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Synopsis
This paper uses symplectic connections to give a Hamiltonian structure to the first variation equation
for a Hamiltonian systéem along a given dynamic solution. This structure generalises that at an
equilibrium solution obtained by restricting the symplectic structure to that point and using the
quadratic form associated with the second variation of the Hamiltonian (plus Casimir) as energy. This
structure is different from the well-known and elementary tangent space construction. Our results are
applied to systems with symmetry and to Lie—Poisson systems in particular.

1. Introduction

The purpose of this paper is to develop a geometric theory for linearising a
Hamiltonian system along a given trajectory of the given system. The process of
linearising by doubling the dimension of a system (applying the tangent
operation) is elementary and is not to be confused with the process here of
linearising along a solution. For example, to linearise a Hamiltonian system on a
symplectic manifold at a fixed point, one wants the linearised Hamiltonian to be
the second variation of the original Hamiltonian at the fixed point. The tangent
linearisation does not give this. This will become clear in Section 6, but here we
point out that in canonical coordinates g', p;, the tangent linearised symplectic
structure is

dq’ A d(dp:) + d(6q") A dp; @
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in the variables (¢', p;, 6q’, 5p;). However, one really want to use
dq' A dp; +d(8q") A d(Sp;) @)

which restricts to d(8g°) A d(8p;) at a fixed point, while (1) restricts to zero.

Besides its intrinsic interest, our motivation is to set the stage for other
linearisation processes, such as those used in evolution equations to get a priori
estimates, but this will be the subject of future work. We also note that Greene
and Kim [14] point out some related needs for a careful linearisation process.
They introduce a metric, whereas we introduce a connection; for examples like
the rigid body, metrics alone do not suffice to capture the Hamiltonian structure.
The linearised equations one gets do depend on the connection chosen. In a
number of situations like the rigid body — discussed below, there is a natural
connection. ,

We use symplectic connections in order to compare tangent spaces at different
points along the unperturbed curve and thus make the linearisation process
meaningful. For purposes of general theory, the Tondeur-Lichnerowicz—Hess
theory is convenient. However, for systems on cotangent bundles of Lie groups,
there is a natural class of intrinsic symplectic connections that are discussed in
Section 5. '

For systems with a symmetry group G, we use a G-invariant connection and
this gives a linearisation theory for Lie—Poisson systems via reduction. For
instance, ideal fluid flow is linearised in this fashion; see Section 8 and below. We
obtain a generalisation of the linearisation procedure at a fixed point noted in
Holm et al. [17] and Abarbanel ef al. [1] in Section 7.

We begin by reviewing the special case of a Hamiltonian system in R*". Let
H:R*—R be a Hamiltonian function, which in canonical coordinates (g, p;)
gives rise to Hamilton’s equations

8H | oH

=" p=—, 3
q o, p o (3)

Linearising along a solution curve (g'(¢), p;(¢)) and calling the new variables
(64', 8p;) we get the equations

. #H . &°H
(6q") =— 6q’ + ép;,
oq’ Ip; 9p; Op; @)
#H _ . ©&H
6 i = - T 6 ) — S 6 vy
( p) aq]aqt q aqtap] p]

The matrix of the canonical symplectic form w = d(5q°) A d(8p;) is

J]=[O—u (ﬂ)]

Recall (see e.g. [2, §3.1]) that a linear operator with matrix

r=[¢ b)
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‘is infinitesimally symplectic, i.e., T"J+JT =0, if and only if B and C are
symmetric matrices and D = —A’ The linear system (4) has matrix clearly
satisfying these conditions and, therefore, it defines a Hamiltonian system in the
(6q', 8p;)-variables, whose Hamiltonian function is verified to be the second
variation:

20(T(8q", dp.), (84", 8p,)) = 36°H(q'(¢), pA1))(8q", Op:)’. &)

If one starts with a Lagrangian system and linearises it also in a naive way, then
takes the Legendre transform, the Hamiltonian system as obtained here results.
- Thus, there is a corresponding Lagrangian side to the story as well. However, for
systems with symmetry and reduction theory, the Lagrangian approach is more
complicated (see for instance [9]) and so we shall emphasise the Hamiltonian
approach here.

The same argument and formulae hold for infinite dimensional weak symplectic
vector spaces E X E', where E' and E are (weakly) paired.

One of the goals of the present paper is to generalise this to arbitrary
symplectic manifolds. Formula (5) cannot be generally correct since the second
variation of a function makes intrinsic sense only at critical points. Additional
structure is needed to correct the second variation by the addition of terms
making the resulting formula invariant (see Proposition 6.4). One of the
motivations for working in this general context is to deal with Hamiltonian
systems in Lie—Poisson spaces, which is equivalent to G-invariant Hamiltonian
systems on T*G, where G is a Lie group. At critical points of H + C, where C is
a Casimir on g* (g* is the dual of the Lie algebra g of G), such a linearisation has
been carried out in [17] and [1]; as expected, the Hamiltonian function of the
linearised equations is the second variation of H + C, but the Poisson structure
instead of being Lie—Poisson is a ‘“‘constant coefficient” Poisson bracket. In
Section 7 we shall deal with arbitrary Lie—Poisson systems, generalising this case.

There are a number of interesting infinite dimensional systems whose phase
spaces are of the form U X E’' where U is open in a Banach space E weakly
paired with E’. In all of these cases the linearised equations are infinite
dimensional versions of (4) and the Hamiltonian function is given by the second
variation of the original Hamiltonian along a given integral curve. This may be
viewed as a special case of the results of Section 6 in which the trivial connection
is used. As we have mentioned, one of our purposes is to generalise to the
nontrivial case. The latter include systems like the rigid body and fluids, charged
fluids, Maxwell-Vlasov equations, etc. However, the case with a trivial
connection still includes a surprisingly large number of interesting systems. Here
are some examples:

1. The Sine—Gordon Equation u, — u,, = sin u has phase space E X E’ where E
consists of maps u: R— R (one can also use maps u: R—S', but use of the
universal covering space R of S' gives a linear space) and E’ consists of maps
u:R—R; E X E' has the canonical symplectic structure. The Hamiltonian has
the form kinetic plus potential energy (see [10] for details).

2. The Yang—Mills Equations have phase space T*« where & is the space of
connections on a given principal bundle, which is an affine space, so again we can
put the trivial symplectic connection on T*s. The Yang—Mills equations are
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Hamiltonian on T* relative to the canonical symplectic structure, so again (4) is
applicable and the Hamiltonian is the second variation of H. See, for example, [5]
for the explicit formula. One of the interesting complications in this example (and
also in Example 3 below) is the presence of a gauge symmetry; the statements
above are valid in any gauge. Interestingly, the symplectic form is always
canonical, but the Hamiltonian is linear in the so-called atlas fields, representing
the gauge freedom (the coefficients of the atlas fields are the momentum map for
the gauge group). See [13] for further details.

3. General Relativity (in dynamical form) has phase pace T*.4 where / is the
space of Riemannian metrics on a fixed hypersurface =. Again the dynamical
equations are Hamiltonian on T*.# relative to the canonical symplectic structure
(for any choice of gauge). Thus, again we can put the trivial symplectic
connection on T*# and formulaec (4) and (5) (in their obvious infinite
dimensional generalisation) apply. These linearised equations are studied in some
detail, for the purpose of getting results on the space of nonlinear solutions, in
[12] and [5].

An interesting question here is to couple these systems to ones with nontrivial
phase space. For instance, charged fluids, general relativistic fluids or elasticity,
the Maxwell-Vlasov equations, etc., are such systems. All of these will produce
nontrivial linearisations by the methods of this paper.

We now present the final results for the Hamiltonian structure of the linearised
rigid body to illustrate the ideas. For the corresponding results for the ideal fluid
equations, see equations (16) at the end of the paper. For the free rigid body, the
equations in body representation are

dIl
—=TIXVH, with II(0) =TI, (6)

where I is the body angular momentum,
H= 1 (E% + E% + E§>

is the Hamiltonian, and I = diag (I;, L, L) is the moment of inertia tensor. If we
append the attitude matrix A € SO(3) of the rigid body, then the equations (6)
become

d
—A=Al"'I,
dt
7
d
—II=1IxQ
dt ’

where Q =I"'II. The basic difficulty in linearising these equations is that the
linearisation of A is a variation 6A that is an element of the tangent space at A.
Then as A evolves in time, this space changes and so the variations do not stay in
the same space, so it is not clear how to interpret their Hamiltonian nature. To
overcome this, we write

5A = A(80)",



Symplectic connections and the linearisation of Hamiltonian systems 333

“where the matrix (6©)" is defined by (6©)" = A™" 8A and the overhat operation
is the usual relation between 3 X3 skew matrices and vectors: (60) . v=
60 X v. Naive linearisation of the first equation of (7) gives

d
@ 0A = 8AQ + Al 6811,

which can be expressed in terms of (6©)" by differentiating (60@)" = A~ 8A4;
one obtains

d
d—t(6®)" =00 xQ+17'8ID)",
i.e.

d
d—t§@=1_16H+6®XQ.

Thus, naively linearising the second equation of (7), one gets the following system
of linearised equations:

d
—60=I"1oIIxQ,

dt

4 €))
d—tan=6nxgz+nx1-16n.

The equations (8) are regarded as time dependent evolution equations for the
variables 6@ and OI1. In what sense are they Hamiltonian? Equations (8) are
actually Hamiltonian, but with a rather complicated symplectic structure (see (3c)
of Section 8A). To obtain a simpler Hamiltonian structure, we define the
momentum shifted variable

O,J1=6T1 - 311 x 6©
and substitute in (8) to obtain the equations

d
7 80 =131 x 60 + §,IT) + 6O x Q,

d
" O,IT=4,JIX Q + I X I"'(3I1 X 6@ + §,11).

©

These equations are Hamiltonian with 6@ and. &,IT canonically congugate
variables - so the phase space is R*> x (R?)*, and the time dependent Hamiltonian
is

H=3'GIIx 60 +8,IT). BT x 0 + 8,I) + Q. (8,[1x 68).  (10)

While this structure is fairly simple and explicit, it is perhaps a bit mysterious how
it is obtained. One of the purposes of this paper is to lay out the general theory
on how to do this. For this example, there are two routes one can take; the first is
to invoke a general theorem on Lie—Poisson systems that is proved later in the
paper (see Proposition 7.6) or one can derive the structure from a different set of
linearised equations based directly on a symplectic connection (see Proposition
7.5). '
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The approach based on symplectic connections involves the choice of an initial
condition II(0) =TI, (playing the role of the fixed point to which the other
tangent spaces are brought by parallel translation). Here we use the variables
v=00 and n= 6,1+ 3iIl, X v. Relative to a particular choice of symplectlc
connection, the equations (8) or (9) become

EIE (1) =1""TI(r) - GII() — T1(0)) X v(?) + n(1)) + (1) X Q(1),

dn ‘ 11)
— D =nOxQ0) - 3(I1(0) X Q(#)) x v(¥) + 2(T1() + T1(0)) v

x I3 (I1(t) — TI(0)) X v(¢t) + n(r)).
These equations are Hamiltonian with the Hamiltonian
,(t, v, n) = 3} (n + 3(I1(1) — TI(0)) X v) - (n + 2(T1(r) — TH(0)) X v)
+Q(¢t) - (n X v) — 3Q(1) - (TI(0) X v) X v) (12)

and the (time independent) symplectic form given by (assuming we start the rigid
body at the identity of SO(3) as its initial configuration, or attitude, and initial
body angular momentum I1y):

wp(ld, I) (v, n), (w,m))=m-v—n-w+1Il- (vXw),

where the dot is the ordinary dot product on R>. One can view the derivation of
the structure in terms of the variables 8© and &,I1 as being obtained from this
one by a momentum shift to get rid of the dependence on I, and to put the
symplectic structure into cannonical form.

One can of course do other examples by similar methods. In particular, one can
study the linearisation of the Euler equations of an incompressible fluid by similar
techniques since it has the same general mathematical structure as the rigid body
equations, as is well known ([6, 7, 2]). This example is worked out in Section 8B,
and the reader can turn now to those equations to see the nature of the results if
desired, without going through the general theory. In particular, we mention that
equations (13) (or (16)) of that section are the analogues of the equations (9)
above for the rigid body. Many other examples are known to be Lie—Poisson as
well and can be treated in a similar way. Some of these are: the heavy top,
compressible fluids, stratified fluids, the Poisson—Vlasov equations, and MHD.
Other systems, such as charged fluids and the Maxwell-Vlason equations, are a
combination of Lie—Poisson and canonical and so require a synthesis of these two
cases. See [22, 17, 1] for a survey of some of these structures.

Finally we mention that when one differentiates a nonlinear equation for the.
purpose of obtaining a higher order energy estimate, one is also linearising, with
dq and &p interpreted as spatial derivatives of the fields g and p. Hopetully the
techniques of this paper can be useful in understanding higher order energy
estimates such as those for the Yang—Mills equations given in [11].

2. Review of affine connections

This section reviews the general theory of affine connections to fix the
notations, conventions and terminology used throughout the paper. Readers
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familiar with this material can just skim it to set sign conventions. The proofs of
the stated facts can be found in standard texts such as [18, 23, 25].

2A. Let P be a smooth manifold, #(P) the ring of (smooth) functions, 2(P) the
Lie algebra of vector fields, Q(P) the exterior algebra of differential forms and
J(P) the tensor algebra on P. An affine connection on P is a family of R-linear
operations Vy: ¥(P)— ¥(P) indexed by X € 2#(P) and satisfying:

(i) X~ Vy is #(P)-linear, and 1

(i) Vx(fY)=X[f1Y +f V,Y, for all X, Y € 2(P). 2)

'VX is also called the covariant derivative along X. If P is finite dimensional and

' ...,x"isa coordinate system on P, then the functions I'j; given by

3 , 9

\ETY ECaalY 3)

are called the Christoffel symbols of the connection. Recall that I‘jk are not the

components of a tensor, since under a change of chart (x',...,x")—
(x', ..., x") they transform in the following way:

__ 0% Fx' oxl axkoar_,
fe=— 7 5eb gz + 5ob o 5 T )

Ax' 3x® 9x¢  9x® Ix° ox'
If X=X'9/3x'and Y = Y’ 3/3x/, we have

Y’

V XY =X I( a 7

The covariant derivative is extended uniquely to tensor fields of arbitrary type by

requiring each Vy to be type-preserving, R-linear, Vyf = X[f]:=df. X for any
X € %(P) and f € #(P), be a derivation relative to the tensor product ®, i.e.

Vx(t1®t2)=VXt1®t2+t1®VXt2 (6)

for any ¢, t, € (M), and to commute with contractions. An instance of the last
property is that if aeQ'(P) is a one-form, then Vy(a, Y)=(Vya, Y) +
(@, VxY), where ( , ):¥(P) x Q(P)~>R denotes contraction. This equality
determines the local expression of Vya if & = a; dx’, as

VXa' == ;:kaa,‘ dxj, (7)

3
+1"kY"> pwet 5)

which generalises to arbitrary tensor fields of type (r) as
B

ofir---b .
(Vxt)jp=X k( a“ L [it, g7 4 T, ¢ 1 (all upper indices)
x*

gl .0, mtil...i,

=L tis i — Tiptihmr i — (all lower indices)). t))
The operators Vy: T(M)— J(M) map Q(P) to Q(P). The tensor derivation
property of Vy implies that its is an exterior algebra derivation, i.e.
Vx(eAB)=Vya AB+arAVyp 9
for all «, B € Q(P).
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2B. The torsion of two vector fields X, Y € #(P) given by

Tor (X, Y)=VyY -V, X —[X, Y] : (10)
1 .
is skew-symmetric and F(P)-bilinear. The torsion tensor is a <2) -tensor field

T(a, X, Y)=(a, Tor (X, Y)); (11)
its components in a local chart for finite dimensional P are given by
'}q' = ;cj - ;k (12)
Thus the connection is torsion free if and only if in a local chart the Christoffel
symbols are symmetric in their lower indices. Given an affine connection V whose
torsion is Tor, the prescription
VxY=VyY —3Tor(X,Y) (13)

defines a torsion-free connection V. More generally, if V is a connection on P and
D is any type-preserving tensor derivation on J(P) which commutes with
contractions, then Kostant [19] has shown that there is a unique decomposition of
D as

D=Vy+1L, (14)

where L: TP— TP is a vector bundle endomorphism.

2C. Let tp: TP— TP and 17p: TTP— TP be the tangent bundle projections and
denote by V =ker Ttp the wvertical subbundle of TTP. Define the connector
Z: TTP— TP by

BE(TY - X)=V,Y, 15)
for X, Y € #(P), and note that the following diagram commutes:

TP

TP TP TP.

Y%

P

Moreover E|V:V — TP coincides with the map which identifies V' with the
pull-back bundle of t,: TP— P over tp. These two properties characterise E;
also, E and V determine each other uniquely. Locally, if (x’) are coordinates on
P, (x', v’) the naturally induced coordinates on TP and (x', v', X7, ¥*) the induced
coordinates on TTP, we have

2(x', vl &, o) = (&', Titlv® + ¥°). (16)

This formula (or its infinite dimensional analogue) shows that (15) defines E
uniquely and independently of X, Y, as long as TY - X is specified.
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"~ A-vector U e TPP is called horizontal if U e ker =; H = ker Z is a subbundle of
TTP called the horizontal subbundle of the connection and we have the
decomposition TTP=H @ V.over TP with projection 7. If U=3x'3/dx'+
¥' 8/3v’, then U is horizontal if and only if

Tiv* + o = 0. (17)

The horizontal lift of weT,P to T,(TP), veT,P, is by definition
(T,7r | H,)""(w); the horizontal lift operator is hor, = (T,7p | H,) ": T,P— H,,,
where p = 75(v); hor, is an isomorphism for all v € TP. Locally,

] L
hor, w = b'— — I';,bla* — (18)
X v
where v =a’ 3/3x' and w = b’/ 3/3x’.

The vertical lift of we T,P to T,(TP), v e T,P is the connection independent
operation defined by

d
ver, (W)=—1| (v+tw). ' (19)
' dt |,
Locally, if v =a’ 8/3x’, w =b' 3/3x’, we have
ver, (w) = b"i (20
v - avi 1 )

or emphasising the points of tangency of the relevant vectors,
ver, (w) = (x/, @', 0, b"). (21D
The horizontal subbundle is invariant relative to scalar multiplication, i.e.
I,m.(H,)=H,, ‘ (22)

if ceR, veTP and m.(v)=cv. In fact, given a subbundle H of TTP
complementary to V and satisfying (22), there is a unique connection V on P such
that TY(v) € H if and only if V,Y =0. The expression (V,Y)(p) for ve T,P is
defined to equal (VxY)(p), where X is an arbitrary vector field on a neighbour-
hood of p such that X(p)=v; this definition makes sense since VxY depends
only on the point values of X.

2D. Let c(¢) be a smooth curve in P and let é(¢) be its tangent vector field. If Y is
any other vector field, define the covariant derivative of Y along c(¢) by

DY
W = Vé(t)Y. (23)

Y is said to be parallel along c(t) if DY/dt=0. In coordinates, this equation
becomes a linear system of ordinary differential equations
dY'(t)
dt

+ L ()Y (t) =0, (24)
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which therefore has global solutions. This enables one to define the parallel
transport operator T, along the curve c(t) to be the isomorphism 7,,: TP —
T P given by associating to every v € T, P the value at c(¢f) of the unique
parallel vector field Y along c(¢) (i.e. the solution of DY/dt = 0) which at s has
value v. (In infinite dimensional examples, equation (24) will be an-evolution
equation for which the usual care must be taken using semigroup theory.)
Formula (23) generalises to arbitrary tensor fields § as

DS d :
VeoS =, () = | _ehlSE)] @s)
where 1/, is the isomorphism on tensors induced by 7,,. Formula (23)
characterises the covariant derivative in terms of parallel transport. In fact, one
can start with an axiomatic approach to parallel transport and define the
connection by (23); this is carried out in [23].
A curve c(t) is called a geodesic of the connection V if ¢(¢) is parallel along c(¢),
i.e. if V;,¢(¢) =0. In local coordinates, this says that

&) + Thd (DE () = 0. (26)

3. Affine connections on parallelisable manifolds

In this section we consider the theory of affine connections on parallelisable
manifolds. We begin by developing some general formulae for objects associated
to the connections. Then we characterise all affine connections on such manifolds.

Let P be a parallelisable manifold. This means that there is a vector bundle
isomorphism @: TP— P X E of the tangent bundle TP with the trivial bundle
P X E— P covering the identity mapping of P; E denotes a Banach space which
can be taken as the model space of P. The goal of this section is to determine a
connection in terms of @ and the class of vector fields ¥,,(P) which are constant
in the trivialisation ¢.

3A. The vertical bundle of TTP is mapped by T¢ isomorphicaily onto the
subbundle 0 X E X E of TP X E X E. However, we can further trivialise TP via ¢
as P x E and the isomorphic image of this bundle in P X E X E X E via ¢ X id,
where id: E X E— E X E is the identity mapping, equals P XO0X EXE—P X E,
the projection being onto the first and third factors. It is convenient to keep the
base points in the first two factors so we consider the canonical involution
0:PXEXEXE—->PXEXEXE given by o(p, x,y, z)=(p, y, x, z) and thus
the image of the vertical bundle of T77P via o° (¢ X id)° T@ equals

V=PXEXOXE—PXE, (D

the bundle projection being the projection on the first two factors. By (21) of
Section 2, the vertical lift operator becomes

Ver(p,x) (p: y) = (P; X, 0’ y) (2)

Choosing the horizontal bundle to equal P X E X E X0, we get the canonical
connection on the vector bundle PXE— P which then by ¢ induces
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an affine connection on P. However, in later applications we are already given a
connection on P and shall desire to express it in the trivialisation ¢. Define the
continuous R-bilinear map y,: E X E— E depending smoothly on p by

@((VxY)(p)) = (p, dY(p) - X(p) + ¥,(X(p), Y(p))), 3)

where @(X(p)) = (p, X(p)), e(Y(p))=(p, Y(p)) and X, Y:P— E are smooth
functions. Define vy:C*(P, E)x C*(P, E)—C”(P,E) by (X, Y)(p)=
wp(X (p), Y(p)) and note that y is F(P)-bilinear:

v(fX, g¥) =fagy(X, Y).

Let c(?) be a curve in P, ¢(0) = p, and v € T, P. Recall that the curve v(¢) is the
horizontal lift of c(t) through v if and only if

w0 =, TeO)=c), 2=, @

the last equality states that the tangent vector v(f) is always horizontal. If
p(v(®)) = (c(t), x(t)) and @(é(2)) = (c(t), €(¥)), then the first condition in (4)
reads x(0) = x, where @(v) = (p, x) and the second is automatically satisfied. By
(23) of Section 2, (3), and the chain rule, we get

(Ddf) <C(t) — + Ye(€(), x(t))) (5)

so that (c(t), x(t)) is the horizonatal lift of c(t) in PXE relative to the
push-forward connection by @: TP— P X E if and only if

%*’ Y (€(), x(#)) =0, x(0)=x. (6)

Consequently, the parallel transport operator along the curve c(t) in P X E maps x
to x(t), the solution of (6), at time t.

This equation also enables us to compute the horizontal lift of (p, y) € P X E at
(p, x) € P x E. Namely, if c(¢) is a curve in P with c(0)=p, ¢(0)=v, @(v)=
(p, x), then the horizontal lift of v is ¥(0), where v(¢) is the horizontally lifted
curve given by (4). Let us compute this in the trivialisation given by ¢, i.e.
(oo (@ xid)e Te)(¥(0)), where 0: PX E X E X E—~ P X E x E X E is the canon-
ical involution o(p, x,y,z)=(p, y, x, z), and id: E X E— E X E is the identity
mapping. By (6),

(0°(9 X )= Tg)(o(0)) = (o= (@ x i)

(@0)0)
0]

=

= (o2(g X i)(2(0), (),

= 0(c(0), ¢(0), x(0), —wc(O)(C(O), x(0)))
= (p’_x’ Y, —lllp(y, x)))
where ¢(0) =p, ¢(0) =y, x(0) = x. Therefore

hor(p,x) (pr )’)=(P, X, Y, —'flJp(y, x))) (7)
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the fibre at (p, x) of the horizontal space is

Hpw={, —v,(y,x)) |yeE}, (8)
and the decomposition of a vector (p, x, u, v) based at (p,x) in PXEXEXE
into is horizontal and vertical components is .

(P: X, U, U) = (P, X, U, _Wp(u’ x)) + (p’ x, 0, Wp(u: x) + 'U) (9)
(addition, of course, occurs only on the last two components).

3B. As in (3), denote by X the second component of X e ®(P) in the
trivialisation g, i.e. @(X(p))=(p, X(p)); thus, X: P— E is a smooth mapping.
Define

Y (@)=97'(g Y(p)) (10)
and note that Y, e #(P) is the unique smooth vector field on P which is constant
in the trivialisation @ and whose value at p is Y(p).

Proposition 3.1. There is a unique affine connection V¥ on the parallelisable
manifold P for which all vector fields in ¥,(P)={X e 2(P) | X = constant on P}
are covariantly constant. Moreouver, this connection has the expression

(VEV)(p) =X, YI(p) - [X, Y, 1(p) = @™ '(p, (T,Y)(X(P))) (11)

Proof. Using the relationship (fY), = f( p)Y, for any f € #(P) and Y € 2(P), it
is straightforward to verify that the right-hand side of (11) satisfies all axioms of a
connection. Moreover, if Y e ¥,(P), then Y=Y, for any p € P, so that (11)
shows that all Y e ¥,(P) are covariantly constant relative to V¥. This proves the
existence part of the proposition.

To prove uniqueness, let V be a linear connection on P such that all Y € ¥,(P)
are covariantly constant. Define B(X, Y)(p) = (VxY)(p) +[X, Y,](p). We shall
show by a local computation that B(X, Y)(p)=[X, Y](p). Let v: UcP—
Y(U)=U'cE, y(p)=0, be a chart at p and denote by X, (u) = (1, X(u)) the
local representative of the vector field X; thus, X: U’'— E is a smooth map. Then

[X, YI"(w)=DY(u)- X(u) —DX(u)- Y(u) for uel' (12)
Locally, the trivialisation ¢: TP— P X E is given by
@y =Y Xid)opeTy U XE—U'XE; (u,e)elU XE~(u, L(u)-e)
for L: U'— GL(E) a smooth map. Thus X € ¥,(P) if and only if the local
representative of X is such that the map
uelU —Lu) -X(u)eE (13)
is constant. If @(Y(p))=(p, Y(p)), in the chart y we have Y(p)= L(0)- Y(O)'
and therefore by (10) the expression of the local representative of Y, is
(V) () = (u, L)™' - L(0) - Y(0)), i.e. Y,(u)=L(w)"-L(0)- Y(0).
Since Y,(0) = Y(0), we obtain
[X, ¥,]7(0) =DY,(0) - X(0) — DX(0) - Y,,(0)
=—L(0)"' - [DL(0) - X(0) - Y(0)] — DX (0) - Y(0). (14)
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Lct ¥.. EX E—E be the Christoffel map of the connection V in the chart
U, ), i.e.
(VxY) () =DY(u) - X (u) + y(u)(X (w), Y(w)), (15)

where y, is bilinear continuous for each u e U’ and u~— 7y, is smooth. The
requirement on V and hence on y is that all Z € 2,(P) be covariantly constant,
which says that

DZ(u) - X(u) + y(u)(X(u), Z(u))=0 for all X, (16)

whenever u— L(u) - Z(u) is a constant map. Fix veE and define Z(u) =
L(u)™' - v so that Z € 2(U) whose local representation Z,(u)= (u, Z(u)), is an
element of 2,(U). Therefore (16) becomes

D(L()™ - v)(w) - X(w) + y@)(X (@), L) - v) =0
for all X(u) and all v € E, i.e.
~(L@) " DL) X () L) ™) - v + y@)(X (@), L@)™" - v) =0,
whence
y(@)(X(w), Z(w)) = L)~ - [DL(w) - X () - Z(w)]

Since X, Z can be adjusted to take on any value at u =0, it follows that the
bilinear map y(0): E X E— E is given by

Y(0) (s, v2) = L(O)™" - (DL(0) - v; - v3). (17)
Therefore, by (15), (17), (14), and (12), we get
(VxY +[X, %,])7(0) = DF(0) - X(0) + L(©0)™ - [DL(O) - X(0) - ¥(0)]
—L(0)"" - [DL(0) - X(0) - ¥(0)] - DX (0) - Y(0)
=[X, Y]7(0),
which proves that in the chart (U, y) about p, B(X, Y)(p)=I[X, Y](p).

Therefore (VxY)(p) + [X, Y,](p) =[X, Y](p) for any X, Y € #(P) and the prop-
osition is proved. [

CoROLLARY 3.2. Let V be any affine connection on the parallelisable manifold P.
Then V is uniquely determined by its values on X,(P) in the sense that

(VxY)(p) =X, Y1(p) = [X, Y, )(p) + (VxY,)(P)- (18)

Proof. 1t is easy to see that (VxY)(p)=(VxY)(p)— (VxY,)(p) defines an
affine connection on P for which all vector fields in ¥,(P) are covariantly
constant. By Proposition 3.1, VxY must equal V$Y which by (11) proves (18). O

Since VxY depends only on the point values of X, formula (18) can be further
simplified by everywhere replacing X by “the constant coefficient vector field”
X, i.e. we have

(VxY)(p) = [X,, YI(P) — [Xp, Y,1(p) + (Vx, Y,)(P)- (19)
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By formulae (3) and (11), we can write

VxY(p)= @ '(p, DY(p) - X(p)) + ¢~ '(p, v,(X(p), Y(p)))
=[X,, YI(p) — [X,, Y,1(p) + ¢ (p, ¥,(X(p), Y(P)))-

Using formula (19), we deduce from the above equality that

@7 (P, ¥,(X(p), Y(p))) = (Vx, Y, )(p). (20)

This formula will be referred to often in Section 5 when we shall prescribe
connections on Lie groups by their values on left-invariant vector fields.

4 Symplectic connections

ThlS section recalls some relevant formulae regarding symplectic connections
from [26, 20, 15, 16]. Let (P, w) be a symplectic manifold. We define
b: TP— T*P by v’ = w(p)(v, -) forv e T,P. If w is strongly non-degenerate (or if
one works with suitable topologies or restricts to corresponding subbundles), we
denote by #: T*P— TP the inverse of ®; # defines the Poisson structure of P. An
affine connection V is said to be compatible with the symplectic structure if o is
covariantly constant, or, equivalently, if

X[o(Y, Z)] = o(VyY, Z) + o(Y, VxZ), 1)

for all X, Y, Z € ¥(P). This condition is by (25) of Section 2 (the fundamental
relationship between covariant derivative and parallel transport) equivalent to:
the parallel transport operator is a symplectic isomorphism between the tangent
spaces to P. Connections compatible with @ will be called symplectic connections.
The torsion of a symplectic connection satisfies

w(Tor (X, Y), Z) + w(Tor (Y, Z), X) + w(Tor (Z, X), Y)=0 2)
as a straightforward verification shows (use the formula for dw(X, Y, Z) and (1)).

ProposiTION 4.1. Given any affine connection V on a symplectic manifold
(P, w), the formula

VxY =VxY +3[(Vxo)(Y, )]* (3)
defines a symplectic connection. The torsion of this connection equals
Tor (X, ¥) =Tor (X, ¥) +3[(Vxo)(Y, -) - (Vyo)(X, )J* @)
where Tor is the torsion of V.

The proof is a direct verification. Even if Tor = 0, the torsion Tor of V is not
zero in general. This can be remedied by the addition of two terms not involving
Tor (compare with the general formula (13) of Section 2).

ProrosiTioN 4.2. Given an gffine connection V on the symplectic manifold
(P, o), the formula

VY =V,Y + 3{(Vxo)(Y, ) + 3(Vyo)(X, ) + 3(V. 0)(X, V)]* 5)
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deﬁnes a symplectic connection. Its torsion is uniquely determined by the equality
w(Tor (X, Y), Z) = 30(Tor (X, Y), Z) - sw(Tor (Z, X), Y) — 3w (Tor (Y, Z), X).
(6)

If V is torsion free, then so is V in which case (5) simplifies to
VxY = V¥ + B(Vx0)(Y, -) +3(V. o)X, V) Q)

Proof. That (5) defines a symplectic connection follows from (3); (6) follows
from (4) and the equality

(Vxo)(Y, Z) + (Vyo)(Z, X) + (Vz0)(X, Y)
= w(X, Tor (Y, Z)) + o(Y, Tor (Z, X)) + o(Z, Tor (X, Y)). (8)
Finally, (7) is a consequence of (5) and (8). O

Remarks 1. The formulae in Propositions 4.1 and 4.2 are relatively involved
and one might ask whether for P = T*Q with Q Riemannian, the natural choices
of connections would not be automatically symplectic. This is not the case.
Endow Q with the Levi-Civitd connection and 7Q with the natural metric
induced by that on Q. Use the original metric on Q to pull-back the induced
metric on TQ to T*Q, thereby making 7*(Q into a Riemannian manifold. Endow
T*Q with the induced Levi—Civita connection. This connection is symplectic
relative to the canonical structure on T*Q if and only if the original metric on Q is
flat. The proof of this fact is a relatively involved but straightforward verification.

2. A related result can be found in [15] where in addition one requires
preservation of certain polarisations; the desired connection is then unique, but it
is not the Levi-Civita connection on T*Q.

3. The space of torsion free symplectic connections is an affine space with
underlying vector space the space of symmetric covariant three tensor fields on
M, i.e. if V', V* are torsion free symplectic connections, there exists a symmetric
covariant three tensor field S on M such that ViY — V%Y =S(X, Y, -)*. This
result is due to Bayen et al. [8] and Vey [27].

4. By the previous remark there is enormous freedom in the choice of a
sympletic connection. A natural question to ask is: under what conditions can one
determine a unique symplectic connection satisying some natural additional
properties? Hess [16] has required the preservation of one and/or two polarisa-
tions. But even then, uniqueness does not hold. We shall see in the next section,
that for cotangent bundles of Lie groups there are natural choices of symplectic
connections.

5. Invariant symplectic connections on 7*G

In this section we discuss both left and right invariant symplectic connections
on T*G, for G a Lie group with Lie algebra g. We denote by g¢* the dual of g and
by A: TG— G X g, p: TG— G X g the left and right trivialisations on the tangent
bundle:

A’(vg) = (g! T‘ng"(vg))) p(vg) = (g’ ’I:gRg"(vg))’ (1)
where g € G, v, € T,G and L,, R, are the left and right translations on G given by



344 J. E. Marsden, T. Ratiu and G. Raugel

g- We denote by ¥,(G) and 2;(G) the Lie algebra of left and riglit invariant
vector fields on G. For & € g denote by X; (respectively Y;) the left (respectively
right)-invariant vector field whose value at e is £.

SA. We begin with the construction of canonical connections on G. -
ProposiTion 5.1L. For X e ¥(G) and g € G, define X% € %,(G) by
Xg(h) = TL,(T,L-(X(8))). 7 (2L)
Then X} is the unique left invariant vector field whose value at g equals X (g).
(i) The operation
(VxY)(g) = [X, Y1(g) — [X, Y¢I(g) (L)

defines the unique affine connection on G for which all left invariant vector fields
are covariantly constant. This connection is left invariant in the sense that

forall he G and all X, Y € 3(G). The torsion of this connection given by
Tor (X, Y)(g) = [X, Y](g) - [X, Y1(g) — [X;, Y)(g) (5L)
is left invariant:
Tor (Ly X, L;Y) = L;(Tor (X, Y)), (6L)

forall heG.
(ii) The operation
(VxY)(g) =3[X, YI(g) —3[X, YeI(g) +3(X}, Y](g)
=[Xg, YI(g) — 3 X5, Y¢l(g) (7L)
defines an affine torsion-free connection on G which is bi-invariant in the sense that
in addition to (4L) it also satisfies
VR;:XR Y =R, (VxY) (4R)

for all he G and all X, Y € ¥(G). This connection is uniquely determined by its
values on left invariant vector fields:

VXEXn = X[E,'I]/T

Proof. (i) Trivialise TG by A and note that Y;=Y%, #,(G)=2%,(G). By
Proposition 3.1, (3L) defines the unique affine connection on G for which all left
invariant vector fields are covariantly constant. For any g, 4 € G, we have

(LiY)s = Yig, (8L)
which implies that
[LiX, (LiY);1=[LiX, Yi]=[LiX, L}YF, o= LilX, Yi.l,
whence »
(VegxLi Y)(g) [L;:X L;YI(g) - [LiX, (LiY); ()
Li[X, Y1) — Li[X, Yx](g)
= TLh“([X: Y|(hg) - [X, YiI(hg))
=TL,-((VxY)(hg)) = Ly (VxY)(g),
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thus proving (4L). Formulae (5L) and (6L) are verifications using the definitions
and (8L).

(i) By (13) of Section 2, the operation VyY — 4 Tor (X, Y) is a torsion-free
connection; this coincides with (7L) by (3L) and (5L). This new connection is
left invariant by (4L) and (6L), so all that remains to be shown is its
right invariance. A verification shows that

(R:Y)g =R;Yg, (9L)
for any h, g € G and Y € ¥(G), whence
2VrixR1Y)(8) = [REX, RiY1(g) — [REX, (REY)1(8) + [(RiX)g, RiY1(g)
=Ri[X, Y)(g) — RiLX, Ygl(g) + RilX g, Y1(g)
= TRy([X, Y)(gh) = [X, Yzil(gh) + [Xgi Y(gh))
=2TR,~((VxY)(gh)) = 2R, (Vx Y)(g)
and (4R) is proved. The last statement follows from Corollary 3.2. O
The analogous statement for right translations is the following:
ProposITION 5.1R. For X e ¥(G) and g € G, define XX € :(G) by
Xg(h) = T.R(TR,~(X (g))). (2R)

Then X is the unique right invariant vector field whose value at g equals X (g).
(1) The operation

(VxY)(g) = [X, Y](g) - [X, Y;](2) (3R)

defines a unique affine connection on G for which all right invariant vector fields
are covariantly constant. This connection is right invariant in the sense that (4R)
holds. The torsion of this connection, given by

Tor (X, Y)(g) =X, Y](g) - [X, Y;1(8) - [X{, Y1(8) (5R)
is right invariant:
Tor (R; X, R;Y)(g) =R;; Tor (X, Y)(g). (6R)
forall heG.
(ii) The operation
(VxY)(g) =3[X, YI(g) - 3[X, Y{i(®) +3[XS, Y1(g)
=[Xg, Y(g) —3[X¢, YZI(g) - (R)
defines an affine torsion-free bi-invariant connection on G, and
Ve Yo =Y (g1
The proof is-identical to the previous one by replacing (8L) and (9L) by
RRY)g =Yg, (8R)
(LAY)S=L;YR. (9R)

and

5B. Left trivialise T*G as G X g* via o, (g, T7L,(a,)) and endow G X g* with
the direct product Lie group structure, g* being considered as an abelian group.
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If ¢, denotes translation in g* by p, left translation by (g, n) in G X g* equals
L(g, = (L, t,) so that the left invariant vector fields on G X g are of the form

2, (GXg*)={Xew| Xeuw@ ®)=(T.L(E), a, u) for ey, o, peg*, geG}.
‘ (10L)

Proposition 5.1L and Corollary 3.2 yield the following:

PropositioN 5.2L. (i) There is a unique affine connection V" on G X g* for
which all left invariant vector fields are covariantly constant. This connection is

left invariant and its torsion is determined by its value on left invariant vector
fields:

Tor (Xz,uyy X(n,v) = X(-15,m1,0 = (= X(g,n1, 0), (11L)

for&,meg, u,veg
(i) There is a unique torsion-free affine connection V* on G X g* whose values
on left invariant vector fields are given by

VX(E )X(n v~ = Xqe 0= (X[g ny2s 0). (12L)

This connection is bi-invariant.
(iii) Any torsion-free connection V on G X g* can be uniquely decomposed as

VY =ViY 4+ S(X, Y) (13L)

where V- is the connection in (ii) and S is an 2(G X 9*)-valued bilinear symmetric
map defined on (G X g%).

Part (iii) follows since if V', V are two affine connections on a manifold P, then
V.Y — V.Y is an F(P)-bilinear map on ¥(P) with values in ¥(P). If V', V are
torsion free, this bilinear map is symmetric.

The right invariant vector fields are given by

Xz(G X 3*) (Yew | Y8 @)= (LRy(8), a, p) for Eeg, o, peg®, g€ G}.
(10R)
Proposition 5.1R and Corollary 3.2 give, as before, the following proposition:

ProposiTioN 5.2R. (i) There is a unique affine connection V*® on G X g* for
which all right invariant vector fields are covariantly constant. This connection is
right invariant and its torsion is determined by its values on right invariant vector

fields
Tor (Yiz,uy» Yn.v) = Yz m,00 = Y1z, 0), (11R)

for§, neg, p, veg'
(i) There is a unique torsion-free affine connection V* on G X g* whose values
on right invariant vector fields are given by '

View Yon = Y—iam2.0 = (Y-ignp2 0). (12R)

This connection is bi-invariant.
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‘ (iii) Any torsion-free affine connection V on G X g* can be uniquely decom-
posed as

VxY =VRY + S(X, Y) (13R)
where VX is the connection in (ii) and S is bilinear and symmetric.

The canonical symplectic form on 7*G induces via left and right trivialisations
two symplectic forms wy and ws on G X g*; wy is the “body” or “convective”
representation of the canonical form on 7*G, whereas wg is the *“‘spatial” or
“Eulerian” representation. The expressions of these symplectic forms are

wp(g, 1)(v, p), (W, 0)) = —(p, TyLyg-1(w))
+ (0, T,Ly(v)) + (i, [Lg(v), TLg-(w)]), (14L)
ws(g, w)((v, p), (w, 0)) = _<p) TgR.gjl(w)>
+ {0, LR;'(v)) — (u, [L,R;'(v), R;'(W)]), (14R)
forgeG, u, p, ceg*, and v, w e T,G. (See [2, §4.4].)

ProrosoTioN 5.3L. (i) The connection V on G X g* determined by its values on
left invariant vector fields via

Ve X8 @) =X, a8 @)= (0, a, —3ad;(n)), (1sL)
is a symplectic connection relative to wgz. By (19) of Section 3, the expression of
this connection for general vector fields X, Y € (G X g*) is
(VxY)(8 @) = [X(gL, 1x10.0). %2500 Y](& @)

_(T;Lg[Tng‘lxl(g’ a’)) Tng“Yl(gr CV)], @, %adnglel(g,a)XZ(g’ a'))
(16L)

where X (g, a) = (X\(g, @), a, X»(g, @) e T,G X g¢* X 8¢* and similarly for Y.
(Remember that « is a base point, so algebraic operations do not affect it.)

(ii) The connection V on G X @§* determined by its values on left invariant
vector fields via

Ve Xnn(& @) = Xqenn.0(8 @), for (17L)
o= —3(adi(v) + ad;(u)) + §(adiad;; + adiad})(«) (18L)

is torsion free and symplectic relative to wg. By (19) of Section 3, the expression of
this connection for general vector fields X, Y € (G X g¢*) is

(VxY)(g, o) =[X(g1,-1x(e. ). X2, 0)) Y](&> @)
+ X (L5 o). Tl 1Yitg, 0)2,0)(8> &) (19L)

for o given by (18L) with &, u, n, v replaced respectively by X (g, ), X,(g, ),
Yi(g, @) and Y,(g, ).

Proof. (i) By Propositions 4.1 and 5.2L(i), the linear connection whose values
on left invariant vector fields are given by

VX@,u)X('LV) = %[(V%é.mwB)(X(n.V)’ ')]#
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is a symplectic connection relative to wp. For any (£, 1) e g X ¢*, we have

wB([(VX(g,,)wB)(X(ﬂ,V)’ )] X(§ l))(g7 (Y) (VX(g,,)wB)(X(n,v)r X(E, A))(g; (Y)

- gx(s.m(wB(X(q,v)’ X(C, A)))(gz «). (20L)
Since .

058 O Xn (8 @) Xen(8 @)= ws(g, A)(LLg(n), &, v), (T.Le(L), &, 1))

==(v, &) + (A4, n) +(a [n, £]), (21L)
(20L) becomes

wB(g’ a)([VX(E,,)wB(X(n,V)’ )]#(g’ a’) (TL C o, "\')) = (”’ [’7, C])
= (adyu, £) = wa(g, @)((0, —adyu), (T.L.E, 1)),

ie. [VX(E 008X, vy ¥ = (0, —ad;u) which proves (15L). Formula (16L) is a
direct sequence of (19) in Section 3.

(ii) By Proposition 4.2, the affine connection whose values on left invariant
vector fields are given by

VX(E u)X(" = Vg“'(& n)X('l wt [z(V)Lf(E u)wB)(X(n v) )+ l(VL . wB)(X(E n)? X(n V))]#

where VX(E X = (Xg.nn, 0) is a torsion free symplectic connection relative to
wg. As in (1) to compute the second term we evaluate it at an arbitrary X, ) on
wp at (g, @) to get by (12L), (21L), (14L), and the Jacobi identity:

(Ve @8) Xy Xie, 0)(& @) +3(Vi e, 08) (X gy Xin,)(& @)
=38y (0s(Xnvy Xo ))& @) —305(Vie,, Xnvy Xz )8 @)
—305(Xnvy Ve Xie )& @)+ 38 (05(X gy Xn ))& @)
—30s(Vi 0 XEwy X))@ @) = 305(X(guy VienX )8 @)
=3(u, [0, C1) — 3058, &) GT.LJE 1)), @, 0), (LLE, a, A))
—305(8, a)(GT.L([S, ED, &, 0), (T.Lgn, &, v))
—3wp(g, )(T.LE, o, n), GT.LA(S, n), &, 0))
=%, [0, &) = 34, [& ) — 3o, [[E n), E])
+3(v, [E &) — o, [0, [E S +5(A, [E, n])
—3(v, [, &) — (e, [[C, &L, n]) +&(w, (&, n]) — 6, [&, [C, mID)
=3(p, [n, &) + 3V [& &) —&(&, [& [n, SN+ [, [E CID)
= (3(adip + adfv) — tad;(adia) — tadi(adya), )
= ws(g, )0, @, 0), (T.L(L), @, 1)), |

for o given by (18L). This, together with (12L) proves (17L). Formula (19L) isa
direct consequence of (19), Section 3. [

The analogue of Proposition 5.3L for right invariant vector fields is proved as
above.

ProrosrTioN 5.3R. (i) The connection V on G X g* determined by its values on
right invariant vector fields via

VY(;,,,,Y(n,v)(g: @)= X(O,ad,;‘(u)/Z)(g: a)=(0, q, %ad:(ﬂ)) (153)
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is a-symplectic connection relative to ws. By (19) of Section 3 the expression of this
connection for general vector fields X, Y € #(G X g*) is

(VxY)(g, @)= [Y(TgRg~1X1(g,a),X2(g,a)): Yl(g, a)
+ (nRg[rgRg“‘Xl(g’ 0(): 7;;'Rg’lyl(g’ a‘/)]» &, %adZRg—le(g,cv)XZ(g’ a))’ (16R)

- where X(g, a) = (X,(g, @), o, X»(g, @)) € T,G X g* X §* and similarly for Y.
(ii) The connection V determined by its values on right invariant vector fields
via
Vvew Y (& @) = Yign12.0)(8, @), for (17R)
0 = 3(adi(v) + ad}(u)) + $(adtad? + adiad})(a) (18R)

is torsion free and symplectic relative to ws. By (19) of Section 3, the expression of
this connection for general vector fields X, Y € 2(G X g*) is

(VXY)(g’ a/) = [Y(TéRglel(g, «), X2(g, a))> Y](g) a'/)
*+ X (1R, 1X (g, @), TR, -1 Y18, )12, ) (&> @), (19R)

where o is given by formula (18R) in whch E, u, n, and v are replaced respectively
by Xl(g’ L\(), X2(g’ a)’ Yl(g) a)’ and Y2(g) a/)'

5C. Using the material of Section 3, we shall determine the horizontal lift and
parallel translation operator for the four connections discussed in Propositions
53L and 5.3R. Denote by A:7(GXg*)—G Xg*XgXg*, AMug, 4, v) =
(& 1, TyLg1vg, v) the left trivialisation of T(G X g*), with G X g* interpreted as
a dlrect product Lie group. Let 7: T(G Xg*)— G Xg*, 1,: TT(G X g*)—
T(G Xg*) be the tangent bundle projections. Then relative to the left-
trivialisation, Tt and 7, induce maps p”, p%: G Xg*Xgxg*XgXg*— G X
8% X g X g* given by ,
pri=AorpoTA o (A Xid)oo ™ (g, u, &, v, n, @, &, Y)—> (g, m, & v), (22L)
pri=AeTooTA o (A Xid)oo (g, u, & v, 0, &, &, ¥)—> (g, 1, 1, @), (23L)
where geG, §n,6eq, u,v,a,veqg*, and o is the involution:
Gw&Ev,naly)->Eunawéb v v) Weinsert oin (22L) and (23L),
in accordance with the conventions of Section 3, to have the base points in the

first four factors and the vector part in the last four factors Therefore the
vertical subbundle of the projection p% is the kernel of p’,

Vinen=1{& 1 v, 0,0, v)} (24L)

and the vertical lift operator of (g, u, , @) at (g, p, &, v) is by (2) of Section 3
equal to

verg ey (& W M @) =(g 1, & v,0,0, 7, a). (25L)

First, consider the connection in Proposition 5.3L(i) given by (16L). Let
t—(g(1), u(t)) be a curve in G X ¢* and denote as in Section 3, A(g(r), i(t)) =

(8(2), 1), Ty L £(0), 1)) = (8(2), u(e), 2(t), (1)), i.e.
80 = Tyo Lo (), RO = (). (26L)
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Let (g(f), u(t), n(®), y(r)) be a curve in G Xg*XgXg* such that t—
A7Y(g(0), u(®), n(®), y(t)) is horizontal. Then (6) of Section 3 states that this
happens if and only if

(429, LD) 1ty s TacoLeor €0 10D, (1), 7)) =0 @TL)

with n(0) e g and y(0) € g* given. Recall that Yo 8XgEXgX g —>gXg* is
bilinear continuous for each (g, u), is smooth in (g, ) and is given by

A(VLY)(g 1) = (g, 4, dY(g, ) - X(g, 1) + ¥i.0(X (g 1), Y(g, 1)), (28L)

where X, Y € 2(G X g*) and A(X (g, 1)) = (g, p, X (g, 1)) and similarly for Y, i.e.
it we denote X(g, .u’) = (Xl(g’ ”)7 U, XZ(g) .u')) € T(g,u)(G X g*) = TgG X 5*1 we
have

X(g, ) = (L X(8, 1), X8, 1) (29L)
In (27L), let g(t) = T, Ly, 5(¢) for some &(t) € 8. By (20) of Section 3 and (15L),
we get
(g(®), u(0), Yéw.ue((EW®), £(0), (n(), Y(©))))
= )’—(’VX(g(t),pl(t))X(n(t),y(t)))(g(t)! u(®) = (g(), u(), 0, —3ad;,ix(t)). (30L)

Thus, by (27L), the curve > T7(g(t), u(t), (1), y() is the horizontal lift of
t—(g(t), u(t)) if and only if

n(©)=n(0), y(t)=12adyq L iu(s) ds + y(0) = zad5(u(6) — u(0)) + ¥(0).
(31L)

Equation (31L) gives the parallel transport of A7Y(g(0), u(0), n(0), y(0)) along
(g(0), u(r)), ie. it equals AezfoeA”', where 70y Tie)uo)(C X 8%)—
Tigo.uep(G X 8%) is the parallel transport operator of the connection (16L).

The horizontal lift operator of this connection in the left trivialisation (i.e. on
the bundle with projection p} given by (22L) is given by (7) of Section 3:

horly e (8 #: M V)= (& #, & v, n, v, 0, 3adiy). (32L)

For the torsion-free connection (19L) given by Proposition 5.3L(ii), we proceed
exactly as above, except that in (30L) we use (17L). Thus the curve t—
27 (g (D), u(0), n(t), y(t)) is the horizontal lift of t— (g(t), u(t)) relative to the
connection (19L) if and only if

dn(1)
7+ 3[E(@), n(0] =0, ,
and (33L)
O _ 3 adt o y(t) + ad (D)) + 2(adEoad? e, + adiad? =0
d 2la §(z)Y() a n(t)ll( ) + s((adzyady .y + adyya g(:))l‘(t)— .

where E(t) = TyyLey-18(t). As before, the solution of this system gives Aothye
271, where 15, now denotes the parallel transport operator of the connection
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(19L). The horizontal lift operator of this connection is (see (7) of Section 3):
horé,#,E,V) (g’ u, n, V) = (g’ U, E: v\nY %[5: n]:
i(adyv +adfy) — §(adjad} + adfad})u). (34L)

The relevant formulae for right trivialisations and the connections in Proposi-
“tion 5.3R are

p(vg: H, V) = (gx u, ];Rg"vg) V):

pE=potpeTp o(p Xid)oo ™ (g, m, &, v, ), &, &, B)—> (g, 1, & v), (22R)
pi=peTroTp~lo(pxid)eo™ (g, u, & v, n, & &, B)—>(g 1, 1, @), (23R)

V@,#,E,V) = {(g; U, E’ v, 0) 0, C’ Y)}, (24R)
VerG ey (8 1, 1, @)= (g, 1, & v, 0,0, n, ). (25R)

If t—(g(t), u(®)) is a curve in G Xg*, then t—p~'(g(t), u(t), n(t), y(t)) is
horizontal relative to the connection (16R) if and only if

1) =n(0), v(t) = —2ad} (1) — u(0)) + y(0) (IR)
and relative to the connection (19R) if and only if
dn
B9 ey, ne) =
and (33R)
dY(t) 1 * * . 1 * * * * —
“ar +2(adz i y(t) + ady (1) + s(adEad;, + adyadie,)u(t) =0

where £(t) = Ty(yRe)-£(t)- Thus (31R) and the solution of (33R) equal pozR)o
p~', where tfo denotes the parallel transport of the connections (16R) and

(19R), respectively. The horizontal lifts are given by
hor?g»M,E,V) (g’ Au’ n’ Y) = (g’ .u’ E’ V’ 7]’ Y} 0; —%adg)’) (32R)

for the connection (16R), and

horgg,u,g,v) (g1 uw n, Y)
=& m & v, m, v, —3E, nl, —(adyv + adty) — i(adjadt + ad}ad})u). (34R)
for (19R).

6. First variation equations: the symplectic case

In this section we consider the first variation equation of a Hamiltonian vector
field on a symplectic manifold. We begin by recalling the general linearisation
procedure. Then we recall the standard fact that taking tangents of symplectic
manifolds and maps is a symplectic functor and use this to prove that the linarised
equations given by a Hamiltonian vector field are again Hamiltonian relative to
the tangent symplectic form. Introducing an affine connection on the symplectic
manifold P, we prove that the linearized equation of the vector field X € 2(P) is
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equivalent to an equation on TP, where c(¢) is an integral curve of X. If P is
symplectic and the connection is also symplectic, this equation on T P is
Hamiltonian relative to the symplectic form of T.qP. Thus the linearised
equations are Hamiltonian relative to two distinct symplectic forms: the full
equations relative to the tangent symplectic form and the equations covering a
specific integral curve relative to the original symplectic form on a given tangent
space.

6A. We begin by reviewing the linearisation procedure for vector fields in
general. Let P be a manifold and X € ¥(P) a given vector field with flow F.. Then
TE: TP— TP is a flow on the tangent bundie and so defines a vector field, which,
in some sense, should be the derivative of X. The map TX: TP TPF is not a
vector field, for if X (1) = (4, £(u)) is the local representation of X in a chart and
we denote by (u, u) the chart map naturally induced on TP, then the local
representative of TX has the expression
TX (4, ) = (4, EQu), ty DE(W) - ). M
Consider the canonical involution op: TTP— TTP locally given by
op(u, v, w, 2) = (u, w, v, z). 2)
Then op°TX is a vector field on TP. (See [3].)
ProrosiTioN 6.1. If X e ¥(P) has flow F,, then TF, is the flow of op°TX €
X(TP). ‘
Proof. Since F, is the flow of X, locally we have
dF(u) _
dt

so that taking the derivative of this relation relative to u and using the symmetry
of mixed partials, we get the time-dependent linear equation

E(F(u)) (3)

2 DE(w) = DE(F(w) - DE), @

which is the local representative of the first variation equation defined by X. So,
in the natural tangent bundle chart (u, i), we get by (1)—(4)

2 T, i) =2 (Fw), DEG) - ) = ((EW), DEE®) - DE®W) - )

which is the principal part (the last two components) of (0,°TX) - TF(u, u). O

Remark. If K: P—R is a conserved quantity for X; i.e. Ko F, = K for all 1, or
equivalently X[K] =0, then dK: TP— R is conserved for 0,°TX; i.e. dK°TF, =
dK. This follows by differentiating K o F; = K using the Chain Rule. '

6B. If (P, ) is a (weak) symplectic manifold, then (TP, wy) is also a (weak)

symplectic manifold relative to a two-form w; which we now describe (see e.g. [2,
Chapter 3]). Let 6, denote the canonical one-form on T*P and w,= —d6, the
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éanonical symplectic form. The “index lowering” map »”: TP— T*P, given by
o°(v,) = w(p)(v,, ) for v, € T,P pulls 6, back to TP:

07‘ = ((Db)*eo. (5)
Explicitly, if v € T,P and w € T,,(TP), then
(6r(v), w) = 0(p)(v, Ttp(w)), (6)

where tp: TP— P, 1,p: TTP— TP are the tangent bundle projections. If u is the

‘local representative of a point in P in a chart, (u, @) is the naturally induced chart
on TP and (u, u, du, éu) the naturally induced chart on TTP, we have the local
representative of 0;:

(0r(u, u), (bu, 6u)) = w(u)(@, éu), @)
or in finite dimenensions, using Darboux coordinates u = (¢°, p;) on P and letting
u=(4", p;), we get

6r(q, pi» 4', p1) = ¢’ dp: — p; dq’. v 6]

These formulae are consequences of (6) and of the local representations of 6, and
wy,=—d68, on T*P; if (u, &) is the naturally induced chart on T*P and
(4, @, du, d«) the naturally induced chart on TT*P, we have

(0o(u, @), (6u, 6a)) ={«, éu), and 9)
wo(u, @)((0uy, day), (Su,, 6ay)) = (da,, du,) — (day, 5”2) (10)

which for finite dimensional manifolds, taking an arbitrary chart (not necessarily
Darboux) on P, u = (Q*), a = (PB,) reduces to the familiar expressions

8(Q", P)=PF,dQ’, and : (11)
wo(Q’, P)=dQ"' ndP. (12)
Define the closed two-form w; on TP by
wr = —d07 = (0)*wy. (13)
Locally the expression for w is
or(u, 1)((duy, év,), (du,, 6v,)) = w(u)(6v,, du,) — w(u)(dv,, du,)
+ (Dw(u) - du,)(@, du,) — (Dw(u) - du,)(i, du) (14)

from where one easily sees that w; is (weakly) non-degenerate. Thus (TP, wy) is
an exact (weak) symplectic manifold. For finite dimensional P in a Darboux chart
u=(q', p:), 6u =(6q’, op;) formula (14) becomes

wr(q', pi, 84", 8p;,) = —d(8q") A dp; — dq’ A d(Sp;). (15)

Taking tangents is verified to be a symplectic functor, namely, if f: (P, w,)—>
(B, w,) is a symplectic map than Tf: (TP, w,7)— (TP, w,r) satisfies
(Tf)* 0,7 = 0,1 and is therefore symplectic.
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6C. Let Xy € ¥(P) be a Hamiltonian vector field on (P, w) with flow F. By
Proposition 6.1, opeTXy is a vector field on P whose flow is TF, which is
symplectic relative to wz. This vector field is Hamiltonian as the following
proposition shows:

ProroSITION 6.2. Let Xy have flow F,. Then TF, is the flow of the Hamiltonian
vector field 0,°TXy on (P, wr) with Hamiltonian function H:TP—>R gwen by
A(v ) = dH(p) v, for v, e T,P.

Proof. We need to show that for any v € T, P and any w € T,(TP) we have
o7(v)(op° TXy)(v), w) =dH(v) - w,
which is locally equivalent to
or(u, )((E(u), DE(u) - i), (Su, du)) =DH(u, i) - (du, du) (16)
where Xy (u) = (u, §(u)) is the local representative of X. By (14),
or(u, 4)((§(u), DE(u) - i), (du, ou))
= o)(du, E(u)) — wu)(DE(u) - i, Su) + (Dw(u) - Su)(w, E(u))
— (Do(u) - E(u))(u, ou)
= —0W)(Ew), i) — w)(DE() - i, du) — Daw(u) - Su)(E(u), i)
— (Dow(u) - §(u)) b, du)
= —-DH(u) - i — w(u)(DE() - i, du) — (Dw () - 1)(E(w), du),
since w(u)(5(u), 6u) =DH(u) - Su, E(u) being the principal part of the local
representation of X and dw = 0 locally being equivalent to
(Da(u) - eg)(e, ;) — (Dm(u) - ey)(ep, €3) + (Dw(u) - e;)(eq, €1) =0
which for e, = §(u), e, = u, e, = du yields
(Do(u) - §u))(@, du) + (Do) - Su)(E(u), i) = (Do(u) - i)(5(u), éu).

However w(u)(DE(u) u, 6u) + Dw(u) - u)(E(u), Su) is the differential with
respect to u in the direction & of the map u+— w(u)(&(u), du) =DH(u) - du, i.e.
it equals D*H(u)(8u, &) and we have shown that

or(u, 1)((E(u), DE() - i), (du, du)) = —DH(u) - di — D*H{(u)(Su, i)
=DH(u, i) - (du, du),
since locally H(u, u) = —DH(u) - 4. This equality proves (16) and hence the
proposition. [

If c(¢) is an integral curve of X and X} denotes the Hamiltonian vector field.
relative to w7 of H as given in Proposition 6.2, the first variation equation is

LD — (00 Tx,) (000 = X (000, an

or locally, if Xg(u) = (u, £(u)), and Sc(t) = (u(z), du(t))

du(t)_s( wy, 4040

—a_ DEu@®) - ou(), (18)
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Which in finite dimensions, if u = (¢', p;), du =(8q’, dp,), is

di 8H dp, OH dé¢ &PH _ ., &H

e _°% i TN T T sy op,

dat dp,” dt aq’' dt 93¢’ Ip; ap; 9p;
dép,  PH . &H

J

————0q ——
dr aq’aq’ 1 - 3q' Ip;

op;.

Our goal in the rest of this section is to transform the first variation equation
into an equivalent equation on the tangent space T.qP at the expense of
_introducing an affine connection. If the connection is symplectic we shall show
that the resulting equation is Hamiltonian relative to the symplectic form @ on
T )P '

Remark. Proposition 6.2 is also valid in the context of Poisson manifolds, as
shown by Sanchez de Alvarez [24]. We are not pursuing in this paper the general
Poisson case, since there are no results akin to those in Section 4. In other words,
although the notion of a Poisson connection is easy to define, using as a model
the symplectic case, we know of no general constructions in which a given
connection on a Poisson manifold P can be modified to give a Poisson connection.
The results of Tondeur, Lichnerowicz, and Hess reviewed in Section 4 cannot be
generalised in an obvious fashion to the Poisson case. Nevertheless, for the
Lie—Poisson case, taking advantage of the group structure and the results of
Section 5, one can circumvent these difficulties. This will be carried out in Section
7.

6D. We return to the general case of a vector field X on an arbitrary manifold P
and show how the linearised equation along an integral curve c(f) of X is
equivalent to a linear time-dependent equation on T, P, once a connection on P
has been introduced. Let V be an affine connection on P, denote by 7, ;: T, —
T.yP the isomorphism given by parallel translation along c(f), and let
E: T(TP)— TP be the connector of V. Let op: TTP— TTP denote the canonical
involution.

ProposITION 6.3. The first variation equation along c(t)

d(8c(1))
EEE = (0pe T X)(6e(1) (19)
is equivalent to the following time-dependent linear equation on T\ P:
du(t) -
d(t = (Tg,°E°0p° T (nhX ° T,,0)(v(?)). (20)

The solutions v(t) and 6c(t) determine each other by v(t) = 1, ,(5c(2)).
Proof. Let v(t) = 1o (6c(t)). By (15) and (23) of Section 2 we have

d d d{é
L2 o6 = 0, Vi 80 = (oD (FHD).
and ‘

(t0,,° B0 0p° T (nX © T,,0)(V(1)) = (T0,,° B) - ((0p° T (nX)(Sc(2)).
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Thus, if (19) holds, (20) is clearly satisfied. Conversely, if (20) holds, since 7, is
an isomorphism, d(Sc(t))/dt — ((0p° T, X)(8c(t))) is horizontal. On the other
hand, since Ttp°0p = T7p and Trpo TX = X o Tp, we have

d(o
Ter( 052~ 0o T X)(Oe(0) = 5 (50 8)0) = X (1= 3)O)

_de(t)
Tt

i.e. d(6c(t))/dt — (op° T, X)(8c(2)) is vertical and therefore (19) holds. O

—X(c(0)) =0,

Remark. Let K be a conserved quantity for X. Using the notation of
Proposition 6.3, dK(c(#)) - 6c(¢) = dK(c()) - T, ov(¢) is constant in ¢ for 6c a
solution of (19) or equivalently v(z) a solution of (20). Indeed, if F, is the flow of
Xy, then 6c(t) = T,F, . v(0) so taking the derivative of Ko F, = K gives

dK(c(0)) - v(0) = dK(c(2)) - T.)F; - v(0) = dK(c(¥)) - v(?).

6E. Let (P, w) be a symplectic manifold. Proposition 6.3 shows how the first
variation equation along an integral curve c(f) of the Hamiltonian vector field X,
is equivalent to an equation on T, P which carries a (weak) symplectic structure,
namely @(c(0)): T,P X T.y)P—>R. In general, this equation will not be
Hamiltonian relative to w(c(0))unless some additional conditions are imposed on
the affine connection V. We shall assume from now on that V is a symplectic
connection, i.e. the parallel transport operator 7, ,: T,\P— T, P is a symplectic
isomorphism. In Section 4 we saw how any linear connection on P induces a
symplectic connection and in Section 5 we constructed such symplectic connec-
ticns on T*G, for a Lie group G.

ProposITION 6.4. In the notations of Proposition 6.3, let
Z,('U) = (1:0,,‘3500'130 c(t)XHort,O)(v)' (21)

Equation (20) for X = Xy is Hamiltonian relative to w(c(0)) and the time-
dependent function #(v, t) on T P given by

H(v, t) =3w(c(0))(Zv, v) (22)
=_1dH (t.,0v) - hor,,, (7,0 V) + %w(c(t))(TorC(,) (¢(®), T.0v), T ov), (23)

where H: TP—R is defined by H(v)=—dH(p)-v for ve T,P. In local
coordinates,

H(u(t), u, = %DZH(u(t))(Tt,O ou, T0 ou) — %DH(u(t)) : Yu(t)(rt,o Ou, 1,9 Ou)
+ %w(u(t))(Toru(,) (d(t): T:0 6“): Tr0 6”)’ (24)

where u(t) is the local respresentation of c(t), v, is the Christoffel map of the
connection, and Tor is its torsion.

Proof. Since Z,: T P — P is a linear continuous operator on TP, equation
(20) is Hamiltonian if and only if Z, is w(c(0))-skew; in this case the
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éqrresponding Hamiltonian function is given by (22). Thus, proving the first part
of the proposition is equivalent to verifying the identity

w(c(0))(Zu, v) + w(c(0))(u, Zv)=0 (25)
for all u, v € T)P. To prove (25) we use:

Lemma 6.5. If E is the connector of a symplectic connection on P, then
BoopoT,Xpy is w(p)-skew for any p € P.

Proof. Proceeding locally, for X, Y e (P), write X(u)=(u, 5(u)), Y(u)=
(u, n(u)) in a local chart so that
(VxY)(u) =Dn(u) - &(u) + v.(5u), n(u)) (26)
for some bilinear continuous map y,. Write the condition
X[w(Y, Z)l= o(VxY, Z) + o(Y, VxZ)

defining a symplectic connection for constant vector fields X(u)=(u, e,),
Y(u) = (4, ), Z(u) = (u, ;) to get by (26),

(Daw(u) - e))(ez, e3) = o(u)(v.(er, €2), €3) + w(u)(es, vu(er, €3)). (27)
On the other hand, if Xy(u) = (u, E(u)\) and F, is its flow, then F;w = w, i.e.
(F(u)))(DF(u) - e;, DE(u) - €2) = w(u)(e1, €2)

for any e,, e,. Taking the time derivative at =0 of this relation and taking into
account that
dF(u)

T B

we get
(Do) - E(u))(er; €2) + w(u)(DE(M) - &1, €2) + w(u)(ey, DE(u) - €,) =0. (28)
Finally, since E(u, #, du, 6i) = (u, o6u + y,(ou, 1)) by (16) of Section 2, we get
(B0 0po TX )t ) = (1, DE) - s + y,(E(w), ). (29)
Therefore, by (27), (28), and (29), we get
w)DEW) - i + v,(§(u), &), ¥) + 0 )@, DEw) - 0 + v.(§(w), V)
= 0(u)(DE®w) - u, v) + o(u)(w, DEw) - 0) + wu)(r.(5(u), &), V)
+ o), v.(§(u) - 7))
=—(Dw(u) - E)@@, v) + (Do(u) - Eu))@, v)=0,
which proves Lemma 6.5. '

The proof of formula (25) is now immediate. By Lemma 6.5 and the fact that
Ty, = T, is symplectic, we get for any u, v € T, P:

w(c(0))(Zu, v) = o(c(O))((E° 0p° Te(yXu© T0)i, Trol)
= —(c()) (T, (E° 0p° TeyXp° T,0)V)
=—o(c(0))(u, (10,,°E°0p° T (1, Xno° T, 0)v) = —w(c(0))(u, Zv).
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To prove formulae (23) and (24) we proceed locally. Let (u, &) denote, as usual
the chart expression of a vector in TP. By (29) and (27), we get

w(u)(Eeopo TXy)(u, i), 1)
= 0@)DEu) - i + v.(§(u), u), u)
= 0u)(DEw) - &, u) + o(u)(v.(5w), 1), &)
=D(0()(E(), W)w) - it — (Dw(u) - 1)(E(u), &) + oU)(7.(E(w), &), i)
=DDH() - u)u) - 4 — w()(r.(4, §@)), &) — o(W)(Eu), v.(i, i)
+ o)(v.(8(w), u), i)
=D?H(u)(t, 1) = DH(W) - v, (4, &) + 0 u)(y.(E(w), &) — v.(4, E@)), i)
=D’H(u)(u, ) — DH(u) - v,(i, 1)
+ w(u)(Tor, (5(u), i), u) (which proves (24))
=—DH(u, i) -horg, 4 (4, i) + w(u)(Tor, (§(u), 0), ),

since the local expression of the horizontal lift is hor, ;) (4, 0) = (u, i, ¥,
—v.(7, u)). Thus we have shown that

o(p)(E° 0p° T,Xp)(v), v) = —~dH(v) - hor, v + w(p)(Tor, (Xu(p), v), v) (30)
for v € T, P. Therefore, if v € TP, we have
w(c(O))(Z,v, 'U) = w(c(t))((E °0Op° c(t)XH° Tt,O)U: Tt,OU)
= —dA(1,0v) - hor,, , (7,0v) + 0(c(t))(Tor,q, (&(t), T,), T,ov)
proving (23). O

Remark. 'By the remark in Section 6D, if {H, K} =0, then dK(c(?)) . T, Ov(t) is
constant on the flow of the time- dependent Hamiltonian vector field Z, given by

(21).

b

7. First variation equations: the Lie—Poisson case

Here we consider the first variation equation for a Hamiltonian system in a
Lie-Poisson space. We start with an invariant Hamiltonian system on T*G =
G X g*, apply the considerations of Section 6 and then re-express everything on

8"

7A. Let G be a Lie group, g its Lie algebra and endow the dual g* of g with the
(—)Lie-Poisson structure .

F e == [ 5, ).

_—, ' 1
o1’ o (1)
Then g* is the reduction of T*G by the lift of the left translation of G on itself.
Hamilton’s equations for H: ¢*— R are given by

du
ar = ad 3p15,4(1), )
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where ad&: g— g is the adjoint representation (ad&)(n) = [&, n] and ad}: g*— g*
is its dual. We shall deal in all that follows exclusively with g* and shall trivialise
T*G as G X g* by left translations. At the end, we shall simply formulate the
results for the (+)Lie—Poisson structure and right trivialisations.
Let Jg: T*G — ¢* be the momentum map of right translation by elements of
G,
Jr(a,)=T:L,(a,), for a,eT,G. 3)

Its expression in the left trivialisation of T*G is therefore simply the projection
“on the second factor

P28, w) =1, 4
which is therefore a Poisson map from (G X g%, w3) to g%, where wp is given by
(14L) of Section 5. Thus the collective Hamiltonian H: G X g*— R defined by

A(g, p)=H(u) 5)

for H: g* — R has integral curves (g(t), u(?)) projecting by p, to solutions of (2),
i.e. u(t) satisfies (2). The reconstruction of the solution g(¢) is very simple and
follows from general considerations (see [2, Chapter 4], and [29]), namely g(¢)
satisfies the differential equation

50 oH

=T.Lyy——-
dt € g()éﬂ(t) (6)
We shall give below a direct proof, i.e. we shall check that
oH ~ OH
wB(g) M)((ELg_ ’ adéH/ﬁu “’) » (U, V)> = dH(g: M) . ('U, V) = <V’ _>, (7)
ou Su
the last equality follows from (5). By (14L) of Section 5 we get
oH
wB(gJ M)((T‘el‘gé_“ ) adgH/éu“’) ’ (Uy V))
" oH oH
= <—ad6H/6p_y’) TZng"U> + <V, (S_H> + <M’) [Kﬂ_ » Ting*'U]>
SH oH 6H
= (S~ o [ B ]+ o [ 5 )
and (7) is proved. We summarise:
ProrositioN 7.1L. The Lie—Poisson system
du(t
WO adnuntt), 1) = o (8L)

for the Hamiltonian H:g*—R is equivalent to the Hamiltonian system on
(G X g*) (1)3)

dg(r) O0H  du(t)
7,= ’Te g(t) % s 7 = adzHlﬁu.u(t)) 8(0) = 8o> ‘LL(O) = Ho (9L)

for the collective Hamiltonian H: G X ¢*— R, H(g, u) = H(u).
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Similarly, we get
ProposiTioN 7.1R. The Lie—Poisson system

d—’:igt‘) = —ad 3y s,u(t), - 1(0) = po o (8R)

for the Hamiltonian H:g¢i— R is equivalent to the Hamiltonian system on
(G X g*x C()s)

dg(t OoH  du(t .
—% = TeRg(t) m ’ _dt—) = fadaH/au.u(t), g(0)=go, u(0) = po (9R)

for the collective Hamiltonian H: G X ¢*— R, H(g, u) = H(u).
Since we shall linearise about a given solution of (8L) or (8R), we shall always

take in what follows the initial condition of (9L) and (9R) to be (e, po). To
compute the first variation-equation of (9L) and (9R) we need the expression of
the canonical involution of the double tangent bundle of T*G in the left (and
right) trivialisation.

7B. If P is a manifold, recall that the canonical involution op: TTP— TTP is
d
p (t: &) )) = .

gl cn t)
(

where p(t,s) is a smooth function of two variables defined in an open
neighbourhood of the origin in R? with values in P. If we take P =G, a Lie
group, then (A X id)°TA: TTG— G X g X g X g is a diffeomorphism; as usual, the
base point of a vector w € T,(TG) shows up in the first and third factors, so we
correct this by composing with the involution o of G X g X g X g switching the
second and third factors. We get thus a diffeomorphism o (A X id) e TA relative to
which the canonical involution o conjugates to

0, =0°(AXid)oTAeogeTA o (A7 X id)o 0 !; (11)
id: g X g— ¢ X g denotes the identity map and A: TG — G X g the trivialisation by
left translations (see equation (1) in Section 5). The curve s+ g exp s& (defined

for s near zero) has tangent vector equal to T,L,E at s =0. Thus, we express an
arbitrary tangent vector to TTG at T,L,§ as

=2l 2 swewszo, 12)

where g(¢) and &(t) are curves in G and g, respectively; g(0)=g, £(0)=E&.
Therefore

p(t ), (10)

t=0

=0ds|s—0

(0 (A X id)o TA)(V) = (g° (A X id)) - dﬁt y )L(% _s@exp s§(t)>
= (oo @xid) - G| ML E0)
=(@-axid)- 4| ©0.&0)

=(0°(A xid))(g'(0), &, £'(0)) = o(g, T,L,-g"(0), §, &' (0)),
=(8 & TyLyg'(0), £'(0))
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‘so that denoting

£i=8 =T, L,g'(0), and $3=E'(0), (13)
we have
d
(TA " e (A" xid)o 07 (g, &y, &a, E3) = &l s s=0g(t) expsE(t). (14)

Now we can compute explicitly o,. We have by (10), (11), and (14),

0,8, 81, 8o, C3)=(0°(Axld)°TA°UG)'Et s
=0

. g(1) exp s&(t)

=(oc(Axid)eTh) - —

Gl s ewsz@)

t=0

d
d

‘ d
= (0o (A xid)=Th) - —

d
(Tchpsgg'(0)+ L, 2 expsE(t))
5=0 dtl,—o

=(a°(}ind)).d—i

expsE())

d
A(TRexpsgg’(O) +TL,—
$=0 dt

t=0

= (0o (A X id)) -

dsis=o
= (oo (A X id)) -

’ d
(g exp s§, TLexp(_SE)g—l<TRexpsgg’(O) +TL, Z

expsE()) )

t=0

ds

(g exp s&, Adeyy(—se) T, L—1g'(0) + TL

exp 5E()

d
exp(=s8) 1

5=0 =0

=(0o(A X id)) - (YLLgE, T,L, 1g'(0), d—‘i

o Adexv(—s"s)]:eLg"g,(O) :

5

d
+% i TLyp(—sgy° (T;e €xp) - SE’(0)> .
However,
d
E o Adexp(—sE)Tng‘lg,(O) = [L‘:Lg‘lg’(o)) E]

and

(Tl’exp(—sE)o I;E CXP) * 5'(0) = T;"g'(Lexp(—SE) °CXP) . El(()) = EI(O) + O(S)
so that

7 ds
Therefore by (13),
04(8, &1, £z, &3) = (00 (A Xid)) - (T.LGE, T,Ly-1g'(0)), [T,L, ' (0), E] + £'(0))
=0(g & TyLyg'(0), [T,L,-g'(0), E] + &'(0))
= (8 &2, &1, [L2 &i] + 83).

-0 (TLexp(—s§)° sE CXp) : (SEI(O)) = E’(O)

s=
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One proceeds similarly to compute o,, the canonical involution in the right
trivialisation. We have proved the following proposition:

ProposiTioN 7.2. The canonical involutions og: TTG— TTG in the left and
right trivialisations have the expressions

ox(g, €1, &2, E3) =(8, &2, &1, &3 —[C1, C2]) (15L)
Up(g, €1, 82, 83) =1(g, 82, §1, G5+ 81, Gal) (15R)
forgeG, &y, 8, L€
Endowing G X g* with the direct product Lie group structure, we get:

CoroLLARY 7.3. The canonical involution Ogxg: TT(G X g*)— TT(G X g*)
in the left and right trivialisations has the expressions
0:(8, 1, &1, V1, &2, V2, 83, va) = (& 1, §a, V2, G, Vi, 83— (61, Ga), va)  (16L)
058, 1, &1, v1, 82y V2, 83, v3) = (&, 1, 82, V2, 81, vy, 83+ (81, G2l va)  (16R)
forgeG, b1, &, E3€8; 14, v, V2, V3E€8™
In this corollary and what follows below, 4, p: T(G X g )—> G Xg*XgXg*

denote the left and right trivialisations of the tangent bundle of the direct product
Lie group G X g%, ¢* endowed with the additive structure.

7C. Next, we shall determine the first variation equations for (9L) and (9R),
abstractly given by Proposition 6.2. Denote by Xz the Hamiltonian vector field
on G X g* given by

OH
Xﬁ(g) .u’) = (Tz'»:Lga ’ ad;H/éuM) (17L)

for H(g, p) = H(u), H: * — R a given function. The first variation vector field is
given by Ogxg°TXi T(G X g*)—>TT(G X g*). Left trivialising all vector
bundies, define X;: G Xg* X gXg*>G Xg* XgXg*XgXg*XgXg* by
Xi=o0°(AXid)oTAe TXz°47", (18L)

where id is the identity mapping of g X g* X ¢ X ¢* and o is the involution on
GXg*XgXg*XgXg*XgXg* switching the pairs formed by the third and
fourth factors and by the fifth and sixth factors; as usual, this ensures that the
base point is given by the first four factors. The linearisation in the left
trivialisation is thus given by

X5:=2(0gxgo TXg) = (A7 X id)o 00 05° X;. (19L)
We shall determine the expression of X} explicitly. By (18L),
Xig, & v)=(0°(AXid)o TAo TXz)T,L.E, u, v)

=(a°(ixid))-[%

(AeXgz)(g exp €&, u + €v)
=0

E

- . d H . '
=(o°(A xid)) -E’Ezo <g exp €&, u + ev, W » Ad 56+ evy (P + £V)>
6H d oH d .
= O(g, u & v, o’ ad3psult, el oot ev)’ de oo ad 316 (u+eny(h + 8V)>-
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'To-compute the last two terms we proceed in the following way. Take the

——| - -derivative of the defining relation

dS e=0
O0H
P IEE—— =DH(u+ .
<6(u +ev)’ 6,u> (u+ev)-ou
"~ to get P SH
- - =D?
A <ds em0 Ot + £v)’ 6u> R, ow),
whence 4 SH
. d) _oH ., .
delo_o5(u + 2v) Hp)(v, ), (20)

thinking of DZH(M)(V, -): 8*— R as an element of g; in infinite dimensions this
restricts the class of functions H one can use, or one must enlarge the function
spaces to accommodate this situation. The Leibniz rule and (20) give

d

E adﬁmamm)(u +ev)= ad;H/éuv + adik)zH(y)(v,-).u (21)

=0

and we get

OH
Xi(g: ‘U,, g; V) = (g; .u; a) adgH/éu“» E; v, DZH(M)(V, ')’ adﬁH/éuv'{- ad;kﬁH(u)(v, ).u'>
(22L)

Therefore, the first variation vector field X} in the left trivialisation is determined
by (19L), (16L), and (22L) as

, SH 8H
Xig, w, & v)= (nLga, b ad3sut, & v, DPH)(v, ) +[ 6—u]’

ad§H/6”'V + ad;:k)ZH(u)(v,.)[l> € ngG X 7;‘5* X T(§,v)(g X 5*) (23L)

The relevent formulae for right trivialisations are

o0H
Xilg, w)= (TR, 3 ~adiuaun) (17R)
X;=00(pxid)eTpeTXgop~! . (18R)
X5:=pu(0gxg 2 TXg) = (p7' Xid)e 600,50 X,. (19R)
Xi)(g’ u, E, V) ‘
_ 6H % 2 * %
=& M S;; _adéH/(Su“) g; v, D H(”)(Vy '); _adéHléuV - adDzH(u)(V,-)M (22R)
, SH SH
Xﬁ(g) U, §, V) = (nRga_‘u') —adzHléu.u) E: v, DZH(“)(V’ .) - I:EJ 6_H] ’

- ad;H/au'V - ad::;ZH(“)(v’ )ﬂ) € T;,G X 7;;!]* X T(E,v)(g X g*). (23R)



364 J. E. Marsden, T. Ratiu and G. Raugel
Proposition 6.2 now implies the following proposition:

PrOPOSITION 7.4. Denote elements of G X g* by (g, u) and of T(GXg*)=
TG X g* X g* by (98, p, o).

() Then A(8g, u, 6u)=(g, u, 00, du)e G X g* X g X g* for og=T.L, 560
and the symplectic structure ;= A.wpy, for wp given by (5.14L) and its tangent
symplectic structure wgr given by (6.13L) has the expression

0x(g, 1, 00, du)((ug, o', L', BY), (ug, o7, 2, B7)
= —(a', T,Lg-wz) + (o, T,Lgug) + (p, [TLy-1ttg, ToLg-ug))
+2(p, [, &%) + (&', [60, L))
—(a?, (80, £']) + (B &) — (B", £*).
The vector field on G X g* X § X g* given by (23L), i.e.
Xi(g, pu, 60, du)

OoH
=<EL

oH
gé—‘u') i, ad:;H/éu”: 69) 6“’ DZH(H')((SM'; ') + [66) _])

ou
ad 56 O + ad gy op, -)M) € TG X T,8" X Ts0,6u)(8 X 8%)

is Hamiltonian reltive to w; and the Hamiltonian function
N 6H :
Ate. 1, 50, 50 =~ (3, ou). 24)
(i) The same statement holds for w;=p.wsr, for p(dg, u, du)=
(g, u, 60, 6u), 8g = T.R, 6O, and ws given by (5.14R), i.e.
wﬁ(g’ U, 69) 6”)((“;’ a/l) Cl, ﬁl)’ (”g: a,z’ CZ: ﬁz))
= —(a", T,R,-w?) + (o, TR -uy) — (p, [TR -y, T,R,-ug))
_2<.u7 [Cly C2]> - <(Il, [69’ C2]> + <CV2, [69, C1]> + <ﬂ2’ C1> - <ﬁ1v §2>
The vector field on G X g* X g X §* given by (23R), i.e.
X3(g, 1, 6O, ou)
6H oH
= (rgRga;; H, _adzH/Euu’ 66; 6.“'; DZH(”)((SM) ) - [6@, 6_“—] ’
—ad3py5,0u — adEZH(u)(au,~)> € T,G X T,8* X Tis0,5.,(8 X §7)

is Hamiltonian relative to w; and the Hamiltonian function (24).

The proposition has been proved, except for the explicit formulae for ©; and
w,. We present below the key steps in the derivation of the formula for ;. Let:
w, be the canonical symplectic structure on g X g* and let

A (g, 1, E)eT*G X g* X g (g, T: Lo, u, §) e G Xg* Xg* Xg
be the left trivialisation of T*(G X g*) thought of as the cotangent bundle of the
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- direct product Lie group G Xg*. Letting w,=A,0,, (6.13) gives w;=
(B wo=(AcwhoA )*ws. For any u, uleT,G and pu,u', v, v'eg®,
(5.14L) gives :

wp(ug, 1, v) -« (ug, B, v') = —(v, TL-uy) + (v', T,L,-u,)
-y [ Lty T,Ly-utl])
=(TgLg-(ad7, b — V), up) + (v, T,R,-u,)
and hence
05ty 1, V) = (T3 L0z, gt — V), 1ty TRy hy).
Therefore, by the definition of A and A (in Section 5C) we get

(Acwheod™')(g, u, & v)=(g adi—v, u, &),
T, eny(Aewhol” Yy, @, &, B) = (u,, ad}p +adfa— B, a, ).
By (5.14L) applied to the direct product group G X g* we get

wAg, 1, v, E)(ug, o', B, &Y, (U3, o2, B, &)
= "‘(ﬁla Y;;Lg‘lu§> + <ﬁ2’ Tng‘lusl'> + (V’ [Tng‘lu;’ T;)’Lfg‘lugp
—(a?, ') +(a', ).
Therefore,
wz(g, u &, V)((ué! 0(1’ Clr ﬁl)! (ué’ wzr gzr ﬁz)) = wA(g’ adg“ -V, U, E) :
((ug, adfrp + adia’ — B, o', £Y), (U2, adbop + adia® — B2, a2, &%)
= —(a, T,Lwu}) +{a? T,Ly-uy) + {u, [T,L-ul, T,L,-u2])
—(adfp +adia® — B, ') + (adhp + adia’ — B, C2),

which gives the formula in the proposition if we choose & = 60 and v = dp.

7D. Recall the following facts from Section 6. If (P, @) is a symplectic manifold
endowed with a symplectic connection V, Proposition 6.4 states that the first
variation equation along an integral curve c(¢) of the Hamiltonian vector field X,
is equivalent to the following equation on the symplectic Banach space T, ,P:

du(r)

= e Eeope T Xy o 1,0)(v(0) = Z,(v(®)), (29

where 7,0: TP is the parallel transport operator of V along c(f) and
E: TTP— TP is the connector; E(TY - X)=V,Y for X, Y € #(P). Moreover,
(25) is Hamiltonian relative to the given symplectic structure on 7,,P and the
Hamiltonian function

H(t, v) = Lo (c(0))(Zw, v). (26)

We shall explicitly determine the first variation equations (25) on a fixed tangent
space and its Hamiltonian function (26) for case (P, w) = (G X g*, wz) and V the
symplectic connections given in Proposition 5.3L by (5.16L) and (5.19L).
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Fix an integral curve (g(¢), u(¢)) of the vector field X; € (G X g*) given by
(9L) with initial conditions g(0)=e, u(0)=u,, where H(g, u)=H(u) for
H: g*— R a given function. Denoting by

E;=A0EoTi 1 TG Xg* Xg* XgXg* XgXg*— G Xg* XgXg* (27L)
the connector in the left trivialisation of T(G X g*), (19L) gives

":'(I)"to E ° aGXg* o T(g(t),u(t))XH ° rf"o = (io 17,{"0)—1 ° EXOX%O (x° T{:()). (28L) .

To express (25) we calculate E; and A° 71, for the connections given by (5.16L) -

and (5.19L).
We begin with E;. First, we make the following observation: if H is a Lie
: d d
group, ve T,H, and V € T,,(TH), then V =2 % hexp t& exps(n +t§)
=0 s=0

where (o°(A X id)> TAYV) = (h, n, §, {) and in particular v =T,L,n. Thus
V= EXn - X&(h) + VertX"(h) X(,-(h), (29)

where verty, ;) X¢(h) is the vertical lift of X;(h) to Tx, ) (TH); see (2.19). Thus,
if E; is the connector of any connection on H, Section 2C gives

Zu(V) = (Ve X, )(h) + X (). (30)

Secondly, let us use these remarks with H = G X ¢* endowed with the direct
product structure. Thus, if V € TT(G X g*) is such that

(0’0(}_— X id)o TA_)(V) = (gy .u’: E: V) Cl) a/I) CZ) (Yz) (31L)
forgeG, & &, {,en, and u, v, oy, o, € g%, we have
L“_":‘(‘/) = (VX(Cl.al)X(EyV))(g’ H’) + X(Cz,a’z)(g’ Au’)' (32L)

For the connections of Proposition 5.3L we therefore get by (31L), (27L), and
(32L);

ENTLel1, 1, @1, & ¥, by, ) = (Eio (A7 X id)o 07 )g, 1, &, v, L1, a1, £z, @)
= (Ez° TA)(V) = (A-E)(V)
= Z(VX(;I,M)X(g,v))(g’ 1) + MX 2 0(85 1))
which for the connection given by (5.16L) yields
EAT.L,C, 1y a1, &, v, 8oy ) =7‘(0g’ u, —%ad%‘al) + (g u, G2, @2)
=g, 2, @2~ dadtar) (33L)
and for the connections given by (5.19L): 7

Ei(];LgCh ‘Ll., @y, ‘f::) v, CZ; C¥2) )
=(g, w, L2+ 3[E1, &), @, — 3(adi v + adia)) + s(adf adf + adfadf )(n)). (34L)
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Thus, for the connection (5.16L) we have by (28L), (33L), and (5.31L),
(A2 Z,227")(g(0), u(0), &(1), V(1))
=(A°15,°B0 Ogxg© T, wanXe © Teo° A~ )(g(0), 1(0), E(2), v(¢))
=(Aet5,0 A7) Bre X o (Ao wio0A7)(g(0), #(0), £(1), v(¥))
=((A°7g:°A7") o Ere X )(g (1), u(t), E(), 3ad i (u(t) — u(0)) + v(1))

3 To1y = 6H ®
.= ((AoTg,0A™")o 5X)<7;Lg(t) m > w(8), ad 5 psuin(1(t)), (1),
badZ (0 = w(0) + v(0), D*H(u(8)) Gad (1 (t) — 1(0)) + ¥(2) -
+ [0, 505 ]» oo Gadiu® — o) + v()

+_adik)2H(g(z))((i)adg(,)(u(t)—u(O))+v(t), (1))
= (Aotg,2 A7) (g ), u(t), D*H(u(t))Gad e, (u(t) — n(0)) + v(t), -)

+ [0, 5005 ] 3o Gadto(u) - ) + v(0)

+ adl*)zH(u(t))((%)adg(,)(u(t)—u(O))+v(t), () — %ad’ém(adﬁmaum(u(t))))
= (g(0), u(0), D*H(u(1))(Gadt,(u(t) — u(0)) + v(t), -)

[&( ) 6 (t)] adzHléu(:)V(t) - %adg(t)adngau(t)H(O)

+ 200D ) DadgnO o) +vo), () + 1(0)).

The Hamiltonian function of this system is given by (26), i.e. #,(t, & v) =

105(8(0), é‘(O))((JL 2Z,2A)(E, v), (§, v)), where wg(g(0), £(0)) is thought of as
acting on g X g* after identification of 7T,G with g via left translation. Therefore
we get

70,5 =3 (v [6575])

+DH(EO) + a3 ) - w0, v+ (), [[ 8 20, &)

+H00) ~ 1), IDPHEO)Y + 3adi(1(0) - 10), ), &)
= ADPH(uO)(v + Jad}(u(0) = w(0), v+ 3ad2(u()) ~ w(0)))
+DH(u() - adv ~ JDH(u()) - adfadiu(0).

' ProposiTiON 7.5L. The linearised equations of (9L) along a solution (g(t), u(t))

are the following Hamiltonian system on (g X g%, wz(g(0), u(0))),
10
% © = D) dad i)~ WO +¥(), )+ [ 50, o |

v . 35L
@ (t) = ad 315,y v(t) — 2ad . yad strounyk(0) (35L)

+ 320240~ Dadgt - +vio, HH(E) + 1 (0)),



368 J. E. Marsden, T. Ratiu and G. Raugel
with initial conditions (§(0), v(0)) e g X g*. The Hamiltonian function of this
system is .
#.(t, & v) = D’H(u(O))(v + 2adi(u(t) — u(0)), v + 3adi(u() — u(0)))
+DH(u() - adgv — §DH(u() - adtadiu(0).  (36L)
The symplectic structure is time independent and given by (5.21), i.e.
wp(g(0), p(0)), (8", v'), (8%, v)) = (v*, &") — (v}, &) + (u(0), [§', &]). (37L)

Denote elements of T(g,M)(GXg*) by (8p, u, du). Then A(dg, u, Sp) =
(g, 60O, u, 6u) where 6g=T.L,00 for 6O@ecq The relationship between
(60, 6u) and (&, v) is.given by parallel transport along the solution (g(t), u(t))
relative to the connection (5.16L), i.e. (5.31L) gives in this case

§ =00, ou = ad5o(u(t) — n(0) + v. (38L)

To obtain the linearised equations in the original variables (6O, du) one
replaces (5, v) in Proposition 7.4 by their expressions §=60, v=06u—
Lad}o(p — p(0)).

Return to Proposition 7.4 in the variables (&, v). The magnetic term
(u(0), [E', E]) in (37L) can be eliminated by a momentum shift as in classical
electrodynamics. Namely, consider the time independent isomorphisms of g X g*
given by

W.(§ v,) = (&, v, +2adzp(0)):=(&, v). (39L)
Then we get
(PLw5(8(0), nONN(E, v:), (8% D))
= wp(g(0), u(0)((E, v; +3adiip(0)), (&2, vi + 3ad £1(0)))
= (v} +3ad5pu(0), ') — (v; + 2adu(0), &%) + (u(0), [&', &%)
= (v, &) — (v;, &),

i.e. W, pulls back wz(g(0), u(0)) to the canonical symplectic form w, on g X g*.
The Hamiltonian (36L) transforms by ¥, to

%g,(t’ 5, Vs) = %L(t’ ‘f::» v, + EadEAu(O))
=iD’H(u())(v, + 3adiu(t), v, + %adzu(t))‘ +DH(u(t)) . adfv,.

(40L)
Finally, the linearised equations (35L) become
d&(t) 6H
L= DHO) 0 + dadion ), )+ [ 80, 7o .
dv(t) ' :
dt( = ad 3165 Vs () + 20A D280+ Jadzop (o), H(E)- (41L)

Define 8,u = v, so that by (38L) and (39L) we get
6.\'“ =V = 6.” - %adzeﬂ(t) (42L)



Symplectic connections and the linearisation of Hamiltonian systems 369
We can now formulate the following proposition:

ProposiTION 7.6. Let 1(0g, p, 6u) = (g, 60O, u, du), i.e. 6g=T,L,80O. Then
the linearised equations of (9L) along a solution (g(t), u(t))

o
458 - D H(u())(op + bad3on(), )+ 56, 6—%]
d d,u

a = ad 3 spq) Osth + %adi*)zH(u(t))(vx+%ad§eu(t), (1)

~ are a Hamiltonian system in (§ X §*, w,) with Hamiltonian function
H1(t, 60, o,u) =3DH(u(t)) (1 + 2ad30u(t), O, + zad50u(t))
+DH(u(r)) - adze bp.

The relation between (60, Ou) and (80O, O,u) is given by the time dependent
transformation 6,u = Su — 3adjeu(t).

If one uses the torsion-free connection (5.19L), then the linearised eqhations are
more complicated. Let (7(¢), ¥(¢)) be the solution of the system (5.23L), i.e. let

(&), u(®), 7(2), #(8)) = (X° 7562 271)(8(0), u(0), n(®), v(1)).
As before (i.e. using (28L), (33L), and (5.33L)), we get the linearised equations

(0.5 0) = et 1) (0, w0, PHEOEO, )43 [0, 575,
2_Zad6H/6u(t)v(t) + ad Do), () — %ad;;(t)adngﬁu(t)u(t)
+ ladSsuondion(s)), (@1n)

which are solved by finding the inverse of the parallel transport.
The Hamiltonian can be determined by using formula (6.21). Since the
connection is symplectic, formula (6.21) can also be written as

H(v, 1) =3w(c(®))(Ee0p° T,y Xu© T,0)(V), T.ov), where veT, P (42)
Using formula (38) as well as (23L), (34L), and (5.14L) (see also (6.23)), we
obtain: |
K1, & v) =3D’H(u(®))(7(t), 7(1)) + sDH(u(1)) - (ad(,¥(t) — 3adEadE,u(t))

(43L)
where
(), 1), £@), (1)) = (Ao 750> A71)(g(0), u(0), §, v),

that is, (E(¢), ¥(¢)) is the solution of the system (5.33L) with initial conditions
(& v).

For right-invariant systems and the connections given by Proposition 5.3R, the
relevant formulae are:
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which for the connection (5.16R) yields
Es(LRE, 1, a1, &, v, &o, 05) = (8, 1, &3, 0y + 30day) (33R)
and for the connection (5.19R) yields
Es(T.REy, 1, a1, &, v, §a, an) = (g, 1, &, — 3[&4, €, o + 3(ad} v + adia)
+ $(adf adf + adfad})(p)). (34R)

ProrosiTiON 7.5R. The linearised equations of (9R) relative to the connection
(5.16R) are:

d
% 0= DHO) a5~ w0) + ¥(), ) = 80 55 |

dv "
dat () = —ad5m5u V(L) — %ads(,)ad srrsn((0)) (35R)

1
=344 B2k (u () (- Dadgeu© - @)+ v, H (L) + 1(0)).

These equations are a Hamiltonian system on (g§Xg*, ws(g(0), u(0))) with
Hamiltonian function given by

s, & V) =3 (<2 [ & 52 |)+ DHEON ~Ladi ) - wO), 0
= H(u(0) = ), [8 DHEO) ~ Jad3(1(0) — u(0)), )

(o [ & 5,11)

= ID?H(u(1)) - (v — 3ad3(u(0) — 1(0)), v — Jad2(u(t) - w(0)))
~DH(u(t)) - adtv — SDH(u(?)) - adtadp(0). (36R)

The symplectic structure is time independent and given by

s(g(0), BO)(E", v'), (8 v?)) = (v, E') — (v, &) = (u(0), [€', E]). (37TR)

Let p(dg, u, 6u)=(g, 6O, u, 6u) for ég = T.R, 6O, 6O € g. The relationship
between (6O, 6u) and (&, v) is given by parallel translation along the solution
(g(2), u(t)) relative to the connection (5.16R), i.e. (5.13R) yields

£=00, du = —3ad3o(u(t) — u(0)) + v. (38R)
As before, the momentum shift ' '
Wr(E, vo) = (& v, — 2adip(0)):=(, v) (39R)

satisfies Wrws = @y, the canonical symplectic form on (g X g¢*), and transforms
#r given by (36R) to

gg;‘(t1 S’ Vs) = %DZH(“(t))(Vs - %adg,u(t)’ Vs — %ad;u'(t)) - DH(.u(t)) - ad;"s-
(40R)
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The linearised equations become

d
f (1) = DH(eO)~3adfoou(t) + v.(0), ) | 5, Tm]

1
—ad 311501y Vs(£) = 28dD2H (u () (- Yyadzop (v +vs(e), HH(E)- (41R)

Define 8,1 = v, so that by (38R) and (39R) we get
A Ot = v, = Op — sad3ou(t). (42R)
Note that (42L) and (42R) coincide.

ProrosITION 7.6R. Let p(6g, u, du)=(g, 60, u, éu), i.e. 6g =T,R, 6O. Then
the linearised equations of (9R) along a solution (g(¢), u(?)),

d 6@ oH
=D?*H(u(0))(d, - [5@ ]
d 6su
dt ad&H/(Su %adl*)zH(u(t))(ésu—%ad(’s"@u(t), ~)H’(t);

are a Hamiltonian system on (g X ¢*, ws) with Hamiltonian function
%?Q(tl 66’ 6s.u’) = %DZH(”(t))((ss.u - %adze.u(t), 6:“ - %adzeﬂ(t))
—DH(u(t)) . adze Sp.

The relation between (00O, 6u) and (8O, O,u) is given by the time-dependent
transformation S,u = 8y — 3adieu(t).

If one uses the torsion-free connection (5.19R), the linearised equations are
more complicated. Let (7(¢), ¥(¢)) be the solution of the system (5.33R), i.e. let

(1), w(®), 1), W) = (P °Ti0°p")(8(0), n(0), n(2), ¥(£)); then, proceeding as
before, we get the linearised equations

dn . dv ) _ o _ 1 O0H
— (@), @))=(potihe° 1.1<t, 1), D? ,-——[”t,—]
(G0 50) = @277 (80, w0, PHWOEO, ) =3 [ 10, 505
—3ad serouey V(1) — adpepueyee, I ()
—3ad;ad 3 psummu(t) + %ad§H/6u(t)ad;l;(t)nu(t)) , (41R)

which are solved by finding the inverse of the parallel transport. Using the
formula (38) as well as (23R), (34R) and (5.14R), it follows that the Hamiltonian
function of the above Hamiltonian system is given by

Hx(t, &, v) = 2D’H(u(0))(#(1), (1)) — 3DH(u(?)) - (adi,7(2) + 3adyadzq,u(t)),
(43R)

where (g(), u(2), E(), (D) = (B2 825 )(g(0), p(0), & v); that is, (£(0),
¥(t)) is the solution of the system (5.33R) with initial conditions (&, v).
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8. The Euler equations

In this section we apply the results of Section 7 to two examples. In the first
one, we consider the case of a single free rigid body and the second one is the
motion of an incompressible fluid. Both of these are instances of Euler equations,
but the details of the implementation of the theory are somewhat different, so we
give them both.

8A. The free rigid body

Here we take G =S0(3), g=4(3). Recall that L,A=UA for A and
U eSO(3), TLy(B)=UB for U e SO(3) and B €s0(3). The bracket is [A, B]=
AB — BA for A and B €40(3) and (A, B) =} trace (A”B) for A and B €s0(3). We
can identify so(3) with R> by the following Lie algebra isomorphism:

0 _U3 U2
v=(’U1, Vs, U3)'_)i)= Us 0 —U;
_U2 Ul O

Then ad,v=w X v for w and veR? and ad}IT=TIxw for w and I1eR3. If
pu =11, the Hamiltonian equation on R® in the (—)Lie—Poisson case can be
written as:
‘ dI1 )

o IIxVH with TI(0)=1II,. §))
The Lie-Poisson system (1) for the Hamiltonian H: R*~> R (considered as a
function of the body angular momentum II) is equivalent to the Hamiltonian
system on (SO(3) Xs¢(3), wp) given by

o _oH BH
oI, 4T,
dA = oH oH
—(t)=A()VH = A(¢ - 0 -
7 O=AOVA=A0 | S 5 |- 2a)
oM eH
an
ar (1) =[11(r), VH], (2b)

with T1(0) = Iy, and A(0) = A,.

The linearised equations along a given solution (A(¢), II(r)) completely left
trivialised as given by (7.23L) are the pair formed by the equations (2) together
with '
d
a7 60 = D*H(IK(¢))(S811, -) + 6O x VH(TI(¢)), ,
p (3a)
7 OT1 = S8I1 x VH(TI(z)) + IT X D*H(I1(t))(811, -),

where 80 = A~! §A. The conserved quantity for these equations that is induced
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by the spatial angular momentum s = AII (which is converved for (1)) equals

' 5= A(60 X IT + S8II). (4)
This follows from the remarks at the ends of Sections 6A and 6D. However,
d(8m)/dt = 0 can of course be checked directly using (3), (1) and A = A(VH)".

By Proposition 7.4, the equations (2), (3) are Hamiltonian on SO(3) X s0(3)* X
- 30(3) Xs0(3)* with Hamiltonian
H(A, T1, 8O, 6I1) = —VH(II(t)) - 611, (3b)

(which is time dependent) and symplectic structure
’ @(A, I1, 811, SIT)((Ax, o', 6O, 8I1Y), (Ax%, o2, 8@2 OIT%))
=—0" X+ 0% X +II- (x" x x?) + 211 - (8O' X 6©0?)
+0'- (60 X 50% — 0%+ (60 X 6O') + 6112 60" — 811" - $O~ 3¢o)

Next, we turn to the linearised equations written in the tangent space to the
initial condition (A(0), I1(0)) using a symplectic connection.

(a) Consider the connection (5.16L). For A €SO(3), a,v,neR3, define
Xw.my: SOB) x R*— TSOB) x R* X R*> by X,. (A, a)= (A0, a, n). Then the
determining condition (5.15L) is given by:

VX(u,n)X(W,m)(A’ a)=(0, a, ~3adn) = 0,a, —3n xw)= X©,-nxwr)(4, a). (4)
The parallel transport of A~'(A(0), II(0), v, n,) along the curve (g(), TI(r)) is
given by

TI,O(A(O)) H(O)) UO) nO) = (A(t), H(t), Uy, _ZL(H(t) - H(O)) X UO + nO)‘ (5)
From (7.35L), and recalling 1=y, the linearised equations of (2) along a solution
(g(®), 11(t)) are given by

% = D*H(TI(2)) - (3(TI(t) - TI(0)) X v(z) + n(r)) + v(r) x VH(TI(z)),
%= n(1) X VH(II(0) ~ 11(0) x VHI) x (1) ©

+ 3(I1(¢) + I1(0)) X D*H(T1(2)) - (B(T1() — TI(0)) X v(£) + n()),
where we have identified the form D’H(T1(¢))(3(I1(¢) — I1(0)) X v(¢) + n(z), -) on
R? with the vector that is denoted by D*H(II(t)) - (3(I1(¢) — TI(0)) X v(£) + n(r)).
The Hamiltonian function associated with (5) is given by (7.36L), i.e.
,(t, v, n) = ID’H(II())(n + 3(TI(¢) — I1(0)) X v, n + 3(TI(¢) — T1(0)) X v)
+DH(II(?)) - (n x v — 3(T1(0) X v) X v). @)
As we have seen in Proposition 7.6L, all of this can be simplified using a

momentum shift. Write 64 = A(6©)" and put §,IT= 6I1 — 4I1(¢) X 60. Then the
linearised equations become

o0 = DAHTO)G.I+ 1) X 50) + 60 X VH(II()),
d 8,11

dt

(8)
= 8,1 X VH(II(r)) + 3T1(¢) X D*H(TI(2))(8,IT + 311(¢) x 6©).
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They are Hamiltonian in R>x R relative to the canonical symplectic structure
and the time-dependent Hamiltonian

H1(t, 60, 6,IT) = D*H(TI(2))(6,IT + A11(¢) X 60, 6,11 + %H(t)‘x 060)
+ VH(II(Y)) - (8,11 X 60). )

In case of the free rigid body, the Hamiltonian has the expresssion H(IT) =
3I1. Q, where IQ=Tl, and I =diag (I, L, L), ,>0, i=1, 2, 3, is the matrix of
the moment of inertia tensor in a principal axis body frame. Therefore

DH(IT) - 6I1=Q - 5T1
and
DZH(H)((SHI, 6H2) = 1_1(61_11) . 6H2

Thus, the linearised equatiohs (3) in the variables 6O, SIT become

d
d—ta®=l‘1 S x 60 xQ,
4 (10)
56H=5HXQ+HXI_1 ST1.
These are Hamiltonian with
H(A, 11, 6O, 8I1) = —Q - 811 (11)

and symplectic structure given by (3c) above.
Performing a momentum shift, the linearised equations (8) and Hamiltonian
(9) become:

ProposiTion 8.1. Let 6A = A(0©)" € T,SO(3) and 6,I1= SI1—3TI(¢) X 6O,
where (A(t), II(t)) is a solution of the free rigid body equations. Let Q(t)=
I"'TI(¢). The linearised equations

% _ Iv—l((ssH + %H(t) X OIT) + 6O X Q(¢),
d 8,11 "
& 4I1(e) x 178,11+ 1T1(¢) X 60),

are Hamiltonian in R*>x R? relative to the canonical symplectzc structure and
Hamiltonian function

.1, 8O, 8,IT) = LI7'(8,IT + 1I1(£) X 8©) - (8,11 + 311(f) X 6O)

+Q(r) - (8,1 X 5O). (13)

(b) Consider the connection (5.17L). This connection is given by
VX(U m)X(w n)(g: a) = X((uxw)/Z a)(g) a) (14)
where 0= —3(n xv+mxXw)+¢((axXw)Xv+(axv)xw)). Parallel transport

of 17'(g(0), I1(0), w(0), n(O)) along the curve (g(t), I1(¢)) is given from (5. 33L)
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by solving
% +25() xw(H) =0,
930 X EO +T1) X w(e) )

+ () X w()) X &(1) + (TI(e) X E(1)) X w(1)) =0,

where &(t) = Tg(,)Lg(,)-lg(t). In this case, the linearised equations (7.37L) are
more complicated; their expression depends on the solution of (15). The
 Hamiltonian function is given by (7.39L), i.e.

¥, (t,v,n) = AD*H(II())(7, i) + 3DHII(6)) (7 X © — 3(T1(2) x D(t)) X ©(2)), (16)
where ~ _
(g(1), TI(), 0(t), (1)) = (A°Ti° 27 )(g(0), I1(0), v, n).

In the case of the rigid body, (16) becomes
Ko (t, v, n)=31""". 7 +3Q®). (A x v —3(TI() X D) X D).

8B. Incompressible fluid dynamics

The configuration space for ideal incompressible homogeneous fluid flow on a
compact oriented Riemannian manifold M (possibly) with smooth boundary dM
is the group G = B¢ff,(M) of volume preserving diffeomorphisms of M to itself.
The Lie algebra of D/, (M) is the space ¥, (M) of divergence free vector fields
on M which, at points of dM, are tangent to dM; we shall say that such vector
fields are parallel to M. The Euler equations for the spatial velocity field are

ou

rn + V,u = —gradp, ) 1)

divv=0, 2)
v.n=0. A3)

These equations should be augmented by an initial condition: v(x, 0) = vy(x), for
vy a given vector field in ¥4,(M). In equation (1) grad denotes the gradient
relative to a given Riemannian metric g on M and V,, is the covariant derivative of
the Levi—Civita connection. We shall denote by u the Riemannian volume of M
defining its orientation. The pressure p is implicitly determined from v by solving
the Neumann problem

3
Vp=—div(Vv), 2 =gV, n); )
the pressure p is uniquely determined up to a constant and V> =divegrad is the
Laplace—-Beltrami operator. Define the vorticity of v by w = dv®, where  is the
index lowering operation defined by g; thus w is an exact two-form. The inverse
of © will be denoted by . Using the identity

(£,0%% =V, v + 1 grad ||v||%, o)
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equation (1) has the equivalent expression

v’ .
—-+&v°=—d(p - v]). (6
ot
Applying d to (6) yields the equation of conservation of vorticity
dw
—+2,0=0.
5 T (M

Conversely, assume (7) holds. Then 3v®/3t + €,v" is a closed form. The Hodge
decomposition for manifolds with boundary gives

QM) =dQ* (M) ® {a@ e Q“(M) | i*(xa) =0, dar =0},

where * is the Hodge star operator on forms, & is the associated codifferential,
the sum is L*-orthogonal and i: 9M — M is the inclusion. Therefore, dv®/at +
2,0°=—dg + @, where da=0. However, by equation (7), da=0, i.e. « is
harmonic, and so is equal to zero by the boundary condition z*(* a) =0. Thus,
again using identity (5), we get b/t + (V,v)’ = —d(g + 1 ||v||®) which is
equivalent to (1) by calling p = ¢ + 3 ||v||> and applying the index raising operator
*. We have therefore shown that if @ = dv®, then (1) and (7) are equivalent under
the assumptions (2) and (3).

To close this circle of ideas, we show that the equation for v®, @ = dv®, can be
uniquely solved for v®. To simplify the exposition, let us assume that aM &.
Denote by A=déd + 6d the Laplace-de Rham operator on forms; recall that on
functions, A = —V2. Let ¢ be an arbitrary solution of Ay = @ and note that P is
determined only up to a harmonic two-form. But then &y is uniquely deter-
mined, so that, setting

v° =6y =06A""w, (8)
we note that dw = 0 implies that
0=dAy=d(dé + éd)y =d ddy = (d 6 + Sd)dy = Ady

i.e. dy is a harmonic three-form and in particular ddy = 0. Therefore, we get
from (8)

v’ =déy=doy+ddy=Ay=ow,

which shows that (8) is the unique solution of @ = dv®.

Concluding, the Euler equations are equivalent to the vorticity conservation
equation (7) with v given in terms of w by (8). Thus, we need to deal with the
system

Jw
Zre0=0,
o @

divv=0.

We shall recall below, following [21] the Hamiltonian structure of this system.
The dual ¥4,(M)* can be identified with the space of one-forms a such that
a® . n =0 (we shall denote them by Q}(M)) modulo exact one-forms. Indeed, the
Helmholtz decomposition of vector fields states that any Y e2(M) can be
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‘uniquely decomposed in an L>-orthogonal sum of a divergence free vector field Z
parallel to M and the gradient of a function f on M, ie. Y=Z+ gradf.
Therefore, for any X € ¥,(M) we have

fM (Y°, X)u= fMg(Z +gradf, X)u = fMg(Z, X)u

and the pairing on ;M) given by (Z, X)~ [, g(Z, X)u is weakly non-
degenerate. Thus, the only one-forms « vanishing on 24,(M) are the exact ones.

One can represent a class [a] € Q}(M)/dQ°(M) by the two-form da and the
" integrals of a over a basis of the first homology of M. Again, to simplify matters,
assume that H'(M) = 0. Then %4,(M)* = dQ}(M) and the weakly non-degenerate
pairing between dQ}(M) and ¥,,,(M) is given by

(da, X) = fM<a, X). ©)

Since the left Lie bracket on #,,(M) is minus the Jacobi—Lie bracket of vector
fields we have for any X, Y € 25,(M) and o € dQ}(M), where o =da,

(adsw, ¥) = (o, ~1X, Y)) = = [ (o, 1%, YDu= [ (e V),

and so
adxw = Lxo. (10)

Finally, the Hamiltonian function is given by the kinetic energy, i.e.

H@)=1 [ ol u=} ] (% v)u=1@®, v) =1 (o),

so that by symmetry of the bilinear form (vy, v,)— (dvt, v,), we get

6H
<$, 6w>—dH(w). dw = (v, dw)
for any dw € dQ'(M), i.e.
oH_, .
dw (11)

(10) and (11) show that the equations (7.9R) for this case reduce to the
conservation of vorticity equation (7) and the definition of Eulerian velocity.

We turn next to the linearised equations (7.41R) and time-dependent Hamil-
tonian function (7.40R) given in Proposition 7.6R. Since we are dealing with a
Hamiltonian system whose Hamiltonian function is right invariant under the
action of @%ol(M), we shall employ the connection (5.16R) for the linearisa-
tion. Let us denote the linearised variables, following the notations of Section 7,
by 60 € ¥;,(M), 8,0 € Xy(M)* =dQ}(M). Since for w,=du’, u;eXy (M),
i=1,2,

DH(@) (w1, 02)= [ gun, = [ (u s = (@, ),



378 J. E. Marsden, T. Ratiu and G. Raugel

we have, by (8),
D’H(w)(@y, ) =u; = (6A " w,)*. (12)

Therefore, using (10) we get the linearised equations along a solution wv(¢)
in the variables 6O € ®4,(M) and 6,0 = dw — Lsow(t) € dQ}(M) (see (7.40R)):

déo
e [6A7(—38;00(t) + 8,w)]* +[6O, v(9)],
(13)
d é,w
dr =L, 0,0 — 385 a1 (~2s0m2+ )@ (f)

where o(t) = dv(f)’. The Hamiltonian is given by (7.39R) and using A* = *A,
dA =Ad, A= A6, we get

%(I)Q(t) 68) 6sw) = %f g(aA—l(asw - %25@O)(t))#, (63(” - %gaew(t)#)ﬂ
M
- | £, (6871250 8,0)")n
= %f g(A_l(asw - %di(;@a)(t)), 65(1) - %di,s@w(t))u
M

- [ (ise 8.0, v (14

where g in the first integral is the naturally induced metric on forms.

Let us specialise the formulae above for the case when M = T° corresponding to
fluid flow in R> with periodic boundary conditions. By the usual identifications,
the closed two-form v is replaced by #A®, for A a vector field. Thus, our variables
in the linearisation are the two vector fields & A on R® where divE=0, and A is a
curl of another vector field. The following formulae for vector fields a, b hold:

(*da®)* = (6 *a®)* = curl a,
(i, *a®)* = —b x a,
(i,,dab)‘“e = —b X curl a,
(Aa®)* = —(V?a,, Va,, V?a,)=:—Va,

where V2= divegrad and a = (a,, 4,, a,) is the component expression of a in an
orthonormal positively oriented frame of R>. Using these identities, formula (14)
for the Hamiltonian becomés in this case

Hx(t, 60, b,w) = %f (=V)[8,@ + 3 curl (6O X w(1))] -
[6,0 + 3 curl (60O X w(t))] dx dy dz
+ f (50 X 8,0) - v(t) dx dy dz, (15)

where w(¢) = curl v(¢) is the vorticity of the solution v(¢) for the Euler equations
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' along which we linearise. The linearised equations are given by (13), i.e.

g‘:t—@= curl (=V?)~'[8,0 + 1 curl (80 X 0 (1))] + (6 - V)u(t) — (u(¥) - V) 8O
(16)
DL — curl (v(t) % 8,0) + eurl (w(t) X curl (~)"[6,0-+ L curl (50 X 0 (1))

ProprosITION 8.2. The linearised equations (16) are Hamiltonian in ®4,(T%) X
X4.(T°)* relative to the canonical symplectic structure and Hamiltonian function

(15).
References

1 H. D. L. Abarbanel, D. D. Holm, J. E. Marsden and T. S. Ratiu. Nonlinear stability analysis of
stratified fluid equilibria. Philos Trans. Roy. Soc. London, Ser. A 318 (1986), 349-409.

2 R. Abraham and J. Marsden. Foundations of Mechanics, 2nd edn. (Reading, Mass.: Addison-
Wesley, 1978).

3 R. Abraham, J. Marsden and T. Ratiu. Manifolds, Tensor Analysis, and Applications, 2nd edn.
(New York: Springer, 1988).

4 J. M. Arms. The structure of the solution set for the Yang-Mills equations. Math. Proc.
Cambridge. Philos. Soc. 90 (1981), 361-372.

5 J. M. Arms, J. E. Marsden and V. Moncrief. The structure of the space solutions of Einstein’s
equations II: Several Killings fields and the Einstein—Yang—Mills equations. Ann. of Phys. 144
(1982), 81-106.

6 V. I Arnold. Sur la géometrie differentielle des groupes de Lie de dimensional infinie et ses
applications a Thydrodynamique des fivids parfaits. Ann. Inst. Fourier. Grenoble 16 (1966),
319-361.

7 V. I. Arnold. Mathematical Methods of Classical Mechanics, Graduate Texts in Mathematics 60
(Berlin: Springer, 1978).

8 F. Bayen, M. Flato, C. Fronsdal, A. Lichnerowicz and D. Sternheimer. Deformation theory and
quantization I. Ann. of Phys. 111 (1978), 61-110.

9 H. Cendra and J. Marsden. Lin Constraints, Clebsch potentials and variational prinicples.
Physica D 27 (1987), 63-89. .

10 P. Chernoff and J. E. Marsden. Properties of Infinite Dimensional Hamiltonian Systems, Springer
Lecture Notes in Mathematics 425 (Berlin: Springer, 1974).

11 D. Eardley and V. Moncrief. Global Existence of Yang~Mills Higgs Fields in Four Dimensional
Minkowski Space. Comm. Math. Phys. 83 (1981), 171-211.

12 A. E. Fischer, J. E. Marsden and V. Moncrief. The structure of the space of solutions of
Einstein’s equations I: One Killing field. Ann. Inst. H. Poincaré 33 (1980), 147-194.

13 G. Gimmsy. Momentum Maps and Classical Relativistic Fields (in prep.)

14 J. M. Greene and J.-S. Kim. Introduction of a metric tensor into linearized evolution equations.
Physica D 36 (1989), 83-91.

15 H. Hess. Connections on symplectic manifolds and geometric quantization. Springer Lecture
Notes in Mathematics 836, Differential Geometrical Methods in Mathematical Physics, Proc.
Aix-en-Provence and Salamanca, 1979, eds. A. Pérez-Rendon and J. M. Souriau, 153-166
(Berlin: Springer, 1980).

16 H. Hess. Symplectic connections in geometric quantization and factor orderings (Ph.D. Thesis,

"~ Physics, Freie Universitit Berlin, 1981).

17 D. D. Holm, J. E. Marsden, T. S. Ratiu and A. Weinstein. Nonlinear stability of fluid and
plasma equilibria. Phys. Rep. 123 (1985), 1-116.

18 S. Kobayashi and K. Nomizu. Foundations of Differential Geometry, Vol. 1 (New York:
‘Interscience Publishers, 1963).

19 B. Kostant. Holonomy and the Lie algebra of infinitesimal motions of a Riemannian manifold.
Trans. Amer. Math. Soc. 80 (1955), 528-542.

20 A. Lichnerowicz. Connexions symplectiques et *-produits invariants. C.R. Acad. Sci. Paris 291
(1980), 413-417.

21 J. E. Marsden and A. Weinstein. Coadjoint orbits, vortices and Clebsch variables for
incompressible fluids. Physica D 7 (1983), 305-323.



380
2

23
24,

25

27

28
29

J. E. Marsden, T. Ratiu and G. Raugel

J. E. Marsden, A. Weinstein, T. Ratiu, R. Schmid and R. G. Spencer. Hamiltonian systems with
symmetry, coadjoint orbits and plasma physics. Proc. IUTAM-ISIMM Symposium on “Modern
Developments in Analytical Mechanics,” Torino, June 7-11, 1982. At#i della Academia della
Scienze di Torino 117 (1983), 289-340.

W. Poor. Differential Geometric Structures (New York: McGraw-Hill, 1981).

G. Sanchez de Alvarez. Geometric methods of classical mechanics applied to control theory
(Ph. D. Thesis, University of California, Berkeley, 1986).

M. Spivak. Differential Geometry, Vols. 1-5 (Waltham, Mass.: Publish or Perish, 1979).

Ph. Tondeur. Affine Zusammenhiinge auf Mannigfaltigkeiten mit fast-symplektischer Struktur.
Comment. Math. Helv. 36 (1961), 234-243.

J. Vey. Déformation due crochet de Poisson sur une variété symplectique. Comment. Math.
Helv. 50 (1975), 421-454.

I. Vaisman. Symplectic Twistor Spaces. J. Geom. Phys. 3 (1986), 507-524.

J. E. Mardsen, R. Montgomery and T. Ratiu [1990] Reduction, symmetry, and phases in
mechanics. Memoirs Amer. Math. Soc. 436, 1-110.

(Issued 17 April 1991)





