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1 Introduction

c

In a parameter dependent Hamiltonlan system, an equilibrinm might lose its stability via
& socalled Hamiltonian Krein-Hopf bifurcation (11}, (12]): Two pairs of purely imaginary

eigenvalues of the linearised system collide (1-1 resonance) and split off the

imaginary

axis into the complex plane. Inthefoﬂc-hgnwmrdatothhlmuiou&esplming
case, see Figure 1. It hwaﬂhmthatlnmwmeurproblm without external
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Figure 1: The splitling case for the 1 -1 resonance
symmetry this is the only eigenvalue behavior that generically occurs in 1—1 resonances
(4], (81, (n0)).
‘When there Is symmetry present, the situation changes. Under certain circumstances

the eigenvalues might also pass while remaining on the imaginary axis (the passing case,
sec Pigure 2). In this case the linear stability properties of the corresponding equilibrium

IR N
oot

A50 220

Figure 2: Tke passing case for the 1 -1 resonance

do not change and in this sense the collision is not “dangerous”™ as in the splitting case.
The question arises naturally whether these essentinlly different elgenvalue movements can
be characterised so that the occurence of the one or the other in a given system could
in principle be predicted. The answer to this question is given in [3]. There the generic
movement of eigenvalues through a 1-1 resonance Is completely classified by use of group
theory and energetics.

The main purpose of this paper is to show the usefulness of this type of result for
snalysing the dynamical behavior of mechanical systems. We describe briefly the main
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result of [3] in Section 2 and consider rotating pendula problems in Secticn 3.

These examples clearly point out the fact that in specific mechanical systems, both
passing and splitting can occur generically. In [3] this behavior is explained in the context
of systems with symplectic symmetries. The examples suggest there is a corresponding
result for systems with antisymplectic symmetries as well. We expect that the techniques
of [14] will be useful toward this end.

2 Generic movement of eigenvalues

In this section we briefly describe the main result of [3] for the case of 1—1 resonances in
Hamiltonian systems with symmetry.

Let Z be a symplectic vector space with symplectic form w. Assume there is a compact
Lie group ' acting symplectically on Z, that is,

w(yr,Yw)=w(v,w) forally €T and v,w € 2.

We denote by spp(2) the Lie algebra of linear infinitesimally symplectic maps commuting
with I';

(i) w(Bv,v)+w(v,Bw)=0 forallv,we Z,

Bespp(2) &
(4i) ¥yB=By forallyel.

Suppose that A(A) is a one-parameter family in spr(Z) and that A()) undergoes a
1—1 resonance at A = 0. ARer rescaling we may assume that the purely imaginary
eigenvalues which are involved are i, It is well known (eg [4], [9], [10]) that without
symmetry, generically the eigenvatues split off the imaginary axis in a 1—1 resonance (see
Figure 1). When there is symmetry present, this is no longer true: for certain symmetry
types the passing case may occur generically (eee Figure 2). In [3] it is shown that for
symplectic symmetries the generic movement of eigenvalues through a 1-1 resonance can
be completely characterised in terms of group theory and emergetics, but by neither of
them alone.

To state the corresponding result precisely, it is necessary to recall some terminology
from [13]. If U is a symplectic representation of I' then — by ignoring the symplectic
structure of U — we obtain an ordinary representation, which is called the underlying
representation. A D-irreducible symplectic representation is a representation that has no
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proper nonsero I-invariant symplectic subspaces. Irreducible symplectic representations
are either nonabsolutely irreducible (i.c., are irreducible but some linear map that is not
ntulmmp!eofthldnmywmnmvlthl‘)orthemof.pﬁrofhomo:pbic
absolutely Isreducible subspaces (see [5]). We now use the fact that the space of linear
maps commuting with I' is isomorphic to R (the absolutely irreducible case), toCortoH,
the quaternions, see for example [6). It can be shown (Theorem 2.1 in (13]) that in the real
and quaternionic cases the isomorphism type of the irreducible symplectic representation
Is uniquely determined by that of its underlying representation, whereas in the complex
case there are preciscly two lsomorphism types of irreducible symplectic representations
for a given complex irreducible underlying representation. They ate said to be dual to each
other. According to theso two different possibilities we will speak of complez irreducibles
of the same type and complez duals.

Theorem 2.1 ([3]) Let Ey; be the generalized (real) eigenspace of A(0) belonging to the
eigenvalues ti and let Q denote the quadratic form induced on Ey; via
Q(z) = w(z, 4(0)s) . (21)
Then
Ey=UioU,
where, generically, precisely one of the Jollowing holda:

(2) Uy and U, are not isomorphic and the eigenvalues pass independently along
the imaginary azis. (Q may be indefinite or definite. )

B Ui=Uh=VaV, vhere V s real, or Uy = Uz = W, where W is quater-
nionic, the eigenvalues split, and Q is indefinite.

(c) Uy and U, are complez of the same type, the eigenvalues pass and Q is
indefinite.

(d) Uy and Uz are comples duals and the eigenvalues pass or split depending on
whether Q is definite or indefinite,

This theorem gives a complete characterisation of the generic eigenvalue movement
through 1-1 sresonances in Hamiltonian systems with a symplectic symmetry group. The
result is summarised in Table 1,

3
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Eigenspace structure Induced quadratic form

definite | indefinite

(a) | Uy ® U, nonisomorphic “independent passing”

(b) VOVeVeV rel o not generic | splitting

W @& W quaternionic
{c) | W ® W complex of the same type || not generic | passing
(d) | W @ W complex duals passing splitting

Table 1: Generic eigenvalue movement in 1-1-resonances with symplectic symumetry group

Example 2.2 We consider the space C3, where the symplectic form w is induced by
J(2y1,22) = (22, ~21). Let the group S? act symplectically on C? by

0(z1,23) = (11,67 5).
Then the spaces
C{z,-iz}, C{z,iz}

are complex duals with respect to this $-action: both are irreducible and J is acting as

~i on the first and as i on the second subspace. We consider the S'-invariant quadratic

Hemiltonlan 1, 2. ) 30 '
H(z,33,2) = glail’ + 3Im{#z) + 2(1 - 2%zl

or in real coordinates,

Huanpes V) = e + )+ Jlap - em) 420 - A A (22)

According to part (d) of Theorem 2.1, we expect to see definite passing or indefinite split-
ting in 11 resonances while varying the parameter A. A computation of the cigenvalues
of A(A) = JD?H(0,0, )) yields

a(A):%(u‘/iT:(T.\T)).
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nmmhuﬁththdrmyluemjmtamthefoudgmﬂwfmthlnm
induced by (2.2). In fact, definite passing occurs as A passes through 0 and indefinite
splitting occurs as A passes through £% (see also Figure 3). To verify the definiteness
properties observe that in this case the induced quadratic form in (2.1) is simply given by
H itsel.

Figure 3: Imaginary parts of all four eigenvalues against . The sequence indefinite

splitting — passing ot 0 — definite passing — passing at 0 — indefinite splitting can be
observed as A is varied.

3 Generic bifurcation of spinning pendula with symmetry

3.1 The forcibly rotated orthogonal planar double pendulum

As in [2] we consider & rotating orthogonal planar double pendulum. The angular velocity
of the rotation is assumed to be R,. The two masses m; and m; are forced to move in
two planes, which are arthogonal to each other. The peadula are assumed to have equal

length. We set
=< “—z m= 2L
g’ my’
We regard {1 as the bifurcation parameter. After scaling time and making a symplectic

change of coordinates (¢f [2}) one obtains

Hi= sy + )+ Zatam - ap) 4 5m + 1) (1= 2500) 62+ £)

as the quadratic part of the Hamiltonian  describing the behavior of this system. But
this Hamiltonian is exactly of the form as the one in (2.2) (set m = 3) and, moreover, the
underlying symplectic structures are the same. Therefore Example 2.2 shows that both
indefinite splitting and definite passing oceur in this mechanical system.

Remark 3.1 The S! symmetry of /5 is not a symmetry of the full noalinear mechanical
system which is described in coordinates inside the rotating frame. In fact, this system
only possesses a (nonsymplectic) Z; x Z; symmetry. Thus, although H; clearly has the
S! symmetry and the results apply, its origin as a mechanical symmetry is not so clear.

First, the $' symmetry is only a symmetry at quadratic level which can easily be seen
by looking at the higher order terms of H (¢f [2]). Although it is not yet completely
clear why this symmetry is present, there are the following facts which seem to play an
important role:

~ the nonsymplectic Z; x Z; symmetry is generated by one symplectic and one anti-
symplectic involution and forces some quadratic terms of the Hamiltonian to vanish.

~ the underlying mechanical structure as well as the requirement that there exists a
1~1 resonance in the problem forces additional restrictions on the quadratic terms
of the Hamiltonian,

It will be part of subsequent work to clarify the situation. In particular, this example
and the next one suggest it would be useful to extend the above theorem to include
antisymplectic symmetries as well.

8.2 The double spherical pendulum

Consider the double spherical pendulum, as shown in Pigure 4. The relative equilibria and
their stabilities are found in [11]. For angular momentum g # 0 the relative equilibsia do
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not have any obvious symmetry properties (except that they are invariant under reflection
in a uniformly rotating plane). Consistent with the generic (nonsymmetric) theory, onse
only sees eigenvalue splitting.

Figure 4: The double spherical pendulum

To get more interesting behavior, we look at the straight down state with u = 0. This
state Is however, singular in the sense that the overall 5! action is not free there and,
mupondhg]y,thesdp-Ohut.mthmifold,buthuleon!elinsularity

To;etmmdthhdlﬁculty.nreguhﬂutheoyntunnwlhlsdngnlnntate. This
is done as follows, Using ideas of Lograngian reduction, one finds that the linearised
dynamics ot a relative equilibrium with angular momentum g = constant (about the
vuumm)hﬁmbyamwnhmwmquadnuctmnlhnlldmte

£10‘| 6'!: ‘l‘:. 6?: 6'.')' 6*3- 6¢)

vhmr;ndr;mthedutmoﬂhetwopm&uhﬁomthenﬂkduhudwhthe

memmmmmmw&emmmmnom
Vuhtbnof&mmhbhmdmted&r;Jnmd&p

D
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The regularised Lagrangian at the straight down state Is given at quadratic order by
q(‘h‘lu 6, 3!:"!1‘) = “u:% [I:‘—'L’(“’ Jll‘_l‘l ’ \/l?kz.‘. m‘h m"té)] .

This regularisation procedure is akin to those used in celestinl mechanics and corresponds
to blowing up of singularities in algebraic geometry.

The regular Lagrangian that results from this procedure in this example is given by
the following expression

203 = mi} +2r88; 49283 + (m - 1)g(g+ 1)
+ Q(—Mp-‘g’(m-l +m) &

(SﬂHs(m-l)) i
+ §(¥2=tm-D) "“"‘ 1 +r)d+ 2
—(—’;l)(h,-s.O)

7
- VPR D, - i)

+

where r = I3/1; is the ratio of the lengths,

m=(my +my)/mg, g= ; [m(r ~-1)- ‘/m’(r -1)3 4+ 4rm] .

B=9"+29+m,and @ =g/(1+g).
Notice that £3 still has two free parameters r and m. If one wishes, one can casily get the

corresponding Hamiltonlan via Legendre transform. The Lagrangian is invariant under
the transformation

8 = 8, 8 ~ 5, 0 ~ -§,
‘l""‘lv‘]"’”hvd" 6'

which ylields an antisymplectic involution on the Hamiltonian side. This symmetry appears
to be crucial to what follows and is & reason for suggesting a generalisation of the results
of Sec. 2 to include antisymplectic transformations. In addition, this may help put the
previous example (Sec. 3.1) into a better context.
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The equations of motion
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n

for (¢) = (8y,53,0) have the form
Mi+S§j+Ag=0
for 3 x 3 matrices M, S and A. The characteristic polynomial of the system is defined by
det[°M + A5 +A]=0
and is a polynomial p(z) in z = A2, It is explicitly given as follows. Defining r,m, g and
Q as above, farther define the following quentities

G = 285 A= (1+2)'@

I = &5 R =r-gy
L =1-f o = QLY(3m-29°G) + mVR
b = QLVR(3429G) ¢ = QRVI(3-2G)++VL
s = VIR d = s+9'f
e = m-& B = mec+tar?-20d

= ac-b? U = (m-1)(g+1)RleL

eRL +(m - 1)(g+ 1)RBVL + RLG%(mR + g(2ds + r*gL))
= sB+(m-1)(g+ 1)FVR + sG9(aR + g(2bs + cgL)).

Then a straightforward, but lengthy calculation shows that

H2)=U+ V2l 4 Wzt F.

Using this expression for p we compute numerically 1-1 resonances for the straight down
state in the double spherical pendulum. The results are shown in Figure 5. Note especially
that both the splitting and the passing cases occur generically.

The phenomena seen in this example of the straight down state of the double spherical
pendulum can be expected to be ubiquitous in mechanicnl systems with symmetry at
symmetric solutions. For example, we hope that techniques like this will be useful for
rotating elastic and fluid masses in three dimensions (see [7] and [8]).

T < m
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Figure 5: Curves of splitting (solid) and passing cases (dashed) in the spherical double
pendulum
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