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Abstract

We show that Euler’s equations for a frec rigid body, and for a rigid body
with a controlled feedback torque each reduce to the classical simple pendu-
lum equation under an explicit cylindrical coordinate change of variables.
These examples illustrate several ideas in Hamiltonian mechanics: Lie-
Poisson reduction, cotangent bundle reduction, singular Lie-Poisson maps,
deformations of Lie algebras, brackets ou 23, simplifications obtained by
utilizing the representation-dependence of Lie-Poisson reduction, and con-
trolling instability by inducing global bifurcations among a set of equilibria
using a control parameter.

1. Introduction

Even though the free rigid body is a classical and well understood
system, some new and interesting featurcs are still being uncovered. No-
table amongst these is Montgomery's [1910] formula for the change in the
geometric phase for the attitude of the l.ody when the body angular mo-
mentum vector executes one period of it~ imotion. In this paper we present
a number of other results that also scen to be new. Perhaps the most
interesting of these is the fact that the rigid body system in body angular
momentum space (identified with R*) is lilled with invariant clliptical cylin-
ders on each of which the dynamics is, in: clliptical cylindrical coordinates,
ezactly the dynamics of a standard simple pendulum.

Related to this is the variety of ways the rigid body equations can be
written in Hamiltonian form as a Lic-Poisson system associated to a Lie
algebra structure on R3. The standard choice is to use the Lic algebra
SO(3), but one can also use the Euclidean Lic algebra SE(2) or the Lie
algebra SO(2,1). The deformation through these algebras, discussed ab-
stractly in Weinstein [1983], is achicved cxplicitly in the rigid body simply
by defining new Hamiltonians ancd Casiinirs using linear combinations of
the standard ones.

We make a similar analysis of the rigidl body with the stabilizing torque
feedback law introduced by Bloch and Marsden [1990] (sce also Bloch,
Krishnaprasad, Marsden, and Sanchez de Alvarez (1990]). In particular,
this sort of analysis enables one to sce how the stabilization is achieved from
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a geometric viewpoint. Some interestiny global bifurcations accompany
this stabilization. Combined with the ideas about geometric phases, this
stabilization process may be uselul lor attitude control of rigid bodies.

2. The Frece Rigid Body

Euler’s classical equations for thie rotational dynamics of a freely spin-
ning rigid body are

LSy = (I — 1,000,
Qo = (I — 1)) (EEQ)
IQs = (1) — 1,0,

where § = (Q,92,93) is the budy aniular velocily vector, an overdot
denotes time derivative, and Iy < I, < I denote the principal moments of
inertia of the body. We can rewrite (ELQ) as

) 013

) M|, (EE)

) LIy

where (I3, I3, II3) = I1 denotes the hod. wnguniar momentum vector given
by II; = L, i = 1,2,3. Euler’s cquaticns are expressible in vector form
as
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is the gradient of H and L is the square ..f the body angular momentum,
1, 0
L= 5 (T[l -1 fI; + H;) .

Hence, both H and L are conserved, and the rigid body motion itself takes
place along the intersections of the level <urfaces of the energy (ellipsoids)
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and the angular momentum (spheres) in R*. 'Uhe centers of the energy
ellipsoids and the angular momentum spheres coincide. This, along with
the (Z;)3 symmetry of the energy ellipsoids, implies that the two sets of
level surfaces in R? develop collinear gradicnts (e.g., tangencies) at pairs of
points which are diametrically opposite on an angular momentum sphere.
At these points, collincarity of the gradicuts of H and L implies stationary
rotations, i.e., equilibria.
Euler’s equations for the rigid body 1nay also be written as

d -
Zi=SYA » VN 4
dtn AU (PN (EE")

where K and N are linear combinatious of encrgy and angular momentum

of the form ]
(‘;f,) = [t{ b (i’) (SL2R)

with real constants a, b, c, and d satislyiny the nnit determinant condition
ad—be = 1. Thus, the equations of rigid Lody motion are unchanged (so the
trajectories of the motion in R?® remain unchanged) when the energy H and
angular momentum L are replaced by the SL(2, R)-linear combinations K
and N. Notice that K will be a quadratic form and that it can occur with
any signature except (0,0,0) and, :f the moments of inertia are distinct,
(*,0,0) by suitably choosing a and b.

For example, one may choose to climinate one of the terms in cach of
H and L, by choosing the linear combinarion given by

=1

1T =
a b I
= . owith e = —l—,
[c d] —e £ (%-%)
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th 'y (LI TR UL Y, -3
so that K 2(11 ]3)11, A7 ]8)1'12.
C 1 1 > l Y
and N=,:)‘(Tl"‘l—2)”:+2 3

With this choice, the orbits for Euler’s eqnations for rigid body dynamics
are realized as motion along the interseetions of two, orthogonally-oriented,
elliptic cylinders, one elliptic cylinder a level surface of K, with its transla-
tion axis along IT3 (where K = 0), and the other a level surface of N, with
its translation axis along IT; (where N = 0.

For a general choice of K" and N'. cquilibria occur at points where the
gradients of K and NV are collinear. 'This can occur at points where the
level sets are tangent (and the gradients both are non-zero), or at points
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where one of the gradients vanishes, In the elliptic cylinder case above,
these two cases are points where the eliiptic cvlinders are tangent, and
at points where the axis of one cylinder punctures normally through the
surface of the other. The elliptic evlinders are tangent at one Zg-symmetric
pair of points along the I1, axis, and the ciliptic cylinders have normal axial
punctures at two other Zs-symmetric pairs of points along the Il and I3
axes.

The stability of the equilibria at the points of tangency is determined
geometrically by whether the curvatures of the two surfaces have opposite
sign (stable), or the same sign (unstable). When the two surfaces have
curvatures of opposite sign ncar the tangent point, their intersections de-
scribe nested ellipses on each surface — this is the stable case. When the two
surfaces have curvatures of the satne sign near the tangent point, their in-
tersections describe hyperbolas on cach ~ivface—this is the unstable case.
In the elliptic cylinder example, the curvatures of the elliptic cylinders
have the same sign at the points of tanceney. so the pair of equilibria at
the tangent points along the Iy axis are unstable. Equilibria at puncture
points are stable; so, the two pairs of diametrically opposite equilibria at
the puncture points along the 12 aud [T, axes are stable. This geometric
picture thus recovers the known cquilibrii and the stability properties of
these equilibria for the rigid body, in a new parameterization in terms of
intersections of two, orthogonally-oricnted, elliptic cylinders in R3. The
situation is shown in Figure 1.

Let us pursue the elliptic cylinders exinnple further. We now change
variables in the rigid body equations within « level surface of I. To simplify
notation, we first define the three positive constants k2, i = 1, 2, 3, by
setting
n: mn 1

"‘21.‘2"}-)—"— m .\':)I‘ + n2

and referring term by term to the fornmlae

K

1/1 1 . 1 /1 1
K=-|—--—)I"4 - —=-=112
¢ 2(5 h)”‘ Q(L h)nz

C 1 l l o
and N = § (’1—I 12> ” EH;

On the surface K = constant. and sctting r - V2 = constant, define new
variables @ and p by

Iy = kyreost, My = frsiug, Ily=p

In terms of these variables, the constants of the motion become

_ 1, N i3 -
K—§T and N - 5P +()I‘,7 )sm 8.
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Leave 23 picas of vertical space for Fig. 1

Figure 1. Intersection of the elliptic cylinders- -levd surfaces of X and N orbits
change from “bound” to “running” as the level surface of N passes through the
critical value at which homoclinic orbits vceur.

As we shall show in section 3, using a Poisson structure relevant to
the equations of motion in the form ﬁ’;ﬁ = VN x VN, the variables 8 and
P are, up to a scale factor, canonically conjugate, i.e., the Poisson bracket
of two functions of & and p are given in standard canonical form {up to a
scale factor) as follows:

1 ar oG oraGc
{Ia(;}ﬂmp0y1==zgzz (Eﬁ:;ﬁ; - 2%;22;)'
i 1
In pasticular, {p. 0V enipevn = ——

k]kg'
The quantity NV is the Hamiltonian in these variables—note that N has the
form of kinetic plus potential energy—andl the equations of motion express
themselves in Hamiltonian form in terins of the canonical Poisson bracket.
Namely,

d 1 ON 1

—_f = V, SHIny] = m——— i e——
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d -1 ON -1 k3 ,
dtp {N,P}Lu.pc)x mm - l—ll-_zk_dr 2 5in @ cos 6.

Combining these equations of motion sives

d'.! - ,.'.2
—f = —5sin20,
di? 0 23k .

or, in terms of the original rigid body paruncters,

d? L1 ! .
@-0— -K (},—l' - 7-> (K —-1_3‘) sin 20.

Thus, we have proved that

Theorem 1. Rigid body motion reduces to pendulum motion on level
surfaces of K.

Another way of saying this is as follows: regard rigid body angular
momentum space as the union of tle level surfaces of I, so the dynamics
of the rigid body is recovered by looking «t the dynamics on each of these
level surfaces. On each level surface, the dynamics is equivalent to a simple
pendulum. In this sense, we have proved that:

Corollary. The dynamics of a rigid body in three dimensional body
angular momentum space is a union of 1wo dimensional simple pendula
phase portraits.

Remarks. By restricting to a nonzero level surface of K, the pair of
rigid body equilibria along the IT3 axis are excluded. (This pair of equilibria
can be included by permuting the iudices ol the moments of inertia.) The
other two pairs of equilibria, along the 1) and Iy axes, lie in the p = 0
plane at 8 = 0, 7/2, =, and 37/2. Since N is positive, the stability of
each equilibrium point is determined by 1he relative sizes of the principle
moments of inertia, which affect the overall sign of the right-hand-side of the
pendulum equation. The well-knowu results about stability of equilibrium
rotations along the least and greatest principle axes, and instability around
the intermediate axis, are immediately recovered from this overall sign,
combined with the stability propertics of the pendulum equilibria. For
K > 0 and I} < Iy < I3, this overall sign ix negative, so the equilibria at
6 = 0 and 7 (along the I1; axis) arc stable. while those at § = 7/2 and 3n/2
(along the Il axis) are unstable. T'he factor of 2 in the argument of the
sine in the pendulum equation is explained Ly the Zy symmetry of the level
surfaces of K (or, just as well, by their invariance under 8 — 8 + 7). Under
this discrete symmetry operation, the equilibria at # = 0 and 7/2 exchange
with their counterparts at & = = and 37/2. respectively, while the clliptical
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level surface of K is left invariant. 13y construction, the Hamiltonian N in
the reduced variables 8 and p is also invariznt under this discrete symmetry.

3. Alternative Poisson Structures for the Rigid Body

The standard rigid body Poisson bracket on two functions F} and
F, of 11 is given by the minus Lic Puwssor bracket for so(3)*:

{Fi, B2}y = - 11- (VI x VE). (RBB)

In case Euler’s equations are rewritten as

d . . \ ,
= Thx T (EE')

where K and N are given as above by an 5£(2, R) matrix

() =122 (2) s2m

one checks that the equations (E[') are Hamiltonian with energy N and
the Poisson bracket

{(Fi,F3} = -V - (VF, x VF). (PBK)

One verifies also that the bracket (/’/K) -essentially a “Nambu” bracket
(see Nambu [1973]), indeed deflines o Poisson structure on R3. Clearly
the function K is a Casimir for this bracket; ie., {K,F} = 0 for any
function F. One can now dircctly verity the formula {F, G}gnipcy for the
Poisson bracket on level sets of the function A in the elliptic cylinder case
by a straightforward calculation.

We shall see shortly that the bracket (PBKY) is in fact a Lic Poisson
bracket. Let K be the symmetric 3 x 3 inatrix associated with the quadratic
form K; ie., K(v) = %v‘ - K- v. where ' denotes transpose. Thus, the
gradient of K is VK (I1)-v = dK(1i)- v = i - Kv, and so (PBK) may be
written 7

{Fi, R} - 11-K(YF x VE). (PBK')
Note that these formulas are valid cven if the matrix K is singular.
Define the following bracket on %

[u, v = K- (uxv). (LAK)
This defines a Lie algebra structure on B, as is straightforward to verify.

For K nonsingular, the Lic algebra structure (LAK) can be explicitly
identified with that of the orthogonal group of K as follows. The orthogonal
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group O(K) is the group of linear translormations of R3 that leave the
quadratic form K invariant. 1t consists of the set of 3 x 3 matrices A that
satisfy the condition A*KA = K. T'he corresponding Lie algebra oK) is
the Lie algebra of 3x 3 matrices S that satisfv the condition StK + KS = 0,
i.e., KS is a skew matrix, and with the standard cominutator bracket of
matrices. Since K is nonsingular. the equartion

Sv s xKv (LAT)

defines an isomorphism between 8 « o(K) and s € R3, The following is a
straightforward verification:

Lemma 1.

1. If K is nonsingular, the ismmorphism (LAI) is a Lie algebra isomor-
phism between the Lie algchra o(K; with the commutator bracket
and R® with the bracket (LAK): i.c.. |S;,82) = K(s1 x s2).

2. IfK is singular, then the Lic alechra structure is that of the enclidean
Lie algebra se(2) if K has siguature (. +,0), and that of the Heisen-
berg algebra if K has signature (-, 0.4).

Lemma 2. The Poisson bracket {Fy. Fa}e(Il) = —I1-K(VF, x V)
on R3 is the minus Lie Poisson bracket for the Lie algebra Ry, defined to
be R3 with the Lie algebra bracket n. v}, = K- (u x v).

To see this, recall that the general minus Lie-Poisson bracket formula
(see, for example, Marsden and Weinstein [1983]) is given on g*, the dual
of a general Lie algebra g by

{Fi, P2} = </f~ [ 0 O ]>

In our case, the Lie algebra is E, and the dual space is identified with R3

via the standard dot product. The funetional derivative g—f: is thus the

ordinary gradient, and g gets replaced by 1, so Lemma 2 follows.

We can gain insight into why A ix a Casimir for the bracket {Fy, Fa}
by noting that the coadjoint action of the Lic algebra R3. on the dual space
is given by taking the dual of the adjoint wction:

{ed3Ml, vy = (I, adsr) = (1. K - (s x r)) = (KIT x s, 1)

and so ad;Il = (K1) x .

Vectors of this form are tangent 1o the coadjoint orbit through 1. No-
tice that the differential of K vanislies on vectors of this form; so K is a
Casimir and therefore K& is constant ou (¢connected components of) orbits.
{This corresponds to the fact, obscerved carlier, that K is a Casimir for the
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bracket {F, H}k.) In the nousingular case, the coadjoint orbit through i
is, up to connected components, cractly the lruel set of K through M. The
orbit is given algebraically as follows: write Il = Kv x w; then the orbit
through IT consists of vectors of the form A4 I = A'Kv x A'w as A
ranges over O(K). In the case of the ene hdvau Lie algebra, which cor-
responds to the case of the elliptic cvliinders. the regular coadjoint orbits
are given by cotangent bundles to circles. with the canonical symplectic
structure (up to a factor, depending on the vadius of the circle). Again, we
see by a dimension count that the orbits are the level sets of K. We have
proved the following:

Lemma 3. The (connected components of the) coadjoint orbits for
R} = R3 are the level sets of K if K is nonsingular, or if K has signature
(+,+,0). Tangent vectors to tin coudjoint orbit through IT are given by
vectors in R3 of the form ad:li = (K1) » s and the symplectic structure
on the orbit is given by Q((KIT) x s,. (KIi) x 8) = =K - (87 X s3).

The rigid body can, correspondiugly. be regarded as a left invariant
system on the group O(K) or SIE(2). ‘I'he special case of SE(2) is the
one in which the orbits are cotangent bundles. The fact that one gets a
cotangent bundle in this situation is a special case of the cotangent bundle
reduction theorem using the semidircet product reduction theorem; see
Marsden, Ratiu, and Weinstein {19%1{. T'or the Euclidean group it says
that the coadjoint orbits of the Fuclidean group of the plane are given by
reducing the cotangent bundle of the rotation group of the plane by the
trivial group, giving the cotangent bundle of a circle with its canonical
symplectic structure up to a factor. Thi- i~ the abstract explanation of
why, in the elliptic cylinder case above, the variables 8§ and p were, up
to a factor, canonically conjugate. ‘Fhis peneral theory is also consistent
with the fact that the Hamiltonian NV is ot the form kinetic plus potential
energy. In fact, in the cotangent bundle reduction theorem, one always
gets a Hamiltonian of this for., with the potential being changed by the
addition of an amendment to give the wmcoded potential. In the case of the
pendulum equation, the original [familtonian is purely kinetic encrgy and

so the potential term in N, namcly ( ,7-—1 ) ~in? 8, is entirely amendment.

See Abraham and Marsden {19738] for the aeneral theory.
We summarize some of our tindings as follows:

Theorem 2. Euler’s equations for a free rigid body are Lie Poisson
with the Hamiltonian N for the Lic alzebra ’f( where the underlying Lie
group is the orthogonal group of K if the ¢adratic form is nondegenerate,
and is the Euclidean group of the planc it W has signature (+,+,0). In
particular, all the groups SO(3), SO(2.1). and SE(2) occur as the param-
eters a, b, ¢, and d are varied. (If the bod:- i< a Lagrange body (with two
moments of inertia equal), then the Heiscuberg group oceurs as well.)
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Remark. The same richness of Hamiltonian structure was found in
the Maxwell-Bloch system in David and Holm [1990]. As in the case of
the rigid body, the R® motion for the Maxwell-Bloch system may also
be realized as motion along the inmersections of two orthogonally oriented
cylinders. However, in this casc. one cylinder is parabolic in cross sec-
tion, while the other is circular. Upon passing to parabolic cylindrical
coordinates, the Maxwell-Bloch system reduces to the ideal Duffing equa-
tion, while in circular cylindrical coordinates, the pendulum equation re-
sults. The SL(2, R) matrix trinsforination (SL2R) in the Maxwell-Bloch
case provides a parametrized array ol (offsct} ellipsoids, hyperboloids, and
cylinders, along whose intersections the R¥ motion takes place.

4. Rigid Body with Controlled Feedback Torque

In this section we illustrate Low to countrol the stability properties
of equilibria for a dynamical system by nsing a control parameter that
induces global bifurcations. The example is the free rigid body with a single
torque about its major axis introduced by Bloch and Marsden [1990]. A
similar analysis for other systems, such ax that in Bloch, Krishnaprasad,
Marsden, and Sidnchez de Alvarez '1990] coming from a rigid body system
with internal rotors is possible as weli.

Euler’s equations for the free rigidd body with a single torque, «, about
its major axis are given by

_ | | .
- (5~ 1—) HaTls

d i 1 1

— 0, = — = — }ILII,

dt H; ([] 1;) l d

1 1
(‘1‘~ — —) “]]-['_3'*’“

L N4 2 -

Following Bloch and Marsden [1990]. we employ the fecdback rule
a = =L,

where & is the feedback gain parameter. We refer to the system with this
feedback as the controtled system. The equations of the controlled system
are expressible in vector form as

d . 1] —_
U T x (CEE)

where H' is the controlled-systcin energy,
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L' is the square of the controlled-systen angnlar momentum,
PR PR 4 2
L' = 5(glly -+ yllz + M),

and the parameter g is defined by

g=l—~——k—-.
(+-4)

Note that the parameter g in these equations contains clements of both
the rigid body mass distribution. aud its internal feedback torque along
the 3-axis.

The vector-cross-product torim of the controlled system (CEE) ensures
that both of the quantitics H’ and L’ are conserved, and that the motion
of the controlled system takes place in Z* along the intersections of the
level surfaces of the two conserved quantities. The level surfaces H' and L’
are clearly of either elliptic type, or hyperbolic type, depending upon the
sign of g. (The case g = 0 is degenerate and will be discussed later. The
rigid body case treated earlier is recovered for g = 1.) Regardless of the
sign of g, the centers of the icevel surfaces of the quadratic functions H’
and L’ coincide at the origin of coordinates in R3, so points on these level
surfaces where the gradients of ' and L' are collinear (i.e., equilibrium
points) will occur in opposing (Z»-syminetric, x — —x) pairs. In particular,
tangencies for which the H' and L’ level suifaces have curvatures of the
same sign produce unstable equilibria, while tangencies of A and L’ having
opposite sign curvatures produce stable cquilibria. From the expressions
for H' and L' above, it is clear that the sign of ¢ will play a key role in the
stability properties of the cquilibria,

Euler’s equations for the coutrolled system may be re-expressed as

d -
— [l =CHK' N,
T [I=VAN' x¥

where K’ and N’ are lincar combinations of the controlled-system energy
and angular momentum given by

AN A L
(%) [ ()
with real constants a, b, ¢, and « satisiving the unit determinant condition
ad - bc = 1. The controlled system ix unchanged (and so the trajectories
of its motion in R? remain unchanged) when its energy H' and angular
momentum L’ are replaced by the SL(2. B) lincar combinations A’ and N'.
By analogy to the rigid body discussed in the previous sections, one may
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choose to eliminate one term iu cach of H' and L’ by choosing the linear
combination given by

a b il ‘
c d|~ . withe= g ’
- Z{Tf 7‘1__7‘;
p_ 1Y by 3/ 1 )
so that K = 5 (11 1‘) Iy 4 3 (Ig 2 I,
ey PN ey e
and N_§(\E-l_g)“2+§n3'

With this choice, the controlled systein may be regarded as describing
motion taking place along the iuterscction of a level surface of K/, an
elliptic cylinder with its translation axis along I3 (where K = 0), and a
level surface of N’, which (depending on the sigu of ¢) is either an elliptic
cylinder (9 > 0), or a hyperbolic cylinder (g < 0); in either case with its
translation axis along IT; (where N’ = 0). For g = 0, the level surfaces
of N’ are horizontal plancs, 113 = constant.

We restrict the controlled svstem to a level surfuce of K! by the same
change of variables as for the rigid body. [n terms of the three positive
constants k?, i =1, 2, 3, defined in e rigid-body case, we have

n? I g2 1
' _ 1 2 i LY Lt ol g 14
K = _Qk"lz + —21‘.3 and N = -—ka_; + 21]3.
In terms of the elliptic polar coordinates defined by

Iy = kyrceost, 11y = korsing, Ty = p,

and with r = V2K’ = constant. the conserved quantitics become

. 2
1'2) sin 8.

Transforming to the canonically conjugate variables # and p now gives

b .’ l D) I{A
7"‘,, and N = ‘-;/)" - g( 5

-ty

K =

l

&

N -

4

o

d 1 ON' 1

—0 = N’.(/ = =

dt { } /-' | /-'»_» (‘J[I l\ 1 k'Z p’
d -1 anN’ —g k3,
—=p={N’ == —— = —— Sr7si 05 8.
ai? {N',p} Tl 0 Tk ‘_il sinfl cos @
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Combining these equations of motion gives

d? —yr
0= =2 sin 20,
PTCMTET R Rt

or, in terms of the original rigid hody parameters,

d? 11 11
=~ §=— — =} = = =)sin20.
dt20 g (11 1-:) (11 13)3111 20

Thus, the controlled system also reduces to the pendulum equation on level
surfaces of K’. The stability of the cquilibria of the controlled system now
depends upon the sign of g, as well as the relative sizes of the principle
moments of inertia of the body. In particular, negative g stabilizes the
equilibrium along the intermediate axis, while destabilizing the other two
equilibria. This occurs because the introduction of the control parameter g
causes a global bifurcation of tlic rigid body system in which the equilibria
exchange stability.

Leave 16 picas of vertical space for Fig. 2

Figure 2. The change in phase portrait of the controlled rigid body as the param-
eter g passes through zero.

The general theory of reduction discussud in section 3 of course applies
Jjust as well to this example, and puts into a different light the fact observed
by Bloch and Marsden [1990], that the controlled equations are Lie Poisson
for the group SO(2,1) in the stabilized situation.
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5. Couclusions

In this paper we have shown low the Euler equations for a rigid body
(even possibly including a stabilizing control torque) is Hamiltonian simul-
taneously with respect to a varicty of Lie Poisson structures on R®. These
Lie-Poisson structures are those for the three dimensional groups SO(3),
S0(2,1), and the Euclidean group of the plane. For the euclidean group
of the plane, the coadjoint orbits are clliptic cylinders with a canonical co-
tangent structure. In these canonical variables, which are given explicitly
in elliptic cylindrical coordinates. the rigid body equations becone trans-
formed to the equations of a simple planar pendulum. This is analogous to
the situation of David and Holin 1990] in which both the pendulum and
the Duffing equation occur.

The geometry of the interscctions of the level surfaces can be used
to understand the stability of the system dyvnamics and how the feedback
parameter affects the controlled systen. L'liere is a bifurcation and a change
of stability as this parameter passes through zero (see Figure 2).

One potential application ol these ideas is for reorienting satellites
by controlled switching from oune stable cquilibrium to the opposite one
(rotation by =, to the Z,-partner cquilibriun) by momentarily destabilizing
it, then restabilizing the partner equilibrium using the g control parameter.
The angle of switch is a geometric pliase and can be calculated using the
phase method of Montgomery; sce Marsden. Montgomery, and Ratiu [1990).
The switch itself is accomplished by passing (romn an equilibrium to its Zg
partner—it is a particuler geometrical phase associated to the Z, symmetry
of the level surfaces of the Casimir. A/, The rate at which the switching
process takes place scales with the magnitude of the control parameter g,
thereby allowing fine precision control through the adjustment of g near
zero.
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