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Abstract. We consider the steady group motions of a rigid body with a fixed point moving 
in a gravitational field. For an asymmetric top, rotation about the axis of gravity is the 
only permissible group motion; for a Lagrange top, simultaneous rotation about the axis 
of gravity and spin about the axis of symmetry of the top is permissible. Our analysis 
of the heavy top follows the reduced energy momentum method of Simo el a1 , which is 
applicable to a wide range of conservative systems with symmetry. Steady group motions 
are characterized as solutions of a variational problem on the configuration space; local 
minima of the amended potential correspond to nonlinearly orbitally stable steady motions. 
The combination of a low-dimensional configuration space and a relatively large number 
of parameters that produce substantial qualitative changes in the dynamics makes possible 
a thorough, detailed analysis, which not only reproduces the classical results for this well 
known system, but leads to some results which we believe are new. 

motions of a heavy top with a fixed point. We rederive the classical equilibrium and stability 
conditions for sleeping tops and precessing Lagrange taps, analyse in detail the stability 
of a family of steady rotations of tilted tops which bifurcate from the branch of sleeping 
tops parametrized by angular velocity, and classify thc possible stability transitions of an 
arbitrary top as its angular velocity is increased. We obtain a simple, general expression far 
the charactenstic polynomial of the linearized equations of motion and analyse the linear 
stability of both sleeping tops and the family of tilted top motions previously mentioned. 
Finally, we demonstrate the coexistence of stable branches of steadily precessing tops that 
bifurcate from the branch of sleeping Lagrange lops throughout the range of angular 
velocities for which the sleeping top is stable. 

AMS classification scheme numbers: 70E15, 70K20, 58F05, 58F14, 70H30 
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1. Introduction 

The heavy top is one of the most familiar classical mechanical systems. The system, 
which consists of a rigid body with a fixed point moving in a gravitational field, is 
of sufficiently low dimension that a reasonably thorough analysis is tractable, yet rich 
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enough to possess many interesting features in common with other, more complicated 
systems. The literature on the heavy top is substantial; Klein and Sommerfeld (1910) 
is an exhaustive study. Routh (1882, 1884) contains an elegant and thorough analysis 
of the stability of simple motions of heavy tops with a fixed point, as well as more 
complicated rigid body systems. Modern, topological treatments of the heavy top in 
the spirit of Smale (1970a, b) have been carried out by Iacob (1971), Katok (1972) and 
Tatarinov (1974); see Arnold (1989) for a summary (in English) of Tatarinov’s results. 

Our goal in this paper is the derivation of old, as well as new, results by means of 
energy-momentum techniques. Part of our goal is the demonstration of the effectiveness 
of these techniques in a classical setting. As shown in Simo et af (1990, 1991a, h), 
Lewis and Simo (1990), and Simo et af (1991), these methods are applicable to a 
wide variety of mechanical systems. We believe that some of our results, including a 
thorough bifurcation analysis of the linear stability of sleeping tops and a classification 
of the possible stability transitions of a broad class of steady motions, are new. The 
focus of our analysis is steady group motion of a heavy top. By a group motion, we 
mean a motion that is compatible with the symmetries of the top. For an asymmetric 
top, rotation about the axis of gravity is the only permissible group motion; for a 
Lagrange top, i.e., a heavy top whose centre of mass lies along its axis of symmetry, 
simultaneous rotation about the axis of gravity and spin about the axis of symmetry 
of the top is permissible. For these classes of motions, it is possible to characterize 
configurations that will maintain steady motion with a specified velocity as solutions 
of a variational problem. In fact, configurations that are constrained minima of 
the appropriate functional determine nonlinearly stable (modulo symmetries) motions. 
There are a number of variational analyses of steady motions of conservative systems in 
general and the heavy top in particular. Routh (1884) makes frequent use of variational 
methods; for a more recent treatment, see Maddocks (1989). 

The variational technique used in the present work is the reduced energy momentum 
(REM) method of Simo et af (1991). This method is a synthesis of techniques developed 
by Riemann (1860), Routh (1882, 1884), Smale (1970a, b), Arnold (1966), Poincari 
(1892) and the authors. One of the advantages of the REM method over other variational 
formulations is the conversion of the original constrained variational problem on 
phase space into an unconstrained variational problem on the configuration space. 
This reduced problem may be further simplified at the linear level by decomposing 
variations into ‘rigid’ and ‘internal’ modes with respect to which the second variation 
of the associated functional block diagonalizes. In consequence, the equilibrium and 
stability conditions can be easily derived as simple, explicit algebraic conditions. 

The variational characterization of steady motion is also useful for the detection 
of bifurcations. When the second variation of the functional to be minimized changes 
signature, a new branch of configurations in steady motion may bifurcate. These 
branches can be detected and described in increasing detail by computing increasingly 
high-order variations of the functional. (See Golubitsky et al (1985, 1988) for a detailed 
discussion of singularity theory approaches to bifurcation theory.) We show here that 
the REM technique can greatly simplify the search for bifurcations. In particuhr, it Sets 
a readily verifiable bifurcation condition on degenerate variations. 

Given that a possible bifurcation of relative equilibria is signalled by a zero 
eigenvalue of the second variation and that the second variation is central to the 
stability analysis, it is natural to consider the relationship between bifurcation and 
stability. Typically, one expects a ‘transfer of stability’ at  a bifurcation point: the 
original branch of solutions loses stability and a new stable branch of solutions appears. 
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However, this need not be the case for Hamiltonian systems with symmetry. In fact, we 
show that under certain conditions a family of solutions parametrized by precession 
and spin bifurcates from a branch of sleeping Lagrange tops, while the sleeping solution 
branch retains stability throughout the entire range in which bifurcations occur. The 
Lagrange top provides an example of this phenomenon. Associated to each angular 
velocity for which the sleeping Lagrange top is stable, there are two one-parameter 
families of precessing top motions that limit to the sleeping top with the specified 
v e l u ~ l r y .  

1 . 1 .  Basic notation: canonical phase space 

We consider a heavy top, i.e. a rigid body acted upon by a gravitational force, with a 
fixed point. Once we have specified the shape of the top and the point of the top to 
be fixed, the configuration space Q is the set of all permissible orientations of the top. 
If we choose a reference configuration g, we can identify the current configuration 
B, with the element A, of the rotation group SO(3) taking to $3,; At is uniquely 
determined by the relation A,@ = $8,. Hence we set Q = SO(3). The tangent bundle 
T Q  consists of pairs (A,&4), where A E SO(3) and the matrix &A satisfies the linearized 
orthogonality constraint 

. 

i.e. ATSA is a skew-symmetric matrix: 

sym[ATfiA] = sym[fiAA'] = 0. 

Let -denote the map from R3 to the space of skew-symmetric matrices determined by 

y x = r x r  Y X E W ' .  (1.3) 

The condition (1.2) implies that the pair (&SA) is an  element of TQ if and only if A E 
SOjjj and 

~8% = 6~ = @A (1.4) 

for some vectors 6 0  and 619 E R'. Thus there are two distinct identifications of the 
tingent  bund!^ TQ with t h ~  produc! SO!?) xlR'. The hod? variables (ASSO) correspond 
to the feft trivialization of T Q ;  the spatial variables correspond to the right 
trivialization. 

The canonical phase space for the top is the cotangent bundle T'Q = T' SO(3) 
consisting of pairs (A, II,) of configurations and conjugate momenta. T'Q also has a 
body and a spatial representation: (A, n,) E T'Q if and only if there exist vectors n 
and x E R3 such that 

lzfi = n, = %A. (1.5) 

The covector-vector pairings in the body and spatial variables are 
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(nA,6A)=~tr((Afi)'(Ar$6)) = I I . 6 @  

and 

(nA,6A) =ftr((i?A)T(8?lA)) =n.SB. (1.7) 

The identity 

iQ = A ? A ~  (1.8) 

which holds for any vector 5 E R' and any matrix A E S0(3), implies that the body 
and spatial representations are related by the equalities 

6 8 = A 6 0  and K = An. 
The kinetic energy of a top moving with velocity A is 

where 

I := pCer(X)X 8 Xd3X J ,  

(1.11) 

(1.12) 

-. 
then the kinetic energy equals ;(A,A),. 'The gravitational potentiai energy is 
g ' AM, where g = ge, denotes the gravity vector and M := Jsprcf(X)Xd'X. If 
m := Japrer(X) d3X is the total mass of the body, then the centre of mass of the 
reference body is given by M,". Thus IMI = me, where e is the distance from the fixed 
point of the body to the centre of mass. 

The inner product,( , ),,given by (1.11) can be expressed in terms of the pairing 
(1.6) in body representation 1x1 the following fashion. Define the reference inertia tensor 
L r  by 

(1.13) 
= (tr1) l3  - I  
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where I, denotes the three by three identity matrix. Then a straightforward computation 
shows that 

(A@,,AS%~)~ = S O ,  . n s f m z  (1.14) 

for any A E SO(3). Note that (1.13) implies that the eigenvalues I,, I,, and I, of E,, 

Thus Ij +I, - Ii = 2 4  > 0 implies that the inequalities Ii < f j  +I, hold for all i, j ,  
k E {1,2,3} ,  i # k. 

The analogous expression for the inner product ( , )I in terms of the spatial 
variables involves the current spatial inertia tensor 1, given by 

satisfy 1, = !r I - I., fer I E { I ,  2,Z 1, where :he ).j's are :he (positix;e) eigeny&es af !. 

1, :=AKmfA T . (1.15) 

Using (1.9) and (1.14), we determine the relationship 

(%,A,&~A), = ( ~ ( ~ 6 3 , )  A(A%J), = ( A ~ w , ) .  nrd(ATss2) =SO, .n,se, 
(1.16) 

for any A E SO(3). Note that (1.14) shows that the metric ( , )I on TQ is left invariant, 
whereas (1.16) shows that the metric is typically not right invariant. 

1.2. Lagrangian and Hamiltonian structures 

The Lagrangian L for the heavy top is the difference between the kinetic and potential 
energies, i.e., 

L(A, A) = $(A, A), - g . AM. (1.17) 

The Legendre transformation FL associated to a Lagrangian L, defined by 

FL(A,A). (A,sA) = dl L(A,A+.sA) (1.18) 
e=o 

for A, SA E TAQ, maps velocity fields to momentum fields. In the case of the heavy 
top, the Legendre transformation FL : TAQ + TLQ at a configuration A is 

FL(A,A@) = (A, (A@,.),) = (A,A(II~&Y) (1.19) 

or, equivalently, 

L - r  / A  $ A \  - / A  /,&A .\ \ - / A  ( l f f M i A \  
1 L. ",w"I - \'.,\""I., , , I  - \", ,..,",I,'., \ :!.?e) 

Formulae (1.19) and (1.20) are a direct consequence of (1.14) and (1.16) and the 
definition of the pairing between T'Q and TQ given by (1.6) and (1.7). The total 
energy associated to the configuration-velocity pair (A, A) is 

E(A, A) = F L ( A ) .  A - L(A, A) = i(A,A)l f g  AM. (1.21) 
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To express the Lagrangian in terms of the spatial variables, define the spatial 
angular velocity by 

ii, := AAT. (1.22) 

Then (1.16) gives the expression of the Lagrangian in spatial variables as 

-,,.,-, J r A  r . l \ . = J l A Z ? A ~ = ~ / Z A  . ~ I  ,.., -,., ~ *\y","," Z A \  / I  - " . A M - l , . , . ~ A \ ' . ' - p . , ~ M ,  6 L.L.- - 2- {!.23) 

The Legendre transformation FL : S0(3)xR3 + SO(3)xR' has the spatial expression 

FL(A,oJ) = (A,EAu), (1.24) 

which follows directly from (l.20). Note that we use the same !et!er I- !o denote !he 
Lagrangian with respect to both material and spatial variables; in general, we shall 
use the same notation to denote a mapping with respect to material, spatial or body 
coordinates. 

Next, we determine the Hamiltonian structure of the heavy top. The canonical 
phase space is the cotangent bundle T'Q consisting of pairs (A,n,) of configurations 
and conjugate momenta. Given the Lagrangian L! the cotangent bundle T'Q is the 
image of the tangent bundle T Q  under the Legendre transformation. The Hamiltonian 
on the phase space T'Q is defined by 

H(A,II,,) :=E(A,FL- ' ( r IJ )  =g.AM+f (nA, I IA ) , - ,  (1.25) 

where ( , ),., is the metric on covectors induced by FL, i.e, 
I 

(nA,  ni)l-t = (FL-L(nA)> FL-L(nL))I' (1.26) 

In spatial representation, (1.17), (1.16) and (1.20) imply that 

H ( A , ~ )  := m . g + n;'n (1.27) 

In the body where m := AM is the spatial representation of the mass vector. 
representation (1.17), (1,14), and (1.19) imply that 

H ( A , ~ )  := gy. M + i n .  n;:n (1.28) 

where y := ,%'e3 is the direction of gravity in the body frame 

1.3. Equations of motion 

Recall from section 1.2 that the spatial angular velocity OJ defined by (1.22) satisfies 
G =AAT.  Similarily, the body angular velocity fi is given by 

6 = ATA. (1.29) 

Note that (1.9) implies that 

w =An and x =An (1.30) 
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where the body and spatial momenta 

n=&& and n =P,o  (1.31) 

are given by the Legendre transformation according to (1.19) and (1.20). 
The following expressions are the well-known body and spatial forms of the 

equations of motion; see e.g. section (6.1) or Arnold (1966, 1989) for the derivation of 
these equations. 

The body form of the equations of motion is 

A = A 8  and fi = II x C l  +gy x M. 

The spatial form of the equations of motion is 

(1.32) 

A = G A  and n = g  xm. (1.33) 

Note that the second equation in (1.33) is the Euler equation for a rigid body under 
the influence of a gravitational potential. 

1.4. Symmetries 

The symmetries of the Hamiltonian are central to the stability analysis. To obtain 
optimal results, it is typically necessary to work with the largest available symmetry 
group; failure to incorporate all symmetries can result in overly restrictive stability 
conditions. 

""C U L J L  C"llJLYCl LLlC Dy' lL1P'  > y u l l , , G L L E >  "I LUG rrGPvy ,up. i V l d L C ,  id' L'aL,'c 
indifference (i.e., left SO(3) invariance) of the free rigid body is broken by the 
gravitational potential. While the kinetic energy is invariant under the full group 
of spatial rotations, the potential energy is invariant only under spatial rotations that 
preserve the gravity vector g. The gravitational potential is invariant not only with 
respect to spatial (left) rotations about g, but also with respect to body (right) rotations 
&act !he ~ector ppssing throxgh the cen!re of miss E. If the tep possesses IC axis ef 
symmetry, then the kinetic energy is right invariant under rotations about the axis of 
symmetry. If the top has a symmetric moment of inertia tensor and its centre of mass 
lies on the axis of symmetry, i.e. it is a Lagrange top, then the Hamiltonian is invariant 
under the group G = S' x SI consisting of spatial (left) rotations about the direction 
of gravity and body (right) rotations about the axis of symmetry. 

We consider three distinct cases of steady motion, each determined by the 
symmetries of the top and its motion: first, the 'asymmetric' top (i.e., not a Lagrange 
top); second, a 'tilted Lagrange top, for which the axis of symmetry is not parallel 
to the gravity vector g; finally, the sleeping Lagrange top, for which the axis of 
symmetry and the gravity vector g are parallel. In the case of an asymmetric top, the 
appropriate symmetry group is G = SI, which acts freely by spatial rotations about 
g. The appropriate ~. . symmetry group in the case of a Lagrange top is G = S' x SI, 
which acts by rotations about g and the axis of symmetry. Tilted configurations have 
trivial isotropy, i.e. there are no elements of the group G that fix the configuration. On 
the other hand, a sleeping Lagrange top is fixed by the one-dimensional subgroup of 
G consisting of a rotation about g paired with a reverse rotation of equal magnitude 
about the axis of symmetry. 

TI," c-^+ --..":A-- *I.̂ ^..^t:^l I *-:"" ^ P  .I-̂ I. I^.. \"...--:", '---..- 
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2. The asymmetric top 

We briefly outline some of the essential constructions of the reduced energy momentum 
(REM) method here, using the asymmetric top to illustrate the definitions, and refer the 
reader to Simo et af (1991) and Lewis (1991a) for the general statement of the method. 
A glossary of the essential constructions and a very brief summary of the method 
are given in the appendix. An essential feature of the analysis is the incorporation 
of the constant momentum constraint given by Noether's theorem. In the case of the 
asymmetric top, where the symmetry group is Si ,  the momentum in question is simply 
the e3 component of the angular momentum. (In the case of the Lagrange top, which 
possesses a body symmetry, an additional scalar 'material momentum' is conserved.) 
For the asymmetric top the symmetry group G is 

G := { exPS,(,, p,j : s E R} = si (2.1) 

with Lie algebra g = {se3 : s E R} = R. The dual g' to g is also isomorphic to R 
with pairing given by multiplication. G acts on Q and T'Q by matrix multiplication 
on the left. 

The infinitesimal generator associated to the G action on Q is 

t,(A) = (At63A)  (2.2) 

i.e., an infinitesimal rotation about the axis e3 with angular velocity t .  The infinitesimal 
generator in the spatial representation is tQ(A) = (A, te3). The locked inertia tensor 
n(A) : g .+ g' measures the momentum associated to the specified group motion; e.g., 

is the e3 componeni of the angular momenium of ihe iop in orieniaiion A 
rotating with angular velocity about the e3 axis. Specifically, the locked inertia tensor 
associated to the S I  action is defined by the relationship 

v WA)t := ( F L ( S p ( A ) ) , v p ( N )  = h e 3 ) .  I,,@,) = v r e 3 .  %e3 (2.3) 

for all 5 and q E R, where the second equality follows from (1.20) and (2.2). Hence 
n(A) = e ,  UAe3. 

There are two functionals that play a role in the variational problem. The first, 
the augmented potential, is constructed by evaluating the negative of the Lagrangian at 
a specified infinitesimal generator. Given 5 E g = R, the augmented potential for the 
asymmetric heavy top is defined by 

V&A) = - L ( ~ ~ ( A ) )  = m . g - tc*u(l\). (2.4) 

A point A, is a critical point of Vt if and only if FL(r , (A, ) )  is a relative equilibrium, 
i.e. if A< can be maintained in steady motion with angular velocity e.  (This result 
is proved for general simple mechanical systems in Simo et a1 (1991).) However, 
the second variation of Vt does not provide sharp stability conditions. Hence we 
introduce the amended potential, which is constructed by evaluating the energy at  an 
infinitesimal generator obtained via the locked inertia tensor from a specified value 
of the momentum. Specifically, given p E g' R, the amended potential for the 
asymmetric heavy top is 

V,,(A) = E((!l(A)-'p),,(A)) I. , r  = m ' g + ;E(A)-'p*. (2.5) 
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Critical points A, of V,, are also relative equilibria and remain in steady rotation with 
the specified momentum p. Definiteness of the second variation DzV,,(A,) on some 
complement to the tangent space g A, to the group orbit is sufficient to guarantee 
nonlinear stability of the motion modulo rotations about e,. The functional V,, is often 
less convenient to work with than V c ;  these inconveniences can be avoided to a great 
extent by noting that the second variation D'V,,(A,) of the amended potential can be 
constructed by adding a positive semi-definite bilinear form to the second variation 
D'V,(A,) of the augmented potential. Define the locked momentum map I, : Q + g' by 

n,(n) := I I (A)~ .  (2.6) 

Then the symmetric bilinear form ge := D'V,,(A,) satisfies 

Be(SA, AA) = D2V,(Ae)(SA, AA) + (DIIt(Ae) . SA) . n(AJ'(DlI,(AJ . AA) (2.7) 

for all variations SA, AA E TA,Q. (See Simo et al (1991) for the general statement of 
this result for simple mechanical systems.) 

2.1. Relative equilibria-the first variation 

We use the augmented potential V, to determine relative equilibria. Using standard 
vector product identities, the first variation of the locked inertia tensor is computed as 
follows : 

Dn(A) . SA = e3 (dAn,,AT + AQr6AT)e, 

= e 3 .  (an,, - I,,@)e, 

= e3 . (68 x I,,.,) - nne, . (68 x e,) 
= 268. ( (&e3) x e,) 

(2.8) 

where 8 = &AAT. The first variation of the gravitational potential in the direction of 
the variation SA is 

ge, SAM = g68 (m x e,). (2.9) 

0 = DV,(A,) '6A = 68 ((gm, - t'nAee3) x e,) 

(gm, - ['n,,.e,) x e3 = 0. 

Thus relative equilibria are determined by the condition 

(2.10) 

for all SA E T h e ,  i.e., 

(2.1 1)  

The relative equilibria determined by (2.11) are traditionally referred to as the 'axes of 
Staude' (see, e.g., Maddocks (1989)). When performing the stability analysis, we shall 
find it convenient to express the equilibrium condition in the form 

gm, - t'n,,<e, = r,e, (2.12) 

where 

re := m, . g - <'I(&) = (gma - &,,e,) . e,. (2.13) 
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2.2. Stability-the second variation 

Let 6A = &Ae and AA = %Aa denote two elements of T&Q. The second variation of 
the augmented potential is 

DzVt(Ae)(6A,AA) =(e, x 68) . (A8 x gm, - (’(A0 x lIAee, - UAc(AO x e,))) 

= - (’(e, x 68) , U,,. (e, x AO) 

+ (e, x 68) A0 x (gme - t2iAee,) 
= - (e3 x 68) . (&, +rei,) (e3 x A@). 

The momentum correction term in (2.7) is given by 

(DIIf(Ae) ‘6A) . n(A,)-’(DlI,(A,) .AA)  

t2 
WJ 

= - (DU(A,) . &A) (DU(A,) . AA) 

(2.14) 

Substitution of expressions (2.14) and (2.15) into (2.7) yields 

The equilibrium is orbitally nonlinearly stable if ae is positive semi-definite, with kernel 
spanned by &,Ae, i.e., if the restriction of the form 

(2.17) 

to span{el,ez} is positive definite. The equilibrium condition (2.12) implies that the 
restriction of (2.17) to span{e,,e,} equals 

The stability conditions can easily be formulated in terms of the body vectors M 
and y .  The matrix (2.17) can be written in the form 

Hence is positive definite if and only if the restriction of 

45’ 
- b y e  @ & d e  - t2Lr - re13 4. 

or, equivalently, 

(2.19) 

(2.20) 

(2.21) 
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to the plane orthogonal to y, is positive definite. 
In many cases, the test for positive definiteness of &e is most easily implemented 

by testing for positivity of the trace and determinant of 8*. Hence, we derive below 
some simple expressions for these invariants. If we define 

qe :=t2hh.l,,, +rai2 (2.22) 

then 

Using the identities 

tr (x EI x - A) = 1x1’ - tr A (2.24) 

and 

det (x @ x - A )  = det A - (e, x x) A(e, x x) (2.25) 

for all two by two symmetric matrices A and all x E span{e,,e,}, we see that 

and 

Hence &’e is positive definite if and only if 

and 

(e3 x nAee3) . ve(e3 x nA,e3). 
4r2  
WJ det Wa > ~ 

Making use of the equilibrium condition (2.11), i.e. 

g 
r e3 x UAee3 = ?e, x me 

we can express the stability conditions in the form 

(2.28) 

(2.29) 

(2.30) 

(2.31) 
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and 

(2.32) 

In summary, we have derived the following equilibrium and stability conditions: 

An asymmetric top with spatial inertia tensor U,,# and mass uector m, can be maintained 
in steady rotation about the axis of gravity g = ge, with angular velocity ( if and only if 

g m ,  - t2nn,e, = ree3 

equivalently, i fand only if 

gM-  t2nrer~, =r,~,  
where y, := Aze, is the direction of gravity with respect to the body frame and 

re = me ' g - t2WA,) = gYe ' M - E ' Y ,  ' 

7'his steady rotation is nonlinearlv orbitally stable if the restriction 
matrix 

q f t h e  symmetric 

to the e,+, piane is positive dejnite 

2.3. Stability of special classes of relative equilibria 

In this section, we explicitly parametrize some special classes of steady motions of 
heavy tops that are characterized by conditions on the position of the axis of gravity 
relative to the eigenvectors of the inertia tensor and present the equilibrium and 
stability conditions in terms of these parameters. The Hamiltonian is determined by 
the eigenvalues of the reference inertia tensor I,,, the mass of the top, the coordinates 
of the centre of mass with respect to the principal axes of the reference inertia tensor, 
and the strength of gravity. The quantities characterizing the steady motion of the top 
are the angle of the cone traced out by the motion of the vector from the fixed point 
to the centre of mass, and the angular velocity 5. 

We first apply the stability criteria to a sleeping asymmetric top, i.e., a top for 
which the gravity vector g = ge, is an eigenvector of the equilibrium inertia tensor 
UAs, Taking the remaining eigenvectors of the inertia tensor as our basis vectors, we 
may assume that IA. = diag [I,, I,, I,] for some positive constants Ii satisfying I ,  > I,. 
The equilibrium eGations (2.12) imply that me = kmLe,. A positive sign implies 
that the top is upright; a negative sign implies that the top is hanging straight down. 
Conversely, if me and e, are proportional, then e3 must be an eigenvector of U,,# in the 
case of steady motion, i.e., sleeping tops are characterized by the condition that the 
mass vector me is parallel to the gravity vector g. 
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A sleeping top Ae can be kept in steady rotation at any angular velocity, i.e. 
OV,(A,) = 0 for any 5 E lR. The stability matrix 3e for an upright top is given by 

%e = diag [t2(I, - I I )  - m g f ,  &I, - I,) - m g t ] .  (2.33) 

Hence an upright sleeping top, i.e. a top for which f is positive, rotating at angular 
velocity t is nonlinearly stable modulo rotations about e, if it is in rotation about the 
axis of maximal inertia, i.e. if I, > I ,  > I,, and 

(2.34) 

A hanging sleeping top has stability matrix &e = diag [ t 2 ( I , - I l ) + m g t ,  t2 (13-IZ)+mgt] .  
Hence a hanging top in rotation about the axis of maximal inertia is nonlinearly stable 
at  any velocity. A hanging sleeping top for which either I, z I, > I, or I, > I, z I ,  is 
stable for angular velocities t satisfying 

(2.35) 

These stability conditions for sleeping tops can be found in Routh (1884, section 211). 
A tilted top is a top for which the gravity vector g = ge,  is not an eigenvector of 

the inertia tensor If it can maintain a steady rotation about the axis of gravity 
without spin, then it is a relative equilibrium. There is a special family of tilted relative 
equilibria that generalizes the family of sleeping tops analysed above; specifically, we 
consider tops for which the axis of gravity lies in a plane determined by two of the 
principal axes of the inertia tensor. To simplify the general calculations carried out in 
sections 2.1 and 2.2, we shall construct a coordinate system tailored to the candidate 
relative equilibrium. By assumption, there is an eigenvector e,  of U,,* such that e,.g = 0. 
Hence we can set e, := e ,  x e , .  In this coordinate system, the spatial inertia tensor UAe 
is given by 

lIAe = R,diag [II, I,, I,] RT = 

where 

(2.36) 1 0 0 
0 I, cos' 0 + I, sin' 0 (I, - I,) cos 0 sin 0 

( I ,  o (I, - I , )  cos B sin f? I, sin2 f? + I, cos2 e 

Rs := 0 cos0 -sin@ (2.37) ( b  si,", cos0 O )  

for some angle 0 # 0, I(. Note that the stability of a specific top is determined by 
the spatial equilibrium values il, and me, as well as the equilibrium velocity 5; the 
stability conditions are independent of the specific choice of a reference orientation of 
the top. Hence we are free to make any convenient choice of principal axes of the body 
frame. We set U,, =diag[Il,12,1,] and A, = Ro. 

We now determine the equilibrium mass vector m, = AeM. Since Ae is a rotation 
about e, and hence fixes e , ,  (2.36) and the equilibrium condition (2.12) imply that 

(2.38) Z g M  . e ,  = g m ,  . (Aeel) = g m ,  ' e,  = 5 e ,  . I,,,e, = 0. 
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Hence 

M = mC(0, sin 4, cos 4) (2.39) 

and 

me = A,M = mtRo-+,e, = (0, me sin(4 - e), me cos(4 - 0)) (2.40) 

for some angle 4. The e, component of (2.12) yields the equilibrium condition 

nigtsin(4 - 8) = t z ( ~ 2  - I,)COSO sin e. (2.41) 

Since we assume that the top is not a sleeping top, the right hand side of (2.41) is 
non-zero. Thus, the equilibrium velocity 5 satisfies 

2 m g t  sin(8 - 4) 
(I, - I,) sin 28 ' 

<2 = (2.42) 

The stability conditions for relative equilibria tilted about e ,  are obtained by 
substituting (2.36) and (2.42) into (2.16). The equilibrium value of the locked inertia 
tensor is 

il(A,) = e, . IAee, = I, sin2 0 +I, cos' 0 = f(1, +I, + (I, - I,) cos28). 

Hence, using (2.42), we see that 

re = gm, e, - t2U(A,) 

(2.43) 

= f ~ z ( ( 1 , - 1 ~ ) s i n 2 ~ ~ ~ t ( e - ~ ) -  ( I , + I ~ + ( I ,  - I , ) C ~ ~ ~ ~ ) )  (2.44) 

= - t 5 2 ( I z + 1 3 - ( I ) - I z ) f ( 0 . 4 ) )  

where 

(2.45) 

The stability matrix is 3, = diag [b,,b,], where 

2 b ,  := -t e ,  . n,,.e, - r, = ft'(1, + I ,  - 21, - (I, - 12)p(B, 4)) (2.46) 

and 

The steady rotation of the top is stable if b, and b, are both positive. Hence, if we 
define 

+cos 28 (2.48) 4(I, - I,) sin2 28 
x .- I2 -I- I, - 21, 

1 3  - I2 
and T I  := .- I, +I,  + (I, - I,) cos20 
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then the steady rotation is stable if 

I, > I, and min {r,,.,} > p(B,b) (2.49) 

or if 

I, > I, and p ( 0 , d )  z max { z , , r2} .  (2.50) 

If q5 = 0, i.e., if the reference centre of mass M lies on the principal axis of &er 

with eigenvalue I, (and hence the spatial centre of mass m, lies along the principal axis 
of I,,# with eigenvalue I&)), then the expressions appearing above are substantially 
simplified. The equation (2.42) for the equilibrium velocity then takes the form 

(2.51) 

Hence, if I, > I,, then tilted relative equilibria with centre of mass along a principal 
axis exist only for n/2 > 0 > -n/2, i.e. the centre of mass is above the fixed point of 
the top. On the other hand, if I, > I,, then the centre of mass lies below the fixed 
point, with k / 2  Z 8 > nji. The diagonai entries of the stabiiiiy matrix Be are given 
by b, = tz(12 -I,) and 

I 

(2.52) 

The condition b, > 0 yields I, > I,. To impose the condition b, > 0, we distinguish 
two cases. If I, > I, > I,, then b, > 0 implies that 3(I, - 1’) cos2 0 > I,, which implies 
that I, > 31,/4 and 

(2.53) 

If I, > I, and I, > I,, then both b, and b, are positive for any angle 8, i.e. this steady 
motion of the top is stable. 

Remark: The Koualeuskaya top: A special class of Kovalevskaya I tops is determined by 
the conditions I, = I, = 21, and 4 = 0. If 0 = 0, then gd = diag [ - m g f ,  (,I, - mge] ; 
hence the top is formally unstable. If tl = n, then ae = diag [ m g t , t 2 1 2  + m g t ]  
is positive definite; hence the hanging Kovalevskaya top is stable for all velocities. 
Finally, if cos’8 # 1, then b ,  = t2(12 - I,) = -<,I, < 0 implies that the motion is 
formally unstable. These results are given in Levi-Civita (1901). We shall show in 
section 4 that for 0 satisfying 0 c cosz8 c 1/3, these relative equilibria are linearly 
stable, even though they fail to be formally stable. 

We summarize our results as follows: 

Consider an asymmetric top, whose inertia tensor has eigenvalues I , ,  I,, and I,, and an 
eigenuector e ,  (with eigenvalue I,) of I,,< satisfying e ,  . g = e ,  ’ m, = 0. Let 0 denote the 
angle in the plane orthogonal to e, between the axis of gravity g and the eigenvector of 
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U, with eigenvalue I ,  and let 4 denote the angle in the same plane between m, and this 
eigenvector, i.e. m, ' g = m g t c o s ( 4  - 0). The top can be maintained in steady rotation 
about the axis of gravity e, with angular velocity 5 i fei ther 

The nonlinear orbital stability conditions f o r  steady motion of the asymmetric top are 
( i )  0 = 4 = 0. Upright sleeping tops are nonlinearly orbitally stable if I ,  is the 

maximal eigenvalue of Per and 

where I ,  :=max { I , , I , } .  

of inertia, or 
( i i )  6' = R and q5 = 0. Hanging sleeping tops are stable if either I ,  is the maximal axis 

( i i i )  0 # 0,n and 4 = 0. Tilted tops f o r  which the centre of mass lies on the principal 
axis of inertia with eigenvalue I ,  are stable ifeither I ,  is the maximal axis of inertia, 
or 

( iv )  4 # 0. Tilted tops fo r  which the position vector of the centre of mass is orthogonal 
to the principal axis e, are stable if 

I ,  > I ,  and m i n  { 7 , , t 2 }  > p(0,$) 

or if 

1, > I ,  and p(6',4) > max {71.72] 

where 

and 

4(I,  - I * )  sin2 20 
T .- + cos 20. 

'- I , + I , + ~ ~ s ~ ~  
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2.4. Stability of general relative equilibria 

An arbitrary relative equilibrium can be viewed as a point on a curve of relative 
equilibria parametrized by angular velocity. We shall characterize below all possible 
sequences of stability transitions along such curves. We make use of equations (2.27) 
and (2.26), which can be expressed in the form 

and 

where siA := ((tr A)* - trA2) for all three by three matrices M and 

(i) the u;s are the scaled invariants of the inertia tensor 

where the Ii's are the eigenvalues of I,, (and hence of I,, for all A) 

(ii) K := D ) = 
' 

is the scaled kinetic energy 
mgd 

(iii) B is the angle between m, and e3, i.e. me 1 e3 = ml  cos 0 = y, ' M. 

Expressions (2.55) and (2.54) are obtained by means of the identities 

trSI,, = t rS  - (v .Sv) 

detSI,, = s i S -  (v.Sv)trS+ISvI* 

and 

(v x Sv) . S(V x Sv) = (v .  Sv)det SIvL - det S 
= (v .  Sv)(siS - (v Sv) trS + ISvI2) - detS 

(2.56) 

(2.57) 

(2.58) 

(2.59) 
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for any symmetric matrix S and unit vector v. Applying (2.58) and (2.57) to lIAelel+Q 
and making use of the equilibrium identity (2.30), we see that 

(2.60) 

(2.61) 

(2.62) 

(gmt)3 cos 0 sin28 
t4 + 

Equation (2.55) follows directly from (2.60) and (2.62). 
We now use the expressions (2.54) and (2.55) to obtain a rough general classification 

of the possible behaviours of the system as the scaled kinetic energy K is increased. 
The classifications are determined by applying the Routh-Hurwitz criteria to the 
polynomials 

 ti) := -u,K’ - 2 ~ 0 ~ 8  K +4sin2 0 (2.63) 

and 

P~(K) : = P K ~  + U ,  C O S B K ~  + ~ - 4 s i n ’ 0 c o s 8  (2.64) 

where p := 20, - 3u2 + 4u3. 

right half-plane are given by the number of sign changes in the sequences 
The Routh-Hurwitz criterion states that the number of roots of P, and Pd in the 

(2.65) 

respectively. (For a discussion of the Routh-Hurwitz criterion, see, for example, 
Gantmacher (1989).) 

For /J cos 8 > 0, the Routh-Hurwitz criterion implies that Pd has either one or three 
positive real roots. For fi cos 0 < 0, Pd has either zero or two positive real roots. Pd 
is positive (negative) for sufficiently large K if p is positive (negative). For sufficiently 
small ti, Pd is positive (negative) for cos0 negative (positive). We next note that the 
condition that the determinant have a local extremum, namely, that 

3pK’ +2U,KCOS8 + 1 = 0 (2.66) 
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Table 1. Possible stability transitions for relative equilibria of general tops. 
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cos8 > 0 cos0 < 0 

8 < 0  I, IPI or IN1 PI 
fl > 0 and 0 ,  < 0 
p > 0 and 01 > 0 IN PIN 

IP, IPIP or INlP P or PIP 

cannot be satisfied by tops for which P and ul cos are both positive, 01 

p > fu: cosz e. (2.67) 

For such tops, the determinant can change sign at most once. 
Ignoring the special cases associated to simultaneous roots of Pt and Pd, or their 

derivatives, we summarize the possible stability transitions in table I. The entries of 
the table are interpreted as follows: P (respectively N) indicates positive (respectively 
negative) definiteness of ?kd, while I indicates indefiniteness of ac. The transition 
sequences read from left to right with increasing K. 
(i) Negative definiteness of the second variation is possible only if either 

u1 > 0 or > - 4u1 >o,  
4u1 - 1 

(ii) Multiple changes of signature are possible only if 

38 
0: 

cos’e > - and either u1 > 0 or 

(2.68) 

(2.69) 

For example, for 8 > U:/? uI < 0, and cos 0 > 0, the only possible sequence is IP. 

The second inequality in equation (2.68) is obtained by requiring that the roots of Pt be 
real. Condition (2.69) implies that the second sequence in (2.65) has three sign changes 
and the polynomial (2.66) has real roots, i.e., that the polynomial Pd has two positive 
critical points. 

Some fairly detailed information regarding the linear stability of the tops can be 
obtained from table 1 ,  making use of the following observations. Positive definiteness 
of 3e implies nonlinear, and hence linear, stability of the relative equilibrium. The 
characteristic polynomial (4.18) for the linearized dynamics, which is derived in section 
4, has both real and imaginary roots if det &e is negative; hence indefiniteness of $e 

implies linear instability. Negative definiteness of %e can be associated with either 
stability or instability. Some general conclusions regarding linear stability can be 
summarized as follows: 

(i) cos0 > 0 implies that the top is unstable at sufficiently low velocities 
(ii) cos0 < 0 implies that the top is stable at sufficiently low velocities 
(iii)B c 0 implies that the top is unstable at sufficiently high velocities 
(iv) p > 0 and u1 < 0 implies that the top is stable at sufficiently high velocities. 

Remark: Many of the cases determined by the Routh-Hurwitz criterion can be ruled 
out as possible sequences of behaviour by taking into account the fact that the trace 
cannot change sign in a region where the determinant is positive; hence the transitions 

. .  
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PN and NP cannot occur unless the trace and determinant are simultaneously equal to 
zero. We let the letter Z denote the state k?4c = 0. A further condition on the existence 
of the transitions PN and N P  is that the relevant root of Pd also be a critical point of 
Pd. Degenerate cases, in which, for example, a critical point of Pd is simultaneously a 
root of Pd, may result in the following sequences: 121, for /3 < 0 and cos0 > 0 ;  IZIP, 
IPZP, or INZP, for /3 > 0, U, < 0, and cos0 > 0; and PZN, for f l  < 0, U] > 0, and 
cos 0 < 0. 

3. Lagrange tops 

We now consider a Lagrange top, i.e. a top satisfying 

R 4 d R T  = Erer (3.1) 

for all rotations R about the axis M. Set R = exp(e@, where exp denotes the 
exponential map exp : so(3) + SO(3) given explicitly by Rodrigues' formula 

Differentiating with respect to E, we see that (3.1) holds if and only if 

sym [U~~,Q = 0. (3.3) 

The symmetry condition (3.1) also implies that M is an eigenvector of U,,,. Indeed, 
since M is the axis of rotation of R, we have RM = M; thus (3.1) implies that 
RI,e,M = befM, i.e. UErM is also the axis of the rotation R. Hence I,,M = AMM for 
some 2, E IR. Moreover, the remaining two eigenualues of U,, are necessarily equal, 
which can be shown as follows. If I,, has three equal eigenvalues, then there is 
nothing to prove. If not, let # A M  be an eigenvalue of kef with eigenvector x. The 
vector x is not parallel to M; hence x and Rx are linearly independent. The symmetry 
condition (3.1) implies that 2Rx = R&x = Ure,Rx; hence Rx is a distinct eigenvector 
with the same eigenvalue A. The reference symmetry condition (3.3) leads to the spatial 
symmetry condition sym[I,,fii] = 0. An analogous argument to that used for M and 
Ire, shows that m is an eigenvector of the current spatial inertia tensor 1,. 

The Hamiltonian (1.27) associated to such a top is invariant not only under left, i.e. 
spatial, rotations about the axis e3,  but also under the right SI action of body rotation 
through the angle 0 about the axis M, given by 

0 A := A(exp (0 e))T (3.4) 

where := 'M Note that the induced action on the spatial representation (A,z)  
IMI ' 

is 0 .  (A,n)  = ( 0 .  A,n) and the invariance condition for the Hamiltonian reads 
H ( O  . A,n)  = H(A,n) for any 0 E S ' .  In this case, the full symmetry group of 
the Hamiltonian is G = S1 x SI, with Lie algebra g = !R2 and infinitesimal generator 

( ~ , U ) ~ ( A )  = tg3A - oAZ. (3.5) 
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The locked inertia tensor n(A) : R' + lR2 is defined by the relationship 

( V , O  ' W A ) ( ~ , W )  = (FU(t,w)Q(A)), (~ , i )p(A))  

= (A(~AE~~ -&A(~AZ~ - iF)), 
= (5ATe3 - wX) . Urer(qATe, - (E) 

(3.6) 

I 

using the left SO(3) invariance of the inner product ( , ),, the formula ATAT = AV, 
(1.14), and (1.19). Hence 

where s :=AX. 

Lagrange top. The augmented potential takes the form 
We are now ready to .determine the conditions of relative equilibrium for the 

vi<,m,(A) = A M . g - f ( 5 , 0 ) . u ( A ) ( 5 , ~ )  (3.8) 

with first variation 

Dvil,ml(A,) . @A, = (e3 x W . (gm, - 54,(5e3 -us,)) (3.9) 

where se :=A$. Hence the configuration A, is a relative equilibrium if and only if 

gm, - 5JIAe(<e3 - ase)  =TA,  (3.10) 

where 

(3.11) 

While the. equilibrium conditions (3.10) can be expressed as two scalar equations 
(namely, that the e, and e, components of the left hand side equal zero), we shall see 
that, due to the symmetry of the Lagrange top, relative equilibria are determined by a 
single non-trivial scalar equation. 

We now discuss two distinct classes of relative equilibria for Lagrange tops: 
precessing tops and sleeping tops. The motion of the spatial axis of symmetry of 
a precessing top traces out a cone about the axis of gravity; the spatial axis of 
symmetry s, of a sleeping Lagrange top coincides with the axis of gravity e3. It is 
convenient to distinguish precessing and sleeping tops when considering the equilibrium 
conditions; it is essential to distinguish them when performing the stability analysis. 
The crucial distinction is the additional symmetry of the sleeping top: spatial rotations 
about the axis of gravity are indistinguishable from body rotations about the axis of 
symmetry. For example, a spatial rotation combined with a reverse body rotation 
through the same angle fixes the sleeping top. A stability analysis that neglects this 
additional symmetry may yield overly restrictive stability conditions. We first treat the 
case of a precessing top, using the standard stability algorithm, and then consider the 
sleeping Lagrange top. 
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3.1. The precessing Lagrange top 

If the axis of gravity and the axis of spatial symmetry are distinct, i.e., s, # *e,, then 
the group G acts freely in a neighbourhood of A<. The two-dimensional tangent space 
g . A, to the group orbit is given by (3.5); 

g A# = span{Z3Ae,SeAe}. (3.12) 

Since the group G is abelian, the augmented and amended potentials are G invariant 
and g .  A, lies in the kemel of the first and second variations of the modified potentials. 
Thus the spatial representation of the space of non-trivial variations is spanned by 
AA, := &'"Ae, where 60" := (e, x s,)/le, x se\, and A, is a relative equilibrium if and 
only if the single scalar equation 

D v~t ,~,(A,)  ' AA, 0 (3.13) 

is satisfied. 
We now show that any steadily precessing Lagrange top is orbitally nonlinearly 

stable. As we did for the tilted asymmetric relative equilibria, we choose a coordinate 
system that simplifies the necessary calculations. Set 

e xs, 
e -60 =3 and e2 := e, x el 

le3 x s,I 1 '- Y (3.14) 

Thus se = Rue, for some 0 # 0, II, where R, is given by (2.37). The symmetry 
assumptions imply that the reference inertia matrix Fef has a double eigenvalue, 
say I , ,  and a distinct eigenvalue, say I,, and that sym[IAIPO] = 0. Hence we set 
nrsf =diag[I,,I,,I,] and A< =R, .  

Equation (3.7) implies that the equilibrium locked inertia tensor I&) is given by 

I, sinZ B + I ,  cosz B -I, cos0 
= ( -I, cos e 1 3  

(3.15) 

The non-trivial equilibrium condition is given by 

DVlic,w,(A,) 'AA, =sin6'(cz(I, -I,)cosB-5w13 -mgt) = O  (3.16) 

which is obtained by substituting m, = mts, = m/R,e, into (3.9). Neglecting for 
the moment the solutions 0 = 0, R corresponding to the sleeping Lagrange top, the 
equilibrium condition (3.16) may he solved for w to yield 

&I3 - 11) cos e - mgt 
513 

W =  (3.17) 

Hence, FL(([,w)&)) is a precessing relative equilibrium if and only if w satisfies 
(3.17). The equilibrium condition (3.16) and the following stability result can be found 
in Routh (1884, section 207), with the change of variables p = 5 and n = 5 cos 0 - w .  

The relative equilibrium with configuration A, is orbitally stable if 

(3.18) 
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where !I(c,Fl(A) := II(A)([,w) is the locked momentum map for the G action. The 
second vanation of the augmented potential (3.8) takes the form 

D~v,,,(A,)(@A,,BA,) = --(e3 x 8). (Pn,, .  +re13)(e3 x AO) (3.19) 

where re = -<'I1 is determined using (3.11) and (3.17). Hence (3.19) implies that the 
second variation of the augmented potential in the direction of the non-trivial mode 

is oiven hv e .- a-'-- -a 

D ~ v ( ~ , ~ ~ ( A ~ ) ( s A , , s A , ) )  = -e2 (['K,,~ + r.l,)e2 = <'Q~ - I,) sin2 8. 

The locked momentum map 

(3.20) 

has first variation 

In particular, for w given by (3.17), 

Thus, using (3.18), we obtain 

(?.?!) 

(3.22) 

(3.23) 

(3.24) 

for all 8 # 0, II. 
nonlinearly stable modulo rotations about the axis of gravity and the axis of symmetry, 

3.2. The sleeping Lagrange top 

We consider a steady motion in which the axis of symmetry, the centre of mass vector. 
and the axis of gravity all coincide. The spatial symmetry condition sym[NACSe] = 0 
implies that e, is an eigenvector of 1,. Hence we can assume without loss of generality 
that n,is diagonal; the symmetry assumption then implies that 1, = diag [11,11,13] 
for some constants I,,I, E IR. 

As was previously discussed, the group G = S' x SI fails to act freely when the 
axis of gravity and the spatial axis of symmetry coincide. In this case, s, = fe, and 
hence m, = k m t e , .  We shall analyse in detail the case se = e3 and simply present the 
results for the case s, = -e3, which are derived analogously, at the end of the section. 
If se = e3, then 

It follows that all tilted Lagrange tops in steady precession are 

(t,C)Q(A,) <IF3 -Se)& = O ;  (3.25) 
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hence the tangent space g . A, to the group orbit is only one-dimensional. This bas the 
crucial consequence that the inertia tensor is no longer invertible; 

(3.26) 

has a non-trivial kernel equal fo span{(l,l)}. Hence we no longer have a one to one 
correspondence between angular velocities and angular momenta. Given I. E R, define 
vi := (2, A - 1); it follows from (3.25) that the motion of the sleeping Lagrange top 
determined by the infinitesimal generator 5vi is the same as that generated by a pure 
spatial rotation with angular velocity <e3, regardless of the choice of A. Hence, when 
considering a sleeping Lagrange top rotating with spatial angular velocity 5 ,  we are 
free to choose an arbitrary value of i and take <vi as the generator of the relative 
equilibrium. 

The reduced energy momentum method can still be applied to systems for which 
the group action fails to be free; however, some slight modifications to the method are 
required. The treatment of symmetric equilibria is described in Lewis (1991a); while 
the definitions there are given for Lagrangian systems, they are readily translated into 
the Hamiltonian context. For symmetric equilibria of a system with Hamiltonian of 
the form 'kinetic plus potential', relative equilibria still correspond to critical points of 
the augmented potential; the only change in the expression for the stability form 9, is 
in the momentum correction term. In the case of the sleeping Lagrange top, we shall 
show that this change is, in fact, transparent. 

We consider the one-parameter family of augmented potentials VtVj,. Any sleeping 
top is a relative equilibrium, since (3.21) implies that DU~t,ml(AJ 0 for any ( 5 , ~ )  E Et2 
and A,e, = e,. Thus, using (3.9), we obtain 

DVtv.,(Ae) = mgt(A,e,)  x e, - <'vi ' Dn(A,)v, = 0. (3.27) 

We now determine the stability conditions. Since the tangent to the group orbit 
g Ae is one-dimensional if A< corresponds to a sleeping configuration of a Lagrange 
top, even though g is two-dimensional, the space of non-trivial variations of Vt is two- 
dimensional for such equilibria. We now briefly discuss the definition of the stability 
form Be at a symmetric equilibrium. Since '(Ac) is not invertible if the configuration 
is symmetric, the inverse II(AJ' appearing in (2.7) must be replaced by a generalized 
inverse I(A,) : rangeI(A,) + g/(ker U&)). However, since DI(tvjl(Ae) s O, the 
stability form Be associated to a sleeping Lagrange top is equal to the second variation 
DzVjvi(A,). Using (3.19) and (3.11), we see that 

I I- 

r, = m g t  - t211, (3.28) 

and hence 

D~v~~~ , (AJ@A~,GAJ  = -(e3 x 68) [ < 2 ~ ? ~ A e  + rei3] (e, x AO) 
= [t22(I, -21,) - m g f ]  (e, x 68) . (e, x AO). (3.29) 
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Hence D2V~vi(A,) is positive semi-definite, with kernel equal to span{$Ae}, for 
< A < .I$, where 

(3.30) 

(3.31) 

This is the well-known linear stability condition for an upright sleeping Lagrange top. 
Condition (3.31) can also be derived by the energy-Casimir method, as in Holm et a1 
(1985), or by a linear stability analysis, as in section 4. 

Remark: Note that if one ignores the symmetry of the equilibrium and considers only 
the case i. = 1 corresponding to a pure left rotation, then the apparent condition of 
stability, associated to positive definiteness of (3.29), is 

(3.32) 

Clearly, failure to utilize all symmetries of the equilibrium can result in an overly 
restrictive stability condition. (As the top approaches a planar disc (I, = 21,), the < 
value for loss of stability coincides with the 5 value for a pure left rotation.) 

The stability form for a hanging sleeping top is obtained by replacing t with -t in 
(3.30). Setting 1 = 0, we see that the hanging Lagrange top is always stable. 

A Lagrange top with reference inertia tensor diag [11,11,13] tilted by an angle 0 f0,  n 
about the e, axis with spatial ( left)  angular uelocity t and spin (right) angular velocity 
w remains in nonlinearly orbitally stable steady motion if 

t2(I, - I , )  cos8 - m g t  
w =  

e 1 3  

A sleeping top (8 = 0. n) can be maintained in steady rotation at any angular velocity 
5.  The upright sleeping top, with 0 = 0, is orbitally stable if 

The hanging sleeping top, with 0 = n, is always stable. 
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4. Linearized stability 

The energy analysis provides sufficient conditions for orbital nonlinear stability of 
relative equilibria. However, these conditions need not be necessary. If the energy 
analysis fails, i.e., if the stability form a, fails to be positive definite on some 
complement to the tangent space g.A, to the group orbit, then it is necessary to consider 
other criteria to determine the stability or instability of the relative equilibrium. In this 
section, we consider the linear stability of relative equilibria. As was shown in section 
3.2, in the case of a sleeping Lagrange top, the nonlinear stability conditions given 
by the energy analysis coincide with the classical linear stability criteria. However, 
indefiniteness of Be is not always a reliable indicator of linear instability. The non- 
canonical structure of the reduced manifold can introduce 'magnetic' terms that may 
shift the spectrum. 

We do not carry out the linear stability analysis on the canonical equations of 
motion (1.33) or (1.32); instead, we construct a reduced system of equations on a 
manifold 9 that is isomorphic to the quotient manifold T ' Q / S 1  and linearize this 
reduced set of equations. In the process of this reduction, we perform a momentum 
shift; the resulting linearized equations can be directly related to the stability matrix ae that appears in the energy stability analysis. The reduced variables are defined with 
respect to the body frame of reference within a moving frame with total mome_tum p. 
These variables are the unit direction of gravity y and the shifted momentum n, which 
are related to the canonical variables by the mapping 

,Zfi : (A, Afi) c ( y ,  fi) = (ATe,, n - pI(ATe,)) (4.1) 

where the vector field : R' + IR3 given by 

(4.2) 

( A , d ( A T e 3 ) )  = F L (  (WW1&(A)).  (4.3) 

(Note that I? is the body expression of the inertia tensor I@).) The motivation for this 
change of variables is discussed in section 6.2. The mapping (4.1) is invariant under 
spatial rotations about the axis of gravity; in fact, 

Xp(Al,Alf i l )  =Ep(A2,Azfi2) - (A2.nZ) = &  (A,,nJ = ( R ~ I , ~ I )  (4.4) 

for some rotation R, about e,. The set of all pairs ( y ,  fi) makes up the Poisson reduced 
manifold 

9 := { ( y , f i )  : I y /  = 1, ii E "3) = sz x R'. (4.5) 

It follows from (4.4) that the space 9 can be identified with the quotient manifold 
T ' Q ~ S ~ .  

The dynamics on 9 induced by the dynamics (1.32) on T'Q are given by 

(4.6) 
- 

$ = y x R  and ~ = i i x x + + x ( ( g M - r 2 n , , f y - g r , x )  
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where 

(i) Cl := &;fi is the shifted angular velocity in the body frame 
(ii) 5 := 1;'p is the 'background velocity' associated to the momentum shift, i.e. 

I 

- 
A = A ( 6  + c$F) (4.7) 

-1-1 ,m ..,2 ;iii) T? := i i  I,, - LI y lYre,Yl 

These equations are geometrically derived and motivated in section 6.2; this derivation 
is not central to the remainder of the paper and may be skipped at the reader's 
discretion. 

The linearized equations of motion associated to a relative equilibrium with angular 
velocity 5 are obtained by linearizing (4.6) at the pair (y , ,O)  associated to a relative 
equilibrium with spatial coordinates (Ae, &,.e,) and momentum p = I y c t ,  yielding 

Ignoring the null vector (0, 
we see that the linearized dynamics are determined by the four by four matrix 

associated to variations of the 'background velocity', 

(4.9) 

Here I;', &, and B, denote the restrictions to the orthogonal complement to y ,  of 
U;;, Y.,, and the symmetric matrix 

52(41~'(k,l',) @ ( b y e )  -kf +17.1,) - (gM.y,)l, = t2(nrer - 2I7#V4'(y,)) 

- 3 -  

(4.10) 

(4.11) 

is the matrix representation of the first variation of the map 4' and re is given by (2.13). 
The characteristic polynomial of the matrix L, is 

where S, is the restriction of the linear mapping 

Ire, - I i ' ( L Y J  @ (kfYJ (4.13) 

to the orthogonal complement to y,. The polynomial x has purely imaginary roots if 
and only if Be has positive determinant and 
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To relate the linear stability conditions as directly as possible to the energy stability 
conditions derived in section 2.2, we can rewrite the characteristic polynomial (4.12) in 
terms of the spatial variables as follows. Given Ae E Q, let Ye denote the restriction of 
the mapping 

1, - n ( W 1 ( h e e 3 )  @ (u,,,e3) (4.15) 

to the plane. Positive definiteness of U,,* implies that 

Sn 9&1 = U(A,)-ldet U&, x 6n) ' Uij(e3 x Sn) > 0 (4.16) 

for all Sn in the el+> plane; hence Ye is positive definite. Define 

p, := trU, - 2U(AJ1 11,,.e312. (4.17) 

If y, = Ace3, then U(&) = Iye, pe = rye, and Ye = AeSeAZ. From (1.15) and (2.17) we 
obtain U,,. = AJIrerAT and ge = AeBJT. Hence the characteristic polynomial (4.12) 
can be expressed in the form 

I 

The energy analysis implies that positive definiteness of ge  (equivalently, positive 
semi-definiteness of Be) is sufficient to guarantee linear stability of the relative 
equilibrium, while (4.18) implies that indefiniteness is sufficient to guarantee linear 
instability. However, negatiue definiteness of ge need not imply instability. For certain 
classes of tops, linear stability does imply positive semi-definiteness of ge, and hence 
nonlinear stability. However, there are some classes of tops for which there exists a 
range of angular velocities at which the top is linearly stable, while ge is negatiue 
semi-definite. 

4.1,  Linear stability of sleeping tops 

If the equilibrium configuration A, is a sleeping top, i.e., if e3 is an eigenvector of U,, 
then the linear stability analysis is substantially simplified. If A, determines a sleeping 
top, then Y e  = U2, where 1, denotes the restriction of U,,, to the el-e2 plane, 

det UAC = U&) det U2, and p, = tr U2 - U(AJ (4.19) 

In this case, the spatial form (4.18) of the characteristic polynomial simplifies to 

~(A)=-(A~det l I~  1 + A  2 (< 2 2  p,+($e,U2))+det&e) det U, 
(4.20) 

where &e is given by (2.17). If 1, = diag [II,I2,I3] and m, = mte, ,  then (4.20) can be 
written as 

+ ( m g t  - 1'1~ + ( I ~  - t3)t2) ( m g t  - + - 13)t2)). (4.21) 
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The characteristic polynomial (4.21) for the linearized equations of motion about an 
upright sleeping top appears, with slightly different sign conventions, in Routh (1884, 
section 212). 

To simplify the analysis, we introduce the parameters 

(4.22) 

Note that the conditions 0 < Ii < Ij +I, for all i, j ,  and k imply q > 0 and 1 - ‘p > lal. 
We first assume that w is positive, i.e. that the top is upright; a negative value of 
indicates that the top is hanging. The characteristic polynomial (4.21) of the linearized 
equations takes the form 

I(%) = ~ [q t J, + (w - (1 + a)12 + (2q - ( I  +a))[’) 

x (w - ( I  - a)AZ + (29 - ( I  - 

4 2 2 2  
I -a2  

(4.23) 

with respect to these parameters. The eigenvalue transitions are determined by the 
parameters a and ‘p that characterize the equilibrium inertia tensor. The regions 
associated to distinct sequences of eigenvalue transitions are indicated in figure I. 

Figure 1. Regions in ’top space’ for sleeping taps: the plane. 

The broken lines correspond to the limiting configurations in which one of the 
principal axes has length zero. The vertical broken line represents discs rotating in the 
plane; the diagonal broken line represents discs rotating about an out-of-plane axis. 
The points (1,O) and (0,l) correspond to configurations with two principal axes of zero 
length. The line a = 0 consists of Lagrange tops; the point S = (1/2,0) corresponds 
to a spherical top and the point K = (l/3,1/3) is the Kovalevskaya top. Regions 1-3 
correspond to tops in rotation about the shortest principal axis (i.e., the axis of greatest 
moment of inertia). Regions 4 4  correspond to tops rotating about the middle axis 
and region 7 contains all tops in rotation about the longest axis. Note that only tops 
in regions 1-3 can ever be stable according to the energy analysis. 

Given a top in one of the regions described above, we can consider the possible 
transitions of the eigenvalues of the linearized system as the angular velocity is 
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decreased. The relevant values of t2 are defined as follows: 

(4.24) 
y ( q  - a2 * I  / ( I  -$) ( q 2  - $)) 

7ES := V 
rp(1 - d2 

- - mgb(41,12 - (I1 +12)13 k 2J1,1,(21, - 1~)(21* -I,)) 
I:(Ii + 1, - 13) 

The subscripts sf-f and f-s stand for 'superfast-fast' and 'fast-slow'; the terminology 
'fast tops' and %ow tops' is traditionai. T'he vaiues T$-~ correspond to vaiues of at 
which zero double eigenvalues occur. We shall show in section 5 that bifurcations to 
tilted relative equilibria (moving without spin) occur when t2 = &; tops for which 
& and I& take on distinct real values undergo a loss of stability when t 2  = T $ - ~  

and regain lineor stability when [' = 7;-p The values T&$ correspond to values of 5' 
at which non-zero eigenvalues (necessarily double) occur. All upright sleeping tops are 
linearly unstable for t2 < I:-,. 

The values T$-~ and TE, are determined as follows: The eigenvalues of the linearized 
system satisfy 

where 

m = ly - [(I - q~)' + ' p 2  -E 2 2  IC 

(4.25) 

(4.26) 

and 

m = p 1 2 2  y + <"(E2 - p)yt*  + q2(1 - q y 5 4  

= (VU - VP)C* + f ~ w ) ~  - (1 - a)(a + a ) w t 2 .  

Non-zero double eigenvalues occur when a = 0, m # 0; zero eigenvalues occur when 
wz = 40, equivalently when 

det1,  = S2((1  - 247 - a) t2  - w) ( ( I  - 2q + a ) t 2  - q ~ )  = 0 (4.27) 

i.e., when the stability form 38, is singular. The values 7& are the roots of the equation 
U = 0; &f are the roots of the equation w2 = 4a. 

For tops lying in region 1 and 2, all of the above values are positive, and are hence 
attained by 5'. For tops in regions 3 and 4, the values T,%, are imaginary. We note that 
U = ( a 1 p / 2 ) ~  > 0 when 5 = 0 and that 

/q - a21 2 d(1 -a ' )  ( 9 2  - a') (4.28) 

implies that both roots of U = 0 must have the same sign. Hence U is negative, if ever, 
only for t2 between the two positive roots. In regions 4, 5 and 6, where I, is neither 
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the minimum nor the maximum eigenvalue of U,, T& < 0; in these regions cz cannot 
attain the value hence the eigenvalues pass through zero only once, at 7& In 
region 7 (I, < I, < I,) ,  both 7& and 7s7-f are negative, hence the eigenvalues never 
pass through the origin. Along the straight line boundaries of the regions 1-7, the 
behaviour resembles that of the region to the right of the boundary. Along the curve 

where m and U vanish simultaneously for rz = r ~ ,  = 72-(, an entire window of 
eigenvalue behaviour shown in figure 2 collapses to a quadruple zero eigenvalue. 
Note that this curve separates the region of parameter space for which the energy 
stability criteria and the linear stability criteria agree from the region for which ‘linear 
restabilization’ can occur. In regions 1, 6, and I, the magnetic terms may dominate the 
second variation ge for a range of angular velocities for which 93< is negative definite, 
i.e. it is possible that 

r’p: > -(Ss,,U,) > 0. (4.30) 

Looking at figure 1, we see that this is possible for relatively oblate or nearly symmetric 
tops, i.e., tops for which ‘p is sufficiently greater than la]. 

The Lagrange tops, which lie along the line a = 0, are distinct from the asymmetric 
tops in the following respects: first, 7$-f = 7sf-f, - hence the ‘window of instability’ 
disappears and the eigenvalues of Lagrange tops in region 1 pass through zero only 
once, remaining on the imaginary axis; second, the transition values 7ES simplify to 
T , ? ~  = y/(l - ‘p)’ and r f - ,  = 0, hence thc collapse of the four distinct imaginary 
eigenvalues to two double real eigenvalues takes place at t2 = 0 and the split to four 
distinct real eigenvalues does not occur. The difference in behaviour between Lagrange 
and asymmetric tops is an example of system symmetry breaking. 

The eigenvalue transitions associated to each region in figure 1 are given in figures 
2 4 .  The eigenvalue portraits are displayed from left to right in order of decreasing 
angular velocity. We assume here that I, > I, and, hence, 7$-f > T ; - ~ ;  if I, > I , ,  
then the appropriate portraits can be obtained by exchanging the labels TJ-~ and 7& 

The numbers of the portrait sequences are associated to the numbers of the regions 
in figure 1; the sequences labeled L 1 and L 7 are associated to the Lagrange tops 
lying on the intersection of the line a = 0 with regions 1 and 7. The portrait sequence 
labelled 1-2, respectively 5 6 ,  describes the eigenvalue behaviour of tops lying on the 
boundary of regions 1 and 2, respectively 5 and 6. 

The eigenvalue behaviour along the boundaries of the regions is characterized as 
follows: On the boundaries between regions 1 and 2 and regions 5 and 6, the lower 
‘superfast-fast’ and upper ‘fast-slow’ transitions collide, as indicated in the eigenvalue 
transition diagrams. Along the boundary of the regions 2 and 3, and regions 4 and 5, 
i.e. where la1 = ‘p, the eigenvalues have the form 

Hence no ‘fast-slow’ transition occurs along these boundaries and the eigenvalues 
portraits along the 2-3 boundary (respectively 6 5  boundary) resemble the portraits 
for region 3 (respectively 4). Along the 1 4 ,  2-5, and 3-rI boundaries, the upper 
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l .  +-+-+-+-+-+-+-+-+ 

*. +-+-+-+-+-+-+-+-+ 
7- rs7-r 4 f-s T+ .f-r 

3. +-+-+-+-+ 
TS7.f 

r+ sf-f 

4. +-+-+ 
S.  +-+ -+-+-+-+-+ 7-  sf-f 

. 
Tf-s T+ r-s r- 8f.f 

7-  
T& = Tr t ,  r-s +-+-+ -+-+-+-+ 

7% if 
TS7.f f.6 

‘. +-+-+-+-+ . 

Tf.8 
I+ f-s 

Figure 2. Eigenvalue transitions for upright sleeping lops. 

‘superfast-fast’ transition point T J - ~  occurs at infinite angular velocity; along the 6 7  
boundary, the lower ‘superfast-fast’ transition point I ; - ~  occurs at infinite velocity. 

Remark: A Hamiltonian-Hopf bifurcation occurs at  the 7,fs transition for tops in 
regions 1, 6 and 7 and for all Lagrange tops. The transition of double conjugate 
purely imaginary eigenvalues to a conjugate quadruple of eigenvalues with non-zero 
real part is a characteristic feature of Hamiltonian-Hopf bifurcation, however, some 
non-degeneracy conditions must he checked to establish the actual occurence of a 
bifurcation. (See Van der Meer (1985, 1990).) We do not carry out that analysis here. 

The eigenvalue behaviour of the hanging sleeping top is far simpler than that of 
the upright top. If y is negative, U is positive for all values of a, ‘p and 5. Hence the 
‘fast-slow’ transitions never occur for hanging tops; the eigenvalues always consist of 
purely real or purely imaginary pairs. Hence the detailed structure of the ‘top space’ 
given in figure 1 is no longer relevant; the sequences of eigenvalue transitions are 
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Figure 3. Eigenvalue transitions for upright sleeping Lagrange tops. 

determined solely by the relative magnitudes of the principal axes of the inertia tensor. 
As indicated by the energy analysis of section 2, hanging sleeping tops for which the 
axis of rotation e, is the axis of maximal inertia, i.e., for which I, > I, and I, > I,, are 
always stable, with purely imaginary eigenvalues. Tops for which I, is the middle axis, 
i.e. for which I, > I, > I, or I ,  > I, > I,, are stable only for sufficiently small angular 
velocities; the eigenvalues undergo a single ‘superfast-fast’ transition. Finally, if I, is 
the smallest axis of inertia, then the top is stable for sufficiently large or sufficiently 
small angular velocities; both of the ‘superfast-fast’ transitions occur. The eigenvalue 
transitions are given below; the eigenvalue portraits are displayed from left to right in 
order of decreasing angular velocity. 

7. +-+-+-+-+ L7. +-+-+ 
t - -  

Ts1-f - T8f-f T r+ sf-f ST-f 

Figure 4. Eigenvalue transitions for hanging sleeping tops. 

The possible sequences of eigenvalue behaviour for sleeping tops are summarized 
in tables 2 and 3.. The characteristics of the eigenvalues are indicated by the following 
conventions, where K and v are distinct non-zero real numbers: 

II:*~i ,&vi  D I : M  (double) l Z : f ~ i , O  (double) 
RR:+K,+v DR:*K (double) ZR:+K,O (double) 
1 R : + ~ i ,  +V Q: + K  + vi ZZ:O (quadruple). 

For example, I1 indicates two distinct pairs of conjugate imaginary eigenvalues, while 
DI indicates a conjugate pair of double imaginary eigenvalues, Q indicates a quartet. 
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As in the preceding tables, the information is displayed from left to right in order of 
decreasing velocity; the notation ‘> >’ denotes the range of angular velocities between 
the specific left and right hand values; e.g., the third column describes the eigenvalue 
behaviour of the top for angular velocities 5 satisfying T J - ~  z E2 > T ; - ~  The first 
column describes the behaviour of tops for which 5* > T & ~ ,  while the last column 
decribes tops for which TL, > 5 , .  A dash indicates that the eigenvalue behaviour in 
that velocity range is the same as that in the ajoining ranges. 

Table 2. Eigenvalue sequences far an upright sleeping top. 

Region \ C2 >>  

1 
1-2 
2 
3 
4 
5 
5 4  
6 
7 
L1 
L 7  

IR 
IR 
IR 
IR 
1R 
IR 
IR 
IR 
- 

zs7-i 
- 

IZ 
zz 
ZR 
ZR 
ZR 
ZR 
zz 
IZ 

IZ 
- 

~ 

>>  > 

II 

RR 
RR 
RR 
RR 

I1 
I1 
IJ 
II 

- 

- 

DR Q 
- - 

DR Q 
zz 0 

DR 
DR 
DR 
- 
- 
DR 
DR 
DR 
DR 
DR 
DR 

RR 
RR 
RR 

RR 
RR 
RR 
RR 
- 
- 

Table 3. Eigenvalue sequences for a hanging sleeping top. 

I I  I, 2, 3, L 1 - - 
IR IZ I1 4, 5, 6 

7 11 IZ IR IZ I1 
L 7  11 IZ ~ IZ I1 

- - 
- -  

4.2. Linear stability of a special class of tilted equilibria 

We can express the characteristic polynomial (4.18) for the simple family of tilted 
relative equilibria introduced in section 2.3 in terms of the parametrization given in 
that section. Recall that these are relative equilibria for which the axis of gravity lies in 
the plane determined by two of the principal axes of the inertia tensor; we restrict our 
attention to the relative equilibria that satisfy the additional condition that the centre 
of mass lies along one of these axes, specifically, that the angle 4 determined by (2.39) 
equals zero. If I,,< is given by (2.36), then Y, = diag [I,,T;], where 

(4.32) 

and p ,  = I, - I, -I, +2r,. Since ae = diag [b,, b 2 ] ,  where b, and b, are given by (2.46) 
and (2.47), the characteristic polynomial ,$) satisfies 

~ ( ~ ) = - ( ~ 4 1 1 r s + ~ ’ ( ~ 2 ( 1 1 - I 1 2 - 1 3 + 2 ~ ~ ) 2 + I l b l + ~ s ~ ~ )  1 + b , b z )  
I,r, 
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t4 
4% 
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= - ( (g)411~s + (+)'((rl -I,  - I, + 2 r , ) 2 + 1 , c ,  +Tyc2) + c l  c,)  

(4.33) 

where cz := b,/E2. Hence the relative equilibrium is linearly stable if c1 c, > 0 and 

(I! - 12 - 1, + 2T,)' f I!C! + ?,Cz > 2 t . G .  (4.34) 

Figure 5. Regions in 'top space' far tilted relative equilibria: the 'p-a plane. 

The bifurcation diagram for these tops is given in figure 5.  The boundaries of 
the regions are determined by the lines I, = I,, I, = 31,/4, and I, = I,. Note that 
relative equilibria of this class do not exist if I, = I,. The centre of mass of a relative 
equilibrium satisfying I, > I, sits above the fixed point of the top, i.e. satisfies cos0 > 0, 
while the centre of mass of a relative equilibrium satisfying I, > I, sits helow the fixed 
pur,,r. ",,,,KC s,r;cy,,,g ,"p, U K  srau,,rry UCll*YI"UI U, L U G  L I I L G U  w y s  ur;yr;r,u> U,, LUG 

sign of a. As before, the eigenvalue diagrams in figure 6 are displayed form left to right 
in order of decreasing angular velocity. 

...:-A rr-.:,.. .I^.-:-_ I._. ... L:,:. .. L-L-..: .P rL^ .:,.̂A A^_^^ _I^ ._ .I_̂  

3- 111, v. + e =  0. + 11, IV. 

Figure 6. Eigenvalue transitions for tilted tops. 



36 D Lewis et al 

The relationship between formal and linear stability is much simpler for these 
tilted tops than for the sleeping tops. We shall show that linear stability corresponds 
to definiteness (either positive or negative) of the stability matrix ge, while linear 
instability corresponds to indefiniteness of &'@. In regions 111-VI, is either positive 
definite or indefinite; hence our earlier discussion of the characteristic polynomial (4.12) 
shows that formal stability and linear stability coincide in these regions. In region I, &e 

is negative definite for sufficiently high velocities, as determined by (2.51) and (2.52), 
and indefinite for lower velocities. The stability form 3e is negative definite for all 
relative equilibria with top shape parameters in region 11. 

In general, negative definiteness of &'e can correspond to either linear stability or 
instability. However, we shall show that for this family of relative equilibria, negative 
definiteness implies linear stability. If we define 

(4.35) 

then the linear stability condition is equivalent to the condition that both T, and 7d 

be positive. We shall derive parametrizations of cos28 and Ii ,  i = 1,2,3, which hold 
whenever 3e is negative definite and use these parametrizations to show that 7t and T~ 
are positive. 

The equations cI = I, - I ,  and (2.52) imply that negative definiteness of 3e holds 
for relative equilibria with 'top shape parameters' in region I of figure 5 and sufficiently 
high velocity, i.e. sufficiently small value of cos2 8, and for all relative equilibria with 
'top shape parameters' in region I1 of figure 5. We shall derive a parametrization of 
cos2 6 that holds for tops having negative definite second variation; we shall derive 
distinct parametrizations of the eigenvalues 1; of I,,# for such relative equilibria in 
regions I and 11. Using (2.52), we see that I, > I, and 0 > b, = t2c, imply that 
I, > I, > 3(I, - I,) cosz 8. Hence there exists E, > 0 such that 

T, :=(I , - I , - I ,+2r , )2+I ,c ,  + T ~ C ,  and T~ :=z, 2 -41,~,c,c, 

(4.36) 

In region I, the eigenvalues I, and I, satisfy the relationship 313/4 > I,; in terms 
of the parameters 9 and a introduced in section 4.1, this inequality takes the form 
a > (3" - l)/2. Combining this with the general constraint 1 - 9 > a derived in section 
4.1, we see that 

(4.37) 

for some &a > 0. The parameter p attains its maximum value in region I when 
1 - 9 = (39 - 1)/2, i.e. when 9 = 3/5.  Since 9 is always positive, we see that 
(",a) E region I implies that q = 3/(5(1 + E + , ) )  for some E+, 0. Substituting these 
values into the formulas for T, and 7d yields rational functions with positive coefficients; 
hence, since 6, ec, E,, and E? are all positive, I, and 7d are positive. These substitutions 
are too unwieldy to be readily carried out by hand; however, they can easily be 
performed using a symbolic computation language, such as MatbematicaTM. 

An analogous argument can be applied to region 11. The constraint I, > I, > 31,/4 
implies that (3" - 1)/2 > U > 2 q  - 1. The parameter 9 satisfies 2/3 > p > 1/3 in 
region 11. Hence (",U) E region I I  implies that 

(4.38) and u = 2 q - l + -  1-9 
2(1 E a )  

" = -  I + -  3 ( (1 fa,!, 
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for some cp > 0, E, > 0. Once again, substituting these values into the expressions for 
T~ and id yields rational functions in 6 ,  E,, 

Remark: The Koualeuskaya top: Note that the special class of tilted Kovalevskaya tops 
discussed in section 2.3, which satisfy I, = I, = 21, and E,,,M = I,M, have shape 
parameters (q,a) = (1/3,1/3) and hence lie in region I. The analysis given in section 
2.3 shows that the stability matrix $e is indefinite, and hence the motion is unstable, 
for t2 < 2&mg//I3. For 5’ > 2&mgt/I,, %e is negative definite and thus the motion 
is linearly stable. The linear stability conditions can be stated in terms of the angle Q 
as follows: the members of this class of tilted Kovalevskaya tops are linearly stable if 
cos2 Q < 1/3 and unstable if cos2 Q > 1/3. This result supplements those of Levi-Civita 
(1901). 

and E~ with positive coefficients. 

5. Bifurcations 

A thorough analysis of the possible steady motions of a heavy top is presented in 
Routh (1884). The heavy top is a sufficiently simple system that it is possible to 
hypothesize the existence of a particular form of steady motion and then directly 
determine when, if ever, such motions are possible. For more complicated systems, 
it can be difficult to ‘guess’ a priori all possible relative equilibria-abstract results 
that guarantee the presence (or absence) of particular features can greatly reduce the 
amount of effort required to locate and characterize families of relative equilibria. 
Bifurcation theory makes possible the systematic identification of families of relative 
equilibria; given some initial family of relative equilibria, one can test for the presence 
of additional families branching from the initial family. An obvious disadvantage of 
such an approach is its failure to detect isolated families of equilibria; the success of 
the method depends on the identification of a sufficiently fertile initial branch. (The 
topological methods of h a l e  (1970a, b), including the application of Morse theory 
to the amended potential Vp,  are appropriate for the derivation of global information 
and location of isolated families.) In the presence of symmetries, families of relative 
equilibria are often organized about some symmetric branch of equilibria: highly 
symmetric states are likely candidates for stable motions; once such a ‘trivial’ solution 
branch has been found, branches of asymmetric relative equilibria can be detected 
relatively easily by the local bifurcation analysis. In the present treatment, we make 
use of only the continuous symmetries of the top; this appears to be sufficient to 
easily obtain the results we seek. However, recent work by Harnad et of (1991) for 
Hamiltonian systems with both continuous and discrete symmetries, as well the general 
treatment of bifurcations of symmetric systems described by Golubitsky et af (1988), 
strongly suggest that the explicit consideration of discrete symmetries can substantially 
simplify the bifurcation analysis of more complicated systems. Near relative equilibria 
having positive definite $<, the Moser-Weinstein theorem guarantees the existence of 
relative periodic orbits, In fact, one can use discrete symmetries to obtain information 
on the nature of these periodic orbits using the results of Montaldi et al (1990a, 
b), as was done for planar coupled rigid bodies by Oh et a f  (1989). For details of 
this sort of analysis, see Chong (1991). In the following sections, we show that the 
tilted steady motions discussed in section 2.3 and section 3 can be found by a simple 
bifurcation analysis, In particular, we note that the steady precessing motions of 
the tilted Lagrange top, which combine overall rotation and spin, bifurcate from the 
steadily rotating sleeping Lagrange top. 
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5.1.  Bi/iircations from asymmetric sleeping tops 

We first consider bifurcations from the 'sleeping' configurations, i.e. tops for which 
the axis of gravity is an eigenvector of the equilibrium inertia dyadic, and then 
show that no bifurcations from the branches of tilted equilibria to relative equilibria 
occur. In this case, the axis of gravity e, is an eigenvector of the inertia dyadic; 
we choose the remaining basis vectors so that the inertia dyadic is diagonalized, i.e. 

Recall ihe family of tilted tops for which the centre of mass lies on the principal 
axis of inertia with eigenvalue I, that was discussed in section 2.3. If we fix all of the 
parameters but the angle 8 and the angular velocity t, then these tops form branches 
of relative equilibria parameterized by the angle 8 between m, and e,. As 8 tends 
towards zero (respectively, x), the family of tops with inertia dyadic (2.36) limit to the 
sleeping top with inertia dyadic diag [I,, I , ,  I , ]  and angular velocity t2 = m g t / ( I ,  - I , )  
(respectively 5' = m g t / ( I ,  - 13)). Analogously, there is a one-parameter family of 
relative equilibria tilted through an angle 8 about the e, axis with angular velocity 

= diag [ I , ,  1 2 , 1 3 ] .  

that limits to the sleeping top with angular velocity r2 = k m g t j ( 1 3  -1;) as 8 
approaches 0 or n. 

The sleeping tops with angular velocity tz = * m g t / ( 1 3  - I i ) ,  where i = 1 or 2, lie 
at the intersections of the curve of sleeping tops, parameterized by 5 with 8 = 0, with 
the curves of tilted tops, parameterized by 8, with 5 determined by (2.51). Thus these 
tops are points of bifurcation. Given the branch of sleeping tops, the existence of the 
branches of tilted relative equilibria is predicted by the singularity theory techniques 
described in Goluhitsky et a1 (1985). The underlying principle is the identification of 
a simple normal form for the function or vector field in question. Possible directions 
of bifurcation are determined by the Lyapunov-Schmidt reduction procedure; this 
procedure determines a mapping from the kernel of the linearization of the original 
mapping into the complement of the image of the linearized mapping. The solutions 
along the new branch are tangent to the kernel; higher-order correction terms are 
determined by computing higher-order derivatives of the reduced mapping. 

The starting point for the bifurcation analysis in this case is the equation for a 
relative equilibrium: DVc(A)  = 0. Since the equilibrium equation is automatically 
satisfied on the tangent g . A to the group orbit, we can restrict our attention to a 
complement of g A. Considering (2.33), we see that the second variation DzVt(A,) 
changes signature as tz passes through the values m g t / ( I ,  - I , )  and m g t / ( I ,  - I,), with 
null vectors in the direction of the e, and e, axes. In the case of a sleeping top with 
critical angular velocity 5 ,  satisfying 

the reduced mapping takes kerD'V&)/(g . A@) .r span{e,\ into itself; hence the 
reduced bifurcation problem is scalar. As before, let R, denote a rotation about e,. 
Restricting the augmented potential to rotations about e,, we see that 

~ ~ ( 4 )  = :&I, + I ,  + (I, - I , )  cos 28)  - mgtcos 6' 
= T((8)  + higher-order terms (5.3) 
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where 

(5.4) 

Clearly, non-zero critical points of Tt exist if and only if t2 > tl. The general theory 
guarantees that the behaviour of the full bifurcation problem in a neighbourhood 
of the possible bifurcation point is described qualitatively by the behaviour of the 
truncated, reduced system; in particular, the existence of tilted relative equilibria for 
5’ > t,’ follows from the existence of non-zero critical points of Te. The analysis at 
the critical velocity 5’ = mgL/(I,  - I,) is analogous. 

We now show that no secondary bifurcations, i.e., bifurcations from the branches 
of tiited reiarive equiiiiiria, occur. AS was previousiy discussed, reiative equiiibria can 
be characterized as critical points of the augmented potential Vc; new branches of 
equilibria must he tangent to a null vector of the second variation of V, at the point 
of bifurcation. On the other hand, relative equilibria are also critical points of the 
amended potential Vp and, by the same reasoning, the second variation of V,, in the 
direction of the new branch must equal zero. Hence new branches must be tangent to 
ker Dil,(A,). Thus, ignoring the neutral modes associated to the action of the symmetry 
group, the space of possible directions of bifurcation from a relative equilibrium rotated 
from the vertical about the e, axis is given by 

(ker D&(AJ)/(g, ,  A,) =span {JLi\.e3,e3}/span { e , }  =span {e,} (5.5) 

since (2.36) implies that 

nAce, = (0, ( I ~  - I,) cos 0 sin a, I, sin’ o + I, cos’ B )  (5.6) 

and hence span {lIAae,,e,} =span {e2,e3}. However, (2.47) states that 

D2v,(A,)(e2,e2) = DZv,,(A,)(ez,e2) = t202 - 1,) > 0 (5.7) 

so no bifurcation can occur. 
We summarize our observations as follows: 

Branches of tilted, steadily rotating relative equilibria with angular velocity 

i = 1,2 5 2  = mge 
(I3 - Ii) cos 0 

where 0 denotes the angle between the axis of gravity and the centre of mass, bifurcate 
f rom the branch of sleeping top motions of a heavy top at the angular velocities 
5’ = mgt / ( I ,  - Ii). The tilted equilibria are stable for  suflciently small angles B and 
no secondary bifurcations from these branches occur. 
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5.2. Bi/iircations from the sleeping Lagrange top 

Associated to each angular velocity for which the sleeping Lagrange top is stable, there 
are two one-parameter families of tilted precessing motions that limit to the steadily 
rotating sleeping top with the specified velocity. These branches, like their asymmetric 
counterparts, were identified by Routh (1884, sections 102 and 201). The branches that 
bifurcate from the sleeping Lagrange top are characterized as follows: Assume that 

dyadic is given by E, := R, diag [I,, I , ,  I,] R i ,  where R, is given by (2.37). Replacing 
( with (1 and w with ((1 - 1) in (3.16) and solving for 2, we find that the top is a 
relative equilbrium if and only if A = .%(e, 5 ) .  where 

+Le tn_ hII  n C  +ha ..--t:--l L.. -- - - - I -  0. : ~ r L - r  .LI. :a:L-:..- :--A:- 
LUU L V ~  L L ~ U  LYLPLUU VUL VI ~ur V ~ L L I C . ~ _ I  uy pu ausic v ,  I . = . ,  uiaL ~ i i ( i  C ~ U ~ L W L ~ U ~ L ~  i i i c ~ ~ i d  

for I, := 13+(1,  -I3) cos 0. The results of section 3 show that the top tipped at  an angle 
0 with left and right velocities k<(A(O,(),A(O,t) - 1) is a stable relative equilibrium. 
Note that the traditional concept of 'transfer of stability' need not apply to bifurcations 
of symmetric relative equilibria; the sleeping top is unstable only for angular velocities 
below those at  which bifurcations occur. This is directly related to the non-uniqueness 
of the variational characterization of relative equilibria, as is discussed below. Since 
the second variation of the amended potential is always definite along these branches, 
no secondary bifurcations can occur. 

The bifurcations from the sleeping Lagrange top can be detected by singularity 
theory methods, as was the case for asymmetric tops. The key to the analysis of 
bifurcations of a symmetric top from the upright 'sleeping' state is the exploitation of 
the fact that, while left rotations about the axis of gravity cannot be distinguished from 
right rotations about the axis of symmetry as long as the top is in the upright state, 
these motions are distinct as soon as the top is tipped out of the vertical. Hence, for a 
tilted, precessing top, there is a unique pair (<,a) E g that yields the specified motion, 
while for a sleeping Lagrange top, the curve t v A  = c ( A ,  2. - 1) in g yields the specified 
angular velocity 5 for any value of 2. In section 3.2, we sought conditions under which 
some value of A could be found for which Vsvi had a local minimum at the upright 
top. The same conditions guarantee that two values of ,I exist for which D2V,,(A,) is 
indefinite and thus indicate the possibility of a bifurcation. 

This analysis follows a general technique for analysing bifurcations from symmetric 
relative equilibria, i.e. steady motions for which both the configuration and velocity 
are fixed by some non-trivial group element, that is described in Lewis (1991b). The 
following proposition provides sufficient conditions for the bifurcation of an entire 
surface of relative equilibria from a single symmetric relative equilibrium. 

Proposition I. Assume there is an element q, E Q, algebra elements [ and a E g, a 
differentiable function f : Q x span{ [, E} -+ !R, a differentiable one form h : Q -+ T'Q, 
and a variation 6q,  E T,.Q satisfying 

(i) DV,,(q) =f(q,q)h(q) for all q E Q and rl E span{i,a} 
(ii) h(q,) = 0 
W D ( h  .6q , ) (q , )  . d q ,  # 0. 

Let I ,  denote the open set given by 
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where 

6'V :=DZV(q.)(6q,,6qr) 6'1, := D21,(q,)(6q,,6q,), etc (5.11) 

Then there is a tubular neighbourhood W c Q x R of { q , }  x I, and a function 
J, : W -+ R such tbat FL(u(( + d(q,u)a)&)) is a relative equilibrium for all 

Condition (iii) is to be interpreted as follows: Let vs be a vector field satisfying 
v,(q,) = 6q,; the condition that h(q,) = 0 implies that the first variation at qe of the 
scalar function h,(q) := h(q) . v,(q) does not depend on the choice of vs. We denote 
the variation Dh,(q,) 6q, by D(h SqJq,) . 6q,. Proposition 1 is a special case of a 
more general result in which it is not assumed that q, is a relative equilibrium for all 
values of [; in that case, is viewed as a fixed parameter and d can be solved for as a 
iunction oi q aione. (See i ewis  (issib) for the proofs of these resuits.) 

We now apply this result to sleeping Lagrange tops. Let ifAs = diag [I1,I1,I3]. 
Using the G invariance of V(c,w, and the spatial representation 

4 E g. 

g . A  = {e,,&} (5.12) 

cf the tacgeEt space t~ !he g r o q  orbit, we see thz! 

DV(t,a,(A) . e, = DV(c,w,(A) ' Ae, = 0. (5.13) 

Hence the one form h given in the spatial representation by 

h(A) := e3 x Ae, (5.14) 

satisfies DV({,,,(A) = f(A,(c,m))h(A) for some function f : SO(3)xlR' + R. Clearly, 
h(AJ = 0 if and only if A, is a rotation about e3. In this case, 

D(h. H ) ( A J  68 = (e3 x 681'. (5.15) 

Hence D(h. &')(Ae)' 68 # 0 for 60 

inertia tensor in the direction of 68, is 

span{e,}. 
Let M, be an arbitrary unit vector in the e,+' plane. The second variation of the 

(5.16) 

We recall the algebra element vL = (d, 1 - 1) introduced in section 3.2; vi = r((  + da) 
for 

( = (0, -1) and a = (1,l). (5.17) 

The relevant variations of the inertia components are 

a .  6 * ~ ,  = -21, [ . PII, = I, [ .6'nC = 0. (5.18) 
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The second variation of the potential is S2V = mgt .  Hence, using (5.10), we see that 

I ,  = { 5 : 5'1; > 4 1 , m g t )  ; (5.19) 

i.e., bifurcations occur from all stable sleeping tops 
In summary: 

Tilted spinning, precessing steady motions bfurcate from the branch of sleeping Lagrange 
tops throughout the range of angular velocities for  which the sleeping tops are stable. 
These tilted motions are always stable. 

6. Geometric derivation of the equations of motion 

In this section, we derive the unreduced (body and spatial) and reduced equations 
of motions. While these derivations may be of interest to the geometrically oriented 
reader, a careful reading of this section is by no means necessary for a thorough 
understanding of the earlier sections of the paper. The derivations of the spatial and 
body equations (1.32) and (1.33) are included both for the sake of completeness and 
to introduce the structures necessary for the derivation of the reduced equations. In 
section 6.2, we attempt to motivate the construction of the shift map (4.1) and prove 
that the reduced manifold 9' defined in (4.5) is, in fact, a Poisson manifold. 

6.1. Derivation of the body and spatial equations of motion 

The symplectic forms on S0(3)xR3, thought of as the trivialization of T' SO(3) via 
left and right reduction, are 

w , ( h , n ) ( ( ~ ~ , , m , ) , ( ~ G , , ~ , ) )  =m,.m, -m,.so,+n.(m, x SO,) (6.1) 

and 

w s ( ~ , n ) ( ( ~ l ~ , ~ n , ) , ( ~ B , ~ , ~ n , ) )  = S ~ ~ . M ,  -an l  . m Z - n . ( 6 o ,  x 68,). 

(See Abraham and Marsden (1978), section 4.4 for the derivation of these forms.) 

(6.2) 

Denoting the Hamiltonian vector field X ,  defined by H and w B  by 

X,,(A,n) = (A&(A3W,Xn(4W) (6.3) 

we see that (6.1) implies that 

w ~ ( A , ~ ) ( ( A ~ ( A , ~ ) , X n ( A , ~ ) ) ,  (AG,m)) 
= .X,(A,lI) - X,(A,II). SO +II. (XQ(A,II) X SO) (6.4) 
= (n x XQ(A,rI) -Xn(A,II)) ' 6 0  +X,(A,II) .m.  

If we define the functional derivatives He and H, E R3 of a function H : T'Q + R 
by 

DH(A,  II)(AG, ZI) = H Q .  SO + Hn. m (6.5) 
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for all SO, 6II E IR', then the Hamiltonian vector field X, is determined by requiring 
that the righthand sides of (6.5) and (6.4) he identical for all SO and ,XI E R', which 
yields 

X H ( A ,  n) = CAEn, II x Hn - He). 

The differential of the Hamiltonian (1.28) equals 

DH(A,II). (A86,m) 
= g(Ac%)Te,. M +sII llref-'II 

= - g ( Y x M ) . 6 0 + R . s I I .  

Hence (6.6) yields the Hamiltonian vector field 

X,(A,II) = R and Xn(A,II) =gy x M +II x Cl. 

The body form (1.32) of the equations of motion follows from the relationship 

(A, h) = XH(A,  II). 

The derivaticx nf the spatia! fer- (1.33: af the eqi;a:ians of m a : i ~ ~  praceeds in a 
similar manner. If the Hamiltonian vector field associated to the spatial form of the 
Hamiltonian, given in (1.27), is denoted by (Y0(A,n)A, Yn(A,n)) ,  then 

o S ( ~ , n ) ( ( i 2 ~ ,  n ) ~ ,  YLA, n)), (@A, 6 ~ ) )  
= - (n X Yo(& n) + Y*(A, n)). 28 +Ye(& n) . Sn. (6.10) 

On the other hand, the first variation of the spatial form (1.27) of the Hamiltonian is 

D H ( A , n ) .  (%A,Sn) - 
= b8m. g +an . II,'~ - 4% I;;'(@s~,, - II,@)II,-'~ 

= (m x g - n  x o) .SB+o.6n .  (6.11) 

Hence the right hand sides of (6.11) and (6.10) coincide for all variations SB and 
6% E IR3 if and only if the spatial equations of motion (1.33) hold. 

For a different derivation of the equations of motion (1.32) and (1.33), obtained by 
means of the semi-direct product theory, see Marsden, Ratiu and Weinstein (1984). 

6.2. Derivation of the reduced equations 

The shifted reduced equations of motion (4.6) are constructed by Poisson reduction as 
follows. We first express the symplectic structure on T'Q in terms of the left (body) 
trivialization, i.e. we identify a configuration-momentum pair (A,n,) E T'Q = T' 
SO(3) with the pair (A,II) E SO(3)xso(3)' = S0(3)xR3 determined by the relationship 

fi := ATn, .  (6.12) 

Recall from section 1.3 that in the body representation the Hamiltonian vector 
field associated to a function F is given by (6.6). Therefore the Poisson bracket 
{F,G} :=os(X,,XG) of two functions F ,  G : T'Q 4 IR is given by 

{F,G}(A,n)=Gn.F,-FF,.Go-IIn(Fn xG,). (6.13) 
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We now determine a one-parameter family of induced Poisson brackets on the 
reduced manifold 9'. The brackets are parametrized by a momentum p E g' z iR that 
specifies a 'momentum shift' as follows. Associated to the action of a Lie group G on 
a manifold Q is a momentum map J : T'Q + g', where g' denotes the dual of the Lie 
algebra of G; Noether's theorem guarantees that J is conserved by the Hamiltonian 
dynamics associated to a G invariant Hamiltonian H on T'Q. The momentum map 
J : T'Q - R associated to the G action on T'Q is defined by 

J ( A , A A ) . ~  :=(AA,~,JA)) =tn.y.  (6.14) 

where y = ATel. The vector field i : R' --t R' given by (4.2) satisfies J(A,A[T)) = 1. 
Hence 

(A,A@ E J - I ( ~ )  -- -pi%)) E J-'(o). (6.15) 

Thus X,, maps the momentum level set J-'(p) to the level set J-'(O). In particular, 
since (2.2) implies that the body expression for a relative equilibrium in the level J-'(p) 
is 

F L ( s ~ ( A ) )  = FLV,   AT) = (A, t ~ ( n G ) )  = (A,PA~T)) (6.16) 

it follows that relative equilibria are mapped to true equilibria by the appropriate shift 
map. (The momentum shift is an essential ingredient in the cotangent bundle reduction 
theorem.) 

The induced Poisson bracket of functions on 9' = S2 x R3 is defined as follows: A 
function f : 9 + R induces a function F := f o X p  on T'Q with functional derivatives 

Fe =f,  x Y -P(Vi(Y)iYf5 and Fn = f ~  (6.17) 

where the matrix Vi(?) is given by (4.11). Note that f, is defined modulo y ,  since 
y E S2 implies that all variations S y satisfy 6 y  . y = 0. However, the cross product 
f, x y is well-defined, so Fe is well defined. The Poisson bracket of two such induced 
functions has the form 

{f oXp .g  o X p } ( A , W  

= gfj ' (f, x y - p(Vi Vf:) - f E  ' (g, x Y - r ( V i  W g E )  
(6.18) 

- - ( f i + P i ) ' ( f E x g E )  

= y . ( g ~  x f ,  -fz x g,) - 2 p f ~ . ~ k e w [ V i 7 ] g ~  -(n + p i ) .  ( f ~  x gE) 

where (y. fl) = Xp(A, n). Using the identities 

(6.19) 
I 

2 skew [SZ] = (tr S) ii - Sx 

for all symmetric matrices S and all x E RI and 

(Vi 0 9 ) Y  = i (Y) - 21 ( Y )  ' Y)i(Y) = - i ( r )  (6.20) 
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we obtain 

2skew[VC(y)?] = (trVi(r))Q+%(y) = (div i (y ) ) j i+%(y)  (6.21) 

where 

div i ( y )  =I;'trn,,, -21[(y)I2 =I;'ry (6.22) 

is the usual divergence of a vector field on R'. Hence the Poisson bracket {, },, on 9 
associated to the momentum p is given by 

{ f > g l r ( Y , f i ) = Y ' ( g f j  x f , - f f j x g , ) + ( p ( d i v i ) y - f i ) .  (f: x g f j ) .  (6.23) 

Note that the bracket does not depend on the undetermined y component of the partial 
derivatives f y  and g,.  

The dynamics on the reduced manifold B are determined by means of the Poisson 
bracket {, } r  and the induced Hamiltonian fir associated to a specified momentum 
p. The total energy fig of the system with 'background momentum' p, in terms of the 
reduced variables ( y ,  fi), is given by 

2 

B,(y, fi) := f f i  . &:fi + + g y  . M. (6.24) 

The reduced Hamiltonian satisfies the condition fi,,oZ, = H and has partial derivatives 

= g M  - f;*p2Erery (modulo y) (6.25) 

and 
- (fi r n  1- = n;;fi = n. (6.26) 

Thus 

i = {f,H,,}r = Y .  (6 x f, - f ~  x (gM - 21;2~2kef~))  + (p(div i ) r  - fi) (ffj x 6 )  
= f, ' (Y x 6)  + f f j  . ( y  x ( g M  - 1;2pzI,,y - p(div 06) + fi x 6). 

(6.27) 

Setting 5 = 1;lp in (6.27), we obtain the reduced equations of motion (4.6) 
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Appendix. The reduced energy-momentum method 

A I .  Glossary: Simple mechanical systems with symmetry 

Configuration space, with elements denoted by q E Q 
Phase space. Points z = ( q , p )  E P are configurations and momenta 
Lie group acting freely on Q on the left; the action of G on P is 
symplectic, obtained by cotangent lifts 
Lie algebra of G ,  with elements denoted by q E g 
Exponential map exp : g + G satisfying 21 
Dual of g, with elements denoted by p E g' 

Adjoint action of G on g; Ad,q = $ 1  
Coadjoint action of G on g ' ;  (Ad&) . q  = p .  Ad,q 
Infinitesimal adjoint action of g on g; ad,q = $ 1  
Infinitesimal coadjoint action of g on g ' ;  (adip) . q =,U ad,q 
Isotropy subgroup of p E g' under the coadjoint action 
G ,  := { h  E G : Adip = p }  
Isotropy subalgebra of p E g' under the infinitesimal coadjoint action 
g, := { q  E g :ad,p = 0 }  
Infinitcsimal gcncrator ilQ(q) = $ 1  
Tangent to the orbit of the isotropy subgroup G ,  
gp.qe={qp(qe)  : V E ~ , , } ~ T , . Q  
Momentum map J : P + g ' ;  J(q,p) ' q = ( p , q Q ( q ) )  
G invariant Riemannian metric on Q 
Locked inertia tensor U : Q + L(g,g'); (E(q) i ) .  q = ( (qQ(q) , lQ(q) ) )  
Locked momentum map E( : Q + g ' ;  Ec(q) = U(q)C 
Legendre transformation FL : TQ + T'Q; (FL(u,),w,) = ((U,, w,)) 
G-invariant potential energy V : Q -+ R 
Hamiltonian function H : P + IR; H ( q , p )  = illFL-'(p)ll + V ( q )  

Augmented potential V< : Q + R; Vc(q) = V (4) - ' U(q)5 
Amended potential V, : Q + R; V,(q) = V (4) + i p  ' n-'(q)p 
Stability two form ge : T,.Q x TqaQ + R 
B,(Sq,4) = DzV<(q,)(Sq,4) + (D&(q,) ' S q )  ' Wq,)-'(Dny(qJ ' 4) 
Generalized Arnold form .d : g x g + R 

Space of 'internal' variations 
9jnt = { 6 q  E T,.Q : Wq,)-'(D$(q,) . b q )  E g , }  

exp(e 5) = 5 e=O 

g(exp(eq))g-l = [v,q] 

A d ~ e x p ~ e y ~ ~ q  

r=O 

r=O 

cxp(ei1) q e=0 

2 

.d(l,q) = ad;p. (Wq,)-lad,p +ad,(fl(qJ'p)) 

A2. Summary of the method 

An element ze E P is a relative equilibrium if the trajectory zt passing through z p  
determined by the Hamiltonian dynamics satisfies 

zt = exp(t C)  . ze 

for some 5 E g. Since the G action is free, ze E Tq;Q satisfies the above equation if and 
only if z, := FL(&(q,)) and q,  is a critical point of Vt. The equilibrium configuration 
q, is also a critical point of V, for p := Ec(q,). 
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The relative equilibrium ze is (formally) stable modulo G ,  if D2V (q ) = Be is 
positive semi-definite, with kernel g, 4.. (If the configuration space Q is isomorphic 
to the symmetry group G, e.g., in the free rigid body, then the relative equilibrium is 
(formally) stable if Be is either positive or negative definite.) The stability conditions 
can be decomposed into 'rigid' and 'internal' conditions as follows. The stability form 
ge is positive semi-definite with kernel g ,  . q, if and only if the restriction of Be to 
the space L21nt of 'internal' variations is positive semi-definite with kernel g ,  ' 4 ,  and the 
generaiized Arnoia form sd is positive semi-definite with kernel g,. ii the symmetry 
group G is abelian, as in the case of the heavy top, then g = g ,  for all values of p ;  
hence, in this case, the 'rigid' stability conditions are trivially satisfied and Ztnt = TqeQ. 

, e  
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