifurcation occurs for Ω =

±
√

m+1

m
. Hence we can conclude that case (c) of Theorem 4.4 is underlying in this

example. The corresponding eigenspace E±i can be decomposed into two complex

duals.

Remark 5.1 In (5.3) AΩ has not the same structure as A(λ) in the proof of part

(c) of Theorem 4.4 (see (4.1)). The reason for this is that the spaces IR{e1, e2} and

IR{e3, e4} are not ω-orthogonal ((e1, . . . , e4) denotes the canonical basis of IR4).

In order to obtain that structure we set

W1 = IR{e1 − e4, e2 + e3}, W2 = IR{e1 + e4, e2 − e3} .

Then it follows that

IR4 = W1 ⊕ W2 ,
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W1 and W2 are complex duals, ω-orthogonal and Γ acts by the diagonal action on

W1 ⊕ W2.

Correspondingly in these new coordinates

J =



















0 −1 0 0

1 0 0 0

0 0 0 1

0 0 −1 0



















as in the proof of Theorem 4.4.

Finally, with

u(Ω) =
1

2

(

2Ω√
m + 1

− 1

m + 1
− m − 1 + mΩ2

)

,

v(Ω) =
1

2

(

− 1

m + 1
+ m + 1 − mΩ2

)

,

w(Ω) =
1

2

(

2Ω√
m + 1

+
1

m + 1
+ m + 1 − mΩ2

)

we obtain after a short calculation that AΩ now takes the form

AΩ =





























0 u(Ω) 0 −v(Ω)

−u(Ω) 0 v(Ω) 0

0 v(Ω) 0 w(Ω)

−v(Ω) 0 −w(Ω) 0





























as desired.
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