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ABSTRACT

In this paper we analyze asymptotic stability, in-
stability and stabilization for the relative equilibria,
i.e. equilibria modulo a group action, of natural me-
chanical systems. The practical applications of these
results are to rotating mechanical systems where the
group is the rotation group. We use a modifica-
tion of the Energy-Casimir and Energy-Momentum
methods for Hamiltonian systems to analyze systems
with dissipation. Our work couples the modern the-
ory of block diagonalization to the classical work of
Chetaev.

1. INTRODUCTION

A central problem in control theory is that of
stabilizing nonlinear systems. Very often the sys-
tems one is interested in are mechanical systems,
which, in the absence of dissipation, are Hamilton-
ian in nature. Further, the equilibria we wish to
stabilize are relative equilibria—equilibria modulo a
group action, usually the rotation group. Recently
two distinct but related methods have been devel-
oped to analyze the stability of the relative equilib-
ria of Hamiltonian systems. The first, the “Energy-
Casimir” method, originally goes back to Arnold [2]
and was developed and formalized in Holm, Mars-
den, Ratiu and Weinstein [8] and Krishnaprasad
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and Marsden [10] and related papers. While the anal-
ysis in this method takes place in the body frame, the
analysis in the “Energy-Momentum” method takes
place in the material frame — see Marsden, Simo,
Lewis and Posbergh [11] and Simo, Posbergh and
Marsden [14]. Both these techniques use a combi-
nation of energy and other conserved quantitites to
prove nonlinear (Lyapunov) stability.

In the papers Bloch and Marsden [4] and Bloch,
Krishnaprasad, Marsden and Sanchez de Alvarez [5]
we showed that for some systems the Hamiltonian
structure could be preserved under feedback enabling
these techniques to be used to analyze feedback sta-
bilization.

In this paper we consider asymptotic stability
and instability results associated with the Energy-
Casimir and Energy-Momentum methods. We con-
sider first the problem of stabilizing a spacecraft
(rigid body) with momentum wheels. We show
that when the Energy-Casimir method gives nonlin-
ear stability, the addition of velocity feedback yields
asymptotic stability, as demonstrated by a Routh-
Hurwitz analysis. (See also [15].) This indicates how
one can use Hamiltonian methods in asymptotic sta-
bilization — first one achieves nonlinear stability in
the Hamiltonian context then one adds a dissipative
velocity feedback.

We then turn to the question of instability. Qur
main point of interest here is to determine if a nonlin-
ear system becomes unstable if the Lyapunov func-
tion in the Energy-Casimir or Energy-Momentum
methods becomes indefinite. We do the analysis here
in the context of the Energy-Momentum method as
it has been shown — see Marsden et. al. [11], Simo
et. al. [14] — that this method yields a normal form
for the linearized equations of motion that may be
analyzed in quite general fashion.



This normal form corresponds to a block diag-
onalization of the second variation of the energy-
momentum function. For the case of S' symmetry
it turns out that the normal form is precisely that of
the general linear mechanical system with gyroscopic
forces analyzed by Chetaev [6]. We discuss Chetaev’s
result that a gyroscopically stabilized system (i.e. a
system that is unstable in the absence of gyroscopic
forces) becomes unstable in the presence of damp-
ing. In the two degree of freedom case we show how
this can be demonstrated by a Routh analysis. In the
general case this can be done by Chetaev’s Lyapunov-
type analysis. We also discuss extensions to infinite
dimensions and the application of a theorem due in
different contexts to Chetaev [6], Oh [12] and others
- relating the oddness of the number of eigenvalues
of the Hessian of the Lyapunov function to spectral
instability.

2. THE ENERGY-CASIMIR METHOD
AND ASYMPTOTIC STABILIZATION
OF A DUAL SPIN SATTELITE.

In this section we describe briefly the Energy-
Casimir method for stabilization. We then describe
how it was used (see Bloch et. al [5]) to show how a
dual spin satellite can be stabilized about its interme-
diate axis of inertia by quadratic feedback in a single
rotor. We demonstrate by the Routh scheme that
the addition of velocity feedback to the rotor then
gives asymptotic stability. (An alternate approach is
discussed in [9].)

The Energy-Casimir method is as follows: Write
the equations of motion (in the body frame) as & =
F(u) on a given space P. Find a conserved func-
tion H for the system. H is usually taken to be
the Hamiltonian and the equations are in Hamilton-
ian form F' = {F, H} where { , } is the Lie-Poisson
bracket on P, a Poisson manifold. Then find a family
of constants of motion C for the system. Often these
are taken to be Casimirs — functions that commute
with every other function under the bracket. Now
choose C such that H + C has a critical point at the
equilibrium u, of interest. Finally show that the sec-
ond variation of H + C'is definite at u,. This proves
Lyapunov stability (in finite dimensions — in infinite
dimensions some a priori estimates are needed).

Consider now the equations for a rigid body with
a single rotor. Let the rigid body have moments of
inertia I; > I, > I3 and suppose the symmetric rotor
is aligned with the third principal axis and has mo-
ments of inertia J; = J; and J3. Let w;, i = 1,2,3,
denote the carrier body angular velocities and let &
denote that of the rotor (relative to a frame fixed on
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the carrier body). Let

diag(z\l y /\2 y )\3)

= diag(]1+f1,J2+Iz,J3+13) (21)

be the locked inertia tensor. The natural momenta
for the system are:

m; = (Ji + L)w; = A
m3 = Izwz + 3
bs = Ts(ws + ).

i=1,2

(2.2)

Then one can show (see Bloch et. al. [5]) that the
equations of motion are

m; = mom i ! - fsmy
3 — 12713 13 AZ 13
. 1 1 faml
Mg = Mims K - 73_ + T

. 1 1
m3z = mpmy A—z—"x'l"

ég:u

(2.3)

where u is the rotor torque. Choosing u = kazm;ms

where a3 = (<& — L), the equations reduce to the
Az A1

system

L (1—k)yms—p\ mams
my = my ( 1,3 )\2
_ (1 - k)m3 —-p mamsi
mo m ( 13 Al

Tfl3 = asmims (24)
which are Hamiltonian on so(3)* with resepct to the
standard Lie-Poisson structure with Hamiltonian

l(mf m3 ((1—’6)”*3‘1’)2) (2.5)

AT VL R Y A

"= A A

where p is a constant integral of the motion.

Now using the Energy-Casimir function H + C
where C' = @(m? + m2 + m3), ¢ a smooth function,
we can prove

Theorem 2.1. Fork >1- {-z- (and p = 0) the sys-

tem (2.4) is stabilized about the relative equlibrium
(0, M,0).

For details of the proof see Bloch et. al. [5].
This yields Lyapunov stability for the given equi-
librium. We would like to obtain asymptotic stability.



Let us add therefore velocity feedback & in the rotor.
Since & = £ — wj this yields the equations

1 1)_231712

my = Mgz (E - .A_z- 1,3

. 1 1 23m1
Mg = M1Mmg3 X;—'I; + A

. 1 1
mga = mimo -)Tz-——)\—l

«ég = kagmlmz
oL+ i -~ Tﬁ} (2.6)
\Ts I3 '
for some k, » > 0.

To analyze stability for the system we linearize

(2.4) about the given equilibrium (0, M,0). This
yields a system with characteristic polynomial
MZ
A {,\3 + 224+ [-—i——kas - Mzaay,]
3
+M?a3 [—pru + Iz] } (2.7

(Is ;2) v= (}—s+ 11_3) Now for r =
0 we see the system has two zero eigenvalues and
eigenvalues in the left and right half-planes for k¥ <
1— —ﬁ, while it has two zero eigenvalues and a pair on

where y =

the imaginary axis for & > 1 — %, as we expect from
the Energy-Casimir analysis. For r» > 0 we apply the
Routh test. Writing (2.7) as

22 4+ 0127 + pa) + ps. (2.8)

the Routh criterion for having all eigenvalues of the
system in the left half-plane (see e.g. Gantmacher
[7]) is that there should be no changes of sign in the
sequence

{]-a P w;ﬂ.‘i} (29)
M2a3 1
= k- —
{1, TV, T { I3u} ,
1
M2a3r [IZ [.LV] } . (2.10)

This requires k — I—i; >0 and 71;{ — pv > 0, yielding

J3
Ja+ I3
(13 - 12) + (Ja - Jz) > 0.

k> (2.11)
(2.12)

Thus we have
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Theorem 2.2. The system (2.6) is asymptotically
stable under the conditions (2.11), (2.12).

Combining (2.11) and (2.12) yields precisely the
condition k¥ > 1 — -{-} of Theorem 2.1.

This example is suggestive of the general technique
for ‘assessing asymptotic stability via the Energy-
Casimir method. We will discuss this in detail in
a forthcoming publication.

3. THE ENERGY-MOMENTUM METHOD

In order to analyze stability we turn now to the
Energy-Momentum method where, as mentioned ear-
lier, the analysis takes place in the spatial frame of
reference.

In the Energy-Momentum method (Marsden et.
al. [11]) one considers a symplectic manifold (P, Q)
and a Lie group G acting symplectically on P with
equivariant momentum mapping J : P — g*. If H :
P — R is a G-invariant Hamiltonian, z, € P is called
a relative equilibrium if there is a £ € g such that
for all t € R, 2z(t) = exp(tf)z., where z(t) is the
dynamical orbit of Xz, the Hamiltonian vector field
of H with 2(0) = z.. Now one can show that z, is
a relative equilibrium if and only if there isa £ € g
such that z, is a critical point of He(z) = H(z) —
(J(2) = e, €) where pe = J(z).

The key to the Energy-Momentum method is that

~one can find a subspace S C kerdJ(z) such that

definiteness of 62H¢(z,) restricted to S yields sta-
bility, and, moreover, this second variation block-
diagonalizes on S. For this analysis one considers
systems where P = T™*(Q), the cotangent bundle of @,
the configuration space of a given mechanical system
with Hamiltonian H = K(q,p) + V(g), where K is
a quadratic form in ‘the momentum variables p, and
V(q) is the potential energy.

In this paper we will not describe the details of
the block diagonalization, (we refer to Marsden et.
al. [11]), but state merely that one can reduce §2H;
to a block diagonal matrix of the form

A 0 0
0 A 0 (3.1)
0 0 M-t

where A is a positive definite co-adjoint orbit block
(2x2 in the case of G = SO(3)), A corresponds to the



second variation of the augmented potential energy
and M~ to the inertia matrix.

Now to get the linearized dynamics we need the
corresponding symplectic form for the linearized dy-
namics, which is given by

L c 0
Q=| T s 1 (3.2)
0 ~1 0

where S is skew-symmetric. We remark that in (3.1)
and (3.2) the upper block corresponds to the “rota-
tional” dynamics (L is in fact the co-adjoint orbit
symplectic form for G) while the two lower blocks
correspond to the “internal” dynamics. In (3.2) C
represents coupling between the internal and rota-
tional dynamics, while S gives the Coriolis or gyro-
scopic forces.

The corresponding linearized Hamiltonian vec-
tor field is then given by Xy = (Q~)TVH =
(QY)T62H,, which a computation (that we omit
here) reveals to be

—IL-14 0 —L-iCM-
Xg = 0 0 M-t
-CTL 4 —A -SM~!
) (3.3)

where S = S+ CTL-1C.

To add damping to the “internal” variables (but
not the rotational variables) we add a term —RM !
to the (3, 3) block. This R is the Rayleigh dissipation
matrix.

We restrict ourselves here to consideration of the
case G = S, an abelian group, in which case the
(1,1) block A vanishes. This corresponds, for exam-
ple, to the analysis of planar rotating systems, such
as in Oh et. al. [13]. The general case will be dis-
cussed in a forthcoming paper.

Taking M = I, we obtain the linear system

T=v

v = —Az — Rv + Sv (3.4)
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where R = RT > 0 is the Rayleigh dissipation ma-
trix and S = —S7 gives the gyroscopic forces in the
system. Note that for

H= -1-1)2 + l.’L'TASL‘

2" T3
dH 15
= =R, R=3v" R

(3.5)
(3.6)

where R is the Rayleigh dissipation function.

Systems of this type were analyzed by Chetaev
and Thompson (Lord Kelvin) and we shall call this
the Chetaev-Thompson normal form.

Two questions of interest to us that were analyzed
by Chetaev are: a) if the system (3.4) is stable for
R =8 =0, does it retain stability for S # 0, R > 0;
and b) if the system is only gyroscopically stable, i.e.
it is unstable for R = S = 0 and neutrally stable for
S # 0, does it become unstable for R > 07

The answer to both these questions is in the affir-
mative, and we shall concern ourselves here with the
latter question.

This question is of interst to us because it indeed
shows that by examining the A-block of 62 H; one can
deduce instability for the linearized system without
finding the spectrum of the system.

It is instructive to examine first the two degrees-
of-freedom system

E—gy+ve+az=0
G+ge+6y+pPy=0 (3.7)
with ¥ > 0, 6§ > 0. Here g represents the intensity of
gyroscopic forces, v and § the damping, and o and g
the stiffness. (See also Baillicul and Levi [3].)

The characteristic polynomial for the system is

PA) = X2+ X3¢y 4+ 6) + 23(% + a + 4+ 6)
+A(YB + ba) + ap. (3.8)

For v = é = 0, it is simple to calculate the eigen-
values and one deduces that
(i) for a, 8 > 0 the system is spectrally stable
(ii) for @ > 0, B < 0 the system is unstable (a
special case of Oh’s lemma — see later)
(iii) for o < 0, B < 0 the system is spectrally stable
for g% + (a + B) > 2|v/afB|, unstable otherwise.
To analyze the dissipative case we employ Routh’s
scheme as in section 2. We can show in fact

Proposition 3.1. For o, < 0 and one of v, § > 0
the null solution is unstable for system (3.7).

Proof. Write the characteristic polynomial as

A+ 1A% + pad? 4 p3d + py



as before.

The number of right half plane eigenvalues then
equals the number of sign changes in the sequence

P1P2 — P3
19 y T T
{ P 14!

P3p1pz — pi — papi p4} )
p1p2 — p3 ’

(3.9)

From the assumptions of the theorem p; = (y +
8) >0, p2 = (¢°+a+B+78) > 0 p3 = (y8+ab) <0
and ps = af > 0. This yields the sign sequence
{+,+,+, —, +}, giving the result. O

Consider now the general case. We have the fol-
lowing result, which is due to Chetaev. Qur proof is
a slight modification of his which extends to infinite
dimensions (see below).

Proposition 3.2. Suppose A has one or more eigen-
values in the left-half-plane. Then the system (3.4)
is unstable. ‘

Proof. We use a Lyapunov instability argument. Let

W=H+pBz-v

1 £B
1 v
= (7 7) (2), 60
gp A

B and § to be determined. Then

W= %(UT.’!ZT)
R-fB $(R+5)B
v
' (V) 6w
E(R+95)B BAB

Now choose B = A~1. Then, for 8 sufficiently small,
W is negative definite, but W has at least one nega-
tive eigendirection. Hence by Lyapunov’s instability
theorem we have nonlinear instability. O

Remark. The proof goes through for (3.4) defined
on a separable Hibert space for A~! compact and
(R + S)A~! bounded.

We note however that the above result proves non-
linear instability of the linear system (8.4), not spec-
tral instability. It is easy to construct an example of
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such a system without dissipation (i.e. when R = 0)
which is nonlinearly unstable but has eigenvalues on
the imaginary axis. In such a case we have no infor-
mation on the stability of the nonlinear system which
has (3.4) as its linearization. Spectral instability will
be discussed in a forthcoming paper.

However, if A has odd index we can deduce spectral
instability by the following argument (see Chetaev [6]
and also Oh [12]).

The characteristic polynomial of the system (3.4).
is

AX) = det(A2I+A(S ~ R)+ )).

For A = 0 we have A(0) = det(A) < 0. Now as A —
00, A(A) — A%] — 400, Hence there exists a positive
(real) A* such that A(A*) = 0, i.e. there exists a right
half plane eigenvalue and we have spectral instability.
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